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Bipartite Graphs

Definition

A graph G = (V, E) is bipartite if V can be partitioned into two
independent sets A, B.
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Bipartite Graphs

Definition

A graph G = (V, E) is bipartite if V can be partitioned into two
independent sets A, B.

Relation with:
@ Paths?
@ Cycles?
@ Trees?

o Cliques?
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Bipartite Graphs

Definition

A graph G = (V, E) is bipartite if V can be partitioned into two
independent sets A, B.

Definition

A graph G = (V,E) is k-colorable if V' can be partitioned into k
independent sets.

@ GrRAPH COLORING is a notorious graph problem.
@ Deciding if a graph is bipartite is the special case for k = 2.
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Bipartite Graphs and Matchings

Motivation

Why care about bipartite graphs?
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Bipartite Graphs and Matchings

Motivation

Why care about bipartite graphs?
Supervisor

Workers

3
S={2, 4, 5}

Tasks 1
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Bipartite Graphs and Matchings

Motivation

Why care about bipartite graphs?

@ Come up naturally when we have two groups of elements and only
care about relations from one group to the other.

@ What structure arises from this restriction?

o Can we use it algorithmically?
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Basic Facts

Michael Lampis Graph Theory: Lecture 3 September 17, 2024 5/21



Characterization

Theorem
A graph G is bipartite if and only if G contains no odd cycles as subgraphs.
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Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.
Bipartite = No odd cycle:

o Easy: 5k is not bipartite, bipartiteness is preserved by subgraphs,
so if Cox+1 € G, then G is not bipartite.

0

Michael Lampis Graph Theory: Lecture 3 September 17, 2024 6/21




Characterization

Theorem

A graph G is bipartite if and only if G contains no odd cycles as subgraphs.

Proof.
Bipartite <= No odd cycle:

@ Let x be a vertex of G, V; vertices at odd distance from x,
Vo, = V'\ V, distances at even distance from x.

o Claim: Vi, V» are independent sets.

Take y,z € Vi, shortest x — y, x — z paths.

Let x’ be the last common vertex of these paths.

x" — y,x" — z paths have the same parity.

If yz € E we have an odd cycle, contradiction!
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Recognition Complexity

Problem
Given G, decide if G is bipartite.
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Recognition Complexity

Problem
Given G, decide if G is bipartite.

o Isin NP
o Certificate is the bipartition.
@ Isin coNP
o Counter-certificate is an odd cycle.

@ = is in NPNcoNP
@ Infactisin P
Proof.
Algorithm (for connected graph):

@ Initially, pick a vertex and place it in A

@ While 3 undecided v with decided neighbor, color v

Correctness? O
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Matchings
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Matchings

Definition

A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.
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Matchings

Definition

A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.
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Matchings

Definition
A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.

Definition
A matching M is perfect if all vertices are incident to an edge of M.

Definition
A matching M is maximum if all sets of edges of size |M| + 1 or more
contain two edges incident on the same vertex.

Note: These definitions are given for general graphs, but we mostly care
about bipartite graphs.
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Augmenting Paths

Definition
Given G = (V, E) and a matching M, an alternating path is a path
made up of edges e1, e, ..., e such that for all i € [k — 1] we have

e,'GM<:>e,'+1¢M.

Definition
An augmenting path is an alternating path where the first and last
vertices are not incident to edges of M.
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Augmenting Paths

Definition
Given G = (V, E) and a matching M, an alternating path is a path
made up of edges e1, e, ..., e such that for all i € [k — 1] we have

e,'GM<:>e,'+1¢M.

Definition
An augmenting path is an alternating path where the first and last
vertices are not incident to edges of M.

Theorem (Berge 1957)
A matching M is maximum if and only if no augmenting path exists.
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Augmenting Paths — Proof

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.
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Augmenting Paths — Proof

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.
Augmenting Path =
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Augmenting Paths — Proof

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.
Augmenting Path = M is not maximum
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Augmenting Paths — Proof

Theorem (Berge 1957)

A matching M is maximum if and only if no augmenting path exists.

Proof.
Augmenting Path <= M is not maximum

o Let M’ be a matching larger than M.

@ MU M’ induces a graph of maximum degree 2
@ = union of paths and cycles
°

= one of the paths must be augmenting to give |M’| > |M]|
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Perfect Matchings

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.
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Perfect Matchings

Problem

Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

NB: Take a moment to convince yourself that this is not trivial. ..
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Perfect Matchings

Problem
Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Theorem (Hall 1935)
A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].
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Perfect Matchings

Problem
Given a bipartite graph G = (A, B, E), decide if G has a perfect matching.

Theorem (Hall 1935)
A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

@ Establishes that BIPARTITE PERFECT MATCHINGE NPNcoNP
(why?)
@ We will in fact show that itisin P...
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Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].
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Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.
Perfect matching = VS we have |N(S)| > |S]

@ Easy: all elements of S have a distinct neighbor in the matching.
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Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.
Perfect matching < VS we have [N(S)| > |S]
@ Suppose that max matching M is not perfect.
@ Take an unmatched vertex u
o Find all vertices reachable from u via alternating paths
@ M maximum = cannot reach another unmatched vertex

@ u plus reachable vertices give S with |N(S)| < |S]|
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Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.

Michael Lampis

1
Graph Theory: Lecture 3 September 17, 2024 13 /21



Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.

Michael Lampis

1
Graph Theory: Lecture 3 September 17, 2024 13 /21



Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.

Michael Lampis

1
Graph Theory: Lecture 3 September 17, 2024 13 /21



Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.

Michael Lampis

1
Graph Theory: Lecture 3 September 17, 2024 13 /21



Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].

Proof.

Michael Lampis

1
Graph Theory: Lecture 3 September 17, 2024 13 /21



Hall's Theorem

Theorem (Hall 1935)

A bipartite graph G = (A, B, E) contains a perfect matching if and only if
for all S C A we have |[N(S)| > |S].
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The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum
matching of a bipartite graph.
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The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum
matching of a bipartite graph.

Q@ G = (A, B,E) and start with an empty matching M

@ For each unmatched v € A attempt to find an augmenting path
starting at u.
o If successful, augment M, goto 2.
o If unsuccessful for all u, declare M maximum.
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The Hungarian Method

Theorem

There is a polynomial-time algorithm for computing the maximum
matching of a bipartite graph.

Q@ G = (A, B,E) and start with an empty matching M

@ For each unmatched v € A attempt to find an augmenting path
starting at u.
o If successful, augment M, goto 2.
o If unsuccessful for all u, declare M maximum.
Correctness:

o If step 2 can be performed correctly, algorithm runs in
polynomial-time.

@ Correctness follows from Berge's theorem.
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Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched u € A, we can in
polynomial time decide if there is an augmenting path starting at u
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Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched u € A, we can in
polynomial time decide if there is an augmenting path starting at u.

Algorithm:
@ X C A, Y C B vertices reachable by alternating path from wu. Initially,
X ={u} and Y = 0.
© Repeat n times, for all edges e

@ Ife=abegM acXandbg Y, set Y :=YU{b}
@ Ife=ab,ee M beYand ad X, set X :=XU{a}.

@ If Y contains an unmatched vertex (of B), say Yes, otherwise No.
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Finding Augmenting Paths

Lemma

Given G = (A, B, E), matching M, unmatched u € A, we can in
polynomial time decide if there is an augmenting path starting at u.

Algorithm:
@ X C A, Y C B vertices reachable by alternating path from wu. Initially,
X ={u} and Y = 0.
© Repeat n times, for all edges e

@ Ife=abegM acXandbg Y, set Y :=YU{b}
@ Ife=ab,ee M beYand ad X, set X :=XU{a}.

@ If Y contains an unmatched vertex (of B), say Yes, otherwise No.
Correctness:

@ G is bipartite, so X may contain only matched vertices. Paths u — X
have even length, paths u — Y have odd length.
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Hungarian Method: Example
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Matchings and Vertex Covers

Vertex Covers

Definition
In a graph G = (V, E) a vertex cover is a set S C V such that all edges
of E have at least an endpoint in S.
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Matchings and Vertex Covers

Vertex Covers

Definition
In a graph G = (V, E) a vertex cover is a set S C V such that all edges
of E have at least an endpoint in S.

Problem

In the MINIMUM VERTEX COVER problem we take as input G, k and
want to decide if G has a vertex cover of size < k.

Theorem
In all graphs G, a(G) + ve(G) = n.

Minimum vertex cover of

e Paths P,? Cycles C,? Cliques K,? Complete bipartite graphs K, m?
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Vertex Cover and Matchings

Theorem

In all graphs G we have vc(G) > mm(G).

Note: vc(G): min vertex cover, mm(G): max matching
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Vertex Cover and Matchings

Theorem

In all graphs G we have vc(G) > mm(G).

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers
two such edges. O
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Vertex Cover and Matchings

Theorem

In all graphs G we have vc(G) > mm(G).

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers
two such edges. O

Is VERTEX COVER in...
e NP?
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Vertex Cover and Matchings

Theorem

In all graphs G we have vc(G) > mm(G).

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers
two such edges. O

Is VERTEX COVER in...
o NP?
o Yes. Certificate is the cover S.
@ coNP?
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Vertex Cover and Matchings

Theorem

In all graphs G we have vc(G) > mm(G).

Note: vc(G): min vertex cover, mm(G): max matching

Proof.

Any cover must hit all edges of a maximum matching, no vertex covers
two such edges. O

Is VERTEX COVER in...
o NP?
o Yes. Certificate is the cover S.
@ coNP?

o No!! (Unless NP=conP 1)
o Why doesn’t maximum matching work as a certificate?
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Kénig's theorem

Theorem
If G is bipartite, then mm(G) = vc(G).

Proof.
e G = (A, B,E), M a max matching, U set of unmatched vertices of A.
@ Define Z to be set of vertices reachable from U via alternating paths.

e Claim: (A\ Z)U (BN Z) is a vertex cover that contains one endpoint
of each edge of M.

O
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TS
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Matchings and Vertex Covers

Konig's theorem

Theorem
If G is bipartite, then mm(G) = vc(G).
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Matchings and Vertex Covers

Konig's theorem — Implications

Theorem

If G is bipartite, then mm(G) = vc(G).

Corollary

MiNiMUM VERTEX COVER is in coNP for bipartite graphs.
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Matchings and Vertex Covers

Konig's theorem — Implications

Theorem
If G is bipartite, then mm(G) = vc(G).

Corollary
MiNiMUM VERTEX COVER is in coNP for bipartite graphs.

Corollary

MiNIMUM VERTEX COVER is in P for bipartite graphs. (Using Hungarian
Method).

@ On general graphs, MINIMUM VERTEX COVER is NP-complete, so
not in P, nor in CONP ... unless P=NP or NP=coNP. ..
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