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Coloring

Definition

For a graph G = (V ,E ) a proper coloring of G with k colors is a
partition of V into k independent sets V1, . . . ,Vk .

Definition

The chromatic number of G , denoted χ(G ) is the smallest k for which
G admits a proper k-coloring.

Definition

In the Graph Coloring problem we are given a graph G and are asked
to determine χ(G ).

Note: χ(G ) ≤ 2 if and only if G is bipartite.
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Colorings and Cliques

Theorem

For all graphs G, χ(G ) ≥ ω(G ).

(Reminder: ω(G ): size of maximum clique)

This is not an equivalence!

Construct a graph with χ(G ) ≥ ω(G ) + 1

C5

Construct a graph with χ(G ) ≫ ω(G )

Will see a construction later. . .

Graph Coloring is in NP

Certificate is the coloring

. . . but not in coNP (unless NP=coNP)
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Colorings and Independent Sets

Theorem

For all graphs G, χ(G ) ≥ n/α(G ).

(Reminder: α(G ): size of maximum independent set)

Proof.

Suppose that χ < n
α and that the color classes are V1,V2, . . . ,Vχ.

Since each Vi is an independent set, |Vi | ≤ α.

Then |V | =
∑

i∈[χ] |Vi | ≤ χα < n, contradiction!
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Colorings and Degrees

Theorem

For all graphs G, χ(G ) ≤ ∆(G ) + 1.

(Reminder: ∆(G ): maximum degree)

Proof.

First-Fit algorithm:

Consider vertices in some order v1, v2, . . . , vn

For each vi assign to it the minimum color in {1, 2, . . .} that is not
yet used by its neighbors.

Worst case: the (at most ∆) neighbors of vi use all colors in
{1, . . . ,∆}, so vi gets color ∆ + 1.

Can this be improved?
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The First-Fit Algorithm

Lemma

There exists a graph G and an ordering of V (G ) such that First-Fit uses
strictly more than χ(G ) colors.
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The First-Fit Algorithm

Lemma

There exists a graph G and an ordering of V (G ) such that First-Fit uses
strictly more than χ(G ) colors.

NB: If the above were false, then we would have a P-time algorithm for
Graph Coloring!
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The First-Fit Algorithm

Lemma

There exists a graph G and an ordering of V (G ) such that First-Fit uses
strictly more than χ(G ) colors.

Example: P4, with ordering 1, 4, 2, 3.
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The First-Fit Algorithm

Lemma

There exists a graph G and an ordering of V (G ) such that First-Fit uses
strictly more than χ(G ) colors.

Lemma

For all G , there exists an ordering of V (G ) such that First-Fit uses χ(G )
colors.

Proof.

Let V1,V2, . . . ,Vk be a proper coloring of G with k colors. We can use an
ordering V1 ≺ V2 ≺ . . .Vk .
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Coloring and Degeneracy

Definition

The degeneracy of G is the minimum δ∗ such that all subgraphs of G
contain a vertex of degree at most δ∗.

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.
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Coloring and Degeneracy

Definition

The degeneracy of G is the minimum δ∗ such that all subgraphs of G
contain a vertex of degree at most δ∗.

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.

Note that δ∗ ≤ ∆, because all subgraphs contain a vertex of degree ∆, so
this is better than previous theorem.
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Coloring and Degeneracy

Definition

The degeneracy of G is the minimum δ∗ such that all subgraphs of G
contain a vertex of degree at most δ∗.

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.

Proof.

By induction:

Suppose statement true for G with ≤ n − 1 vertices.

G contains a vertex of degree ≤ δ∗, call it v .

δ∗(G − v) ≤ δ∗(G ), so by IH G − v can be colored with δ∗ colors.

Use the smallest available color for v to extend this coloring to G .
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Brooks’ Theorem

Brooks’ Theorem
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Brooks’ Theorem

Upper bounds on chromatic number

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.

Theorem

For all graphs G, χ(G ) ≤ ∆(G ) + 1.
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Brooks’ Theorem

Upper bounds on chromatic number

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.

Theorem

For all graphs G, χ(G ) ≤ ∆(G ) + 1.

Because δ∗ ≤ ∆, the first theorem implies the second.
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Brooks’ Theorem

Upper bounds on chromatic number

Theorem

For all G we have χ(G ) ≤ δ∗(G ) + 1.

Theorem

For all graphs G, χ(G ) ≤ ∆(G ) + 1.

Are these theorems tight?

Cliques Kn have ∆ = δ∗ = n − 1, χ = n

Stars K1,n have ∆ = n, δ∗ = 1, χ = 2

Cycles C2n+1 have ∆ = 2, δ∗ = 2, χ = 3

Actually, cliques and odd cycles are the only cases where the second
theorem is tight!
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Brooks’ Theorem

Brooks’ Theorem

Theorem

For all G such that G is not a clique or an odd cycle, χ(G ) ≤ ∆(G ).

Proof.

Proof by minimal counter-example:

Suppose G is the smallest (non-clique, non-odd-cycle) graph for
which χ(G ) ≥ ∆(G ) + 1.

We will reach a contradiction, assuming that the theorem is true for
all graphs with fewer vertices.

3 cases:

G has a cut vertex
G has a vertex cut of size 2
G is 3-connected

Assume throughout that ∆ ≥ 3 and G is ∆-regular (why?)
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Brooks’ Theorem

Cut Vertex Case

Assumption: G has χ(G ) ≥ ∆(G ) + 1 and G has a cut vertex x .

Proof.

Let G1, . . . ,Gk be the components of G − v

Let G ′
i = Gi + v (where we keep all edges of G incident on v in Gi ).

G ′
i is ∆-colorable, wlog v has color 1

v has degree at most ∆− 1 in G ′
i

If G ′
i is a clique, then χ(G ′

i ) ≤ ∆
If G ′

i is an odd cycle, χ(G ′
i ) = 3 ≤ ∆

Otherwise G ′
i is not a counter-example, so χ(G ′

i ) ≤ ∆.

Gluing colorings together we get a ∆-coloring of G , contradiction.
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Brooks’ Theorem

Cut of Size 2

Assumption: G has χ(G ) ≥ ∆(G ) + 1 and G has a cut set {x , y}.

Proof.

Let G1, . . . ,Gk be the components of G − {x , y}
Let G ′

i = Gi + {x , y} (where we keep all edges of G incident on x , y
in Gi ).

Furthermore, add to G ′
i the edge xy (if it is not already there).

G ′
i is ∆-colorable, wlog x , y have colors 1, 2

x , y have degree at most ∆− 1 in G ′
i

Adding the edge xy makes their degrees at most ∆
If G ′

i is a clique, then χ(G ′
i ) ≤ ∆+ 1 (!!!)

If G ′
i is an odd cycle, χ(G ′

i ) = 3 ≤ ∆
Otherwise G ′

i is not a counter-example, so χ(G ′
i ) ≤ ∆.

Gluing colorings together we get a ∆-coloring of G , contradiction.
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Brooks’ Theorem

Cut of Size 2 – Missing case

Assumption: G has χ(G ) ≥ ∆(G ) + 1 and G has a cut set {x , y}.

Proof.

Let G1, . . . ,Gk be the components of G − {x , y}
Sticky case: G1 is a clique of size ∆− 1, x , y are adjacent to all of G1.

There exists only one other component G2, x , y have degree 1 in G2.
Since ∆ ≥ 3, there is a coloring of G2 + {x , y} where x , y receive the
same color.
This coloring can be extended to a ∆-coloring of G .
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Brooks’ Theorem

All Cuts of size at least 3

Assumption: G has χ(G ) ≥ ∆(G ) + 1 and G is 3-connected.

Proof.

Since G is not a clique, there exist x , y ∈ V with xy ̸∈ E .

In fact, there exist such x , y with distance 2 (common neighbor z)

Consider the pair x , y with minimum distance. If the shortest path has
length ≥ 3, x with the third vertex of the path make a better pair.

{x , y} is not a separator. If G ′ is G where we remove all edges
incident on x , y , except xz , yz , G ′ is connected.

Run First-Fit on G for ordering x , y ,V \ {x , y , z}, z , where
V \ {x , y , z} is ordered in decreasing distance from z in G ′.

x , y receive color 1
All vertices of V \ {x , y , z} have an uncolored neighbor when
considered ⇒ at most ∆ colors used in this part
z has two neighbors with identical color ⇒ receives color ≤ ∆.
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Mycielski

Mycielski
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Mycielski

Colorings and Cliques (again)

Theorem

For all graphs G, χ(G ) ≥ ω(G ).

This inequality is NOT tight in general!

Otherwise we would have Coloring∈NP∩coNP
We will construct a triangle-free graph with arbitrarily large chromatic
number.
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Mycielski

Mycielski Construction

Definition

If G = (V ,E ) is a graph with V = {v1, . . . , vn}, then G ∗ is the graph
obtained by:

V (G ∗) = V ∪ U ∪ {w}, where U = {u1, . . . , un}
E (G ∗) = E ∪ {viuj , uivj | vivj ∈ E} ∪ {wui | i ∈ [n]}
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Mycielski

Mycielski Construction

Definition

If G = (V ,E ) is a graph with V = {v1, . . . , vn}, then G ∗ is the graph
obtained by:

V (G ∗) = V ∪ U ∪ {w}, where U = {u1, . . . , un}
E (G ∗) = E ∪ {viuj , uivj | vivj ∈ E} ∪ {wui | i ∈ [n]}

In words:

For each vi we add a new “copy” ui adjacent to the neighbors of vi .

However, the ui ’s are an independent set.

We add a new vertex w adjacent to all other new vertices.
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Mycielski

Mycielski Construction

Definition

If G = (V ,E ) is a graph with V = {v1, . . . , vn}, then G ∗ is the graph
obtained by:

V (G ∗) = V ∪ U ∪ {w}, where U = {u1, . . . , un}
E (G ∗) = E ∪ {viuj , uivj | vivj ∈ E} ∪ {wui | i ∈ [n]}

Example:
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Mycielski

Mycielski Construction Works

Theorem

χ(G ∗) = χ(G ) + 1.

Theorem

If G has no triangle, then G ∗ has no triangle.
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Mycielski

Mycielski Construction Works

Theorem

χ(G ∗) = χ(G ) + 1.

Theorem

If G has no triangle, then G ∗ has no triangle.

Proof.

w cannot be in a triangle, as its neighbors are independent.

ui , uj cannot be together in a triangle.

If vi , vj , uk is a triangle, vi , vj , vk is also a triangle.
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Mycielski

Mycielski Construction Works

Theorem

χ(G ∗) = χ(G ) + 1.

Theorem

If G has no triangle, then G ∗ has no triangle.

Proof.

χ(G ∗) ≤ χ(G ) + 1 is easy

χ(G ) ≤ χ(G ∗)− 1:

In an optimal coloring U is using χ(G∗)− 1 colors
For vi ∈ V with color χ(G∗), assign it the color of ui ; keep the other
colors of V intact.
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