Graph Theory: Lecture 6 Planar Graphs

Michael Lampis

October 21, 2024

Definition

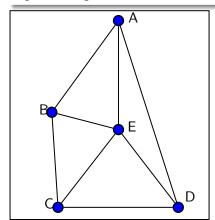
Definition

A graph is **planar** if it can be embedded (drawn) on the plane without edge crossings.

Reminder:

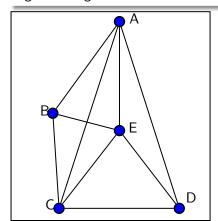
- We said we usually don't care about how a graph is drawn.
- Today we make a slight exception, because planar graphs are important.

Definition

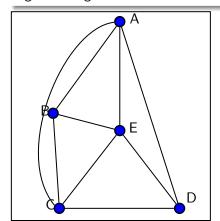


Definition

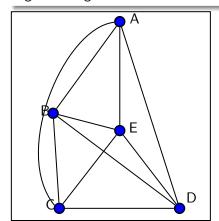
A graph is **planar** if it can be embedded (drawn) on the plane without edge crossings.



Definition



Definition



Definition

- "Is this graph planar?" is in NP (certificate?)
- We will see that it is also in coNP and in fact in P (without proofs).

Definition

A graph is **planar** if it can be embedded (drawn) on the plane without edge crossings.

Examples:

- Trees are planar
- Cycles are planar
- (Bi-)Cliques are (usually) not planar

Theorem

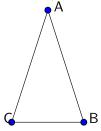
K₅ is not planar.

Proof.

Theorem

K₅ is not planar.

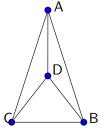
Proof.



Theorem

K₅ is not planar.

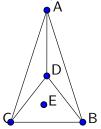
Proof.



Theorem

 K_5 is not planar.

Proof.

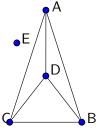


Theorem

 K_5 is not planar.

Proof.

(By picture)



Theorem

K₅ is not planar.

Proof.

(By picture)

A few details missing:

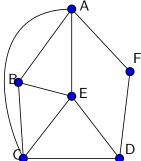
- Is it OK to only use straight lines? (Yes)
- Actually, doesn't matter: cycles are Jordan curves
- Outside face symmetric to inside face. . .

Definition

A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.

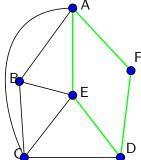
Definition

A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.



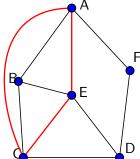
Definition

A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.



Definition

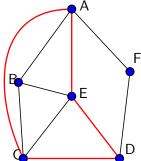
A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.



Definition

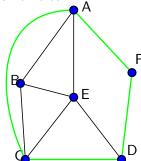
A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.

Intuitively: the border of a face is a cycle, such that one side of the cycle has no vertex.



Definition

A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.



Definition

A **face** of a plane drawing of a planar graph is a maximal connected region not intersecting any edge.

Intuitively: the border of a face is a cycle, such that one side of the cycle has no vertex.

In other words:

 A face is defined by a cycle (walk) that is not a separator of the graph.

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n+f=m+2$$

Proof.

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n+f=m+2$$

Proof.

By induction on m

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n+f=m+2$$

Proof.

By induction on m

- If m = 1, since G is connected, G is a K_2
- \Rightarrow n = 2, f = 1, good.

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n + f = m + 2$$

Proof.

By induction on m

• If G is a tree, then m = n - 1, f = 1 good.

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n+f=m+2$$

Proof.

By induction on m

- Suppose G contains a cycle, m edges, statement true for connected graphs with m-1 edges.
- Remove an edge e of a cycle, G e has:
 - n' = n, m' = m 1, f' = f 1
 - (IH) n' + f' = m' + 2
 - $\bullet \Rightarrow n + f 1 = m 1 + 2$, good.

Theorem

For all planar drawings with f faces of a connected planar graph with n vertices and m edges we have:

$$n + f = m + 2$$

Proof.

By induction on m

Key step:

Removing an edge merges two faces into one.

Euler's formula: Applications

Theorem

All planar embeddings of a planar graph G have the same number of faces.

Theorem

For all planar graphs $m \leq 3n - 6$

Corollary

For all planar graphs $\delta \leq 5$

Corollary

K₅ is not planar

Planar graphs are sparse

Theorem

For all planar graphs $m \le 3n - 6$

Proof.

• Suppose G is planar, has maximum number of edges.

Planar graphs are sparse

Theorem

For all planar graphs $m \le 3n - 6$

Proof.

- Suppose G is planar, has maximum number of edges.
- Then, every face is a C_3 .

Planar graphs are sparse

Theorem

For all planar graphs $m \leq 3n - 6$

Proof.

- Suppose G is planar, has maximum number of edges.
- Then, every face is a C_3 .
- \Rightarrow 3f = 2m, because every edge appears in two faces.
- $n + f = m + 2 \Rightarrow n = \frac{m}{3} + 2 \Rightarrow m = 3n 6$

Characterization of Planar Graphs

Forbidden Subgraphs?

- Reminder: G is bipartite if and only if G has no odd cycle subgraph.
- Would be nice to have a similar theorem for planar graphs!
 - Among other reasons: recognition in NP∩coNP.
- Example: G is planar if and only if G has no K_5 subgraph.

Forbidden Subgraphs?

- Reminder: G is bipartite if and only if G has no odd cycle subgraph.
- Would be nice to have a similar theorem for planar graphs!
 - Among other reasons: recognition in NP∩coNP.
- Example: G is planar if and only if G has no K_5 subgraph.
- This is false because:
 - K_5 is not the only minimal non-planar graph.
 - Subgraphs are too restricted an operation for planarity.

Can we "fix" this?

Minimal Non-Planar Graphs I

Theorem

 $K_{3,3}$ is non-planar.

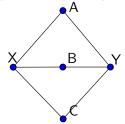
Proof.

(Proof by picture)

Theorem

 $K_{3,3}$ is non-planar.

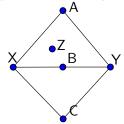
Proof.



Theorem

 $K_{3,3}$ is non-planar.

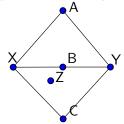
Proof.



Theorem

 $K_{3,3}$ is non-planar.

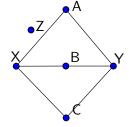
Proof.



Theorem

 $K_{3,3}$ is non-planar.

Proof.



Definition

A **sub-division** of an edge e = xy is the operation that removes from the graph e and replaces it with a new vertex z and the edges xz, yz.

Definition

A **sub-division** of an edge e = xy is the operation that removes from the graph e and replaces it with a new vertex z and the edges xz, yz.

Theorem

If G is planar, its sub-divisions are planar.

If G is non-planar, its sub-divisions are non-planar.

Definition

A **sub-division** of an edge e = xy is the operation that removes from the graph e and replaces it with a new vertex z and the edges xz, yz.

Theorem

If G is planar, its sub-divisions are planar.

If G is non-planar, its sub-divisions are non-planar.

Idea:

- Forbidding a subgraph of *G* cannot precisely characterize planarity: sub-dividing edges destroys most subgraphs.
- What if we try to forbid a **sub-division** instead of a subgraph?

Kuratowski's Theorem

Theorem

G is planar if and only if G does not contain a subgraph that is a sub-division of K_5 or $K_{3,3}$.

Kuratowski's Theorem

Theorem

G is planar if and only if G does not contain a subgraph that is a sub-division of K_5 or $K_{3,3}$.

- K_5 and $K_{3,3}$ are the only minimal non-planar graphs for the sub-division operation!
- Planarity is in NP∩coNP
 - Counter-certificate (which always exists): a sub-divided copy of K_5 or $K_{3,3}$.

Kuratowski's Theorem

Theorem

G is planar if and only if G does not contain a subgraph that is a sub-division of K_5 or $K_{3,3}$.

- K_5 and $K_{3,3}$ are the only minimal non-planar graphs for the sub-division operation!
- Planarity is in NP∩coNP
 - Counter-certificate (which always exists): a sub-divided copy of K_5 or $K_{3,3}$.
- Actually, Planarity is in P (but algorithm too complicated for this course).

Coloring of Planar Graphs

Minimum number of colors that is sufficient to color any planar graph?

Minimum number of colors that is sufficient to color any planar graph?

Theorem

If G is planar, then $\chi(G) \leq 6$.

Minimum number of colors that is sufficient to color any planar graph?

Theorem

If G is planar, then $\chi(G) \leq 6$.

Proof.

 $\delta(G) \leq 5$, run First-Fit with this vertex last.

Minimum number of colors that is sufficient to color any planar graph?

Theorem

If G is planar, then $\chi(G) \leq 6$.

Proof.

 $\delta(G) \leq 5$, run First-Fit with this vertex last.

Theorem

There exists a planar graph G with $\chi(G) \geq 4$.

Minimum number of colors that is sufficient to color any planar graph?

Theorem

If G is planar, then $\chi(G) \leq 6$.

Proof.

 $\delta(G) \leq 5$, run First-Fit with this vertex last.

Theorem

There exists a planar graph G with $\chi(G) \geq 4$.

Proof.

 K_4 is planar.

Minimum number of colors that is sufficient to color any planar graph?

Theorem

If G is planar, then $\chi(G) \leq 6$.

Proof.

 $\delta(G) \leq 5$, run First-Fit with this vertex last.

Theorem

There exists a planar graph G with $\chi(G) \geq 4$.

Proof.

 K_4 is planar.

Correct answer is 4, 5, or 6...

The 5-color Theorem

Theorem

If G is planar, then $\chi(G) \leq 5$.

Proof.

- G has a vertex v of degree at most 5.
- By induction G v can be 5-colored.

The 5-color Theorem

Theorem

If G is planar, then $\chi(G) \leq 5$.

Proof.

- G has a vertex v of degree at most 5.
- By induction G v can be 5-colored.
- If 5-coloring of G v uses ≤ 4 colors in neighbors of v, done!

The 5-color Theorem

Theorem

If G is planar, then $\chi(G) \leq 5$.

Proof.

- G has a vertex v of degree at most 5.
- By induction G v can be 5-colored.
- Suppose G has neighbors x_1, \ldots, x_5 (in clockwise order) with distinct respective colors $\{1, \ldots, 5\}$ in G v.
- Let $G_{1,3}$ be the graph induced by colors 1, 3.
 - If x_1, x_3 in distinct components of $G_{1,3}$, flip colors 1, 3 in component of x_1 , done!
 - Otherwise, $x_1 \rightarrow x_3$ path in $G_{1,3}$ plus v form a cycle that separates x_2 from x_4 . Flip colors 2,4 in component of $G_{2,4}$ that contains x_2 , done!

The 4-color Theorem

Theorem

If G is planar, then $\chi(G) \leq 4$.

The 4-color Theorem

Theorem

If G is planar, then $\chi(G) \leq 4$.

- Conjectured already in 19th century.
- Several incorrect proofs published!
- First "real" proof: Appel and Haken 1976
 - Controversially, first computer-assisted proof.
 - Was later found to contain small (fixable) errors.
- Simplified proof: Robertson, Sanders, Seymour, and Thomas, 1996
 - Still computer-assisted!
 - Gives $O(n^2)$ algorithm for producing 4-coloring.
- Computer-assisted proofs have now also been computer-verified.

What about 3 colors?

Theorem

Deciding if a planar graph can be colored with 3 colors is NP-complete.

What about 3 colors?

Theorem

Deciding if a planar graph can be colored with 3 colors is NP-complete.

- Deciding if $\chi(G) \leq 2$ is easy (bipartiteness).
- Deciding if $\chi(G) \leq 4$ is easy (always Yes).
- Deciding if $\chi(G) \leq 3$ is hard!

What about 3 colors?

Theorem

Deciding if a planar graph can be colored with 3 colors is NP-complete.

- Deciding if $\chi(G) \leq 2$ is easy (bipartiteness).
- Deciding if $\chi(G) \leq 4$ is easy (always Yes).
- Deciding if $\chi(G) \leq 3$ is hard!
- Actually, the vast majority of interesting problems are (unfortunately) still hard on planar graphs.