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Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

A graph is a forest if and only if it has no Ck (induced) subgraph.

A graph is bipartite if and only if it has no C2k+1 (induced) subgraph.

A graph is planar if and only if it has no K3,3,K5 topological minor.
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A graph is a forest if and only if it has no Ck (induced) subgraph.

A graph is bipartite if and only if it has no C2k+1 (induced) subgraph.

A graph is planar if and only if it has no K3,3,K5 topological minor.

Are the first two statements above still true for induced subgraphs?
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Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

A graph is a forest if and only if it has no Ck (induced) subgraph.

A graph is bipartite if and only if it has no C2k+1 (induced) subgraph.

A graph is planar if and only if it has no K3,3,K5 topological minor.

In other words:

If I promise you that a small (bad) structure H does not appear in a
larger graph G , what (else) does this tell us about G?
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Chordal Graphs

Definition

A graph G is chordal if G does not contain any cycle Ck , for k ≥ 4 as an
induced subgraph.

Examples:
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Chordal Graphs

Definition

A graph G is chordal if G does not contain any cycle Ck , for k ≥ 4 as an
induced subgraph.

Examples:
Are the following chordal?

Forests?

Cliques?

Bipartite graphs?

Planar graphs?
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Chordal Graphs

Definition

A graph G is chordal if G does not contain any cycle Ck , for k ≥ 4 as an
induced subgraph.

Examples:
Chordal recognition is in:

NP?

coNP?

P?
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Chordal Graphs

Definition

A graph G is chordal if G does not contain any cycle Ck , for k ≥ 4 as an
induced subgraph.

Examples:
Chordal recognition is in:

NP?
Certificate: ??

coNP?
Counter-certificate: Long Induced Cycle

P?
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Chordal Graphs and Separators

Theorem

A graph G is chordal if and only if every minimal vertex separator of G
induces a clique.
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Chordal Graphs and Separators

Theorem

A graph G is chordal if and only if every minimal vertex separator of G
induces a clique.

Sanity check:

Trees are chordal.

Every minimal vertex separator of a tree is a single vertex (K1).
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Chordal Graphs and Separators

Theorem

A graph G is chordal if and only if every minimal vertex separator of G
induces a clique.

Need to prove that:

G is chordal ⇒ all minimal separators are cliques.

G is not chordal ⇒ some minimal separator is not a clique.

Which part is easy?
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Chordal Graphs and Separators

Theorem

A graph G is chordal if and only if every minimal vertex separator of G
induces a clique.

Proof.

(Easy part): G is not chordal ⇒ some minimal separator is not a clique

G has an induced cycle v1, v2, . . . , vk , k ≥ 4

Take a minimal v1v3 separator S .

v2 ∈ S and at least one vi ∈ S ∩ {v4, . . . , vk}.
v2vi 6∈ E , therefore S is not a clique.
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Chordal Graphs and Separators

Theorem

A graph G is chordal if and only if every minimal vertex separator of G
induces a clique.

Proof.

(Harder part): G is not chordal ⇐ some minimal separator is not a clique

Let S be a minimal xy -separator that is not a clique

Let a, b ∈ S such that ab 6∈ E

a, b have neighbors in both components of G − S that contain x , y
(because S is minimal).

Take a shortest a→ b path in each component, their union is an
induced cycle (why?) of length at least 4, so G is not chordal.
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Simplicial Vertices

Definition

A vertex v of a graph G is called simplicial if G [N(v)] induces a clique.

Theorem

If G is chordal and G is not a clique, then G contains at least two
non-adjacent simplicial vertices.

Sanity check:

If G is a tree

and G is not a clique ⇔ G is not K2

G contains at least two non-adjacent leaves
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Simplicial Vertices continued

Theorem

If G is chordal and G is not a clique, then G contains at least two
non-adjacent simplicial vertices.

Proof.

Proof by induction on n.
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Simplicial Vertices continued

Theorem

If G is chordal and G is not a clique, then G contains at least two
non-adjacent simplicial vertices.

Proof.

Proof by induction on n.

Base case: n = 3, G = P3, good.
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Simplicial Vertices continued

Theorem

If G is chordal and G is not a clique, then G contains at least two
non-adjacent simplicial vertices.

Proof.

Proof by induction on n.

Let x , y be two non-adjacent vertices, S a minimal xy -separator

S is a clique, X ,Y are components of G − S that contain x , y

Claim: Each of X ,Y contains a simplicial vertex of G , there are no
edges from X to Y , so these are non-adjacent.
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Simplicial Vertices continued

Theorem

If G is chordal and G is not a clique, then G contains at least two
non-adjacent simplicial vertices.

Proof.

Proof by induction on n.

Claim: X has a simplicial vertex of G

Case 1: G [X ∪ S ] is a clique

All vertices of X are simplicial, good.

Case 2: G [X ∪ S ] is not a clique

Inductive hypothesis applies on G ′ = G [X ∪ S ]
⇒ two non-adjacent simplicial vertices in G ′

Both of them cannot be in S (which is a clique), so one is in X , good.
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Recognizing Chordality

“Is vertex v simplicial?” is in P.

“Does G have a simplicial vertex?” is in P.

Theorem

A chordal graph G contains at least one simplicial vertex.

Alternative coNP counter-certificate: check that G has no simplicial
vertex.

Can we use simplicial vertices to show that chordality recognition is in
NP?

Key insight: simplicial vertices cannot be involved in long induced
cycles.
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Recognizing Chordality continued

Definition

A Perfect Elimination Ordering of the vertices of a graph G = (V ,E ) is
an ordering of V = {v1, . . . , vn} such that for all i we have that vi is
simplicial in G [{vi , vi+1, . . . , vn}].

Theorem

G has a perfect elimination ordering if and only if G is chordal.

Michael Lampis Graph Theory: Lecture 7 November 25, 2024 8 / 15



Recognizing Chordality continued

Definition

A Perfect Elimination Ordering of the vertices of a graph G = (V ,E ) is
an ordering of V = {v1, . . . , vn} such that for all i we have that vi is
simplicial in G [{vi , vi+1, . . . , vn}].

Theorem

G has a perfect elimination ordering if and only if G is chordal.

Proof.

G is not chordal ⇒ G has no perfect elimination ordering

Suppose G contains cycle Ck with k ≥ 4.

Build an ordering, let vi be the first vertex of Ck in the ordering.

The two neighbors of vi in the cycle are non-adjacent, come later

⇒ vi is not simplicial in the rest of the graph, contradiction.
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Recognizing Chordality continued

Definition

A Perfect Elimination Ordering of the vertices of a graph G = (V ,E ) is
an ordering of V = {v1, . . . , vn} such that for all i we have that vi is
simplicial in G [{vi , vi+1, . . . , vn}].

Theorem

G has a perfect elimination ordering if and only if G is chordal.

Proof.

G is chordal ⇒ G has a perfect elimination ordering

G has a simplicial vertex v , place it first.

Inductively construct an ordering of G − v (which is chordal).
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Recognizing Chordality

Theorem

There is a polynomial-time algorithm that decides if a given graph G is
chordal.

Proof.

Key ideas:

Finding a simplicial vertex is in P.

If no such vertex, say No.

If v is simplicial, then G chordal ⇔ G − v chordal, recurse.

Recursion sequence gives a perfect elimination ordering.
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Applications

Applications
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Applications

Maximum Independent Set

Basic algorithm:

1 Pick a vertex v

2 Compute (recursively) s1 = α(G − v)

3 Compute (recursively) s2 = 1 + α(G − N[v ])

4 Return max{s1, s2}

Basic algorithm is bad (exponential-time).

What if we have a way to select a “good” vertex v?
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Applications

Maximum Independent Set – Simplicial vertices

Theorem

If v is a simplicial vertex of G, then there exists a maximum independent
set S of G with v ∈ S.

Proof.

Exchange argument:

If v 6∈ S and N(v) ∩ S = ∅, contradiction, as S ∪ {v} is a larger
independent set.

If v 6∈ S and N(v) ∩ S 6= ∅, then |N(v) ∩ S | = 1, as N(v) is a clique.

Let S ∩ N(v) = {u}. Then (S \ {u}) ∪ {v} is another maximum
independent set.
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Applications
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Basic algorithm:

1 Pick a simplicial vertex v

2 Compute (recursively) s1 = α(G − v)

3 Compute (recursively) s2 = 1 + α(G − N[v ])
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Applications

Maximum Independent Set

Basic algorithm:

1 Pick a simplicial vertex v

2 Compute (recursively) s1 = α(G − v)

3 Compute (recursively) s2 = 1 + α(G − N[v ])

4 Return max{s1, s2} → Return s2

Correctness:

Running time is polynomial (no branching)

v is simplicial ⇒ some optimal independent set contains it.
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Applications

Maximum Clique

Basic algorithm:

1 Pick a vertex v

2 Compute (recursively) s1 = ω(G − v)

3 Compute (recursively) s2 = 1 + ω(G [N(v)])

4 Return max{s1, s2}

Basic algorithm is bad (exponential-time).

What if we have a way to select a “good” vertex v?
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Applications

Maximum Clique

Basic algorithm:

1 Pick a simplicial vertex v

2 Compute (recursively) s1 = ω(G − v)

3 Compute (recursively) s2 = 1 + ω(G [N(v)]) s2 = 1 + |N(v)|
4 Return max{s1, s2}
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Applications

Maximum Clique

Basic algorithm:

1 Pick a simplicial vertex v

2 Compute (recursively) s1 = ω(G − v)

3 Compute (recursively) s2 = 1 + ω(G [N(v)]) s2 = 1 + |N(v)|
4 Return max{s1, s2}

Correctness:

Running time is polynomial (no branching)

v is simplicial ⇒ if v is in our clique, all of N(v) can be placed in our
clique.
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Applications

Coloring

Recall the First-Fit coloring algorithm:

Order vertices v1, . . . , vn

Assign each vertex lowest available color

Idea: execute this with the opposite of a PEO.
Correctness:

Claim: If some vertex receives color k, it is part of a clique of size k

When we color vi , its previously colored neighbors form a clique

If we use color k, the clique must be using colors {1, . . . , k − 1}, so it
has size k − 1, so we have a clique of size k .

Recall: χ(G ) ≥ ω(G ).
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