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Forbidden Subgraph Characterizations

Wider question: how does local structure lead to global structure?

A graph is a forest if and only if it has no Ck (induced) subgraph.

A graph is bipartite if and only if it has no C2k+1 (induced) subgraph.

A graph is planar if and only if it has not K3,3,K5 topological minor.

A graph is chordal if it contains no induced Ck subgraph, for k ≥ 4.

A graph is split if it contains no induced 2K2,C4, or C5.

A graph is interval if it is chordal and contains no Asteroidal Triple

We examined what happens if we forbid long or odd induced cycles. What
if we forbid paths?
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Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G ′ of G ,
either G ′ or G ′ is disconnected.
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Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G ′ of G ,
either G ′ or G ′ is disconnected.

Recall: for all G ′, at least one of G ′,G ′ is connected, so G is a cograph if
exactly one of the two is connected for each induced subgraph.
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Cographs

Definition

A graph G is a cograph if for all (non-trivial) induced subgraphs G ′ of G ,
either G ′ or G ′ is disconnected.

Examples:

C4 is a cograph

Ck , k ≥ 5 is not a cograph

Pk , k ≥ 4 is not a cograph
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Cographs – Characterization

Theorem

The following are equivalent:

1 G is a cograph

2 G can be constructed from K1s using Join and Union operations

3 G can be constructed from K1s using Union and Complement
operations

4 G contains no induced P4

Note: Implies that cograph recognition is in NP∩coNP and in fact in P.
(why?)
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Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

Each leaf is a vertex of G .

Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the
two operations Join and Union.
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Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

Each leaf is a vertex of G .

Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the
two operations Join and Union.

Examples:
Join (Union (a,b)) (Union (a,b)) → C4
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Cographs and Cotrees

Definition

A cotree of a cograph G is a rooted tree where:

Each leaf is a vertex of G .

Each internal node is labeled 1 (Join) or 0 (Union)

The cotree shows how to construct G from individual vertices using the
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has a cotree.

Proof.

Proof by induction:

G is cograph ⇒ G has a cotree

G is cograph ⇒ G is disconnected or G is disconnected into
components C1, . . . ,Ck .
By inductive hypothesis, we have a cotree for each Ci

If G disconnected, take Union of cotrees; if not, take Join of cotrees.

G is cograph ⇐ G has a cotree

If root of tree is 0, G is disconnected into components C1, . . . ,Ck .
Any induced subgraph contained in a Ci is good by IH.
Any subgraph with vertices from two components is disconnected.
Proof is symmetric if root is 1.
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has no induced P4.

Proof.
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has no induced P4.

Proof.

G is cograph ⇒ no induced P4:
Easy: P4 = P4, so if G contains P4, G contains an induced subgraph that
proves that it is not a cograph.
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has no induced P4.

Proof.

G is cograph ⇐ no induced P4:
Proof by induction on the size of G

Let x ∈ V (G ) and consider G − x , apply IH, G − x is cograph.

Suppose wlog that G − x is disconnected into C1,C2, . . . ,Ck

(otherwise take its complement)

If x is universal:

All subgraphs that contain x have disconnected complements.
All other subgraphs are OK by IH.
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has no induced P4.

Proof.

G is cograph ⇐ no induced P4:
Proof by induction on the size of G

Then, x is not universal.

If x has no neighbor in a component Ci :

Let a ∈ V (Ci )
Subgraphs without x ⇒ Good! (IH)
Subgraphs without a ⇒ Good! (IH)
Subgraphs with a and x ⇒ disconnected, Good!
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Cographs – Characterization continued

Lemma

G is a cograph if and only if G has no induced P4.

Proof.

G is cograph ⇐ no induced P4:
Proof by induction on the size of G

Then, x is not universal and x has a neighbor is each component.

Let ax ̸∈ E , bx ∈ E , a, b ∈ C1

Let cx ∈ E , c ∈ C2

Then, a → b, x , c induces a Pk , k ≥ 4, contradiction!
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Algorithmic Questions

Theorem

The following are polynomial-time solvable:

Deciding if G is a cograph.

Computing the max independent set of a cograph.

Computing the max clique of a cograph.

Computing the chromatic number of a cograph.
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Algorithmic Questions

Theorem

The following are polynomial-time solvable:

Deciding if G is a cograph.

Computing the max independent set of a cograph.

Computing the max clique of a cograph.

Computing the chromatic number of a cograph.

Proof.

Construct a cotree recursively
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Algorithmic Questions

Theorem

The following are polynomial-time solvable:

Deciding if G is a cograph.

Computing the max independent set of a cograph.

Computing the max clique of a cograph.

Computing the chromatic number of a cograph.

Proof.

If G = G1 ∪ G2, return α(G1) + α(G2).

If G = G1 × G2, return max{α(G1), α(G2)}.
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Algorithmic Questions

Theorem

The following are polynomial-time solvable:

Deciding if G is a cograph.

Computing the max independent set of a cograph.

Computing the max clique of a cograph.

Computing the chromatic number of a cograph.

Proof.

Run previous algorithm on complement of G .
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Algorithmic Questions

Theorem

The following are polynomial-time solvable:

Deciding if G is a cograph.

Computing the max independent set of a cograph.

Computing the max clique of a cograph.

Computing the chromatic number of a cograph.

Proof.

If G = G1 ∪ G2, return max{χ(G1), χ(G2)}.
If G = G1 × G2, return χ(G1) + χ(G2).
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More graph classes!

More graph classes!
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More graph classes!

Where we are

perfect

all

planar

chordal

split

interval forest

bipartite cograph

trivperf

threshold
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More graph classes!

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G ′ we have
χ(G ′) = ω(G ′).
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More graph classes!

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G ′ we have
χ(G ′) = ω(G ′).

Defined by Berge in the 1960’s

Closure under complement open for 10 years (Lovasz 1970’s)

Forbidden subgraph characterization open for 40 years (Chudnovsky
et al. 2006)

Generalize many poly-time solvable cases of independent set, clique,
coloring.
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More graph classes!

Perfect Graphs

Definition

A graph G is perfect if for every induced subgraph G ′ we have
χ(G ′) = ω(G ′).

Theorem (Weak Perfect Graph Theorem)

G is perfect if and only if G is perfect.

Theorem (Strong Perfect Graph Theorem)

G is perfect if and only if G has no C2k+1 or C 2k+1 induced subgraph, for
k ≥ 2 (no odd holes or anti-holes).
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More graph classes!

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

Proof.

Straight from definition: G ′ non-empty induced subgraph of G ⇒ G ′

bipartite ⇒ ω(G ′) = 2 and χ(G ′) = 2.

Proof.

(Using Strong PG theorem) G bipartite, so G has no odd holes. C 5 = C5

is also not in G . C 2k+1, for 2k + 1 ≥ 7 contains a K3, so also not in
G .

Michael Lampis Graph Theory: Lecture 9 December 5, 2024 12 / 17



More graph classes!

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

Proof.

Straight from definition: G ′ non-empty induced subgraph of G ⇒ G ′

bipartite ⇒ ω(G ′) = 2 and χ(G ′) = 2.

Proof.

(Using Strong PG theorem) G bipartite, so G has no odd holes. C 5 = C5

is also not in G . C 2k+1, for 2k + 1 ≥ 7 contains a K3, so also not in
G .

Michael Lampis Graph Theory: Lecture 9 December 5, 2024 12 / 17



More graph classes!

Bipartite Graphs are Perfect

Theorem

If G is bipartite, then G is perfect.

Proof.

Straight from definition: G ′ non-empty induced subgraph of G ⇒ G ′

bipartite ⇒ ω(G ′) = 2 and χ(G ′) = 2.

Proof.

(Using Strong PG theorem) G bipartite, so G has no odd holes. C 5 = C5

is also not in G . C 2k+1, for 2k + 1 ≥ 7 contains a K3, so also not in
G .

Michael Lampis Graph Theory: Lecture 9 December 5, 2024 12 / 17



More graph classes!

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.
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More graph classes!

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.

Proof.

(Using Strong PG theorem)

G is cograph ⇒ all induced subgraphs G ′ which are connected have
G

′
disconnected.

If G had a G ′ = C2k+1 (or G ′ = C 2k+1), for k ≥ 2 as an induced

subgraph, then G ′,G
′
are both connected, contradiction.
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More graph classes!

Cographs are Perfect

Theorem

If G is a cograph, then G is perfect.

Proof.

Direct application of definition and induction:

If G is disconnected, ω(G ) is max over all components, χ(G ) is max
over all components, by IH in each component C , ω(C ) = χ(C ).

If G is connected, ω(G ) is sum over all components, χ(G ) is sum
over all components, by IH in each component C , ω(C ) = χ(C ).
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More graph classes!

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.
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More graph classes!

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.

Proof.

Direct application of definition and induction:

Let x be a simplicial vertex. Two cases:

ω(G ) = ω(G − x) + 1. By IH ω(G − x) = χ(G − x) ≥ χ(G )− 1 so
ω(G ) ≥ χ(G ) ⇒ ω(G ) = χ(G ).
ω(G ) = ω(G − x) = χ(G − x). In this case, χ(G − x) ≥ deg(x) + 1,
because ω(G ) ≥ deg(x) + 1. So, after coloring G − x there is always
an available color for x .
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More graph classes!

Chordal Graphs are Perfect

Theorem

If G is chordal, then G is perfect.

Proof.

Using Strong PG theorem

G is chordal ⇒ no odd holes or C 5

If G has a C 2k+1 for 2k + 1 ≥ 7 as induced subgraph, call its vertices
x1, x2, . . . , x2k+1.

Observe that x1, x3, x2k+1, x4 induces a C4 contradiction.
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An Application

An Application
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An Application

Line Graphs of Bipartite Graphs are Perfect

Theorem

If G is bipartite, then L(G ) is perfect.
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An Application

Line Graphs of Bipartite Graphs are Perfect

Theorem

If G is bipartite, then L(G ) is perfect.

Proof.

Using Strong PG theorem

G is bipartite, contains no odd holes, so L(G ) contains no odd holes.

If L(G ) has a C 2k+1 for 2k + 1 ≥ 7 as induced subgraph, call its
vertices x1, x2, . . . , x2k+1.

Consider x1, x3, x4, x5, x6, each corresponding to an edge aibi of G

x1 is adjacent to all others, say a3 = a1 so b1 ̸= b3
Because x3, x4 non-adjacent, a4 ̸= a1, b4 = b1
Because x4, x5 non-adjacent, b5 ̸= b4, a5 = a1 = a3
Because x5, x6 non-adjacent, a6 ̸= a1, b6 = b4 = b1
But x3, x6 adjacent, while b3 ̸= b6 and a3 ̸= a6!!
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An Application

An application

Theorem (Again?)

If G is bipartite, then its maximum matching equals its minimum vertex
cover.

Proof.

L(G ) is perfect ⇒ L(G ) is perfect

α(L(G )) = χ(L(G ))

α(L(G )) is just max matching of G
χ(L(G )) is minimum clique cover
Cliques of L(G ) are vertices of G
⇒ χ(L(G )) is minimum vertex cover of G
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