
2024-2025 Graph Theory

TD 1: Introduction

1 Enumeration

List all non-isomorphic graphs on 2,3,4, and 5 vertices.
Solution:

• n = 2: K2 and 2K1

• n = 3: K3, P3, P2 +K1, 3K1

• n = 4: We list graphs with at most 3 edges (we can then take their complements for the full list). 4K1,
K2 + 2K1, 2K2, P3 +K1, K3 +K1, P4,K1,3

• n = 5: As before, we only list graph with up to 5 edges, as we can take the complements of these graphs
to obtain the full list.

– 0 edges: 5K1

– 1 edge: K2 + 3K1

– 2 edges: 2K2 +K1, P3 + 2K1

– 3 edges: K3 + 2K1, K2 + P3, P4 +K1

– 4 edges:

* 1 component: All trees on 5 vertices: P5, K1,4, K1,3 with one edge sub-divided.

* 2 components: K2 +K3, K1 + C4, K1 + (K3 ⊕ `)

– 5 edges:

* 1 component: C5, Bull (C3 with two leaves attached), Kite (C3 with a P2 attached), C4 with a
leaf attached

* 2 components: one component must be K1, so we can use the list of all 4-vertex, 5-edge
graphs, obtained above.

* 3 components: impossible

2 Connected Complements

Prove that for all graphs G = (V,E), at least one of G,G is connected.
Solution:

Suppose that G is not connected and let C be a connected component of G. We show that G is connected
as follows: take a vertex x ∈ C and we will show that there is a path from x to every other vertex in G. For
a vertex y ∈ V \ C, we have xy 6∈ E (otherwise y would be in the same connected component), therefore
xy ∈ E(G). For a vertex z ∈ C, let y be an arbitrary vertex of V \ C and by the same reasoning as before
xy, zy ∈ E(G), so there is an x − z path in G. Therefore, x is in the same connected component as every
vertex of G, hence G is connected.
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3 Connected Complements II

Show that if for a graph G = (V,E) we have diam(G) ≥ 3, then diam(G) ≤ 3.
Solution:

Suppose that x, y are two vertices which are at maximum distance in G. We observe the following:

• xy 6∈ E, therefore xy ∈ E(G)

• For all other z ∈ V we have xz 6∈ E or yz 6∈ E. Indeed, otherwise we would have a path of length 2
from x to y.

From the above we obtain the bound on the diameter of G as follows: the vertices x, y dominate G and are
adjacent, so any two other vertices z, w have in the worst case a path of the form z, x, y, w connecting them.

4 Many edges connect the graph

Show that for any n-vertex graph G = (V,E) with m edges, if m >
(
n−1
2

)
, then G is connected. Is this bound

sharp? (meaning, is the claim false if we decrease the right-hand-side by 1?)
Solution:

We will prove that among all disconnected graphs on n vertices the one that has the largest number of edges
is Kn−1 +K1. Since this graph has

(
n−1
2

)
edges, this will prove the claim.

Consider then a disconnected graph on n vertices and suppose that it contains at least three components.
Then, adding an edge between two components gives a disconnected graph with more edges. Suppose then that
there are exactly two components C1, C2 with |C1| ≥ |C2| (wlog). If C2 contains no edges, clearly that graph
that has the maximum number of edges and has this form is indeed Kn−1+K1. Suppose then that C2 contains
an edge xy. We remove from the graph all edges incident on x and add all edges with one endpoint x and the
other in C1. This increases the number of edges of the graph, as we added |C1| edges and removed at most
|C2| − 1 edges. Continuing like this we obtain the graph we described.

5 Walks and Adjacency Matrices

A walk is a path which is allowed to repeat vertices. Show that if A is the adjacency matrix of a graph G, then
for all positive integers k we have that Ak[i, j] is equal to the number of distinct walks of length exactly k from
i to j in G.
Solution:

Proof by induction: for k = 1, A[i, j] contains only 0/1 values and has a 1 if and only if there is an edge
ij, that is, a walk of length 1.

Inductive step: suppose the statement is true for Ak and consider Ak+1.

Ak+1[i, j] =
∑
z∈[n]

Ak[i, z]A[z, j]

Observe now that we can count the number of i − j walks of length exactly k + 1 by considering the
penultimate vertex z, counting for each neighbor z of j how many length k walks there are from i to z and
taking the sum. This is exactly what is calculated by the formula above.

6 Min degree to Path

Show that if all vertices of G have degree at least k, then G contains a path of length at least k.
Solution:

We execute a simple greedy algorithm: start at an arbitrary vertex v and maintain a path that is initially just
(v). At each step we select an arbitrary neighbor of the current vertex and add it to the path if possible.
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Suppose now that this algorithm terminates and the last vertex appended to the path was x. Since the
algorithm stopped, all neighbors of x are already in the path. But x has at least k neighbors, so the path
contains at least k + 1 vertices, so has length at least k.

7 Odd degrees

Prove that if a graph G contains exactly two vertices of odd degree, then they are connected by a path.
Solution:

Suppose that x, y are the only odd-degree vertices, but a connected component C contains only x and not
y. Then G[C] (the graph induced by C) is a graph where all vertices of C have the same degree as in G, hence
x is the only vertex of odd degree. But G[C] cannot have an odd number of odd-degree vertices, contradiction.

8 Ramsey

Prove that in any group of 6 people, there are either 3 people who all know each other or 3 people who do not
know each other. Show that this is false for groups of 5 people.

Generalization: prove that for all k, in any group of 4k people, there are either at least k who all know each
other, or at least k who do not know each other.
Solution:

6 people: we model this with a graph on 6 vertices and prove that there exists a clique or an independent set
of size at least 3. Let a be the vertex of highest degree. If the degree of a is at most 2, then the graph is a union
of paths and cycles, so there is an independent set of size 3. If not, we check to see if N(a) induces any edges.
If yes, we have a triangle; otherwise we have an independent set of size at least 3. For 5 people, it suffices to
consider a C5.

4k people: we prove that for positive integers s, c any graph with at least 2s+c vertices contains an indepen-
dent set of size s or a clique of size c. By setting s = c = k we obtain the result.

To prove the claim we use induction on s + c. For s + c = 2 (which is the minimum value) the statement
holds. Consider now two fixed values s, c and suppose the statement is shown for any smaller pair. Take
a graph G = (V,E) with at least 2s+c vertices and take an arbitrary vertex x. If |N(x)| ≥ 2s+c−1, then
G[N(x)] contains either a clique of size c − 1 or an independent set of size s; in the latter case we are done,
in the former case we form a clique of size c by adding x. Otherwise, |N(x)| ≤ 2s+c−1 − 1, therefore,
|V \N(x)| ≥ 2s+c−1 + 1. Consider then the graph induced by V \ (N(x) ∪ {x}), which has at least 2s+c−1

vertices. By inductive hypothesis this graph has at least a clique of size c (in which case we are done) or an
independent set of size s− 1, to which we can add x to obtain an independent set of size s.
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