
2024-2025 Graph Theory

TD 11: Chordal, Split, and Interval Graphs

1 Interval Trees

A caterpillar is a tree T such that all vertices of degree strictly more than 1 lie on a single path P . Prove that
for all graphs G, G is a caterpillar if and only G is a tree and an interval graph.
Solution:

If a tree T is a caterpillar ⇒ T is an interval graph:
Let P = x1, x2, . . . , xp be the path that contains all vertices of degree at least 2 in T , that is, all vertices

of T outside of P have degree 1. We assign to each xi an interval of length deg(x) + 1 such that the right
endpoint of the interval of xi is the left endpoint of the interval of xi+1. In particular, x1 is assigned the interval
[0,deg(x1) + 1], x2 is assigned [deg(x1) + 1,deg(x2) + deg(x1) + 2], x3 is assigned [deg(x1) + deg(x2) +
2, deg(x1)+deg(x2)+deg(x3)+3] and so on. In other words, the right endpoint of the interval assigned to xi
is i +

∑i
j=1 deg(xi), which is also the left endpoint of the interval of xi+1. Observe that the interval we have

constructed so far are a representation of the path P , so what remains is to insert the remaining vertices of T in
this representation.

Consider now the neighbors of xi which lie outside of P . For each such neighbor y we select a distinct
integer j lying in the interior of the interval assigned to xi (i.e. not the endpoints of the interval) and assign to y
the interval [j, j]. Because we have deg(xi) integers to choose from, but xi has at most deg(xi) leaves attached
to it, we can assign distinct integers to each leaf neighbor of xi, ensuring that the intervals indeed represent
vertices of degree 1.

If a tree T is an interval graph ⇒ T is a caterpiller:
Suppose that T is not a caterpillar. We will then show that the graph contains an asteroidal triple. Let P

be the path of the tree that contains as many non-leaf vertices as possible. We may assume that P contains no
leaves, as a leaf cannot be an internal vertex of P and if an endpoint of P is a leaf we can shorten P without
decreasing the number of non-leaf vertices it contains.

There is a vertex of degree at least 2 not contained in P , call it v. Remove v from T and we obtain a
component C1 that contains all of P and at least one component C2 which contains no vertex of P . Let x be a
leaf of G[C2].

Take a path P ′ from v to P and let v′ be the first vertex of this path that belongs in P . It must be the case
that v′ is an internal vertex of P , otherwise P ∪ P ′ would be a path that contains more non-leaf vertices than
P . Therefore, P contains at least three vertices. Let y, z be the endpoints of P , which have degree at least 2 in
T . Let y′, z′ be the neighbors of y, z respectively which do not lie in P . Then x, y′, z′ is an asteroidal triple.
Indeed, removing x and its neighbors does not affect P , so there is still a path from y′ to z′; and removing
y′ and its neighbors leaves P − y intact, which ensures that P ′ ∪ P ∪ {v} ∪ C2 contains a path from x to z′

(similarly for removing z′).

2 Interval Graphs and Vertex Orderings

Recall that a graph is chordal if and only if there exists an ordering of the vertices v1, v2, . . . , vn, such that for
each vi the set of neighbors of vi with indices j > i (i.e. coming later in the ordering) induces a clique. This is
called a Perfect Elimination Ordering.

Show that a graph is an interval graph if and only if there exists an ordering of its vertices v1, v2, . . . , vn,
such that for each i < j < k, if vivk ∈ E, then vjvk ∈ E.
Solution:
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An ordering exists ⇒ the graph is an interval graph:
We produce from the ordering v1, . . . , vn an interval representation, assigning to each vk the interval

[f(k), k], where f(k) is defined as the minimum i ∈ [1, k − 1] such that vivk ∈ E and if no such i exists,
we set f(k) = k. We claim that the resulting interval graph is exactly G.

First, we show that for all j < k, if [f(j), j] ∩ [f(k), k] ̸= ∅, then vjvk ∈ E. Indeed, if the intersection of
the two intervals is non-empty, then j ≥ f(k), so vivk ∈ E for some i ≤ j. By the properties of the ordering,
vivk ∈ E implies that vjvk ∈ E, as desired.

Second, we show that for all j < k, if [f(j), j] ∩ [f(k), k] = ∅, then vjvk ̸∈ E. Indeed, we have j < f(k),
so the minimum i such that vivk ∈ E is strictly larger than j, hence vjvk ̸∈ E.

An ordering exists ⇐ the graph is an interval graph:
Suppose that G = (V,E) is an interval graph and for each v ∈ V we have an interval [sv, tv] such that

vu ∈ E if and only if [sv, tv] ∩ [su, tu] ̸= ∅. Order the vertices v1, . . . , vn in non-decreasing order of their
right endpoint, that is, so that whenever i < j, then tvi ≤ tvj . We claim that this ordering satisfies the desired
property. Consider vi, vj , vk, with i < j < k and vivk ∈ E. Therefore, tvi ≥ svk . However, tvj ≥ tvi (since
j > i and we ordered by right endpoint) and tvj ≤ tvk (for the same reason), so tvj ∈ [svk , tvk ], therefore
vjvk ∈ E as desired.

3 Maximal Cliques in Chordal Graphs

Show that in a connected chordal graph on n vertices, with n ≥ 2, there exist at most n − 1 distinct maximal
cliques. A clique C is maximal if it is impossible to increase it by adding a vertex, i.e. each v ∈ V \ C has a
non-neighbor in C.

Show that there exists a non-chordal graph with 2n vertices and 2n distinct maximal cliques.
Solution:

For the first part, we do induction on n and observe that the statement is true for n = 2. Let n ≥ 3 and
consider a simplicial vertex v of G. We observe that the maximal cliques of G can be partitioned into two
classes: those that contain v; and those that contain a non-neighbor of v and are therefore maximal cliques of
G− v. By inductive hypothesis, G− v contains at most n− 2 maximal cliques. On the other hand, there exists
exactly one maximal clique in G that contains v, namely {v}∪N(v), since v is simplicial. Therefore, G has at
most n− 1 maximal cliques.

For the second part, consider a graph made up of n independent sets of size 2 where we add all possible
edges between parts (i.e. nK2). Any set that contains exactly one vertex from each part is a maximal clique.

4 Split Graphs and Degree Sequences

Let (d1, d2, . . . , dn) be the degree sequence of a graph G, with di ≥ di+1 for all i. Prove the following: G
is a split graph if and only if

∑k
i=1 di = k(k − 1) +

∑n
i=k+1 di, where k is the maximum index i such that

di ≥ i− 1.
Solution:

Suppose that G is a split graph with clique C and independent set I and suppose that |C| = ω(G), that
is, all vertices of I have a non-neighbor in C. We observe that for any vertex x ∈ C and y ∈ I we have
deg(x) ≥ deg(y), therefore in the sorted degree sequence the degrees of vertices of C appear before the
degrees of vertices of I . Let k = |C|. Then, the k-th vertex in the sequence is a vertex of C of minimum
degree. We have

∑k
i=1 di = 2|E(C)|+ |E(C, I)| = k(k− 1) + |E(C, I)| and

∑n
i=k+1 di = |E(C, I)|, so the

equality is verified.
Suppose now that the degree sequence satisfies the property, let C be the set of the k highest-degree vertices

of the graph and I = V \C. We want to show that C is a clique and I an independent set. Indeed, suppose that
C is not a clique. Then

∑
v∈C deg(v) =

∑k
i=1 di = 2|E(C)|+ |E(C, I)| < k(k− 1) +

∑n
i=k+1 di, where we

used the fact that |E(C, I)| ≤
∑

v∈I deg(v) and that |E(C)| < k(k−1)
2 , as C is not a clique. We therefore have

a contradiction, since we assumed that
∑k

i=1 di = k(k − 1) +
∑n

i=k+1 di. Similarly, suppose that I induces
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at least one edge. Then
∑

v∈I deg(v) =
∑n

i=k+1 di = 2|E(I)|+ |E(C, I)| >
∑k

i=1 di − k(k − 1), where we
used that |E(I)| > 0 and

∑k
i=1 di = k(k − 1) + |E(C, I)|, which follows because C is a clique. We again

have a contradiction, as we had assumed
∑n

i=k+1 di =
∑k

i=1 di − k(k − 1).

5 Short cycles in chordal graphs

Show that if G is chordal and an edge e ∈ E(G) is part of a cycle, then there exists a K3 in G that contains e.
Solution:

Let C be the shortest cycle of G that contains e. If C has length 3, we are done. Otherwise, since G is
chordal, C must induce an edge e′, which partitions the cycle C into two paths P1, P2, such that P1 + e′ and
P2 + e′ are both cycles shorter than C. However, the endpoints of e are contained in either P1 or P2, so e is
contained in a cycle shorter than C, contradiction.
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