2024-2025 Graph Theory

TD 7: Coloring

1 Edges and Colors

Show that if a graph G has m > 0 edges and chromatic number k, then m > (g)
Solution:

Consider a k-coloring of G, V1, Va, ..., V. We observe that for each i,j € [k],7 # j there must exist at
least one edge with one endpoint in V; and the other in V;. Indeed, otherwise, V; U V; is an independent set, and
we can color G with & — 1 colors, contradicting the assumption that G' has chromatic number k. Therefore, G
has at least (g) edges.

2 Chromatic Number and Average Degree

Prove or disprove: if G is connected and has average degree d, then G can be colored with at most [1 + d]
colors.
Solution:

The statement is false: consider a graph made up of a K35, a path on 95 vertices, and an edge connecting
them. This graph has n = 100, m = 105, therefore the average degree is 2m/n < 3. According to the claim,
the graph can be colored with 4 colors, but this is impossible, as it contains K5 as a subgraph.

NB: It is tempting to try to prove that the statement is true algorithmically as follows: G must contain a
vertex v of degree at most d, so we can first color G — v and then insert v; in the worst case v has d neighbors
with distinct colors, so it will receive color d + 1. This proof is false! The error here is that G — v could (and
probably will) have higher average degree than (G, because d is a low-degree vertex, so the inductive hypothesis
may already be using too many colors in G — v. In our example, by repeatedly deleting a low-degree vertex we
end up with K5 which has average degree 4, while the orginal graph had average degree < 3.

3 Blanche Descartes Construction

We saw in class a construction due to Mycielsky that gives for each k£ > 2 a graph with chromatic number k that
does not contain any K3 as a subgraph. We consider now a different construction, due to Blanche Descartes.
Define the sequence of graphs D; inductively as follows: Dy = Kj; if D; has n; vertices, then D;; starts with
a set S;11 of i(n; — 1) + 1 vertices and for each S” C S; 1 with |S’| = n; we construct a distinct copy of D;
and place a perfect matching between S’ and this new copy.

1. Which construction is more efficient (has smaller n;), this one or the one by Mycielski? Why?
2. Prove that D, can be colored with 7 colors.
3. Prove that D, cannot be colored with 7 — 1 colors.

4. Prove that D; does not contain any C5, Cy, or C5 as induced subgraphs.

Solution:
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1. Mycielski’s construction will, at each step roughly double the size of the graph, so give n; = 20 In
contrast, in this construction we have that n;; is exponential in n;. More specifically, n;,, contains at
least (ZZZ) vertices, which is at least ¢™¢. Hence, this construction has graphs whose size increases as a
tower of exponentials, and is therefore much less efficient.

2. The vertices of .S; are an independent set, so we can assigne one color to them. The rest of D; constists
of disjoint copies of D;_1, which by inductive hypothesis can be colored with ¢ — 1 colors.

3. Suppose that D; can be colored with ¢ — 1 colors and 7 is minimum (that is, D;_; needs ¢ — 1 colors to be

colored properly). Suppose that the color that is used the largest number of times in .S; is color 1 and that
it appears at least ('_1)(7?_%1)“ >ni—1— 1+ Z%l times. Since the number of appearances of color 1
in S; is an integer, color 1 appears at least n;_1 times in S;. Let S’ C S; be a set of size n; 1 where all
vertices have color 1. Color 1 cannot be used in the copy of D;_; which has a perfect matching to S’, so

D;_1 must be using colors {2, ...,i — 1}, which would give a (i — 2)-coloring of D;_1, contradiction.

4. First, let us see that if D; contains no Cs, then D, contains no C3. In this case a C'3 in D;;1 would
need to contain at least one new vertex from .S;;1. It cannot contain two such vertices, as such vertices
are independent. Therefore, it must contain exactly one such vertex v. In each copy of D;_; we have
constructed, v has at most one neighbor, so the two remaining vertices of a supposed C5 cannot be from
the same copy. However, they also cannot be from distinct copies, as there are no edges between distinct
copies.

Now, suppose that D; 1 contains a C4 or C5. The supposed cycle cannot contain more than two vertices
of S;t1, as such vertices are independent. It cannot contain exactly one vertex v € S;1, for reasons
similar to the previous paragraph, namely: if the rest of the cycle comes from a single copy of D;, then
v has degree 1 in the cycle; and if it comes from two copies and uses no other vertex of S;1, then v is
a cut-vertex of the cycle (contradiction). If the cycle contains no vertex of .S;; 1, then it can be found in
D;, contradiction. Therefore, the cycle contains two vertices u, v € S;41. If the cycle has length at most
5, then it must have a common neighbor = of u, v. However, every vertex of D;,; is adjacent to at most
one of these two vertices, since we add perfect matchings for each copy of D; we construct.

4 Colorings and Complements

Prove that for all G on n vertices we have x(G)x(G) > n. Conclude that for all G on n vertices, x(G) +
x(G) > 2y/n. Give a tight example.
Solution:

We have x(G) > w(G) = a(G). Therefore, x(G)x(G) > a(G)x(G) and we have seen in class that
X(G) = iy

For the second part, if we had x(G) + x(G) < 2y/n this would imply that x(G)x(G) < x(G)(2y/n —
X(@G)). If we consider the right-hand side as a function of x(G), this is maximized when x(G) = y/n so we
would have x(G)x(G) < n, contradiction.

A tight example can be formed by taking a union of n cliques K, forming a graph with n? vertices. Clearly,
X(G) = n. The complement of this graph is a graph with n parts, each part being an independent set of size 7,

so x(G) = n.

5 Colorings and Konig

Suppose that G has x(G) > k but V(G) can be partitioned into two sets X, Y such that G[X]|, G[Y] are both
k-colorable. Then, there are at least k£ edges with one endpoint in X and the other in Y.
Solution:

Let Xi,..., Xy and Y7,. .., Y} be the k-colorings of G[X], G[Y']. We form a bipartite graph with k vertices
on each side, where the vertices of the left side represent the sets X; and the vertices on the right side represent
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the sets Y;. We place an edge between two vertices if the sets X, Y; have no edge connecting them, that is, if
X; UYj is independent.

What we want to prove now is that this bipartite graph has a perfect matching whenever there are less
than k edges linking X to Y. This will lead to a contradiction as follows: each edge of the matching gives
an independent set, so we can partition all of V(G) into k color classes, contradicting the hypothesis that
X(G) > k.

Let us then prove that if < k edges connect X to Y in G, then the bipartite graph has a perfect matching.
Equivalently, by Kénig’s theorem, we will show that the bipartite graph does not have a vertex cover of size
k — 1. Indeed, the bipartite graph has at most k? possible edges and each edge of G connecting X to Y
eliminates at most one edge of the bipartite graph. If G has < k edges connecting X to Y, then the bipartite
graph has > k(k — 1) + 1 edges. However, each vertex of the bipartite graph has degree at most k, so can
cover at most k edges. Hence, a supposed vertex cover of size (k — 1) can only cover at most k(k — 1) edges,
contradiction.
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