
2024-2025 Graph Theory

TD 8: More Coloring

1 Colorings and Complements – again!

In a previous exercise we saw that for all G on n vertices we have χ(G) + χ(G) ≥ 2
√
n. Here we want to

prove an upper bound on the same quantity. Show that χ(G) + χ(G) ≤ n+ 1. Give a tight example.
Solution:

We prove the statement by induction on n. For n = 1 or n = 2 the statement is easy to see. Suppose the
statement is true for graphs on n vertices and we have a graph G on n + 1 vertices. We want to show that
χ(G) + χ(G) ≤ n + 2. Pick an arbitrary vertex x of G and suppose its degree is d. The inductive hypothesis
holds forG−x (which has n vertices) so χ(G−x)+χ(G− x) ≤ n+1. We also have χ(G) ≤ χ(G−x)+1 and
χ(G) ≤ χ(G− x) + 1, because a new color can always be used for x. Unfortunately, adding these inequalities
gives χ(G) + χ(G) ≤ n+ 3, which is not enough. We therefore consider two cases:

1. One of the inequalities χ(G) ≤ χ(G − x) + 1 and χ(G) ≤ χ(G− x) + 1 is strict. In that case
χ(G) + χ(G) ≤ n+ 2 as desired.

2. Both of the above inequalities are actually equalities. Then, deleting x from G decreases the chromatic
number by 1. It must be the case that the degree d of x in G is at least χ(G− x), otherwise a coloring of
G− x with χ(G− x) colors can always be extended to G without using a new color for x. Similarly, the
degree of x inG (which is n−d) must be at least χ(G− x). Summing up, we get χ(G−x)+χ(G− x) ≤
n, which is better than what we had from the inductive hypothesis, so adding the inequalities as before
yields the desired result.

A tight example is a clique on n vertices.

2 First-Fit and Trees

Recall the First-Fit coloring algorithm we saw in class: consider the vertices of G in some (arbitrary) order,
and for each vertex assign to it the minimum color that is still available. This algorithm is not guaranteed to
produce an optimal coloring. In this exercise we focus on how far this algorithm can be from giving an optimal
coloring.

1. Show that there exists, for each k, a tree Tk such that First-Fit uses k colors to color Tk. (Recall that trees
can be colored with 2 colors, so this is bad. . . )

2. Show that if G is a tree on n vertices, then First-Fit will never use more than 1 + log n colors (no matter
the order considered).

3. Show that there exists, for each k, a bipartite graph on 2k vertices for which First-Fit uses k + 1 colors.

4. Show that in any bipartite graph on at most 2n+ 1 vertices, First-Fit will use at most n+ 1 colors.

Solution:
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1. We show by induction that for each k there exists a tree Tk, a special vertex u ∈ Tk (which we call the
root) and an ordering of the vertices of Tk such that First-Fit assigns color k to u and u is last. For k = 1
and k = 2 the claim is easy to see. Suppose the claim is true for k and we want to prove it for k+1. Take
two copies of Tk, call them T 1

k , T
2
k and place an edge between the two roots. Call one of them, say the

one in T 2
k the new root. Order the vertices of the new graph by first giving the vertices of T 1

k (in the order
assumed in the inductive hypothesis) and then those of T 2

k . We claim that First-Fit colors the new root
with k + 1. Indeed, by inductive hypothesis the root of T 1

k will receive color k. Every non-root vertex
of T 2

k is non-adjacent to T 1
k , so will receive the same colors as if we were coloring T 2

k alone. Finally, u,
which is last, has a neighbor of color k (the root of T 2

k ) and neighbors with colors {1, . . . , k−1} (because
its neighbors in T 2

k receive the same colors as in a coloring of T 2
k and in such a coloring u receives color

k). Hence, k + 1 is the lowest available color.

2. We prove by induction that if First-Fit uses k colors for a tree T , then T has at least 2k−1 vertices. To
see that this implies the original statement, consider a tree with n vertices, where First-Fit uses k colors.
If k > 1 + log n, then (assuming we prove the statement of the first sentence) n ≥ 2k−1 > 2logn = n,
contradiction. So we get that k ≤ 1 + log n, as desired.

The statement is true for k = 1 and k = 2. Suppose that we are using k + 1 colors for a tree T . We then
want to prove that T has at least 2k vertices. Let u be a vertex that received color k + 1. The vertex u
must have at least k neighbors x1, . . . , xk with each xi having received color i. Consider now the forest
T − u, where each xi belongs in a distinct sub-tree Ti. By inductive hypothesis Ti has at least 2i−1

vertices. So the whole graph has at least 1 +
∑k

i=1 2i−1 vertices (where we have also counted u). But
1 + (1 + 2 + 4 + . . .+ 2k−1) = 2k, as desired.

3. Consider a graph Kn,n with the vertices of the two sets A = {a1, . . . , an} and B = {b1, . . . , bn}. Edit
this graph by removing a matching of size n − 1, say we remove the edges a1b1, a2b2, . . . , an−1bn−1.
Consider now the order a1, b1, a2, b2, . . . , an, bn. We claim that First-Fit will assign color n + 1 to bn.
Indeed, for i ≤ n− 1, First-Fit will assign color i to ai and bi, which can easily be shown by induction.
Then, an will receive color n. Then, bn will have neighbors with all colors in {1, . . . , n}, so will receive
n+ 1.

4. Suppose that in a bipartite graphG = (A,B,E) with at most 2n+1 vertices First-Fit uses color n+2 for
u ∈ B. Then, u has neighbors with colors {1, . . . , n+1}, which are distinct vertices ofA, so |A| ≥ n+1.
Furthermore, let v be the neighbor of u that received color n+ 1. This vertex has neighbors with colors
{1, . . . , n}, which are distinct vertices of B \ {u}. So, |B| ≥ n + 1. Therefore, G has at least 2n + 2
vertices, contradiction.

3 Edge Coloring and Bipartite Graphs

An edge coloring of a graph G = (V,E) with k colors is an assignment of colors from {1, . . . , k} to E so that
any two edges e1, e2 that share an endpoint receive distinct colors. In other words an edge coloring of G is a
vertex coloring of L(G), the line graph of G. We use χ′(G) to denote the minimum number of colors needed
to color the edges of G.

1. Show that χ′(G) ≥ ∆(G) for all G.

2. Show that if G is bipartite, then χ′(G) = ∆(G).

3. Show that there exists a (non-bipartite) G with χ′(G) > ∆(G).

Solution:
The first part is easy to see as the edges incident on a vertex of degree ∆ must take distinct colors (that is,

they form a clique of size ∆ in the line graph).
We prove the second part by induction on the number of edges of G. For G with at most 3 edges, the

statement is easy to see. Suppose we are given a bipartite graph G of maximum degree ∆ and we remove one
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edge e = xy. G − e is still bipartite and has maximum degree at most ∆, so we can color all edges of G − e
with at most ∆ colors. We want to insert e into this coloring.

Observe that x, y have degree at most ∆− 1 in G− e, so there is a color i ∈ {1, . . . ,∆} which is not used
for any edge of G − e incident on x, and there is a color j which is not used for any edge incident on y. If
i = j we just color e with color i and we are done. So, suppose i 6= j. Consider now the subgraph of G − e
formed by edges colored i or j. This subgraph has maximum degree 2, so each component is a path or a cycle.
Furthermore, the component C that contains y must be a path, as y has no edge colored j. We also note that
C cannot contain x, because every vertex of C that is on the same side as x is incident on an edge of color i.
Inside the component C we exchange colors i and j, so now i is not used on any edge incident on y. Since x is
not in C, i is still available to use in x and we use i to color e.

An example for the last statement is any odd cycle.

4 Cograph Coloring

Prove that if G contains no induced copy of P4 (the path on 4 vertices), then First-Fit always produces an
optimal coloring of G. (Note: graphs that contain no induced P4 are called cographs.)
Solution:

We prove that if First-Fit coloring uses k colors to color a P4-free graph G, then G contains a clique of size
k, hence needs at least k colors.

We will construct for each i ∈ {1, . . . , k} a clique containing one vertex from each of the i highest colors
used in G. For i = 1 this is trivial, as we can just take a vertex of color k. Suppose then that we have a clique
C with one vertex for each of the colors {k, k − 1, . . . , k − i} and we want to show that we can always extend
this to a clique by adding a vertex of color k − i− 1. If we show this we are done.

Let xj for j ∈ {k − i, . . . , k} be the element of C with color j. Let Sj be the set of neighbors of xj that
have color k − i− 1. Sj must be non-empty, as otherwise xj would have received color k − i− 1 itself. Now
we claim that for j 6= j′, we have either Sj ⊆ Sj′ or Sj′ ⊆ Sj . Indeed, suppose for contradiction that neither
holds, so Sj \ Sj′ and Sj′ \ Sj are both non-empty and contain vertices a, b respectively. The vertices a, b are
non-adjacent (they have the same color), a is adjacent to xj , xj is adjacent to xj′ (C is a clique), xj′ is adjacent
to b, xj′ is non-adjacent to a and xj is non-adjacent to b. We have therefore found an induced P4 (axjxj′b)
contradiction.

Now, if for all j 6= j′ we have either Sj ⊆ Sj′ or Sj′ ⊆ Sj we can order the xj according to the size of Sj .
Let xk be such that |Sk| is minimum and we have that Sk ⊆ Sj for all other xj ∈ C. Therefore, a vertex a ∈ Sk
is a vertex of color k − i− 1 which is adjacent to all of C, so we have managed to extend C as promised.
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