
2024-2025 Graph Theory

TD 9: Planar Graphs

1 Planar Graphs without Short Cycles

Show that if in a planar (non-acyclic) graph G on n vertices and m edges, all cycles have length at least g, then
m ≤ (n− 2) g

g−2 . Conclude that K3,3 is non-planar, using the fact that it is bipartite.
Solution:

Consider a planar G that satisfies the conditions. Then, each face has a border with length at least g. For
a face ϕ, let b(ϕ) be the number of edges on the border of ϕ. We have fg ≤

∑
b(ϕ) ≤ 2m, where f is the

number of faces of a drawing of G. The first inequality follows because each face has at least g edges on its
border; the second because each edge is counted at most twice in the sum.

We now recall that n+f = m+2, so if f ≤ 2m
g then n+f ≤ 2m

g +n ⇒ m+2 ≤ 2m
g +n ⇒ m ≤ (n−2) g

g−2
Since K3,3 is bipartite, all its cycles have length at least 4. If it were planar, it would need to have at most

(6− 2) · 4
2 = 8 edges, but it has 9 edges.

2 Planarity and Complements

Show that if G is planar and has n ≥ 11 vertices, then G is non-planar.
Solution:

G has at most m ≤ 3n − 6 edges, therefore G has at least
(
n
2

)
− m ≥ n(n−1)

2 − 3n + 6 edges. We
claim that n(n−1)

2 − 3n + 6 > 3n − 6, which would imply that G is non-planar. Indeed, we equivalently get
n(n− 1) > 2(6n− 12) ⇔ n2 > 13n− 24. It is not hard to verify that this inequality holds for n ≥ 11.

Note: the statement remains true for n ≥ 9, but the proof is tedious and involves many cases. There does,
however, exist a planar graph with n = 8 vertices whose complement is still planar.

3 Outerplanarity

A graph is outerplanar if it has a planar drawing where all the vertices lie on a single face. Prove the following:

1. In an outerplanar graph with n vertices and m edges we have m ≤ 2n− 3.

2. More strongly, in an outerplanar graph where all cycles have length at least g we have m ≤ g−1
g−2n− g

g−2 .

3. Conclude that K4 and K2,3 are not outerplanar.

4. Prove that every outerplanar graph contains a vertex of degree at most 2. Observe that this implies the
first point.

5. Conclude that outerplanar graphs can always be colored with 3 colors.

6. Conclude a second time that outerplanar graphs can always be colored with 3 colors by invoking the
4-color theorem.

Solution:
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1. The outer face has at its border n vertices and therefore at least n edges. The inside faces have at
least 3 edges each. If we define b(ϕ) as in the first exercise we have 3(f − 1) + n ≤

∑
b(ϕ) ≤ 2m

which gives 2m ≥ 3f + n − 3. However, from Euler’s formula we have 3f = 3m − 3n + 6, so
2m ≥ 3m− 2n+ 3 ⇒ m ≤ 2n− 3.

2. We repeat the previous calculation, but now inner faces have at least g edges, so 2m ≥ g(f − 1) + n =
gf + n − g. However, from Euler’s formula gf = gm − gn + 2g, so 2m ≥ gm − gn + n + g ⇒
(g − 2)m ≤ (g − 1)n− g ⇒ m ≤ g−1

g−2n− g
g−2 .

3. K4 and K2,3 would need to have at most 5 and 5.5 edges respectively, but they both have 6 edges (we
used that for K2,3 the shortest cycles has length 4).

4. Suppose that we have a maximal outerplanar graph G (that is, we add as many edges as possible pre-
serving outerplanarity). The outer face contains all n vertices connected in a cycle. Consider now the
dual graph, which has a vertex for each inner face and two vertices are adjacent if the corresponding
faces share an edge. This dual graph restricted to inner faces must be acyclic, because otherwise a vertex
would not lie on the outside face. Every acyclic graph has a vertex of degree 1. In the corresponding
face, one vertex has degree at most 2.

5. Run the First-Fit algorithm placing the vertex of degree 2 last, recurse. . .

6. Take an outerplanar graph G and add a universal vertex v adjacent to all previous vertices. The new graph
is planar, as we can take a drawing of G and place v in the outer face. Then G + v can be colored with
4 colors, by the 4-color theorem. Hence, G can be colored with 3 colors, since the color of v does not
appear in any other vertex.

4 Euler’s formula for disconnected graphs

We saw that if a planar graph G is connected, then n + f = m + 2. Show that for (possibly) disconnected
planar graphs with c connected components we have n+ f = m+ c+ 1.
Solution:

Let C1, C2, . . . , Cc be the components of a planar graph G, where each component has ni vertices and mi

edges. We have that in a planar drawing of G[Ci] we have fi = mi − ni + 2 faces. One of these faces is the
outer face, so we have f ′

i = mi − ni + 1 inner faces. The total number of faces of a drawing of G is then
f = 1 +

∑
i f

′
i = 1 +

∑
i(mi − ni + 1) = 1 +m− n+ c so f + n = m+ c+ 1.

5 Kuratowski

Prove that if a graph G has at most 8 edges, then G is planar.
Solution:

For contradiction, suppose G is non-planar. Then, it must contain a subgraph that is a sub-division of either
K5 or K3,3, therefor it must contain at least as many edges as one of these graphs. However, both these graphs
have at least 9 edges, contradiction.
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