A tournament is a directed graph containing exactly one arc (=edge with orientation) between every pair of vertices. The problem **Feedback Arc Set in Tournaments** is defined as below.

Input: a tournament $T = (V, A)$ on n vertices.

Parameter: k.

Task: find a set of at most k arcs whose reversal (=reversing the orientation of an arc) makes T acyclic.

1. Consider the problem **Feedback Arc Set in Tournaments** for (a)-(c).

1(a). Establish that $F \subseteq A(T)$ is a feedback arc set of T if and only if every directed triangle of T contains at least one arc of F.

1(b). Use 1(a) to show that **Feedback Arc Set in Tournaments** admits a kernel with $O(k^3)$ vertices.

1(c). Devise reduction rules with safeness proof. Use them to establish that **Feedback Arc Set in Tournaments** admits a kernel on $O(k^2)$ vertices. (Hint: similar to $O(k^2)$ kernelization for Vertex Cover.)

2. We consider a polynomial-time algorithm for constructing a half-integral optimal solution to LP for **Vertex Cover** which does not solve LP directly. Let G be an input instance to **Vertex Cover** and G^* be an auxiliary bipartite graph so that:

- $\{v_1, v_2 : v \in V(G)\}$ is the vertex set, and
- for every edge $(u, v) \in E(G)$, (u_1, v_2) and (u_2, v_1) are edges of G^*.

Let S^* be a minimum vertex cover of G^*. We define a solution x^* to LP from S^* as follows:

- $x^*_u = \begin{cases}
0.5 & \text{if exactly one of } u_1 \text{ and } u_2 \text{ belong to } S^*. \\
1 & \text{if both of } u_1 \text{ and } u_2 \text{ belong to } S^*. \\
0 & \text{if none of } u_1 \text{ and } u_2 \text{ belongs to } S^*.
\end{cases}$

2(a). Show that for any matching M of a graph and any feasible solution z to LP, the objective value of z is at least $|M|$.

2(b). Show that for an arbitrary feasible solution z to LP(G), the solution z' defined as $z'_u = z'_u = z_u$, for all $u \in V(G)$ is also feasible to LP(G^*), where LP formulation for **Vertex Cover** of G is denoted as LP(G).
2(c). Show that \(x^* \) is an optimal solution to LP\((G)\). (Hint: Use König theorem which says that in a bipartite graph, the size of a maximum matching equals the size of a vertex cover.)

2(d). Neatly present a kernelization implied by this exercise and the size bound of the obtained kernel, and estimate the running time of the kernelization (search for existing literature if necessary).

★3. In the problem CLUSTER EDITING, we are given a graph \(G \) and a nonnegative integer \(k \) and want to find a set of at most \(k \) pairs of vertices \(F \subseteq \binom{V(G)}{2} \) so that the graph \((V(G), E(G) \Delta F) \) obtained by editing \(G \) with \(F \) is a cluster graph. Here, \(X \Delta Y \) denotes the symmetric difference of the sets \(X \) and \(Y \). Hence, editing \(G \) with \(F \) is equivalent to adding a pair \((u, v) \in F \) to \(G \) if \((u, v) \) is a non-edge in \(G \), and removing \((u, v) \in F \) if it is an edge in \(G \), thereby obtaining \(G = (V(G), (E(G) \setminus F) \cup (F \setminus E(G))) \).

We aim to establish that CLUSTER EDITING admits a kernel on \(O(k^2) \) vertices.

♣ Submit your solution via email (eunjungkim78@gmail.com) by 6 Feb 2019, midnight.
♣ Questions with ★ can be worked together with a colleague. But please write the solution by yourself.