Exact Algorithms Homework 5

Lecturer: Eunjung KIM

1. Recall that a walk $W = v_1, \ldots, v_{k+1}$ is a sequence of vertices, not necessarily distinct, such that every $(v_i, v_{i+1} \text{ is an edge of } G \text{ for } i = 1, \ldots, k$. Note that W is a walk from v_1 to v_{k+1} , and has length k. Let A be an adjacency matrix of a simple (no loop, no parallel edges) graph G over the vertex set [n], i.e., the (i, j)-entry $A_{ij}=1$ if and only if (i, j) is an edge of G. For a positive integer k, let $M = A^k$. Show that for every $i, j = 1, \ldots, n$, the number of length k walks from i to j is equal to M_{ij} .

1-(a). Fill in the blank in the next statement "W is a walk of length $\ell + 1$ from i to j if and only if () is a walk of length ℓ from i to k for some $k \in ($)."

1-(b). Let $t(i, j, \ell)$ be the number of length ℓ walks from *i* to *j*. Using the full sentence in 1-(a), complete the following recursion for *t*:

$$t(i,j,\ell+1) = \sum_{k \in [n]} t(-,k,-) \cdot [(k,j) \in E(G)].$$

Here $[\cdot]$ takes value 1 if the sentence inside the bracket is true, 0 otherwise.

1-(c). Using the recursion in 2-(b), finalize the proof.

2. In the LIST k-COLORING problem, we are given a graph G and for each vertex $v \in V(G)$, there is a set (also called a *list*) of admissible colors L(v). The goal is to verify whether it is possible to find a proper k-coloring $c : V(G) \to [k]$ such that for every vertex v, we have $c(v) \in L(v)$. In other words, L(v) is the set of colors allowed for v. Show a $2^n \cdot n^{O(1)}$ -time algorithm for LIST k-COLORING.

Hint: define a k-tuple (I_1, \ldots, I_k) of independent sets to be *L*-eligible if for $i \in [k]$, the vertex $v \in I_i$ has color *i* in its list L(v). That is, a k-tuple of independent set is *L*-eligible if coloring each vertex set I_i by color *i* respects the admissible color list. The rest of the algorithm follows similar steps as in the algorithm for k-COLORING from the class. (The final dynamic programming algorithm needs a slightly different approach)

3. Let $G = (R \oplus C, E)$ be a bipartite graph with bipartition (R, C), $R = \{r_1, \ldots, r_n\}$ and $C = \{c_1, \ldots, c_n\}$. A matching M of G is said to saturate C if every vertex v of C is an endpoint of an edge in M. A perfect matching of G is a matching that saturates both R and C. Prove Ryser's formula which states that the number of perfect matchings in G equals

$$\sum_{X \subseteq R} (-1)^{n-|X|} \prod_{j \in C} \sum_{i \in X} a_{ij}$$

where a_{ij} is an (i, j)-entry of the bi-adjacency¹ matrix A of G.

¹The rows of A are identified with R and the columns of A are identified with C. And the entries of A are defined as: $a_{ij} = 1$ if $i \in R$ and $j \in C$ are adjacent in G, and $a_{ij} = 0$ otherwise.

Hint: Use Inclusion-Exclusion principle. Define the universe \mathcal{U} as the set of all *n*-tuples of edges (e_1, \ldots, e_n) such that the endpoint of e_i in C is c_i .

& Submit your solution via email (eunjungkim78@gmail.com) by 20 Feb 2019, midnight.

& Questions with \star can be worked together with a colleague. But please write the solution by yourself.