
Résolution exacte de problèmes NP-difficiles

Lecture 3: Randomized algorithms

4 February, 2019 Lecturer: Eunjung Kim

1 Simple randomized algorithms

1.1 k-Path

We consider a parameterized version of the Longest Path problem. The problem k-Path
is, give a graph G and an integer k, to find a simple path on k vertices, if one exists. This
problem is NP-complete. We give a randomized FPT-algorithm for k-Path. The underlying
idea is to transform (in a randomized way) the given graph into a graph in which detecting a
k-path becomes a simpler task. It is known that on a directed acyclic graph(DAG), finding
a longest (directed) path can be solved in time O(|E|) using dynamic programming. So, we

shall transform G into a DAG ~G so that a (directed) k-path in ~G corresponds to a k-path in

G. A k-path in G does not necessarily yield a k-path in ~G. The hope is that if we perform the
transformation sufficiently many times, but not too many times to stay within the running
time bound of FPT-algorithm, we will hit on ~G which contains a k-path corresponding to
one in G.

Let π : V (G)→ [n] be a random permutation of V (G). A DAG ~Gπ can be defined from
π: it has V (G) as the vertex set, and

(u, v) is an arc of ~Gπ if and only if π(u) < π(v).

Notice that if G contains a k-path P , and π happens to order the vertices of P in an
orderly manner (two possible ways), then P can be detected by a longest path algorithm

on ~Gπ. If G does not contain a k-path, then no permutation π will allow ~Gπ to contain a
k-path.

The probability that a random permutation π turns a k-path into a directed k-path in
~G is 2

k!
. Therefore, the expected number of random permutations to hit a sucessful ~G is

k!
2

. For each random permutation π, we test1 whether ~Gπ contains a k-path in time O(|E|).
Therefore, the expected running time of to detect k-path in G, if G contains one, is O(k!·|E|).

1.2 Feedback Vertex Set

We present a randomized algorithm for Feedback Vertex Set running in time O∗(4k). We
first apply reduction rules first.

1The problem Longest Path is in P on acyclic digraphs. First, we obtain a topological order of the
vertex set of ~Gπ, then solve compute the length of a longest path to each vertex via dynamic programming
over this ordering.

1

Reduction Rule 0: If u has has a loop in G, then delete v and decrease k by one.
Reduction Rule 1: If u has degree at most 1 in G (and does not have a loop), then delete
v.
Reduction Rule 2: If u has degree 2 with neighbors v, w in G (possibly v = w), by delete
u and add an edge (v, w).

Notice that application of Reduction Rule 2 may create parallel edges and loops - cycles
of length two and one. Hence, G is a graph with parallel edges in the remainder of this
subsection. The degree of a vertex is the number of incident edges, not the number of
neighbors. Provided Reduction Rules 0-2 have been applied exhaustively, we can assume
that G has minimum degree at least three.

The key observation behind the randomized O∗(4k)-algorithm is sparsity of a forest. Let
S be a feedback vertex set of G. Then G − S have at most |V (G) \ S| − 1 edges, which
accounts for at most two among the minimum degree 3 of the vertices in V (G) \ S. Hence,
more than |V (G)| − |S| edges are lying between S and V (G) \ S. This is formalized in the
lemma below.

Lemma 1. Let G be a graph with minimum degree three. Then for any feedback vertex set
S, at least half of E are incident with S.

Proof: We let F := V (G)\S. Let us denote by E(S) the set of edges whose both endpoints
are in S and by E(S, F) the set of edges which has precisely one endpoint in each of S and
F . Let us count the sum

∑
v∈F deg(v) in a different way. The only edges that contribute to

this sum are E(S, F)∪E(F). Observe that an edge of E(S, F) counts precisely once in this
sum, and an edge of E(F) is counted twice. Therefore, with the minimum degree condition
on V it holds that ∑

v∈F

deg(v) = |E(S, F)|+ 2|E(S)| ≥ 3|F |

It follows that

|E(S, F)| ≥ 3|F | − 2|E(F)| ≥ 3(|E(F)|+ 1)− 2|E(F)| > |E(F)|,

where the second inequality is due to the fact that the number of edges in a tree T is at
most the number of vertices of T minus one. Observe that the edge set incident with S is
E(S) ∪ E(F, S). From

|E(S)|+ |E(S, F)| = 1

2
(2|E(S)|+ 2|E(S, F)|) > 1

2
(|E(S)|+ |E(S, F)|+ |E(F)|) =

1

2
|E|,

we know that at least half of the edge set E is incident with S. This complete the proof.

Thanks to Lemma 1, a randomly chosen edge e is incident with a (prescribed) feedback
vertex set S with probability at least 1

2
. By again randomly choosing one endpoint of e, we

choose one of S with probability at least 1
4
.

2

Algorithm 1 Algorithm for Feedback Vertex Set

1: procedure FVS(G, k)
2: Apply Reduction Rules 1-2 exhaustively.
3: if k = 0 and G has a cycle then return No and terminate.
4: else if k ≥ 0 and G is acyclic then return ∅.
5: else if G has a loop at some vertex v then return FVS(G− v, k − 1) ∪ {v}.
6: else . G has a cycle without loops and k > 0
7: Pick an edge e uniformly at random.
8: Pick an endpoint of e uniformly at random. Let v be the chosen vertex.
9: return FVS(G− v, k − 1) ∪ {v}.
10: end if
11: end procedure

Lemma 2. On an input instance (G, k) to Feedback Vertex Set, the procedure FVS

(i) runs in polynomial time,

(ii) outputs either No or a feedback vertex set of G of size at most k,

(iii) outputs a (feedback) vertex set of size at most k with probability at least 1
4k

if (G, k) is
Yes.

Proof: The running time is straightforward. Before proceeding with the proof of (ii)-(iii),
we point out that any input (G′, k′) to the procedure FVS for the subsequent calls incurred
by FVS(G, k) is a legitimate instance of Feedback Vertex Set: that is, k′ ≥ 0. Indeed,
we decrease the parameter k by one every time we make a call to FVS, and when k = 0 an
output is returned at Lines 3-4, which means no subsequent call is made.

We prove (ii) by induction on k. It suffices to prove that if FVS(G, k) returns a vertex
set S, then S is a feedback vertex set of G of size at most k. When k = 0, the fact that some
vertex set S is returned means that (G, k) does not satisfy the condition of Line 3 and thus
G is acyclic. Now that (G, k) meets the condition of Line 4, we know that S = ∅. It is clear
that S = ∅ is a feedback vertex set of an acyclic graph G of size at most k = 0. Consider
k > 0 and notice that S is returned at either Line 5 or 9. Especially, this means that the
output of FVS(G− v, k− 1) is S \ v. By induction hypothesis, S \ v is a feedback vertex set
of G− v of size at most k− 1. Hence, G− v−S \ v is acyclic and thus S is a feedback vertex
set of G. Clearly |S| ≤ k. This proves (ii).

Now we prove (iii). Suppose that (G, k) is a Yes-instance. If G is acyclic, then (iii)
trivially holds with probability 1. In particular, G is always acyclic when k = 0 due to the
assumption that (G, k) is a Yes-instance. Therefore, we may assume that G has a cycle and
k > 0. We claim that the input (G − v, k − 1) to a subsequent call at Line 5 or 9 is Yes
with probability at least 1

4
. If G has a loop at v, then v must be included in any solution,

and (G − v, k − 1) is again a Yes-instance with probability 1. If G does not have a loop,
then Line 8 chooses a vertex v contained in a solution S of size at most k with probability

3

1
4
. Indeed, Lemma 1 implies that the edge e chosen at Line 7 is in E(S) ∪ E(S, V \ S) with

probability 0.5. In case e ∈ E(S), the probability that a random endpoint v of e is in S is
1. In case e ∈ E(S, V \ S), the probability is 0.5. Therefore,

Pr[v ∈ S] = Pr[e ∈ E(S) ∪ E(S, V \ S)]× Pr[v ∈ S|e ∈ E(S) ∪ E(S, V \ S)]

≥ 0.5× 0.5

Notice that when v ∈ S, then S \ v is a feedback vertex set of size at most k − 1 of G− v.
That is, (G− v, k − 1) is a Yes-instance. Therefore, the created instance (G− v, k − 1) at
Line 9 is a Yes-intance with probability at least 1

4
, as claimed.

To finalize the proof of (iii), we recall that by induction hypothesis, FVS(G − v, k − 1)
returns a vertex set with probability at least 1

4k−1 when (G− v, k − 1) is Yes. Now2,

Pr[FVS(G, k) returns a vertex set at Line 9]

= Pr[(G− v, k − 1) is Yes and FVS(G− v, k − 1) returns a vertex set at Line 9]

≥ Pr[(G− v, k − 1) is Yes]

× Pr[FVS(G− v, k − 1) returns a vertex set at Line 9|(G− v, k − 1) is Yes]

≥ 1

4
× 1

4k−1
=

1

4k
.

This completes the proof.

By repeating FVS(G, k) 4k times, we obtain an algorithm summarized in the lemma
below.

Lemma 3. There is an algorithm running in time O(4k ·poly(n)) time which, given an input
(G, k) to Feedback Vertex Set, outputs

(i) No if (G, k) is a No-instance, and

(ii) outputs a solution of size at most k with probability 1− e−1 if one exists.

Proof: The algorithmA works as follows: on the input instance (G, k), we run the procedure
FVS 4k times. If a run of Feedback Vertex Set returns a vertex set S, then return S
as an output of A. If all 4k executions of FVS on (G, k) returns No, then A returns No.
Clearly the algorithm A runs in the claimed running time because FVS runs in polynomial
time and A invokes FVS as a subroutine 4k times. That A satisfies (i) follows immediately
from Lemma 2. To see (ii), observe that the probability that A returns No when (G, k) is
Yes equals

Pr[FVS(G, k) returns No while (G, k) is Yes]4
k ≤ (1− 1

4k
)4

k ≈ e−1(≈ 0.36),

where the equality holds because each run of FVS is independent, and the second inequality
holds due to Lemma 2. The property (ii) follows.

2In the inequality, all probabilities are conditional on that (G, k) isYes. We assumed this at the beginning
of the proof of (iii).

4

2 A randomized algorithm for k-Path based on color

coding

We can improve the running time of k-Path from O∗(k!) to 2O(k) time using color coding
introduced by Alon, Yuster and Zwick. Color coding is a technique to transform a problem
of detecting an object in a graph into a problem of colored object in a colored graphs, which
is hopefully an easier task. In color coding for the problem k-Path, we randomly color the
vertices of G with k colors and the hope is that in the colored graph, a k-path becomes
colorful. We say that a path in a colored graph is colorful if all vertices have distinct colors.

One pass of our color coding algorithm consists of two steps:

A. Color the vertices of G with {1, . . . , k} uniformly at random. Let c : V (G) → [k] be
the coloring.

B. Find a colorful k-path in G, if one exists. Otherwise, report that none was found.

Step A. The probability that step A. make a k-path P colorful is

#of colorings in which P becomes colorful

of all possible colorings
=
k!

kk
≈ 1

ek

So, the expected number of runs of A. before a k-path P becomes colorful is ek. Notice that
any colorful k-path is also a k-path in G. Below, we provide an algorithm for B. running in
time O(2k · |E|).

Step B: Detecting a colorful k-path. Now we present an algorithm for detecting a
colorful k-path given a vertex partition V1, . . . , Vk of V (G), where each Vi are the vertices
colored in i. We aim to set the values of indicator variables P [C, u] for every color subset
C ⊆ {1, . . . , k} and for every vertex u ∈ V (G), so that

P [C, u] = 1 if there is a colorful path exactly consisting of colors in C and ending
in u.
P [C, u] = 0 otherwise.

At each i-th iteration over i = 1, . . . , k, for all u ∈ V (G) we set the value of P [C, u] for
C ⊆ [k] with |C| = i using dynamic programming. At i = 1, P [C, u] = 1 if and only if
C = {c(u)}. At i + 1-th iteration, for each u ∈ V (G) and C ⊆ {1, . . . , k} of size i + 1, we
compute P [C, u] as:

• P [C, u] := 1 if c(u) ∈ C and there is v ∈ N(u) such that P [C \ c(u), v] = 1.

• P [C, u] := 0 otherwise.

This recurrence computes P [C, u] correctly indeed: if there is a colorful i + 1-path Q using
colors in C and ending at u, then for a neighbor v which is a neighbor of u in Q, Q− u is a
colorful i-path using colors in C \ {c(u)}. Conversely, if for some neighbor v of u there is a

5

colorful i-path using colors in C \{c(u)}, such a path can be extended to a colorful i+1-path
by adding u. The new path uses colors in C and ends at u. As the base case when i = 1
trivially holds, the correctness of the above recurrence follows.

After finishing k-th iteration, there is a vertex u such that P [{1, . . . , k}, u] = 1 if and
only if there is a colorful k-path. This dynamic programming algorithm runs in time

O(
k∑
i=1

(
k

i

)
· |E|) = O(2k · |E|).

Lemma 4. One can detect a colorful k-path in time O(2k · |E|), if one exists.

The following lemma summarizes the above analysis of Step A. and B.

Lemma 5. One can detect a simple k-path in O((2e)k · |E|) expected running time, if one
exists.

Lemma 6. One can detect a simple k-path with probability at least e−1 in time O((2e)k · |E|),
if one exists.

Proof: The probability that a coloring fails to turn a k-path P colorful is at most 1− e−k.
Therefore, the probability that all ek colorings (each, independent at random) reports no
colorful k-path is at most

(1− 1

ek
)e

k ≈ e−1.

Together with Lemma 4, the running time follows.

6

