
Résolution exacte de problèmes NP-difficiles

Lecture 4: Iterative Compression

6 February, 2019 Lecturer: Eunjung Kim

O∗(5k)-time algorithm for Feedback Vertex Set

The iterative compression technique solves a parameterized problem P by iteratively solving
a compression version of P. This is where the name comes from. We study this technique with
an exemplary algorithm for Feedback Vertex Set. Consider the following compression
version of Feedback Vertex Set.

Compression FVS

Instance: a graph G = (V,E), a feedback vertex set X ⊆ V .

Parameter: |X|

Question: Does G have a feedback vertex set Y such that |Y | < |X|?

Suppose that you’re given a fvs Xi of size at most k for a graph Gi. If Gi expands to a
slightly bigger graph Gi+1, where Gi+1 contains precisely one more vertex vi+1 on top of Gi,
then we know that Xi ∪ {vi+1} is again a fvs of Gi+1. But its size might exceed our allowed
budget k (if not, Xi∪{vi+1} is a trivial solution to Compression FVS). Our goal is to look
for an alternative fvs of Gi+1 of size at most k, that is, a fvs whose size is strictly smaller
than the given fvs. This extra information of a fvs Xi ∪ {vi+1} of small size at hand, albeit
a bit exceeding our budget, makes the task of algorithm design way easier.

Lemma 1. If there is an algorithm A of Compression FVS running in time c|X| ·nd, then
there is an algorithm for Feedback Vertex Set running in time ck · nd+1.

Proof: Let v1, . . . , vn be the vertices ofG. For each 1 ≤ i ≤ n, we defineGi = G[{v1, . . . , vi}],
that is, Gi is the subgraph of G induced by the first i vertices. Suppose that Xi is a fvs of
Gi of size at most k. Such Xi exists for i up to k. For i+ 1 ≤ n, note that Xi ∪ {vi+1} is a
fvs of Gi+1 and (Gi+1, Xi ∪ {vi+1}) is a legitimate instance to Compression FVS. Now we
run the algorithm A on (Gi+1, Xi ∪ {vi+1}). If A returns a fvs Xi+1 of Gi+1 of size at most
k, we can proceed to the next iteration for i+ 2 or declare it as a fvs of G in case i+ 1 = n.
On the other hand, if A returns No, then this means that not only Gi+1 is a No-instance
but Gn is a No-instance as well: indeed, if Gn has a feedback vertex set Xn of size at most
k, then Xn ∩ {v1, . . . , vi+1} is a feedback vertex set of Gi+1 and its size is clearly at most k.
Therefore, we can correctly return No as an output of the algorithm. To see the running
time, notice that the aforementioned algorithm executes A at most n times.

1

Thanks to Lemma 1, now we can focus on designing an efficient fpt-algorithm for Com-
pression FVS1. We expect that designing an algorithm for Compression FVS would be
easier than designing an algorithm for Feedback Vertex Set because the latter problem
is at least as hard as the former. In fact, Compression FVS can be even further reduced
to the following variant of Feedback Vertex Set.

Disjoint FVS

Instance: a graph G = (V,E), a feedback vertex set X̃ ⊆ V , an integer k ≥ 0.

Question: Does G have a feedback vertex set Ỹ such that |Ỹ | ≤ k and Ỹ ∩ X̃ = ∅?

The basis of reducing2 Compression FVS to Disjoint FVS is to rewrite a feasible
solution Y as a disjoint union of two sets I := Y ∩ X and Ỹ := Y \ X. Furthermore, if
|Y | < |X| then |Y \X| < |X \ Y |. So, in order to find a solution Y to Compression FVS,
we can ‘guess’ Y ∩X by enumerating all subsets I of X, remove the guessed part I from G,
and then find a fvs Ỹ of G − I such that Ỹ is disjoint from X \ I and has strictly smaller
size than X \ I.

Algorithm 1 Algorithm for Disjoint FVS

1: procedure dfvs(G, X̃, k)
2: Let F = G[V \ X̃] and C be the set of connected components of G[X̃].
3: Delete all of degree at most 1. Bypass all degree-2 vertices of F : exhaustively.
4: if G is acyclic then return ∅.
5: else if G[X̃] contains a cycle then return No.
6: else if G contains a cycle and k = 0 then return No.
7: end if
8: Choose a leaf v of F . . k > 0
9: if v has two neighbors in a single components of C then
10: return dfvs(G− v, X̃, k − 1) ∪ {v}
11: else . v has two neighbors belonging to distinct components of C
12: return dfvs(G− v, X̃, k − 1) or dfvs(G, X̃ ∪ {v}, k).
13: end if
14: end procedure

Lemma 2. The algorithm dfvs, given an instance (G, X̃, k), solves Disjoint FVS correctly
in time O∗(2µ(I)), where µ(I) = k + |cc(G[X̃])|.

1Instead of using iterative compression, we can obtain an approximate feedback vertex set of size at most
2k using a 2-approximation algorithm for Feedback Vertex Set and apply the algorithm for Compres-
sion FVS at most k times. That is, starting from X, we obtain a smaller solution if possible and feed it to
the next instance of Compression FVS. The running time will be O∗(c|X| · nd · k) in this case.

2Creating a connection between the two problems so that by solving instances of the latter, one can
obtain a solution to the former.

2

Proof: We omit the correctness proof (which is rather straightforward, see [1] for details).
To analyze the running time, we introduce a measure µ(I) of an instance I = (G, X̃, k) to
Disjoint FVS.

µ(G, X̃, k) = k + |cc(G[X̃])|.

In Line 12, each branching decreases the measure µ by at least one. Indeed, µ(G− v, X̃, k−
1) = k− 1 + |cc(G[X̃])| = µ(I)− 1, and the measure decreases by one in the first branching.
In the second branching, recall that v is adjacent with (at least) two distinct components of
G[X̃] and thus by adding v to X̃, we decreases the number of connected components by at
least one. That is, µ(G, X̃ ∪ {v}, k) ≤ µ(I) − 1. From µ(I) ≥ 1, the depth (as the number
of branching nodes where Line 12 is invoked) of a search tree algorithm is at most µ(I) and
the running time follows.

Lemma 3. There is an algorithm B for Compression FVS running in time 5|X| · nd.

Proof: Given an instance (G,X) to Compression FVS, we create an instance (G′, X̃, k′)
to Disjoint FVS for every I (X as follows:

G′ = G− I, X̃ = X \ I and k′ = |X̃| − 1.

The algorithm B on the input instance (G,X) is described below.

Algorithm 2 Algorithm for Compression FVS

1: procedure B(G,X)
2: for all I (X do
3: if dfvs(G′, X̃, |X̃| − 1) 6= No then
4: Let Ỹ = dfvs(G′, X̃, |X̃| − 1) and return Ỹ ∪ I
5: end if
6: end for
7: return No
8: end procedure

We first observe that if an instance (G′, X̃, |X̃| − 1) of Disjoint FVS is a Yes-instance
at Line 3, then the output Ỹ ∪ I is indeed a solution to (G,X) for Compression FVS.
Indeed, |Ỹ | ≤ |X̃| − 1 implies that |Ỹ | + |I| < |X̃| + |I| = |X|. Moreover, Ỹ ∪ I is a fvs of
G because of G− (I ∪ Ỹ) = (G− I)− Ỹ = G′ − Ỹ ; G′ − Ỹ is acyclic as Ỹ is a fvs of G′.

Therefore, to see the correctness of the algorithm B we only need to settle the claim:

if B returns No, then (G,X) is a No-instance to Compression FVS.

If (G,X) is a Yes-instance to Compression FVS, let Y be a fvs of G such that |Y | < |X|.
Then for I := Y ∩X, the corresponding instance (G′, X̃, k′) defined as G′ : G−I, X̃ := X \I
and k′ := |X̃|−1, the vertex set Ỹ := Y \I is a fvs of G′: indeed G′− Ỹ = G−I− Ỹ = G−Y
is acyclic due to the assumption that Y is a fvs of G. Moreover, |Ỹ | + |I| = |Y | < |X| =
|X̃|+ |I| implies that |Ỹ | < |X̃|. Clearly, Ỹ is disjoint from X̃. Therefore, Ỹ is a solution to

3

(G′, X̃, |X̃| − 1) for Disjoint FVS. In particular, there exists some I∗(not necessarily the
same I) such that the corresponding instance of Disjoint FVS is Yes, and therefore the
condition of Line 3 is satisfied. Accordingly, the output of B(G,X) is not No. This proves
the correctness of the algorithm B.

Finally, we observe that for all I (X of size i, an instance I to Disjoint FVS with
µ(I) = |X| − i− 1 + |cc(G[X̃])| ≤ 2(|X| − i)− 1 is created. For each such I, the algorithm
dfvs runs in time O∗(2µ(I)), thus in O∗(4|X|−i) time. Therefore, the algorithm B runs in
time

|X|−1∑
i=0

(
|X|
i

)
· 4|X|−i · nd ≤ (4 + 1)|X| · nd.

References

[1] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

4

