
Upper Dominating Set: Tight Algorithms for
Pathwidth and Sub-Exponential Approximation

Louis Dublois1, Michael Lampis1, and Vangelis Th. Paschos1

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, Paris, France
{louis.dublois,michail.lampis,paschos}@lamsade.dauphine.fr

Abstract. An upper dominating set is a minimal dominating set in
a graph. In the Upper Dominating Set problem, the goal is to find
an upper dominating set of maximum size. We study the complexity
of parameterized algorithms for Upper Dominating Set, as well as
its sub-exponential approximation. First, we prove that, under ETH, k-
Upper Dominating Set cannot be solved in time O(no(k)) (improving

on O(no(
√
k))), and in the same time we show under the same complex-

ity assumption that for any constant ratio r and any ε > 0, there is no

r-approximation algorithm running in time O(nk1−ε

). Then, we settle
the problem’s complexity parameterized by pathwidth by giving an al-
gorithm running in time O∗(6pw) (improving the current best O∗(7pw)),
and a lower bound showing that our algorithm is the best we can get
under the SETH. Furthermore, we obtain a simple sub-exponential ap-
proximation algorithm for this problem: an algorithm that produces an
r-approximation in time nO(n/r), for any desired approximation ratio
r < n. We finally show that this time-approximation trade-off is tight,
up to an arbitrarily small constant in the second exponent: under the
randomized ETH, and for any ratio r > 1 and ε > 0, no algorithm

can output an r-approximation in time n(n/r)1−ε

. Hence, we completely
characterize the approximability of the problem in sub-exponential time.

Keywords: FPT Algorithms · Sub-Exponential Approximation · Upper
Domination

1 Introduction

In a graph G = (V,E), a set D ⊆ V is called a dominating set if all vertices of
V are dominated by D, that is for every u ∈ V either u belongs to D or u is
a neighbor of some vertex in D. The well-known Dominating Set problem is
studied with a minimization objective: given a graph, we are interested in finding
the smallest dominating set. In this paper, we consider upper dominating sets,
that is dominating sets that are minimal, where a dominating set D is minimal
if no proper subset of it is a dominating set, that is if it does not contain any
redundant vertex. We study the problem of finding an upper dominating set of
maximum size.

This problem is called Upper Dominating Set, and is the Max-Min ver-
sion of the Dominating Set problem. We call Upper Dominating Set the

2 L. Dublois, M. Lampis, V. Th. Paschos

considered optimization problem and k-Upper Dominating Set the associated
decision problem.

Studying Max-Min and Min-Max versions of some famous optimization prob-
lems is not a new idea, and it has recently attracted some interest in the liter-
ature: Minimum Maximal Independent Set [6, 15,19] (also known as Mini-
mum Independent Dominating Set), Maximum Minimal Vertex Cover
[5, 26], Maximum Minimal Separator [16], Maximum Minimal Cut [12],
Minimum Maximal Knapsack [1, 13, 14] (also known as Lazy Bureaucrat
Problem), Maximum Minimal Feedback Vertex Set [11]. In fact, the
original motivation for studying these problems was to analyze the performance
of naive heuristics compared to the natural Max and Min versions, but these
Max-Min and Min-Max problems have gradually revealed some surprising com-
binatorial structures, which makes them as interesting as their natural Max and
Min versions. The Upper Dominating Set problem can be seen as a member of
this framework, and studying it within this framework is one of our motivation.

This problem is also one of the six problems of the well-known domination
chain (see [2, 18]) and is somewhat one which has fewer results, compared to
the famous Dominating Set and Independent Set problems. Increasing our
understanding of the Upper Dominating Set problem compared to these two
famous problems is another motivation.

Upper Dominating Set was first considered in an algorithmic point of
view by Cheston et al. [9], where they showed that the problem is NP-hard.
In the more extensive paper considering this problem, Bazgan et al. [3] stud-
ied approximability, and classical and parameterized complexity of the Upper
Dominating Set problem. In the polynomial approximation paradigm, they
proved that the problem does not admit an n1−ε-approximation for any ε > 0,
unless P=NP, making the problem as hard as Independent Set, whereas there
exists a greedy lnn-approximation algorithm for the Min version Dominating
Set.

Considering the parameterized complexity, they proved that the problem is
as hard as the k-Independent Set problem: k-Upper Dominating Set is
W[1]-hard parameterized by the standard parameter k. Nonetheless, in their
reduction, there is an inherent quadratic blow-up in the size of the solution k, so
they essentially proved that there is no algorithm solving k-Upper Dominating

Set in time O(no(
√
k)). They also gave FPT algorithms parameterized by the

pathwidth pw and the treewidth tw of the graph, in time O∗(7pw)1 and O∗(10tw),
respectively.

Our results: The state of the art summarized above motivates two basic ques-
tions: first, can we close the gap between the lower and upper bounds of the
complexity of the problem parameterized by pathwidth ; second, since the poly-
nomial approximation is essentially settled, can we design sub-exponential ap-
proximation algorithms which can reach any approximation ratio r < n ? We

1 O∗ notation suppresses polynomial factors in the input size.

Upper Dominating Set: Tight Algorithms 3

answer these questions and along the way we give stronger FPT hardness results.
In fact, we prove the following:

(i) In Section 3, we show the following: under ETH, there is no algorithm
solving k-Upper Dominating Set in time O(no(k)) ; and under the same com-
plexity assumption, for any ratio r and any ε > 0, there is no algorithm for this
problem that outputs an r-approximation in time O(nk

1−ε

).
(ii) In Section 4, we give a dynamic programming algorithm parameterized by

pathwidth that solves Upper Dominating Set in time O∗(6pw). Surprisingly,
this result is obtained by slightly modifying the algorithm of Bazgan et al. [3]. We
then prove the following: under SETH, and for any ε > 0, Upper Dominating
Set cannot be solved in time O∗((6−ε)pw). This is our main result, and it shows
that our algorithm for pathwidth is optimal.

(iii) In Section 5, we give a simple time-approximation trade-off: for any ratio
r < n, there exists an algorithm for Upper Dominating Set that ouputs an
r-approximation in time nO(n/r). We also give a matching lower bound: under
the randomized ETH, for any ratio r > 1 and any ε > 0, there is no algorithm
that outputs an r-approximation running in time n(n/r)

1−ε

.

2 Preliminaries

We use standard graph-theoretic notation and we assume familiarity with the
basics of parameterized complexity (e.g. pathwidth, the SETH and FPT algo-
rithms), as given in [10]. Let G = (V,E) be a graph with |V | = n vertices and
|E| = m edges. For a vertex u ∈ V , the set N(u) denotes the set of neighbors of
u, d(u) = |N(u)|, and N [u] the closed neighborhood of u, i.e. N [u] = N(u)∪{u}.
For a subset U ⊆ V and a vertex u ∈ V , we note NU (u) = N(u) ∩ U . Further-
more, for U ⊆ V , we note N(U) =

⋃
u∈U N(u). For an edge set E′ ⊆ E, we

use V (E′) to denote the set of its endpoints. For V ′ ⊆ V , we note G[V ′] the
subgraph of G induced by V ′.

An upper dominating set D ⊆ V of a graph G(V,E) is a set of vertices that
dominates all vertices of G, and which is minimal. Note that D is minimal if we
have the following: for every vertex u ∈ D, either u has a private neighbor, that
is a neighbor that is dominated only by u, or u is its own private vertex, that
is u is only dominated by itself. We note an upper dominating set D = S ∪ I,
where S is the set of vertices of D which have at least one private neighbor, and
I is the set of vertices of D which forms an independent set, that is the set of
vertices which are their own private vertices.

Note that a maximal independent set I (also known as an independent domi-
nating set) is an upper dominating set since it is a set of vertices which dominates
the whole graph and such that every vertex u ∈ I is its own private vertex.

3 FPT and FPT-approximation Hardness

In this section, we present two hardness results for the k-Upper Dominating
Set problem in the parameterized paradigm: we prove first that the considered

4 L. Dublois, M. Lampis, V. Th. Paschos

problem cannot be solved in time O(no(k)) under the ETH ; and we prove then
under the same complexity assumption that for any constant approximation ratio
0 < r < 1 and any ε > 0, there is no FPT algorithm giving an r-approximation
for the k-Upper Dominating Set problem running in time O(nk

1−ε

).
Note that k-Upper Dominating Set being W[1]-hard was already proved

by Bazgan et al. [3]. To get this result, they made a reduction from the k-
Multicolored Clique problem. Nonetheless, in this reduction, the size of the
solution of the k-Upper Dominating Set problem was quadratic compared to
the size of the solution of the k-Multicolored Clique problem. Thus, they
proved essentially the next result: k-Upper Dominating Set problem cannot

be solved in time O(no(
√
k)).

To obtain our desired negative results, we will make a reduction from the k-
Independent Set problem to our problem. So recall that we have the following
hardness results for the k-Independent Set problem:

Lemma 1 (Theorem 5.5 from [8]). Under ETH, k-Independent Set can-
not be solved in time O(no(k)).

Lemma 2 (Corollary 2 from [4]). Under ETH, for any constant r > 0
and any ε > 0, there is no r-approximation algorithm for k-Independent Set
running in time O(nk

1−ε

).

We will obtain similar results for the k-Upper Dominating Set by doing
a reduction from k-Independent Set. This reduction will linearly increase the
size of the solutions between the two problems, so these two hardness results for
the latter problem will hold for the former problem.

Before we proceed further in the description of our reduction, note that we
will use a variant of the k-Independent Set problem. In this variant, the graph
G contains k cliques which are connected to each other, and if a solution of size
k exists, then this solution takes exactly one vertex per clique. Note that the
Lemmas 1 and 2 hold on this particular instance, since this is a case where the
problem remains hard to solve in FPT time and to approximate in FPT time.
So we will use this variant.

Let us now present our reduction. We are given a k-Independent Set
instance G with n vertices and m edges, where the n vertices are partitioned
in k distinct cliques V1, . . . , Vk connected to each other. We define the following
number: A = 5. We set our budget to be k′ = Ak.

We construct our instance G′ of k′-Upper Dominating Set as follows:

1. For any vertex u ∈ V (G), create an independent set Zu of size A.
2. For any edge (u, v) ∈ E(G), add all edges between the vertices of Zu and

the vertices of Zv.
3. For any i ∈ {1, . . . , n}, let Wi be the group associated to the clique Vi, which

contains all vertices of all independent sets Zu such that the vertex u belongs
to the clique Vi. For any i ∈ {1, . . . , k}, create a vertex zi connected to all
vertices of the group Wi.

Upper Dominating Set: Tight Algorithms 5

Now that we have presented our reduction, we argue that it is correct. Recall
that the target size of an optimal solution in G′ is k′ as defined above. We can
prove that, given an independent set I of size at least k in G, we can construct
an upper dominating set of size at least Ak in G′ by taking the A vertices of the
independent set Zu for any vertex u ∈ I.

Lemma 3. [?2] If G has an independent set of size at least k, then G′ has an
upper dominating set of size at least k′.

The idea of the following proof is the following: if an upper dominating set
in G′ of size at least k′ has not the form described in Lemma 3, then it cannot
have size at least k′, enabling us to construct an independent set of size at least
k in G from an upper dominating set which has the desired form.

Lemma 4. [?] If G′ has an upper dominating set of size at least k′, then G has
an independent set of size at least k.

Now that we have proved the correctness of our reduction and since the blow-
up of the reduction is linear in both the size of the instance and the size of the
solution, we can now present one of the main results of this section:

Theorem 1. [?] Under ETH, k-Upper Dominating Set cannot be solved in
time O(no(k)).

From now one and to obtain the FPT-approximation hardness result, we now
consider our reduction above with A being sufficiently large. Note that all the
properties we have found before still hold since A remains a constant.

Let 0 < r < 1. To obtain the FPT-approximation hardness result for the
k-Independent Set problem (see Lemma 2), Bonnet et al. [4] made a gap-
amplification reduction from an instance φ of 3-SAT to an instance (G, k) of
k-Independent Set problem. Essentially, this reduction gives the following
gap:

– YES-instance: If φ is satifiable, then α(G) = k.
– NO-instance: If φ is not satisfiable, then α(G) ≤ rk.

In this gap, α(G) is the size of a maximum independent set in G, and k
corresponds in fact to a value which depends on the reduction, but designating
it by k ease our purpose.

To obtain a similar result for the k-Upper Dominating Set problem, and
by using our reduction above, we have to prove that our reduction keep a gap
of value r. Thus, we need to prove the following:

– YES-instance: If φ is satisfiable, then α(G) = k and Γ (G′) = Ak.
– NO-instance: If φ is satisfiable, then α(G) ≤ rk and Γ (G′) ≤ rAk.

2 Propositions, Lemmas and Theorems with a star have their proof in the Appendix.

6 L. Dublois, M. Lampis, V. Th. Paschos

where Γ (G′) is the size of a maximum upper dominating set in G′.
Note that we have proved the first condition in Lemma 3, since an indepen-

dent set of size at least k in G necessarily has size exactly k.
Thus, we just need to prove the second condition. To prove it, we will in fact

prove the contraposition, to ease our proof. This is given in the following Lemma.
The proof of this Lemma uses some arguments made in the proof of Lemma 4,
and by choosing carefully which vertices we can put in the independent set we
want to construct.

Lemma 5. [?] If there exists an upper dominating set in G′ of size > rAk, then
there exists an independent set in G of size > rk.

Now that we have proved the correctness of the gap-amplification of our
reduction, we can present the second main result of this section:

Theorem 2. [?] Under ETH, for any constant r > 0 and any ε > 0, there is
no r-approximation algorithm for k-Upper Dominating Set running in time
O(nk

1−ε

).

4 Pathwidth

4.1 FPT Algorithm Parameterized by Pathwidth

In this section, we present an algorithm for the Upper Dominating Set prob-
lem parameterized by the pathwidth pw of the given graph. We prove that, given
a graph G = (V,E) and a path decomposition (T, {Xt}t∈V (T)) of width pw, there
exists a dynamic programming algorithm that solves Upper Dominating Set
in time O(6pw ·pw). Due to space constraints, we only sketch the basic ideas and
explain, on a high level, how we manage to get the desired complexity.

Note that Bazgan et al. have designed an FPT algorithm for Upper Dom-
inating Set running in time O∗(7pw) [3]. Our algorithm essentially works as
their algorithm: we have the same set of colors to give to the vertices ; and our
Initialization and Forget nodes are similar to theirs.

Nonetheless, we have modified the Introduce nodes in order to lower the
complexity to O(6pw · pw). For an Introduce node Xt = Xt′ ∪ {v} (and a vertex
v /∈ Xt′), Bazgan et al. did the following: they go through all possible colorings
of the bag Xt and consider every subset of the neighborhood of v to give the
right color to the vertices of this subset. Thus, since they consider every subset
of the neighborhood of v, they get an algorithm running in time O∗(7pw).

In our algorithm, we do the following: for an Introduce node Xt = Xt′ ∪{v},
we go through all possible colorings of the bagXt′ and through all colorings of the
vertex v, and we update the value in the table depending on the correpsonding
colorings of Xt′ and v. Doing so, and by being careful on the color given to v,
it enables us to get an algorithm running in time O(6pw · pw). We obtain the
following Theorem:

Theorem 3. [?] The Upper Dominating Set problem can be solved in time
O(6pw · pw), where pw is the input graph’s pathwidth.

Upper Dominating Set: Tight Algorithms 7

4.2 Lower Bound

In this section, we present a lower bound on the complexity of any FPT algorithm
for the Upper Dominating Set problem parameterized by the pathwidth of
the graph matching our previous algorithm. More precisely, we prove that, under
SETH, for any ε > 0, there is no algorithm for Upper Dominating Set running
in time O∗((6− ε)pw), where pw is the pathwidth of the input graph.

To get this result, we will do a reduction from the q-CSP-6 problem (see [23])
to the Upper Dominating Set problem. In the former problem, we are given a
Constraint Satisfaction (CSP) instance with n variables and m constraints.
The variables take values over a set of size 6. Without loss of generality, let
{0, 1, 2, 3, 4, 5} be this set. Each constraint involves at most q variables, and is
given as a list of acceptable assignments for these variables. Without loss of
generality, we force the following condition: each constraint involves exactly q
variables, because if it has fewer, we can add to it new variables and augment the
list of satisfying assignments so that the value of the new variables is irrelevant.

The following result, shown in [23], is a natural consequence of the SETH,
and will be the starting point to obtain the desired lower bound:

Lemma 6 (Lemma 2 from [23]). If the SETH is true, then, for all ε > 0,
there exists a q such that n-variables q-CSP-6 cannot be solved in time O∗((6−
ε)n).

We note that in [23], it was shown that for any constant B, q-CSP-B cannot
be solved in time O∗((B− ε)n) under the SETH. For our purpose, only the case
where B = 6 is relevant because this corresponds to the base of our target lower
bound.

We will produce a polynomial time reduction from an instance of q-CSP-6
with n variables to an equivalent instance of Upper Dominating Set whose
pathwidth is bounded by n+ O(1). Thus, any algorithm for the latter problem
running faster than O∗((6 − ε)pw) would give a O∗((6 − ε)n) algorithm for the
former problem, contradicting SETH.

Before we proceed further in the description of our reduction, let us give
the basic ideas, which look like other SETH-based lower bounds from the liter-
ature [17, 20–22, 24]. The constructed graph consists of a main part of n paths
of length 4m, each divided into m sections. The idea is that an optimal solution
will verify, for each path, a specific pattern in the whole graph. For four con-
secutive vertices, there are six ways for taking exactly two vertices among the
four and dominating the two others. These six ways for each path will represent
all possible assignments for all variables. Then, we will add some verification
gadgets for each constraint and attach it to the corresponding section, in order
to check that the selected assignment satisfies the constraint or not.

A first difficulty of this reduction is to prove that an optimal solution of the
Upper Dominating Set instance has the desired form, and more precisely that
the pattern selected for a variable is constant throughout the graph. To answer
this difficulty, and by using a technique introduced in [24], we make a polynomial
number of copies of this construction and we connect them together, enabling

8 L. Dublois, M. Lampis, V. Th. Paschos

us to have a sufficiently large copy where the patterns are kept constant in this
copy.

Moreover, we need to be careful in our verification gadgets in order to have the
following conditions: the vertices of the paths taken in the solution must not have
any private neighbor in the corresponding verification gadget, because otherwise
it would be impossible to keep the patterns constant in a sufficiently large copy
of the graph ; and the vertices of the paths not taken in the solution must not
be dominated by the corresponding verification gadget, because otherwise there
can be some vertices of the paths taken in the solution that have no private
neighbor.

Construction Let us now present our reduction. We are given a q-CSP-6 in-
stance ϕ with n variables x1, . . . , xn taking values over the set {0, 1, 2, 3, 4, 5},
and m constraints c0, . . . , cm−1, each containing exactly q variables and Cj pos-
sible assignments over these q variables, for each j ∈ {0, . . . ,m − 1}. We define
the following numbers: A = 4q+ 2 and F = (2n+ 1)(4n+ 1). We set our budget
to be k = Fm(2n+A) + 2n.

We construct our instance of Upper Dominating Set as follows:

1. For i ∈ {1, . . . , n}, we construct a path Pi of 4Fm+ 6 vertices: the vertices
are labeled ui,j for j ∈ {−3, . . . , 4Fm+ 2} ; and for each i, j the vertex ui,j
is connected to ui,j+1. We call these paths the main part of our graph.

2. For each section j ∈ {0, . . . , Fm − 1}, let j′ = j mod m. We construct a
verification gadget Hj as follows:
(a) A clique Kj of size ACj′ such that the ACj′ vertices are partitioned into

Cj′ cliques K1
j , . . . ,K

Cj′

j , each corresponding to a satisfying assignment
σl in the list of cj′ , for l ∈ {1, . . . , Cj′}, and each containing exactly A
vertices.

(b) A clique Lj of size ACj′ such that the ACj′ vertices are partitioned in

Cj′ cliques L1
j , . . . , L

Cj′

j , each containing exactly A vertices.
(c) For each i ∈ {1, . . . , n} such that xi is involved in cj′ , and for each

satisfying assignment σl in the list of cj′ : if σl sets xi value 0, connect
the two vertices ui,4j+2 and ui,4j+3 to the A vertices of the clique Kl

j ;
if σl sets xi value 1, connect the two vertices ui,4j+3 and ui,4j to the A
vertices of the clique Kl

j ; if σl sets xi value 2, connect the two vertices

ui,4j and ui,4j+1 to the A vertices of the clique Kl
j ; if σl sets xi value

3, connect the two vertices ui,4j+1 and ui,4j+2 to the A vertices of the
clique Kl

j ; if σl sets xi value 4, connect the two vertices ui,4j+1 and

ui,4j+3 to the A vertices of the clique Kl
j ; if σl sets xi value 5, connect

the two vertices ui,4j and ui,4j+2 to the A vertices of the clique Kl
j .

(d) For each satisfying assignment σl in the list of cj′ , do the following: add
a matching between the vertices of Kl

j and the vertices of Llj ; for any

l′ ∈ {1, . . . , Cj′} with l′ 6= l, add all the edges between the vertices of Kl
j

and the vertices of Ll
′

j .
(e) Add a vertex w connected to all the vertices of the clique Lj .

Upper Dominating Set: Tight Algorithms 9

Now that we have presented our reduction, we argue that it is correct and
that the obtained graph G has the desired pathwidth. Recall that the target size
of an optimal solution in G is k as defined above.

Lemma 7. If ϕ is satisfiable, then there exists an upper dominating set in G of
size at least k.

Proof. Assume ϕ admits some satisfying assignment ρ : {x1, . . . , xn} → {0, 1, 2,
3, 4, 5}. We construct a solution S of the instance G of Upper Dominating
Set as follows:

1. For each i ∈ {1, . . . , n}, let α and β be the following numbers: if ρ(xi) = 0,
let α = 2 and β = 3 ; if ρ(xi) = 1, let α = 3 and β = 0 ; if ρ(xi) = 2,
let α = 0 and β = 1 ; if ρ(xi) = 3, let α = 1 and β = 2 ; if ρ(xi) = 4,
let α = 1 and β = 3 ; if ρ(xi) = 5, let α = 0 and β = 2. Let U =⋃Fm−1
j=0 {ui,4j+α, ui,4j+β}. We add to the solution all vertices of (V (Pi) \
{ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1, ui,4Fm+2}) \ U .

2. For each j ∈ {0, . . . , Fm − 1}, let j′ = j mod m. Consider the unique
possible assignment σl∗ in the list of cj′ satisfied by ρ (such a unique possible
assignment must exist since ρ satisfies ϕ), and take the A vertices of the
clique Ll

∗

j .
3. For each i ∈ {1, . . . , n}, do the following: if ρ(xi) = 0, then add ui,−3, ui,4Fm

and ui,4Fm+1 to S ; if ρ(xi) = 1, then add ui,−2 and ui,4Fm+1 to S ; if
ρ(xi) = 2, then add ui,−2, ui,−1 and ui,4Fm+2 to S ; if ρ(xi) = 3, then add
ui,−3 and ui,4Fm+2 to S ; if ρ(xi) = 4, then add ui,−3 and ui,4Fm+1 to S ; if
ρ(xi) = 5, then add ui,−2 and ui,4Fm+2 to S.

Let us now argue why this solution has size at least k. In the first step, we have
selected 2Fmn vertices. To see this, let Qi,j be the sub-path of Pi corresponding
to the section j (j ∈ {0, . . . , Fm−1}), i.e. Qi,j = {ui,4j , ui,4j+1, ui,4j+2, ui,4j+3}.
Observe that we have put exactly two vertices of Qi,j in U , which leaves two
vertices in the solution, for all i and all j. Consider now any j ∈ {0, . . . , Fm−1}
and the corresponding verification gadget Hj . In this gadget, we have selected
all the vertices of the clique Ll

∗

j , corresponding to the satisfied assignment σl∗ .
So we have selected AFm vertices for all the verification gadgets. Finally, at
least 2n vertices have been added to the solution at step 3. So the total size is
at least 2Fmn+AFm+ 2n = k.

Let us now argue why the solution is a valid upper dominating set.
Consider any j ∈ {0, . . . , Fm− 1} and let j′ = j mod m. We have selected

the A vertices of the clique Ll
∗

j corresponding to the unique possible assignment
σl∗ in the list of cj′ satisfied by ρ (such a unique possible assignment must exist
since ρ satisfies ϕ). Since Lj is a clique, since the vertices of Ll

∗

j are connected to

all vertices of Kl′

j , for any l′ ∈ {1, . . . , Cj′} with l′ 6= l∗, since there is a matching

between the vertices of Ll
∗

j and the vertices of Kl∗

j , and since the vertex w is
connected to all vertices of Lj , we have that all the vertices of Hj are dominated
by S.

10 L. Dublois, M. Lampis, V. Th. Paschos

Now, observe that, since σl∗ is satisfied by ρ, it means that the values given
by ρ to the variables appearing in the constraint cj′ satisfy σl∗ , so by the con-
struction it follows that the neighbors of the vertices of Kl∗

j in the paths all
belongs to U . Indeed, consider any variable xi appearing in cj′ : if σl∗ sets value
0 to xi, then ρ(xi) = 0, and then, for α = 2 and β = 3, we have that ui,4j+α and
ui,4j+β are in U and are the only vertices of Qi,j neighbors of the vertices of Kl∗

j

; it remains true whether σl∗ sets value 1, 2, 3, 4 or 5 to xi with the convenient
α and β. So all the neighbors of Kl∗

j in the main part of the graph are not in S.

Moreover, no vertex of Kj is taken in the solution, and no vertex of Lj \ Ll
∗

j is

taken in the solution. By these facts, and since the only edges between Ll
∗

j and

Kl∗

j is a perfect matching between the vertices of these two sets, it follows that

each vertex of Ll
∗

j has a private neighbor, namely its unique neighbor in Kl∗

j .
Consider now any i ∈ {1, . . . , n}. The set U never takes three consecutive ver-

tices in the path Pi, so (V (Pi)\{ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1, ui,4Fm+2})\
U is a dominating set in the path (V (Pi) \ {ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1,
ui,4Fm+2}). Observe now that, for any j ∈ {0, . . . , Fm − 1}, the vertices of the
clique Kj in the gadget Hj are never taken by the solution, so the vertices of
the path Pi are only dominated by the vertices of Pi, whether the variable xi
appears in cj′ or not (for j′ = j mod m). Moreover, by the same argument, the
neighbors in the verification gadgets of the vertices of the path Pi taken in the
solution are never taken in the solution.

If ρ(xi) ∈ {0, 1, 2, 3}, then U takes two consecutive vertices, leaves two con-
secutive vertices in S, takes again two consecutive vertices, and so on. In these
cases, the two vertices of S each have a private neighbor, namely their other
neighbor in the path. If ρ(xi) ∈ {4, 5}, then U takes a vertex, leaves a vertex
in S, takes a vertex, and so on. In these cases, the vertices of S are their own
private vertex. So all the vertices of the path either have a private neighbor, or
are their own private vertices.

Nonetheless, we have to be more careful for the first and last sections (for
j = 0 and j = Fm − 1). By the step 3 of our construction of the solution S,
and by some simple observations, we have that all vertices of the main part are
dominated, and that the vertices of the main part which belong to the solution
either have a private neighbor in the corresponding path, or are their own private
vertices. ut

Let us now prove the other direction of our reduction. The idea of this proof
is the following: by partitioning the graph into different parts and upper bound
the cost of these parts, we prove that if an upper dominating set in G has not
the same form as in Lemma 7 in a sufficiently large copy, then it has size strictly
less than k, enabling us to produce a satisfiable assignment for ϕ using the copy
where the upper dominating set has the desired form.

Lemma 8. [?] If there exists an upper dominating set of size at least k in G,
then ϕ is satisfiable.

We can now show that the pathwidth of G is bounded by n+O(1).

Upper Dominating Set: Tight Algorithms 11

Lemma 9. [?] The pathwidth of G is at most n+O(1).

We are now ready to present the main result of this section:

Theorem 4. [?] Under SETH, for all ε > 0, no algorithm solves Upper Dom-
inating Set in time O∗((6− ε)pw), where pw is the input graph’s pathwidth.

5 Sub-Exponential Approximation

5.1 Sub-Exponential Approximation Algorithm

In this section, we present a sub-exponential approximation algorithm for the
Upper Dominating Set problem. We prove the following: for any r < n, there
exists an r-approximation algorithm for the Upper Dominating Set problem
running in time nO(n/r).

To show this result, we use a common tool to design sub-exponential algo-
rithms: partitioning the set of vertices V (G) of the input graph into a convenient
number of subsets of the same size. On each subset, we create a number of solu-
tions: all maximal independent sets I in the subgraph induced by the considered
set of vertices ; and all subsets S of the considered subset. For each maximal
independent set I, we extend it to the whole graph. For each subset S, we first
go through all subsets of neighbors of vertices of S in order to find the correct
set of private neighbors, and then we extend the solution to the whole graph.
At the end, we output the best solution encountered. By computing all maximal
independent sets I and by going through all subsets S, we prove that there exists
at least one valid upper dominating set which has the desired size. Note that,
given a subset of an upper dominating set whose vertices have private neigh-
bors, it may be impossible to extend the partial solution if we do not know their
private vertices. This is why we need to find the private vertices of the subset S
we consider, since in our proof the solution which has the desired size may come
from such a subset S. We prove the following:

Theorem 5. [?] For any r < n, Upper Dominating Set is r-approximable
in time nO(n/r).

5.2 Sub-Exponential Inapproximability

In this section, we give a lower bound on the complexity of any r-approximation
algorithm, matching our algorithm of the previous section. We get the following
result: for any r < n and any ε > 0, there is no algorithm that outputs an
r-approximation for the Upper Dominating Set problem running in time
n(n/r)

1−ε

.
To obtain this result, we will first prove the desired lower bound for the

Maximum Minimal Hitting Set problem. In this problem, we are given an
hypergraph and we want to find a set of vertices which cover all hyper-edges.
Moreover, we need that this set is minimal, i.e. every vertex in the solution cover
a private hyper-edge, and we want the solution to be of maximum size.

12 L. Dublois, M. Lampis, V. Th. Paschos

To obtain this lower bound for the Maximum Minimal Hitting Set prob-
lem, we will do a reduction from the Maximum Independent Set problem.
Then, we will make a reduction from the Maximum Minimal Hitting Set
problem to the Upper Dominating Set problem to transfer this lower bound
to our problem.

Recall that we have the following lower bound by Chalermsook et al. [7] for
the Maximum Independent Set problem:

Theorem 6 (Theorem 1.2 from [7]). For any ε > 0 and any sufficiently
large r > 1, if there exists an r-approximation algorithm for Maximum Inde-
pendent Set running in time 2(n/r)

1−ε

, then the randomized ETH is false.

We note that making a reduction from the Maximum Minimal Hitting
Set problem to derive hardness result for the Upper Dominating Set problem
has already be done by Bazgan et al. [3]. Indeed, to get the n1−ε-inapproximability
result for the Upper Dominating Set problem, they first derive this bound
of the Maximum Minimal Hitting Set problem and then they designed an
approximation-preserving reduction between these two problems, enabling them
to transfer this hardness result to the Upper Dominating Set problem.

In fact, to obtain the hardness result for the Maximum Minimal Hitting
Set problem, they made a reduction from the Maximum Independent Set
problem. Our first reduction is similar to this reduction and will allows us to get
the desired hardness result for the Maximum Minimal Hitting Set problem.
Our second reduction, from Maximum Minimal Hitting Set to Upper Dom-
inating Set is the approximation-preserving reduction designed by Bazgan et
al. [3].

Note that our reduction from Maximum Independent Set to Maximum
Minimal Hitting Set create a quadratic (in n) blow-up of the size of the
instance of the latter problem. Such a blow-up does not allow us to derive the
desired running-time. To answer this difficulty, we make another step in the
reduction where we ”sparsify” the instance of Maximum Minimal Hitting Set
in order to keep the blow-up under control. To prove that the inapproximability
gap stays the same, we use a probabilistic analysis with Chernoff bounds.

We will first prove the following hardness result:

Theorem 7. [?] For any ε > 0 and any sufficiently large r > 1, if there exists
an r-approximation algorithm for Maximum Minimal Hitting Set running
in time n(n/r)

1−ε

, then the randomized ETH is false.

With this hardness result for Maximum Minimal Hitting Set, and by
using the reduction of Bazgan et al. [3], we get the following hardness result for
Upper Dominating Set:

Theorem 8. [?] For any ε > 0 and any sufficiently large r > 1, if there exists

an r-approximation for Upper Dominating Set running in time n(n/r)
1−ε

,
then the randomized ETH is false.

Upper Dominating Set: Tight Algorithms 13

References

1. Arkin, E.M., Bender, M.A., Mitchell, J.S.B., Skiena, S.: The lazy bu-
reaucrat scheduling problem. Inf. Comput. 184(1), 129–146 (2003).
https://doi.org/10.1016/S0890-5401(03)00060-9, https://doi.org/10.1016/

S0890-5401(03)00060-9
2. Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: Domination chain: Characterisa-

tion, classical complexity, parameterised complexity and approximability. Discrete
Applied Mathematics (2019)

3. Bazgan, C., Brankovic, L., Casel, K., Fernau, H., Jansen, K., Klein, K., Lampis,
M., Liedloff, M., Monnot, J., Paschos, V.T.: The many facets of upper domination.
Theor. Comput. Sci. 717, 2–25 (2018). https://doi.org/10.1016/j.tcs.2017.05.042,
https://doi.org/10.1016/j.tcs.2017.05.042

4. Bonnet, E., Escoffier, B., Kim, E.J., Paschos, V.T.: On subexponential and fpt-time
inapproximability. In: Parameterized and Exact Computation - 8th International
Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised
Selected Papers. pp. 54–65 (2013). https://doi.org/10.1007/978-3-319-03898-8 6,
https://doi.org/10.1007/978-3-319-03898-8_6

5. Boria, N., Croce, F.D., Paschos, V.T.: On the max min vertex cover prob-
lem. In: Approximation and Online Algorithms - 11th International Workshop,
WAOA 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected
Papers. pp. 37–48 (2013). https://doi.org/10.1007/978-3-319-08001-7 4, https:

//doi.org/10.1007/978-3-319-08001-7_4
6. Bourgeois, N., Croce, F.D., Escoffier, B., Paschos, V.T.: Fast algorithms for

min independent dominating set. Discret. Appl. Math. 161(4-5), 558–572
(2013). https://doi.org/10.1016/j.dam.2012.01.003, https://doi.org/10.1016/j.
dam.2012.01.003

7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced match-
ing, and pricing: Connections and tight (subexponential time) approximation
hardnesses. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. pp. 370–379
(2013). https://doi.org/10.1109/FOCS.2013.47, https://doi.org/10.1109/FOCS.
2013.47

8. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367
(2006). https://doi.org/10.1016/j.jcss.2006.04.007, https://doi.org/10.1016/j.
jcss.2006.04.007

9. Cheston, G.A., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: On the computational
complexity of upper fractional domination. Discret. Appl. Math. 27(3), 195–
207 (1990). https://doi.org/10.1016/0166-218X(90)90065-K, https://doi.org/

10.1016/0166-218X(90)90065-K
10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk,

M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015).
https://doi.org/10.1007/978-3-319-21275-3, https://doi.org/10.1007/

978-3-319-21275-3
11. Dublois, L., Hanaka, T., Ghadikolaei, M.K., Lampis, M., Melissinos, N.:

(in)approximability of maximum minimal FVS. CoRR abs/2009.09971 (2020),
https://arxiv.org/abs/2009.09971

12. Eto, H., Hanaka, T., Kobayashi, Y., Kobayashi, Y.: Parameterized algo-
rithms for maximum cut with connectivity constraints. In: 14th Inter-
national Symposium on Parameterized and Exact Computation, IPEC

https://doi.org/10.1016/S0890-5401(03)00060-9
https://doi.org/10.1016/S0890-5401(03)00060-9
https://doi.org/10.1016/S0890-5401(03)00060-9
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1007/978-3-319-03898-8_6
https://doi.org/10.1007/978-3-319-03898-8_6
https://doi.org/10.1007/978-3-319-08001-7_4
https://doi.org/10.1007/978-3-319-08001-7_4
https://doi.org/10.1007/978-3-319-08001-7_4
https://doi.org/10.1016/j.dam.2012.01.003
https://doi.org/10.1016/j.dam.2012.01.003
https://doi.org/10.1016/j.dam.2012.01.003
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/0166-218X(90)90065-K
https://doi.org/10.1016/0166-218X(90)90065-K
https://doi.org/10.1016/0166-218X(90)90065-K
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://arxiv.org/abs/2009.09971

14 L. Dublois, M. Lampis, V. Th. Paschos

2019, September 11-13, 2019, Munich, Germany. pp. 13:1–13:15 (2019).
https://doi.org/10.4230/LIPIcs.IPEC.2019.13, https://doi.org/10.4230/

LIPIcs.IPEC.2019.13

13. Furini, F., Ljubic, I., Sinnl, M.: An effective dynamic programming algorithm for
the minimum-cost maximal knapsack packing problem. Eur. J. Oper. Res. 262(2),
438–448 (2017). https://doi.org/10.1016/j.ejor.2017.03.061, https://doi.org/10.
1016/j.ejor.2017.03.061

14. Gourvès, L., Monnot, J., Pagourtzis, A.: The lazy bureaucrat problem
with common arrivals and deadlines: Approximation and mechanism de-
sign. In: Fundamentals of Computation Theory - 19th International Sympo-
sium, FCT 2013, Liverpool, UK, August 19-21, 2013. Proceedings. pp. 171–
182 (2013). https://doi.org/10.1007/978-3-642-40164-0 18, https://doi.org/10.
1007/978-3-642-40164-0_18

15. Halldórsson, M.M.: Approximating the minimum maximal independence num-
ber. Inf. Process. Lett. 46(4), 169–172 (1993). https://doi.org/10.1016/0020-
0190(93)90022-2, https://doi.org/10.1016/0020-0190(93)90022-2

16. Hanaka, T., Bodlaender, H.L., van der Zanden, T.C., Ono, H.: On the
maximum weight minimal separator. Theor. Comput. Sci. 796, 294–308
(2019). https://doi.org/10.1016/j.tcs.2019.09.025, https://doi.org/10.1016/j.

tcs.2019.09.025

17. Hanaka, T., Katsikarelis, I., Lampis, M., Otachi, Y., Sikora, F.: Parameterized
orientable deletion. In: Eppstein, D. (ed.) 16th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Sweden.
LIPIcs, vol. 101, pp. 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2018). https://doi.org/10.4230/LIPIcs.SWAT.2018.24, https://doi.org/

10.4230/LIPIcs.SWAT.2018.24

18. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in
graphs, Pure and applied mathematics, vol. 208. Dekker (1998)

19. Hurink, J.L., Nieberg, T.: Approximating minimum independent domi-
nating sets in wireless networks. Inf. Process. Lett. 109(2), 155–160
(2008). https://doi.org/10.1016/j.ipl.2008.09.021, https://doi.org/10.1016/j.

ipl.2008.09.021

20. Jaffke, L., Jansen, B.M.P.: Fine-grained parameterized complexity analysis of
graph coloring problems. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) Al-
gorithms and Complexity - 10th International Conference, CIAC 2017, Athens,
Greece, May 24-26, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10236, pp. 345–356 (2017). https://doi.org/10.1007/978-3-319-57586-5 29, https:
//doi.org/10.1007/978-3-319-57586-5_29

21. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters,
tight bounds, and approximation for (k, r)-center. In: Okamoto, Y.,
Tokuyama, T. (eds.) 28th International Symposium on Algorithms and
Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand.
LIPIcs, vol. 92, pp. 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.50,
https://doi.org/10.4230/LIPIcs.ISAAC.2017.50

22. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structurally parameterized d-scattered
set. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) Graph-Theoretic Concepts in
Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany,
June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11159, pp.

https://doi.org/10.4230/LIPIcs.IPEC.2019.13
https://doi.org/10.4230/LIPIcs.IPEC.2019.13
https://doi.org/10.4230/LIPIcs.IPEC.2019.13
https://doi.org/10.1016/j.ejor.2017.03.061
https://doi.org/10.1016/j.ejor.2017.03.061
https://doi.org/10.1016/j.ejor.2017.03.061
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/j.tcs.2019.09.025
https://doi.org/10.1016/j.tcs.2019.09.025
https://doi.org/10.1016/j.tcs.2019.09.025
https://doi.org/10.4230/LIPIcs.SWAT.2018.24
https://doi.org/10.4230/LIPIcs.SWAT.2018.24
https://doi.org/10.4230/LIPIcs.SWAT.2018.24
https://doi.org/10.1016/j.ipl.2008.09.021
https://doi.org/10.1016/j.ipl.2008.09.021
https://doi.org/10.1016/j.ipl.2008.09.021
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.4230/LIPIcs.ISAAC.2017.50
https://doi.org/10.4230/LIPIcs.ISAAC.2017.50

Upper Dominating Set: Tight Algorithms 15

292–305. Springer (2018). https://doi.org/10.1007/978-3-030-00256-5 24, https:

//doi.org/10.1007/978-3-030-00256-5_24

23. Lampis, M.: Finer tight bounds for coloring on clique-width. In: Chatzigiannakis,
I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. LIPIcs, vol. 107, pp. 86:1–86:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.86,
https://doi.org/10.4230/LIPIcs.ICALP.2018.86

24. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Trans. Algorithms 14(2), 13:1–13:30 (2018).
https://doi.org/10.1145/3170442, https://doi.org/10.1145/3170442

25. Moon, J.W., Moser, L.: On cliques in graphs. Israel journal of Mathematics 3(1),
23–28 (1965)

26. Zehavi, M.: Maximum minimal vertex cover parameterized by vertex cover. In:
Mathematical Foundations of Computer Science 2015 - 40th International Sym-
posium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II. pp.
589–600 (2015). https://doi.org/10.1007/978-3-662-48054-0 49, https://doi.org/
10.1007/978-3-662-48054-0_49

https://doi.org/10.1007/978-3-030-00256-5_24
https://doi.org/10.1007/978-3-030-00256-5_24
https://doi.org/10.1007/978-3-030-00256-5_24
https://doi.org/10.4230/LIPIcs.ICALP.2018.86
https://doi.org/10.4230/LIPIcs.ICALP.2018.86
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1007/978-3-662-48054-0_49
https://doi.org/10.1007/978-3-662-48054-0_49
https://doi.org/10.1007/978-3-662-48054-0_49

16 L. Dublois, M. Lampis, V. Th. Paschos

A Appendix

A.1 Proof of Lemma 3

Assume G admits an independent set I of size at least k. We construct an upper
dominating set D of size at least k′ in G′ as follows: for any vertex u ∈ V (G)∩I,
put the A vertices of the corresponding independent set Zu in D.

Clearly, the size of D is at least k′ = Ak since I is of size at least k and every
independent set Zu is of size A.

Consider any i ∈ {1, . . . , k}, and observe that I ∩ Vi ≤ 1 since Vi is a clique.
But there is k such cliques Vi and |I| ≥ k, so necessarily |I| = k and |I ∩ Vi| = 1
for all i ∈ {1, . . . , k}.

Consider again any i ∈ {1, . . . , k} and the corresponding vertex u which
belongs to I ∩ Vi. The vertices of the independent set Zu have been put in D.
By the construction, the vertices of Zu are connected to all remaining vertices
of Wi and to the vertex zi. So the vertices of Wi ∪ {zi} are dominated. This is
true for all i ∈ {1, . . . , k}, so the graph G′ is dominated by D.

Moreover, since I is an independent set, and by the construction, it follows
that, for any two vertices u, u′ ∈ I, there is no edge between the vertices of Zu
and the vertices of Zu′ . And since the sets Zu are independent sets, it follows
that D is an independent set of G′, which means that all vertices of D are their
own private vertices. ut

A.2 Proof of Lemma 4

Assume G′ admits an upper dominating set D of size at least k′. For any i ∈
{1, . . . , k}, we give the following notations:

– If there exists at least three vertices u1, u2, u3 in Vi such that Zuj ∩D 6= ∅
for all j ∈ {1, 2, 3}, then we call the group Wi very bad.

– If there exists exactly two vertices u and u′ in Vi such that Zu ∩D 6= ∅ and
Zu′ ∩D 6= ∅, then we call the group Wi bad.

– Otherwise, that is if there exists at most one vertex u ∈ Vi such that Zu∩D 6=
∅, then Wi is called good.

Our proof will therefore be to consider that there is some bad and very bad
groups in G′ and we will arrive at a contradiction on the size of D, which will
prove that the solution D as the form described in Lemma 3.

So suppose there exists a bad or very bad group Wi. Suppose first that
there exists u ∈ Vi such that |Zu∩D| ≥ 2. Observe that the vertices of Zu which
belong to D have the same neighborhood (since they are in the same independent
set Zu), and observe that there exists at least one vertex u′ ∈ Vi \ {u} with
Zu′ ∩D 6= ∅ (since Wi is bad or very bad). So the vertices of Zu which belong to
D are dominated and share the same neighborhood, which contradicts the fact
that D is an upper dominating set. So, for a bad or very bad group Wi and any
u ∈ Vi such that Zu ∩D 6= ∅, we have |Zu ∩D| = 1.

Upper Dominating Set: Tight Algorithms 17

Consider now a bad group Wi and the two vertices u, u′ ∈ Vi such that
Zu∩D 6= ∅ and Zu′ ∩D 6= ∅. Let v = Zu∩D and v′ = Zu′ ∩D. The two vertices
v and v’ dominate each other since they belong to two distinct independent
set Zu and Zu′ in the group Wi. Observe now that zi cannot be in D because
otherwise it is dominated and have no private neighbor (since all vertices of Wi

are dominated by v or v′). Moreover, since Wi is a bad group and |Zu ∩D| = 1
and |Zu′ ∩D| = 1, we have |(Wi ∪ {zi}) ∩D| = 2.

Consider now a very bad group Wi and three vertices u1, u2, u3 in Vi such
that Zuj ∩D 6= ∅ for all j ∈ {1, 2, 3}. Let vj = Zuj ∩D (since |Zuj ∩D| = 1).
Consider now any j ∈ {1, 2, 3}. Observe that Wi ∪ {zi} is dominated by the two
vertices vj′ and vj′′ , for j′, j′′ ∈ {1, 2, 3} and j′, j′′ 6= j. Indeed, (Wi∪{zi})\Zuj′

is dominated by vj′ and Zuj′ is dominated by vj′′ . Since vj is dominated by
both vj′ and vj′′ , it follows that vj necessarily have a private neighbor outside
Wi ∪ {zi}. It is true for any vertex u ∈ Vi such that |Zu ∩D| 6= ∅.

Now consider such a vertex v ∈ {v1, v2, v3} and his private neighbor w, which
let say is in Wi′ , for i′ ∈ {1, . . . , k} \ {i}, and in Zuw

, for uw ∈ Vi′ . Since w is a
private neighbor of v, it follows that, for any u′ ∈ Vi′ \ {uw}, no vertex of Zu′ is
in D, because otherwise w would not be a private neighbor of v. Moreover, the
vertex zi′ cannot be in D by the same argument. So necessarily, the group Wi′

is a good group.

Now suppose that there exists at least two vertices w1, w2 ∈ (Zuw
\{w})∩D.

Observe that both w1 and w2 are dominated by v, since there is all edges between
the vertices of Zu (where v belongs) and the vertices of Zuw

. But w1 and w2

have the same neighborhood, which contradicts the fact that D is an upper
dominating set. So |Zuw

∩D| ≤ 1.

Consider any i ∈ {1, . . . , k} and observe that the vertex zi has to be domi-
nated, and its neighborhood is the group Wi, so |(Wi ∪ {zi}) ∩D| ≥ 1.

Now reconsider the vertex v. Since Wi′ is a good group, since zi does not
belong to D, and since |Zuw ∩D| ≤ 1, we obtain |Zuw ∩D| = 1.

Now consider two vertices v and v′ belonging to D and which are in the
same very bad group or in two distinct very bad groups. And consider their
corresponding private neighbors w and w′. Clearly, w and w′ do not belong to
the same independent set Zuw , since v dominates all vertices of this independent
set. Moreover, since |Zuw ∩D| = 1 for the independent set Zuw which contains
the vertex w, the two vertices w and w′ cannot belong to the same good group
since the vertex in Zuw

∩D dominates all remaining vertices of Wi′ ∪ {zi′}. So,
for any two such vertices v and v′ belonging to D (whether they are in the same
very bad group or not), their corresponding private neighbors are in distinct
good groups.

But, since in these good groups (which contain a private neighbor w) we have
|Wi′ ∩D| = 1, we have the following: for any vertex v ∈ D which belongs to a
very bad group, there exists at least one distinct good group Wi′ where a single
vertex is in D.

Now, let b be the number of bad groups and B be the number of vertices in
the very bad groups.

18 L. Dublois, M. Lampis, V. Th. Paschos

Observe now that, in a good group Wi which does not contain a private
neighbor w of a vertex v belonging to a very bad group, we have that at most
A vertices of Wi ∪ {zi} are in D: since Wi is a good group, there exists at most
one vertex u ∈ Vi such that Zu ∩D 6= ∅, and if the A vertices of Zu are in D,
then the vertex zi cannot be in D since it is dominated and all its neighbors are
either in D or are dominated.

So the total number of vertices in D is upper-bounded by 2b + 2B + A(k −
b − B) = Ak + b(2 − A) + B(2 − A). Indeed, we have the following: in a bad
group, exactly two vertices are in D and they can have their private neighbors
in the group ; for every vertex in D in a very bad group, it has one private
neighbor outside the group in a good group and a single vertex is taken in D
in the corresponding good group ; it remains k − b − B good groups in which
at most A vertices are in D, since there is b bad groups, and since the private
neighbor of each vertex in a very bad group is in a distinct good group where
exactly one vertex is in D.

But, since A = 5 > 2, the set D has at least k′ = Ak vertices if and only if
b = B = 0. So there exists no bad or very bad group in G′ associated to D.

Since there is at most A vertices in D for a single good group, since there
is k such groups, and since |D| ≥ Ak, it follows that |Wi ∩ D| = A for all
i ∈ {1, . . . , k}.

We now construct a solution I of the instance G in a natural way: for any
i ∈ {1, . . . , k}, there exists a unique u ∈ Vi such that Wi ∩D = Zu, so take u in
the solution I.

For any u ∈ I, since Zu ⊆ D and since all vertices of Zu have the same
neighborhood, it follows that the vertices of Zu are their own private vertices.
So, for any two u, u′ ∈ I, there is no edges between the two independent sets Zu
and Zu′ . So, by the construction, the set I is an independent set in G, of size at
least k. ut

A.3 Proof of Theorem 1

Consider an instance (G, k) of k-Independent Set. Apply our reduction to
obtain an instance (G′, k′) of k′-Upper Dominating Set. Thanks to Lemmas
3 and 4, we know that G has an independent set of size at least k if and only if
G′ has an upper dominating set of size at least k′ = Ak.

Now suppose that there exists an algorithm that solves k′-Upper Domi-
nating Set in time O(no(k

′)). With this algorithm and our reduction, we can
solve k-Independent Set in time O(no(k

′)), where k′ = Ak = O(k), so the
total running time of this procedure is O(no(k)), contradicting Lemma 1 and the
ETH. ut

A.4 Proof of Lemma 5

Assume G′ admits an upper dominating set D of size > rAk. We will use some
properties we have proven in Lemma 4. Recall that, for any i ∈ {1, . . . , k},

Upper Dominating Set: Tight Algorithms 19

we make the difference whether the group Wi is bad, very bad, or good. Now
consider a bad group Wi and recall that |Wi ∩D| = 2 and that there exists two
vertices u, u′ ∈ Vi such that Zu ∩D = {v} and Zu′ ∩D = {v′}. For a bad group,
we will distinguish between three different types of group:

– For any j ∈ {0, 1, 2}, we say that the group Wi is bad of type j if there exists
exactly j vertices between v and v′ which have their private neighbor outside
Wi ∪ {zi}.

Now, given our upper dominating set D, we construct an independent set I
of G as follows:

– For a bad group Wi of type 0, recall that there exists exactly two vertices
u, u′ ∈ Vi such that |Zu ∩ D| = 1 and |Zu′ ∩ D| = 1. Put in the solution
either u or u′.

– For a bad group Wi of type 1, and without loss of generality, let u ∈ Vi such
that v = Zu ∩D is the unique vertex of Wi which have its private neighbor
outside Wi ∪ {zi}. Let w be the private neighbor of v, and let uw be the
vertex of V (G) for which w ∈ Zuw . Put the vertex uw in the solution.

– For a bad group Wi of type 2, let u, u′ ∈ Vi be the two vertices such that
Zu ∩D 6= ∅ and Zu′ ∩D 6= ∅. Let v = Zu ∩D and v′ = Zu′ ∩D, let w and
w′ be the private neighbors of v and v′, respectively, and let uw and uw′ be
the vertices of V (G) for which w ∈ Zuw

and w′ ∈ Zuw′ , respectively. Put the
vertices uw and uw′ in the solution.

– For a very bad group Wi, let v be any vertex in Wi∩D. Let w be the private
neighbor of v and let u be the vertex of V (G) for which w ∈ Zu. Put u in
the solution. Do this for all the vertices v ∈Wi ∩D.

– For a good group Wi, let u ∈ Vi such that Zu ∩D 6= ∅. If |Zu ∩D| ≥ 2, then
put u in the solution.

We will prove first that the solution I we have constructed is an independent
set of V (G).

Consider a bad group Wi of type 0, and let v = Zu ∩D and v′ = Zu′ ∩D.
Since Wi is of type 0, it means that the private neighbor of v is in Zu′ and the
private neighbor of v′ is in Zu, since (Wi ∪ {zi}) \ (Zu ∪ Zu′) are dominated by
both v and v′. It means that the vertices of Zu are only dominated by v′ and
the vertices of Zu′ are only dominated by v. So, since we put either u or u′ in
the solution, the vertex selected in I has no neighbor in I.

Consider now a bad group Wi of type 1. Since w is the private neighbor of
v, it means that the vertices of Zuw

are only dominated by v. So the selected
vertex uw has no neighbor in I.

Consider now a bad group Wi of type 2. By a similar argument as for a bad
group of type 1, the vertices of Zuw are only dominated by v, and the vertices
of Zuw′ are only dominated by v’. So, the two selected vertices uw and uw′ have
no neighbor in I.

Consider now a very bad group Wi. We have proven in Lemma 4 that, for any
vertex v ∈Wi∩D, it has a private neighbor outside Wi∪{zi} in an independent

20 L. Dublois, M. Lampis, V. Th. Paschos

set Zu. So the vertices of Zu are only dominated by the vertex v. So the selected
vertex u has no neighbor in I. This is true for all vertices v ∈Wi ∩D.

Consider now a good group Wi. Since Wi is a good group, there exists at
most one u ∈ Vi such that Zu ∩D 6= ∅. If |Zu ∩D| ≥ 2, then the vertices of Zu
in D are their own private vertices. So the selected vertex u has no neighbor in
I.

So the solution I we have constructed is an independent set in G.
We will now show that |I| > rk.
First, consider a vertex u ∈ Vi such that Wi is bad of type 1 or 2, Zu ∩D =

{v}, and the private neighbor of v is outside Wi ∪ {zi}. By the same arguments
as for the very bad groups in Lemma 4, we have that the private neighbor w of
v is in a good group Wi′ and in a set Zu′ such that |(Wi′ ∪ {zi′}) ∩D| = 1 and
this unique vertex must be in Zu′ .

Now, we give the following notations: let bj be the number of bad groups of
type j, for j ∈ {0, 1, 2} ; let B be the number of vertices in all the very bad
groups ; let B′ be the number of very bad groups ; let F be the number of good
groups which have at least two vertices in D ; and let f be the number of good
groups which have at most one vertex in D and which do not contain private
neighbors of vertices in the bad and very bad groups.

We have |I| ≥ (b0 + b1 + 2b2) + B + F . This is easy to see from how we
constructed I.

Recall that there exists exactly k groups Wi. We have the following: F ≥
k − ((b0 + 2b1 + 3b2) + (B + B′) + f). Indeed, from k groups Wi, we substract
the following: the b0 bad groups of type 0 ; the b1 bad groups of type 1 and the
corresponding good groups (there is one such good group for each bad group of
type 1) ; the b2 bad groups of type 2 and the corresponding good groups (there
is two such good groups for each bad group of type 2) ; the B good groups which
contain the private neighbors of the vertices of the very bad groups ; the B′ very
bad groups ; and the f remaining good groups.

From this two inequalities, we obtain the following: |I| ≥ k − ((b1 + b2) +
B′ + f).

Now, we will upper-bound the size of D to upper-bound B′. Recall that for
a good group counted in F , there is at most A vertices which can be in D. We
have: |D| ≤ (2b0 + 3b1 + 4b2) + 2B + f +AF

To see this, make the following observations: two vertices are taken for each
bad group of type 0 ; two vertices and a single vertex from a good group are
taken for each bad group of type 1 ; two vertices and a single vertex from two
good groups are taken for each bag group of type 2 ; B vertices and a single
vertex from B good groups are taken for the very bad groups ; at most A vertices
are taken for the good groups with |Wi ∩ D| ≥ 2 ; and at most one vertex is
taken for each remaining good group.

But D is of size > rAk, so we obtain:

Ak + b0(2−A) + b1(3− 2A) + b2(4− 3A) +B(2−A)−AB′ + f(1−A) > rAk

⇐⇒ B′ < b0(2/A−1)+b1(3/A−2)+b2(4/A−3)+B(2/A−1)+f(1/A−1)−(r−1)k

Upper Dominating Set: Tight Algorithms 21

For A sufficiently large, we obtain: B′ < −b1 − b2 − f − (r − 1)k
With this inequality and the one on the size of I, we obtain:

|I| > k − ((b1 + b2) + f) + (b1 + b2 + f + (r − 1)k) = k + (r − 1)k = rk

So we have construct an independent set I of G of size > rk. ut

A.5 Proof of Theorem 2

Fix 0 < r < 1 and ε > 0. Consider an instance φ of 3-SAT. Apply the reduction
of Bonnet et al. [4] to obtain an instance (G, k) of k-Independent Set, and then
apply our reduction to obtain an instance (G′, k′) of k′-Upper Dominating
Set. Thanks to Lemmas 3 and 5, and to the gap-amplification reduction of
Bonnet et al. [4] (see Lemma 2), we know the following:

– YES-instance: If φ is satisfiable, then α(G) = k and then Γ (G′) = Ak.
– NO-instance: If φ is not satisfiable, then α(G) ≤ rk and then Γ (G′) ≤ rAk.

Now suppose that there exists an algorithm that outputs an r-approximation
for k′-Upper Dominating Set in time O(nk

1−ε

). With this algorithm and our
reduction, we can obtain an r-approximation for k-Independent Set and thus
determine if φ is satisfiable or not in time O(nk

1−ε

). But by Lemma 2, this would
contradict ETH. ut

A.6 Proof of Lemma 8

Suppose that we are given an upper dominating set D of maximum size. Before
we proceed any further, let us define, for each S ⊆ V , its cost as cost(S) =
|S ∩ D|. Clearly, cost(V) ≥ k. Also, for two disjoint sets S1 and S2, we have
cost(S1 ∪ S2) = cost(S1) + cost(S2). Our strategy will therefore be to partition
V into different parts and upper bound their cost.

For each j ∈ {0, . . . , Fm − 1}, let Vj = Hj ∪
⋃n
i=1Qi,j , where Qi,j =

{ui,4j , ui,4j+1, ui,4j+2, ui,4j+3}.

Claim. cost(Vj) ≤ 2n+A.

Proof. Consider any j ∈ {0, . . . , Fm− 1}, and let j′ = j mod m. We will prove
that cost(Hj) ≤ A. Note that the vertex w has to be dominated, so either it is
in D, or at least one vertex of Lj is in D.

First, suppose that the vertex w belongs to D. No vertex of Lj can be in
D, because otherwise w has no private neighbor and is the neighbor of another
vertex of D. Moreover, since Lj is dominated, either only one vertex of Kj

belongs to D and all the other vertices of Kj can be its private neighbor, and in
this case, the desired bound is obtained, or more that one vertex of Kj belongs
to D. In this case, since Kj is a clique, and since Lj is dominated, the vertices
in D ∩ Kj must have their private neighbor in the main part of the graph.
Note first that, for any l ∈ {1, . . . , Cj′}, it cannot be the case that two vertices

22 L. Dublois, M. Lampis, V. Th. Paschos

of Kl
j are in D, since they share the same neighborhood. So the vertices of

Kj that belongs to D are in at least two distinct cliques Kl1
j and Kl2

j (for
l1, l2 ∈ {1, . . . , Cj′} and l1 6= l2). Note that, for any i ∈ {1, . . . , n} such that xi is
involved in cj′ , any vertex of Kj is connected to two vertices of Qi,j (for Qi,j =
{ui,4j , ui,4j+1, ui,4j+2, ui,4j+3}). So it cannot be the case that three vertices of
Kj are in D, because it would imply that one of them has to private neighbor.
So if the vertex w is in D, then we have cost(Hj) ≤ 3.

Let us now consider the case where w does not belong to D. Suppose now
that there exists l1, l2 ∈ {1, . . . , Cj′} with l1 6= l2 such that at least two vertices

of Ll1j , let say v1 and v′1, and at least one vertex of Ll2j , let say v2, belong to D.
Note that, since Lj ∪{w} is a clique, the three vertices v1, v′1 and v2 must have,

each of them, a private neighbor in Kj . Now observe that all the vertices of Ll1j
are connected to all vertices of Kj \Kl1

j , so the private neighbors of v1 and v′1
must belong to Kl1

j . But the vertex v2 is connected to all vertices of Kl1
j , since

all vertices of Ll2j are, which implies that v1 and v′1 have no private neighbor. So

it cannot be the case that at least two vertices of Ll1j and at least one vertex of

Ll2j are in D, for any l1, l2.

Suppose now that there exists l1, l2, l3 ∈ {1, . . . , Cj′} with l1 6= l2 6= l3 such

that one vertex of Ll1j , let say v1, one vertex of Ll2j , let say v2, and one vertex

of Ll3j , let say v3, are in D. By a similar argument, we have that the private

neighbor of v1 has to be in Kl1
j : it cannot be in Kl2

j since all vertices of Kl2
j

are connected to v1 and v3 ; it cannot be in Kl3
j since all vertices of Kl3

j are

connected to v1 and v2 ; and it cannot be in any other Kl′

j (for l′ 6= l1, l2, l3)

since the vertices of Kl′

j are connected to v1, v2 and v3. But observe that all the

vertices of Kl1
j are connected to v2 and v3, which implies that v1 has no private

neighbor. So it cannot be the case that one vertex of Ll1j , one vertex of Ll2j and

one vertex of Ll3j , are in D, for any l1, l2, l3.

So, by these arguments, we have that at most A vertices of Lj ∪ {w} belong
to D, i.e. the A vertices of a single clique Llj (for l ∈ {1, . . . , Cj′}). Now, suppose

that there exist l ∈ {1, . . . , Cj′} such that D ∩ Lj = Llj . The private neighbors

of these vertices taken in D must be in Kl
j , which implies that no vertex of Kj

can be in D. It follows that cost(Hj) ≤ A, and this bound is attained if there
exists an l ∈ {1, . . . , Cj′} such that Llj ⊆ D and such that the vertices of Kl

j are

only dominated by the vertices of Llj .

Now, consider any j ∈ {0, . . . , Fm − 1} and any i ∈ {1, . . . , n} such that
variable xi is involved in cj′ , for j′ = j mod m. Suppose that at least three
vertices of Qi,j are in D, where we recall Qi,j = {ui,4j , ui,4j+1, ui,4j+2, ui,4j+3}.
Then all vertices of Kj are dominated, since every vertex of Kj is connected to
two vertices of Qi,j . From this it follows that at most one vertex of Hj is in D,
since Lj ∪ {w} is a clique. Let Wj = Hj ∪

⋃
xiactive

Qi,j . We have cost(Wj) ≤
4q+1. We construct another solution by doing the following: consider a satisfying
assignment σl in the list of cj′ and take all vertices of the clique Llj ; plus take

Upper Dominating Set: Tight Algorithms 23

all the vertices of Qi,j not neighbors of the vertices of Kl
j , for any active variable

xi ; and modify the solution to obtain an upper dominating set. Clearly, it gives
us a valid solution. Moreover, this has increase the total cost. Indeed, we lose
at most 4q + 1 vertices: at most 2 vertices per Qi,j if the original solution had
taken the four vertices ; at most the two vertices ui,4j−1 and ui,4(j+1), for each
xi active, in order to keep the solution valid ; and the vertex of Lj ∪{w}. On the
other side, we have added 4q + 2 vertices: the A = 4q + 2 vertices of Llj . Doing
so should not be possible since D is of maximum size, so for any active variable
xi, at most two vertices of Qi,j belong to D.

Now, consider any j ∈ {0, . . . , Fm − 1} and any i ∈ {1, . . . , n} such that
variable xi is not involved in cj′ , for j′ = j mod m. Observe that, since the
vertices of Qi,j are not connected to any verification gadget, it cannot be the
case that three vertices of Qi,j belong to D, because otherwise at least one
of them would be neighbor of another vertex of D and would have no private
neighbor.

We now have all the lower bounds we need: cost(Hj) ≤ A ; and cost(Qi,j) ≤ 2,
whether xi is active or not. So cost(Vj) ≤ 2n+A. ut

We will say that j is problematic if cost(Vj) < 2n+A.
Now, consider any i ∈ {1, . . . , n} and observe that among the three vertices

ui,−3, ui,−2 and ui,−1, at most two vertices can be in D, because otherwise the
vertex ui,−3 has no private neighbor. The same observation holds for the last
three vertices ui,4Fm, ui,4Fm+1 and ui,4Fm+2.

Let L ⊆ {0, . . . , Fm − 1} be the set of problematic indices. We claim that

|L| ≤ 2n. Indeed, we have cost(V) ≤
∑Fm−1
j=0 cost(Vj)+4n ≤ Fm(2n+A)−|L|+

4n = k + 2n− |L|. But since the total cost is at least k, we have |L| ≤ 2n. Now
consider the longest contiguous interval K ⊆ {0, . . . , Fm−1} such that all j ∈ K
are not problematic. Since F = (2n+ 1)(4n+ 1), we have K ≥ Fm/(|L|+ 1) =
m(4n+ 1).

Before we proceed further, note that if j is not problematic, then we have the
following: cost(Hj) = A, which implies that there exists l ∈ {1, . . . , Cj′} such
that Llj ⊆ D and such that the vertices of Kl

j are only dominated by Llj ; for
any i ∈ {1, . . . , n}, cost(Qi,j) = 2, so exactly two vertices in Qi,j are in D, and
these two vertices are not connected to the vertices of Kl

j (since this set is only

dominated by Llj).
Consider now a non-problematic j ∈ K and i ∈ {1, . . . , n}. Since cost(Qi,j) =

2, we claim that the solution must follow one of the six following configurations
below:

(a) ui,4j , ui,4j+1 ∈ D
(b) ui,4j+1, ui,4j+2 ∈ D
(c) ui,4j+2, ui,4j+3 ∈ D
(d) ui,4j+3, ui,4j ∈ D
(e) ui,4j , ui,4j+2 ∈ D
(f) ui,4j+1, ui,4j+3 ∈ D
Indeed, it is not hard to see that these six configurations cover all the cases

where exactly two vertices of Qi,j are in D (since cost(Qi,j) = 2).

24 L. Dublois, M. Lampis, V. Th. Paschos

Claim. There exists a contiguous interval K∗ ⊆ {0, . . . , Fm− 1} of size at least
m in which all all j ∈ K∗ are not problematic and for all j1, j2 ∈ K∗, Qi,j1 and
Qi,j2 are in the same configuration.

Proof. We make the following observations. For any j ∈ K and any i ∈ {1, . . . , n},
the vertices of Qi,j which are not in D are only dominated by the vertices of the
main part. Firstly, it is obvious if xi is not active in cj′ (for j′ = j mod m) since
in this case the vertices of Qi,j are not connected to any verification gadget. If
xi is active in cj′ , it is also clear when we note that no vertex of Kj is taken in
the solution (since cost(Hj) = A). Moreover, the vertices of Qi,j which are in
D are not neighbors of vertices in D outside the main part. It is again obvious
if xi is not active in cj′ . If xi is active in cj′ , it is also clear since no vertex of
Kj is taken in D. Furthermore, the neighbors in the verification gadgets of the
vertices of Qi,j not in the solution are all dominated by the vertices of Llj . From
these observations, we obtain the following: the vertices of Qi,j which are in D
must have a private neighbor in the path Pi or must be their own private vertex
; and the vertices of Qi,j which are not in D must be dominated by the vertices
in the path Pi.

Now, given these observations, and the six configurations given before, we
make the following statements, where a statement apply for any i ∈ {1, . . . , n}
and j such that j and j + 1 are in K:

– If Qi,j is in configuration (a), then Qi,j+1 is in configuration (a), (d) or (e)
– If Qi,j is in configuration (b), then Qi,j+1 is in configuration (b) or (f)
– If Qi,j is in configuration (c), then Qi,j+1 is in configuration (c)
– If Qi,j is in configuration (d), then Qi,j+1 is in configuration (c), (d) or (f)
– If Qi,j is in configuration (e), then Qi,j+1 is in configuration (b), (d), (e) or

(f)
– If Qi,j is in configuration (f), then Qi,j+1 is in configuration (c) or (f)

For the first statement, we have the following: (b), (c) and (f) cannot follow
(a) since it would left at least one vertex not dominated. For the second state-
ment, we have the following: (a), (d) and (e) cannot follow (b) since at least one
vertex will not have a private neighbor ; (c) cannot follow (b) since it would left
a vertex non dominated. For the third statement, we have the following: (a),
(b), (d), (e) and (f) cannot follow (c) since at least one vertex will not have a
private neighbor. For the fourth statement, we have the following: (a), (b) and
(e) cannot follow (d) since at least one vertex will not have a private neighbor.
For the fifth statement, we have the following: (a) cannot follow (e) since at least
one vertex will not have a private neighbor ; (c) cannot follow (e) since it would
left a vertex non dominated. For the last statement, we have the following: (a),
(b), (d) and (e) cannot follow (f) since at least one vertex will not have a private
neighbor.

For some i ∈ {1, . . . , n} and j ∈ K, we will say that j is shifted for variable i
if j+1 ∈ K but Qi,j and Qi,j are not in the same configuration. We observe that
there cannot exist distinct j1, j2, j3, j4, j5 ∈ K such that they are all shifted for
variable i. Indeed, if we draw a directed graph with a vertex for each configuration

Upper Dominating Set: Tight Algorithms 25

and an arc (u, v) expressing the property that the configuration represented by
v can follow the configuration represented by u, then we observe that the graph
obtained is a DAG of maximum length 4.

Then, by the above, the number of shifted indices j ∈ K is at most 4n.
Hence, the longest contiguous interval without shifted indices has length at least
|K|/(4n+ 1) ≥ m, since |K| ≥ m(4n+ 1). Let K∗ be this interval. ut

We have located an interval K∗ ⊆ {0, . . . , Fm−1} of length at least m where,
for all i ∈ {1, . . . , n} and all j1, j2 ∈ K∗, we have the same configuration in Qi,j1
and Qi,j2 . We now extract a satisfying assignment for ϕ from this in the natural
way. For some j ∈ K∗: if Qi,j is in configuration (a), then we set xi = 0 ; if Qi,j
is in configuration (b), then we set xi = 1 ; if Qi,j is in configuration (c), then
we set xi = 2 ; if Qi,j is in configuration (d), then we set xi = 3 ; if Qi,j is in
configuration (e), then we set xi = 4 ; if Qi,j is in configuration (f), then we
set xi = 5. We claim this satisfies ϕ. Consider a constraint cj′ of ϕ. There must
exist j ∈ K∗ such that j′ = j mod m since |K∗| ≥ m and K∗ is contiguous.
We therefore check the verification gadget Hj , where there exists σl such that
Llj ⊆ D (this is because j is not problematic, that is, Hj attains its maximum

cost). But because the vertices of Kl
j are only dominated by the vertices Llj and

not by the vertices of the main part, it must be the case the the assignment we
extracted agrees with σl, hence cj′ is satisfied. This is true for all constraint cj′

of ϕ. ut

A.7 Proof of Lemma 9

We will show how to build a path decomposition of G. As in Lemma 8, for all
j ∈ {0, . . . , Fm−1}, let Vj = Hj∪

⋃n
i=0Qi,j , where Qi,j = {ui,4j , ui,4j+1, ui,4j+2,

ui,4j+3}. We will show how to obtain a path decomposition of G[Vj] with the
following properties:

– The first bag of the decomposition contains the vertices ui,4j , for all i ∈
{1, . . . , n}

– The last bag of the decomposition contains the vertices ui,4j+3, for all i ∈
{1, . . . , n}

– The width of the decomposition is n+O(q6q)

We now show how to obtain such a decomposition of G[Vj], having partially
fixed the contents of the first and last bag of the decomposition. The verification
gadget Hj contains at most 2(4q + 2)(6q − 1) + 1 vertices (since 6q − 1 is an
upper bound on the number of assignments in the list of the corresponding
constraint), so we place all its vertices in all bags. The remaining graph is a
union of paths of length 4. We therefore have a sequence of O(n) bags, where,
for each i ∈ {1, . . . , n}, we add to the current bag the vertices of Qi,j and then
we add another bag with Qi,j removed except for ui,4j+3.

Now that we have found a path decomposition of G[Vj] with the desired
properties, we present how to obtain a path decomposition of the whole graph.

26 L. Dublois, M. Lampis, V. Th. Paschos

The sets Vj partition all remaining vertices of the graph (except the first three
vertices and the last three vertices of each path Pi), while the only edges not
covered by the above decompositions of G[Vj] are those between the vertices
ui,4j+3 and ui,4(j+1). We therefore place the decompositions ofG[Vj] in order, and
then, between the last bag of the decomposition of G[Vj] and the first bag of the
decomposition of G[Vj+1], we have 2n ”transition” bags, where in each transition
step we add a vertex ui,4(j+1) in the bag, and then remove the corresponding
vertex ui,4j+3.

We have now a path decomposition of the whole graph except the first three
and the last three vertices of each path Pi, for all i ∈ {1, . . . , n}. So, before
the first bag of the decomposition of G[V0], we have a sequence of O(n) bags,
where, for each i ∈ {1, . . . , n}, we add to the current bag the four vertices
ui,−3, ui,−2, ui,−1 and ui,0 and then we add another bag with only the vertex
ui,0. We use the same method for the last three vertices of the paths Pi, after
the decomposition of G[VFm−1].

Thus, we obtain a path decomposition of with n+O(1). ut

A.8 Proof of Theorem 4

Fix ε > 0 and let q be sufficently large so that Lemma 6 is true. Consider an
instance ϕ of q-CSP-6. Apply our reduction to obtain an instance (G, k) of
Upper Domination. Thanks to Lemmas 7 and 8, we know that ϕ is satisfiable
if and only if there exists an upper dominating set of size at least k in G.

Now suppose that there exists an algorithm that solves Upper Domination
in time O∗((6− ε)pw). With this algorithm and our reduction, we can determine
if ϕ is satisfiable in time O∗((6 − ε)pw), where pw = n + O(1) (Lemma 9), so
the total running time of this procedure is at most O∗((6 − ε)n), contradicting
SETH. ut

A.9 Proof of Theorem 5

Let D∗ = S∗ ∪ I∗ be any maximum upper dominating set of G, where S∗ is
the set of vertices of D∗ which have some private neighbors, and I∗ is the set of
vertices of D∗ which forms an independent set.

We begin our algorithm by partitioning the set of vertices V (G) into l subsets
V1, . . . , Vl, where l = b r2c.

Now, for each i ∈ {1, . . . , l}, we do the following:

1. Enumerate all maximal independent sets of G[Vi]. Let Ii be this family of
independent sets.

2. For each maximal independent set I ∈ Ii, do the following:
(a) Extend I greedily to obtain an independent set I ′ of the whole graph G,

in the natural way: while there exists a vertex u ∈ V \ N [I ′], add u to
I ′.

3. Consider all subsets of vertices S of Vi.
4. For each such subset S ⊆ Vi, do the following:

Upper Dominating Set: Tight Algorithms 27

(a) For each vertex u ∈ S, go trough all vertices v ∈ N(u)\N [S] so that the
vertex v is the private neighbor of u.

(b) Let P be the set of private neighbors of the vertices of S found in the
previous step, if such a set exists.

(c) Let NSP = N(S) ∩ N(P), NS = N(S) \ NSP , NP = N(P) \ NSP ,
VSP = V \ (N [S] ∪N [P]), and QP = NP \N(VSP).

(d) We extend the partial solution S as follows:
i. Let T1 = N(QP) ∩NS .
ii. Greedily remove vertices of T1 which have not a private neighbor in

NP , that is vertices u ∈ T1 such that (N(u) ∩NP) ⊆ N(T1 \ {u}).
iii. Let T2 = N(NP \N(T1)) ∩ VSP .
iv. Greedily remove vertices of T2 which have not a private neighbor in

NP \N(T1), that is vertices u ∈ T2 such that (N(u)∩(NP \N(T1))) ⊆
N(T2 \ {u}).

v. Extend S ∪T1 ∪T2 greedily to obtain an upper dominating set S′ of
the whole graph G, in the natural way: while there exists a vertex
u ∈ VSP \N [T2], add u to S′.

vi. Discard S′ if it is not an upper dominating set of G.
5. Output the solution of maximum size encountered.

We first prove that our algorithm has the desired running-time. For each
i ∈ {1, . . . , l}, the set Vi is of size roughly n

l = 2n/r, so we have that enumerat-

ing all maximaul independent sets of G[Vi] takes time O∗(32n/3r), by the well-
known result of Moon and Moser [25] which states that computing all maximal
independent sets of a graph of order n can be done in time O∗(3n/3). Moreover,
by the same upper-bound on the size of the set Vi, we have that considering
all subsets S ⊆ Vi takes time 22n/r, and there is that many subsets S. Now,
observe that at the step 4.(a), for a vertex u ∈ S, we go through all vertices
v ∈ N(u) \N [S], so through at most n vertices, and that there is at most 2n/r
such vertices u ∈ S. So for a subset S ⊆ Vi, we consider at most n2n/r sets P of
private neighbors of the vertices of S. Note that the other steps of our algorithm
can be done in polynomial time. So the total running-time of our algorithm is:

k · (O∗(32n/3r) + 22n/r · n2n/r) = nO(n/r)

Now, we will prove that our algorithm outputs an upper dominating set.
Consider any i ∈ {1, . . . , l} and any maximal independent set I ∈ Ii of G[Vi].
Note that, since I is a maximal independent set of G[Vi], it can be easily extended
to obtain a maximal independent set I ′ of the whole graph G. Indeed, by greedily
adding vertices of V \ N [I ′], we obtain at the end of the step 2.(a) a maximal
independent set of G, since every vertex of V (G) is either in I ′ or has a neighbor
in I ′. Note that, since I ′ is maximal, it is also an upper dominating set: all
vertices of V (G) are dominated and the vertices of I ′ form an independent set.
So all the independent set I ′ for all i are valid upper dominating sets of the
graph G.

Consider any i ∈ {1, . . . , l}. For the sets S′ constructed at step 4 of our
algorithm, we will show that at least one of them is an upper dominating set of

28 L. Dublois, M. Lampis, V. Th. Paschos

G. Since we consider all subsets S of Vi, we consider the set S∗i = S∗ ∩Vi. Then,
for each vertex u in this set S∗i , we consider all its neighbors in N(u) \ N [S∗i]
to be its private neighbor. So we consider the set P ∗i which contains the private
neighbor v for each vertex u ∈ S∗i associated to the optimal solution D∗. Observe
that the sets NS∗i P∗i and NS∗i are dominated by S∗i . Now consider the vertices of
the set QP∗i : they are not neighbors of VS∗i P∗i by definition ; and they cannot be
dominated by NP∗i ∪NS∗i P∗i since this set contains only neighbors of the vertices
of P ∗i . So the vertices of QP∗i can only be dominated by vertices of NS∗i . By our
construction, the set T1 is a set of vertices of NS∗i which dominates QP∗i and such
that each vertex u ∈ T1 has a private neighbor. So the set QP∗i is dominated by
T1 and the vertices of T1 each have at least one private neighbor (in QP∗i or in
NP∗i \ QP∗i). Now consider the vertices of the set NP∗i \N(T1): they cannot be
in the solution since they are neighbors of P ∗i ; and they all have at least one
neighbor in VS∗i P∗i (since they were not in QP∗i). By our construction, the set T2
is a set of vertices of VS∗i P∗i which dominates NP∗i \ N(T1) and such that each
vertex u ∈ T2 has a private neighbor in NP∗i \ N(T1): if a vertex of T2 has no
private neighbor in NP∗i \ N(T1), then it is removed from T2 and NP∗i \ N(T1)
stay dominated. Now observe that all vertices of T2 have their private neighbor
in NP∗i \N(T1). So we can greedily extend S∗i ∪T1∪T2 in a maximal independent
set fashion by adding vertices of VS∗i P∗i \N [T2] until the whole graph G becomes
dominated. So the set S∗i

′ obtained is an upper dominating set of G. So for any
i ∈ {1, . . . , l}, there exists at least one set S′ which is an upper dominating set
of G, and the non-valid solutions are discarded at the end of step 4.(d).

Thus, the algorithm always outputs an upper dominating set.
Now, we will prove the approximation ratio. Note first that, since we have

partitioned V (G) into l = b r2c equal-size subsets V1, . . . , Vl, there exists i∗ ∈
{1, . . . , l} such that |D∗ ∩ Vi∗ | ≥ |D∗|/l ≥ 2|D∗|/r. Consider the corresponding
subset Vi∗ . Note now that, since D∗ = S∗ ∪ I∗, we have the following: either at
least |D∗ ∩ Vi∗ |/2 vertices of D∗ ∩ Vi∗ are in I∗, or at least |D∗ ∩ Vi∗ |/2 vertices
of D∗ ∩ Vi∗ are in S∗.

Suppose first that at least |D∗∩Vi∗ |/2 vertices of D∗∩Vi∗ are in I∗. Since we
have enumerating all maximal independent sets I ∈ Ii∗ of G[Vi∗], and since I∗∩
Vi∗ is an independent set of Vi∗ , we have found at least one maximal independent
set Ii∗ of G[Vi∗] such that I∗ ∩ Vi∗ ⊆ Ii∗ . Then, we have extended Ii∗ to obtain
a maximal independent set I ′i∗ of G. Thus, we have the following:

|I ′i∗ | ≥ |Ii∗ | ≥ |I∗ ∩ Vi∗ | ≥ |D∗ ∩ Vi∗ |/2 ≥ 2|D∗|/2r = |D∗|/r

But since our algorithm outputs the maximum sized solution encountered,
we have the desired approximation ratio in this case.

Suppose now that at least |D∗∩Vi∗ |/2 vertices of D∗∩Vi∗ are in S∗. Since we
have considered all subsets S of Vi∗ , we have considered the subset S∗i = S∗∩Vi∗ .
To this set, we have considered all possible sets of private neighbors of vertices of
S∗i , and we have extended the set to an upper dominating set S∗i

′ of G (note that
the set S∗i has been successfully extended since it is the set we have considered
when we have proved that at least one set S′ constructed at step 4 is a valid

Upper Dominating Set: Tight Algorithms 29

upper dominating set of G). Thus, we have the following:

|S∗i ′| ≥ |S∗i | = |S∗ ∩ Vi∗ | ≥ |D∗ ∩ Vi∗ |/2 ≥ 2|D∗|/2r = |D∗|/r

Again, since our algorithm outputs the maximum sized solution encountered,
we have the desired approximation ratio in this case also. ut

A.10 Proof of Theorem 7

First, we recall some details about the Theorem 6. To get this result, Chalermsook
et al. [7] made a reduction from an instance φ of 3-SAT with n variables,
and for any ε > 0 and r sufficiently large, they construct a graph G with
|V (G)| = n1+εr1+ε vertices which, with high probability, satisfies the follow-
ing properties:

– YES-instance: if φ is satisfiable, then α(G) ≥ n1+εr
– NO-instance: if φ is not satisfiable, then α(G) ≤ n1+εr2ε.

Recall that α(G) is the size of a maximum independent set in G.
With these properties, any approximation algorithm with ratio r1−2ε for

Maximum Independent Set would distinguish whether φ is satisfiable or not,
and so would solve the 3-SAT instance. If this algorithm runs in time 2(n/r)

1−ε

,
then we obtain a sub-exponential algorithm for 3-SAT, which contradicts the
randomized ETH.

Suppose that we are given ε > 0 and r sufficiently large. Let d = 1
ε1/2

We will
also design a reduction from the instance φ of 3-SAT to an instance of Maximum
Minimal Hitting Set going through an instance of Maximum Independent
Set to show that an algorithm for the Maximum Minimal Hitting Set that
achieves this ratio r too rapidly would give a sub-exponential algorithm for 3-
SAT. So we start with the reduction of [7], from an instance φ of 3-SAT on n
variables, and we adjust the parameter r so that we obtain with high probability
a graph G with the following properties:

– |V (G)| = n1+εr1/d+ε/d

– YES-instance: if φ is satisfiable, then α(G) ≥ n1+εr1/d.
– NO-instance: if φ is not satisfiable, then α(G) ≤ n1+εr2ε/d.

We now construct a graph G′ for the Maximum Minimal Hitting Set
problem in the following way: we keep the graph G ; for every subset S ⊆ V (G)
with |S| = d, we construct an independent set ZS of size t = r1/d ; and for every
vertex u ∈ ZS , we add the hyper-edge S ∪ {u}. Now, we claim that the graph
G′ has the following properties:

– |V (G′)| = Θ(nd+dεr1+1/d+ε)
– YES-instance: if φ is satisfiable, then mmhs(G′) = Ω(nd+dεr1+1/d).
– NO-instance: if φ is not satisfiable, then mmhs(G′) = O(nd+dεr1/d+2ε).

30 L. Dublois, M. Lampis, V. Th. Paschos

Here, mmhs(G′) is the maximum size of a minimal hitting set in G′.
Let us prove why the graph G′ has these properties.
For the first property, note that there is

(|V (G)|
d

)
subsets S of V (G) of size d,

and that for each of them we have added t = r1/d vertices in the corresponding
independent set ZS . So we have the following:

|V (G′)| = t ·
(
|V (G)|
d

)
+ |V (G)| = Θ(nd+dεr1+1/d+ε)

For the second property, suppose that φ is satisfiable. It follows that α(G) ≥
n1+εr1/d. We construct a minimal hitting set of G′ as follows: we take a minimum
vertex cover C of G ; and for every subset S of I = V (G) \ C of size d, we take
the t vertices of the corresponding independent set ZS . We observe that this
solution is a minimal hitting set of G′. Indeed, C is a minimum vertex cover of
G, so all edges of G are dominated by the solution, and every vertex of C has at
least one private edge since C is a minimum vertex cover. Now observe that all
the hyper-edges added in the construction of G′ which still have to be covered
are hyper-edges between some vertices of the independent set I = V (G) \C and
the corresponding independent sets ZS , since all hyper-edges connected to the
vertices of C are covered. But we took the t vertices of the independent set ZS
of every subset S ⊆ I of size d, so it follows that all the remaining hyper-edges
are covered by our solution. Moreover, for any subset S of I of size d, note that
S is an independent set, so every vertex u of ZS taken has a private hyper-edge,
namely the hyper-edge S ∪ {u}. So our solution is a minimal hitting set. Now,
let us determine its size. The number of independent sets ZS with S ⊆ I of size
d is

(
α(G)
d

)
. So the size of our solution is at least:

t ·
(
α(G)

d

)
= Ω(nd+dεr1+1/d)

For the third property, take any minimal hitting set in G′ and let I be the
corresponding independent set of G (I = V (G) \C where C is a vertex cover in
G which belongs to the minimal hitting set). We have that for any subset S of I
of size d, the minimal hitting set takes at most the t vertices of the independent
set ZS . And there is at most

(
α(G)
d

)
such subsets S. So the size of any minimal

hitting set is bounded by:

t ·
(
α(G)

d

)
+ |V (G)| = O(nd+dεr1/d+2ε)

We have now construct a graph G′ of the Maximum Minimal Hitting
Set problem where the gap between the values of mmhs(G′), corresponding on
whether φ is satisfiable or not, is smaller than r (it is r1−2ε). Nonetheless, we
cannot derive the desired hardness result since the order of G′ is quadratic on
n. This blow-up makes it impossible to derive a sub-exponential algorithm for
3-SAT. So we need to sparsify the gaph G′.

Thus, we construct a graph G′′ in the following way: we keep the graph G′

; and we delete every vertex of V (G′) \ V (G) with probability nd−1
nd . That is,

Upper Dominating Set: Tight Algorithms 31

for every vertex u in an independent set ZS , the vertex u stays in G′′ with
probability 1

nd . We claim that the graph G′′ has the following properties:

– |V (G′′)| = Θ(n1+dεr1+1/d+ε)
– YES-instance: if φ is satisfiable, then mmhs(G′′) = Ω(n1+dεr1+1/d).
– NO-instance: if φ is not satisfiable, then mmhs(G′′) = O(n1+dεr1/d+2ε).

To establish these three properties, we will use the following Chernoff bound:
suppose X =

∑p
i=1Xi is the sum of p independent random 0/1 variables Xi

and that E[X] =
∑p
i=1E[Xi] = µ. We have the following: for all 0 ≤ δ ≤ 1,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

For the first property, we begin by defining a random variable Xi for each
vertex of each independent set ZS of G′: Xi = 1 if the corresponding vertex
stays in G′′ ; and Xi = 0 otherwise. Let X be the sum of these Xi variables,
which is equal to the number of such vertices staying in G′′. Suppose now that
the number of vertices in the sets ZS in G′ is cnd+dεr1+1/d+ε, where c is a
constant (it follows from the size of V (G′)). Then E[X] = cn1+dεr1+1/d+ε. We

obtain Pr[|X − E[X]| ≥ E[X]
2] ≤ 2e−E[X]/12 = o(1). So we conclude with high

probability that |V (G′′)| = Θ(n1+dεr1+1/d+ε).
For the second property, we consider a minimal hitting set F of G′, of size

cnd+dεr1+1/d. We define a variable for each vertex of F in the independent sets
ZS . As in the previous paragraph, we have that the expected number of such
vertices which stay in G′′ is cn1+dεr1+1/d. Again, as in the previous paragraph,
the actual number of such vertices will be close to this bound. We just need to
prove that almost the same set is a minimal hitting set of G′′. So we begin with
the surviving vertices of F , which is an hitting set of G′′ (since the removal of
a vertex of F implies the removal of its incident hyper-edges). Now, we delete
vertices from F until we obtain a minimal hitting set of G′′. We will prove that
the number of vertices deleted as redundant is at most |V (G)| = n1+εr1/d+ε/d.
Consider first an independent set ZS such that ZS ∩F 6= ∅. Since ZS ∩F 6= ∅, it
follows that the vertices of the set S are not in the solution F , because otherwise
the vertices of ZS∩F would not have a private hyper-edge. But because S∩F = ∅,
the vertices of ZS ∩F cannot be considered as redundant, since for every vertex
u ∈ ZS ∩F , it covers the hyper-edge S∪{u}. Thus, no vertex of the independent
sets ZS can be removed as redundant. So the only vertices which can be removed
as redundant are the vertices initially in V (G). So at most |V (G)| = n1+εr1/d+ε/d

vertices can be removed as redundant. Since |V (G)| < c
10 (n1+dεr1+1/d) (for n

and r sufficiently large), it follows that removing these redundant vertices will
not change the order of magnitude of the solution in G′′.

For the third property, we need to consider every possible minimal hitting set
of G′′ and prove that none of them is too large. So consider any subset I ⊆ V (G)
being an independent set of G. Our goal is to prove that any minimal hitting set
F of G′′ that satisfies V (G) \ I ⊆ F has a probability of being too big smaller
than 2−|V (G)|. Indeed, if we prove this, we can take the union bound over all
sets I and conclude that with high probability no minimal hitting set of G′′

is too big. So suppose now that we have fixed an independent set I ⊆ V (G).

32 L. Dublois, M. Lampis, V. Th. Paschos

We have |I| ≤ α(G) ≤ n1+εr2ε/d. We now make the following observation: any
minimal hitting set F which satisfies V (G) \ I ⊆ F cannot contain any vertex
of a set ZS if S ∩ F 6= ∅ ; but may contain the t vertices of an independent set
ZS if S ∩ F = ∅. The total number of such vertices in G′ is O(nd+dεr1/d+2ε),
since it is an upper bound on mmhs(G′). So, by the same argument as in the
previous paragraph, the expected number of such vertices which stay in G′′ is
at most µ = cn1+dεr1/d+2ε, for a constant c. By using the Chernoff bound, we
have Pr[|X − µ| ≥ µ

2] ≤ 2e−µ/12. We claim that 2e−µ/12 = o(2−|V (G)|). Indeed,

it follows since |V (G)| = n1+εr1/d+ε/d = o(µ). Thus, the probability that a
minimal hitting set being too large exists for a fixed independent set I ⊆ V (G)
is low enough so that taking the union bound over all possible independent sets
I give a probability that at least one minimal hitting set is too big of value o(1).
So we have with high probability that no minimal hitting set of size greater than
3µ/2 exists. So we obtain the third property.

Now that we have proved that G′′ satisfies these three properties, we will
show how to obtain the Theorem. Suppose that, for sufficiently large r and
any ε > 0, there exists an approximation algorithm for Maximum Minimal
Hitting Set with ratio r1−3ε running in time N (N/r)1−4ε

for graphs of order
N . The ratio of this algorithm is sufficiently small to distinguish between the
two cases in our graph G′′, as the ratio between mmhs(G′′) when φ is satisfiable
or not is Ω(r1−2ε) (for r sufficiently large). So we can use this approximation
algorithm to solve 3-SAT. Furthermore, we have the following:

N/r = Θ((n1+dεr1+1/d+ε)/r) = O(n1+(d+1)ε+1/d) = O(n1+ε+2ε1/2)

Therefore, (N/r)1−4ε = o(n). We obtain an algorithm for 3-SAT in time

N (N/r)1−ε

= 2n
1−ε′

for ε′ < ε chosen appropriately. This contradicts the ran-
domized ETH. So by adjusting r and ε, we get that no r-approximation algorithm
for Maximum Minimal Hitting Set can run in time N (N/r)1−ε

for graphs of
order N . Thus we get the statement of the Theorem. ut

A.11 Proof of Theorem 8

We start with an instanceG of Maximum Minimal Hitting Set obtained from
Theorem 7. From this instance, we construct an instanceG′ of Upper Dominat-
ing Set. By Theorem 12 of [3], we know that this reduction is approximation-
preserving. So the gap from the hardness result of Maximum Minimal Hitting
Set stays the same for Upper Dominating Set. Now observe that in Theorem
7, the number of hyper-edges in G has the same order of magnitude than the
number of vertices in G. Thus, the number of vertices in G′ is linearly depen-
dent on the number of vertices in G. So an r-approximation algorithm for Upper
Dominating Set running in time n(n/r)

1−ε

would give an r-approximation al-
gorithm for Maximum Minimal Hitting Set with the same running-time,
which would contradicts Theorem 7 and the randomized ETH. So we obtain the
desired hardness result for Upper Dominating Set. ut

Upper Dominating Set: Tight Algorithms 33

B FPT Algorithm Parameterized by Pathwidth

In this section, we present an algorithm for the Upper Dominating Set prob-
lem parameterized by the pathwidth of the graph. We prove that, given a graph
G = (V,E) and a path decomposition (T, {Xt}t∈V (T)) of with pw, there exists a
dynamic programming algorithm that solves Upper Dominating Set problem
in time O(6pw · pw).

We now suppose that we are given a path decomposition (T, {Xt}t∈V (T)) of
the given graph G = (V,E). Recall that in such a path decomposition, we have
three types of bag: the Initialization bag, the Forget bags, and the Introduce
bags. We can assume that we are given a nice path decomposition. So we only
need to describe the Initialization, Forget and Introduce nodes, where a vertex
is introduced exactly once, and is forgotten exactly once.

Note that Bazgan et al. have designed an FPT algorithm for the Upper
Dominating Set problem running in time O∗(7pw) [3]. Our algorithm essen-
tially works as their algorithm, but we are more careful in the Introduce bags,
which enables us to get the desired complexity.

We will now present how our dynamic programming works for each type of
bag. To do so, we first distinguish between six different colors for each vertex.
We define a coloring of a bag Xt to be a mapping f : Xt → {I, F, F ∗, O∗, O, P}
assigning six different colors to the vertices of the bag Xt. These six colors are
defined as follows:

– I: the set of vertices which are in the dominating set and which forms an
independent set, i.e. the vertices of the solution which are their own private
vertices.

– F : the set of vertices which are in the dominating set and which are already
matched to a private neighbor.

– F ∗: the set of vertices which are in the dominating set and which have no
private neighbor yet.

– O∗: the set of vertices which are not in the dominating set and which are
not dominated yet.

– O: the set of vertices which are not in the dominating set, which are domi-
nated, but which are not private neighbors of vertices of the solution.

– P : the set of vertices which are not in the dominating set, which are domi-
nated, and which are private neighbors of some vertices of the solution.

Note that, since f−1(I)∪ f−1(F)∪ f−1(F ∗)∪ f−1(O∗)∪ f−1(O)∪ f−1(P) is
a partition of Xt, there are 6|Xt| colorings of Xt. These colorings form the space
of states of the node Xt, and we will use this fact to improve the algorithm of
Bazgan et al. [3] from O∗(7pw) to O(6pw · pw).

For a coloring Xt, we denote by c[t, f] the maximum size of an upper domi-
nating set D ⊆ Vt (where Vt denotes the set of vertices belonging to any bag Xt

of the subtree Tt rooted at the node t), such that:

– f−1(I) ∪ f−1(F) ∪ f−1(F ∗) = D
– f−1(O) ∪ f−1(P) is dominated by D.

34 L. Dublois, M. Lampis, V. Th. Paschos

We call such a set D a maximum compatible set for t and f . If no maximum
compatible set for t and f exists, then we put c[t, f] = −∞.

Let us now define some useful notations. For a subset X ⊆ V , consider
a coloring f : X → {I, F, F ∗, O∗, O, P}. For a vertex v ∈ V , and a color α ∈
{I, F, F ∗, O∗, O, P}, we define a new coloring fv→α : X∪{v} → {I, F, F ∗, O∗, O, P}
as follows:

fv→α(x) =

{
f(x) if x 6= v

α if x = v

We now proceed to present the recursive formulas for the values of c.
Initialization node. For a node Xt = {v} which initializes the table, we

make the following observations: the vertex v cannot be in F since it cannot
have a private neighbor ; it cannot be neither in O nor in P since it cannot be
dominated ; and for the three other cases (for I, F ∗ and O∗), we just have to
give the size of the corresponding solution. We obtain:

c[t, f] =

1 if v ∈ I ∪ F ∗

0 if v ∈ O∗

−∞ otherwise

Forget node. Let t be a forget node with a unique child t′ such that Xt =
Xt′ \ {v} for some v ∈ Xt′ . We make the following observations: the vertex v
cannot be forgotten if it belongs to F ∗ since it contradicts the fact that the
solution is minimal ; v cannot be forgotten if it belongs to O∗ since in this case
it remains undominated ; the four other cases are valid and we just need to take
the maximum value between these four cases. We obtain:

c[t, f] = max{c[t′, fv→I], c[t′, fv→F], c[t′, fv→O], c[t′, fv→P]}

Note that for these Initialization and Forget nodes, since in the worst case
we go through all possible colorings of the bag Xt, the running-time for these
two types of bags is O(6pw).

Introduce node. Let t be an introduce node with a unique child t′ such
that Xt = Xt′ ∪{v} for some v /∈ Xt′ . Here, instead of going through all possible
coloring of the bag t and considering every subset of the neighborhood of v to
put in O∗, as Bazgan et al. did, we go through all possible colorings of the bag
t′ and update the value of c[t, f] depending on the corresponding coloring and
any color affected to v. This enables us to lower the complexity to O(6pw · pw)
since we don’t need anymore to go through every subset of the neighborhood
of v. First, we affect the value −∞ to c[t, f] for every coloring f of the bag t.
Then, for every coloring f : Xt′ → {I, F, F ∗, O∗, O, P} and any color α : {v} →
{I, F, F ∗, O∗, O, P}, we will define a new coloring fnew which corresponds to the
coloring f of the vertices of Xt′ plus the coloring α of v, and an associated value
knew which will be the size of the corresponding upper dominating set. To get the
final value c[t, fnew] for the bag t, we just update it by knew if c[t, fnew] < knew
for the new coloring fnew, so at the end each entry of the table of t will have the

Upper Dominating Set: Tight Algorithms 35

maximum size for the corresponding coloring fnew. Now, for each coloring f of
the bag t′ and each color α ∈ {I, F, F ∗, O∗, O, P} of the vertex v, we have the
following cases:

– If α = I and N(v) ∩ (f−1(I) ∩ f−1(F) ∩ f−1(F ∗) ∩ f−1(P)) = ∅, then:

fnew(u) =

{
O if f(u) = O∗ and (u, v) ∈ E
f(u) otherwise

For v to be in I, we need that all its neighbors are either in O or in O∗. Then,
if this condition is satisfied, we can give the color O to all neighbors of v which
are not dominated in the bag t′ since they become dominated in the new bag.

– If α = F and N(v)∩ (f−1(I)∪f−1(P)) = ∅ and ∃w ∈ N(v)∩f−1(O∗), then:

fnew(u) =

P if u = w

O if f(u) = O∗ and u 6= w and (u, v) ∈ E
f(u) otherwise

For v to be in F , note that its neighbors cannot be in I or in P , because
otherwise its neighbors in I are dominated and its neighbors in P cannot be
private neighbors anymore. Note also that at least one neighbor of v has to be
in O∗ in the bag t′ in order to become the private neighbor of v. Moreover, v
belongs to F if at least one of its neighbors belongs to P in the new coloring,
so we can take any neighbor of v which is not dominated in t′ and put it in P
in the new coloring, since it is enough to have just one neighbor of v being its
private neighbor. For the other neighbors of v which are not dominated in t′,
we can give them the color O since they become dominated. Finally, all other
vertices keep the same color from the coloring f .

– If α = F ∗ and N(v) ∩ (f−1(I) ∪ f−1(P)) = ∅, then:

fnew(u) =

{
O if f(u) = O∗ and (u, v) ∈ E
f(u) otherwise

For v to be in F ∗, we need that its neighbors are neither in I nor in P ,
because otherwise its neighbors in I are dominated and its neighbors in P cannot
be private neighbors anymore. If this condition is satisfied, we can give the color
O to all neighbors of v which are not dominated in the bag t′ since they become
dominated in the new bag.

– If α = O∗ and N(v) ∩ (f−1(I) ∪ f−1(F) ∪ f−1(F ∗)) = ∅, then: fnew(u) =
f(u)∀u ∈ Xt′

For v to be in O∗, we just need to check that all its neighbors are not in
the solution, that is they do not have the colors I, F or F ∗. If this condition is
satisfied, v can be added as a non dominated vertex and the coloring fnew is the
coloring f .

36 L. Dublois, M. Lampis, V. Th. Paschos

– If α = O and N(v) ∩ (f−1(I) ∪ f−1(F) ∪ f−1(F ∗)) 6= ∅, then: fnew(u) =
f(u)∀u ∈ Xt′

For v to be in O, we just need that at least one of its neighbors is in the
solution, that is one of its neighbor is in I, in F or in F ∗. If this condition is
satisfied, v can get color O and the coloring fnew is the coloring f .

– If α = P and N(v) ∩ (f−1(I) ∪ f−1(F)) = ∅ and ∃!w ∈ N(v) ∩ f−1(F ∗),
then:

fnew(u) =

{
F if u = w

f(u) otherwise

For v to have color P , we need firstly that its neighbors are neither in I nor
in F , because otherwise v cannot be a private neighbor of some vertex of the
solution, and we also need that exactly one neighbor of v is in F ∗ in the bag t′,
so that these two vertices are matched. If these conditions are satisfied, we give
color F to the only neighbor of v in F ∗ in the bag t′ and all other vertices keep
the same color from the coloring f .

Note that, since we go through all possible colorings f in the bag t′ and
through all colors for the vertex v, the running time of any introduce bag is
O(6pw · pw).

Given this dynamic programming algorithm, we have the following result:

Theorem 3. The Upper Dominating Set problem can be solved in time
O(6pw · pw), where pw is the input graph’s pathwidth.

	Upper Dominating Set: Tight Algorithms for Pathwidth and Sub-Exponential Approximation

