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Abstract6

We revisit the complexity of the well-studied notion of Additively Separable Hedonic Games7

(ASHGs). Such games model a basic clustering or coalition formation scenario in which selfish agents8

are represented by the vertices of an edge-weighted digraph G = (V, E), and the weight of an arc uv9

denotes the utility u gains by being in the same coalition as v. We focus on (arguably) the most10

basic stability question about such a game: given a graph, does a Nash stable solution exist and can11

we find it efficiently?12

We study the (parameterized) complexity of ASHG stability when the underlying graph has13

treewidth t and maximum degree ∆. The current best FPT algorithm for this case was claimed14

by Peters [AAAI 2016], with time complexity roughly 2O(∆5t). We present an algorithm with15

parameter dependence (∆t)O(∆t), significantly improving upon the parameter dependence on ∆16

given by Peters, albeit with a slightly worse dependence on t. Our main result is that this slight17

performance deterioration with respect to t is actually completely justified: we observe that the18

previously claimed algorithm is incorrect, and that in fact no algorithm can achieve dependence19

to(t) for bounded-degree graphs, unless the ETH fails. This, together with corresponding bounds we20

provide on the dependence on ∆ and the joint parameter establishes that our algorithm is essentially21

optimal for both parameters, under the ETH.22

We then revisit the parameterization by treewidth alone and resolve a question also posed by23

Peters by showing that Nash Stability remains strongly NP-hard on stars under additive preferences.24

Nevertheless, we also discover an island of mild tractability: we show that Connected Nash Stability25

is solvable in pseudo-polynomial time for constant t, though with an XP dependence on t which, as26

we establish, cannot be avoided.27
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1 Introduction34

Coalition formation is a topic of central importance in computational social choice and in35

the mathematical social sciences in general. The goal of its study is to understand how36

groups of selfish agents are likely to partition themselves into teams or clusters, depending37

on their preferences. The most well-studied case of coalition formation are hedonic games,38

which have the distinguishing characteristic that each agent’s utility only depends on the39

coalition on which she is placed (and not on the coalitions of other players). Hedonic games40

have recently been an object of intense study also from the computer science perspective41

[1, 2, 6, 7, 9, 10, 12, 19, 27, 34, 41], due in part to their numerous applications in, among42

others, social network analysis [35], scheduling group activities [15], and allocating tasks43

to wireless agents [40]. For more information we refer the reader to [13] and the relevant44

chapters of standard computational social choice texbooks [4].45
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Parameter Algorithms Lower Bounds
t, p Strongly NP-hard for Stars (G) (Theorem 9)

(nW )O(t2) (C) (Theorem 11) No f(p) · no(p/ log p) (C) (Theorem 12)
t, p + ∆ (∆t)O(∆t) (n + log W )O(1) No (p∆)o(p∆)(nW )O(1) (G) (Theorem 5)

(G) (Theorem 4)
No ∆o(∆)(nW )O(1) if p = O(1) (G) (Corollary 6)
No po(p)nO(1) if ∆, W = O(1) (Theorem 7) (G,C)

Table 1 Summary of results. t, p, ∆, W denote the treewidth, pathwidth, maximum degree, and
maximum absolute weight. Results denoted by (G) apply to general (possibly disconnected) Nash
Stability, and by (C) to Connected Nash Stability.

Hedonic games are extremely general and capture many interesting scenarios in algorithmic46

game theory and computational social choice. Unfortunately, this generality implies that47

most interesting questions about such games are computationally hard; indeed, even encoding48

the preferences of agents generally takes exponential space. This has motivated the study of49

natural succinctly representable versions of hedonic games. In this paper, we focus on one of50

the most widely-studied such models called Additively-Separable Hedonic Games (ASHG).51

In this setting the interactions between agents are given by an edge-weighted directed graph52

G = (V, E), where the weight of an arc uv ∈ E denotes the utility that u gains by being53

placed in the same coalition as v. Thus, vertices which are not connected by an arc are54

considered to be indifferent to each other. Given a partition into coalitions, the utility of a55

player v is defined as the sum of the weights of out-going arcs from v to its own coalition.56

A rich literature exists studying various questions about ASHGs, including a large57

spectrum of stability concepts and social welfare maximization [3, 5, 17, 20, 23, 35, 36, 42].58

In this paper we focus on perhaps the most basic notion of stability one may consider. We59

say that a configuration π is Nash Stable if no agent v can unilaterally strictly increase60

her utility by selecting a different coalition of π or by forming a singleton coalition. The61

algorithmic question that we are interested in studying is the following: given an ASHG,62

does a Nash Stable partition exist? Even though other notions of stability exist (notably63

when deviating players are allowed to collaborate [11, 16, 38, 43]), fully understanding the64

complexity of Nash Stability is of particular importance, because of the fundamental65

nature of this notion.66

Nash Stability of ASHGs has been thoroughly studied and is, unfortunately, NP-67

complete. We therefore adopt a parameterized point of view and investigate whether some68

desirable structure of the input can render the problem tractable. We consider two of the69

most well-studied graph parameters: the treewidth t and the maximum degree ∆ of the70

underlying graph. The study of ASHGs in this light was previously taken up by Peters [37]71

and the goal of our paper is to improve and clarify the state of the art given by this previous72

work.73

Summary of Results Our results can be divided into two parts (see Table 1 for a summary).74

In the first part of the paper we parameterize the problem by t + ∆, that is, we study its75

complexity for graphs that have simultaneously low treewidth and low maximum degree.76

The study of hedonic games on such graphs was initiated by Peters [37], who already77

considered a wide variety of algorithmic questions on ASHGs for these parameters and78

provided FPT algorithms using Courcelle’s theorem. Due to the importance of Nash79

Stability, more refined algorithmic arguments were given in the same work, and it was80
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claimed that Connected Nash Stability (the variant of the problem where coalitions must81

be connected in the underlying graph) and Nash Stability can be decided with parameter82

dependence roughly 2∆2t and 2∆5t, respectively (though as we explain below, these claims83

were not completely justified). We thus revisit the problem with the goal of determining84

the optimal parameter dependence for Nash Stability in terms of t and ∆. Our positive85

contribution is an algorithm deciding Nash Stability in time (∆t)O(∆t) (n + log W )O(1),86

where W is the maximum absolute weight, significantly improving the parameter dependence87

for ∆ (Theorem 4). This is achieved by reformulating the problem as a coloring problem with88

t∆ colors in a way that encodes the property that two vertices belong in the same coalition89

and then using dynamic programming to solve this problem. Our main technical contribution90

is then to establish that our algorithm is essentially optimal. To that end we first show that91

if there exists an algorithm solving Nash Stability in time (p∆)o(p∆)(nW )O(1), where p is92

the pathwidth of the underlying graph, then the ETH is false (Theorem 5). Hence, it is not93

possible to obtain a better parameter dependence, even if we accept a pseudo-polynomial94

running time and a more restricted parameter.95

If we were considering a parameterization with a single parameter, at this point we would96

be essentially done, since we have an algorithm and a lower bound that match. However, the97

fact that ∆ and t are two a priori independent variables significantly complicates the analysis98

because, informally, the space of running time functions that depend on two variables is99

not totally ordered. To see what we mean by that, recall that [37] claimed an algorithm100

with complexity roughly 2∆5t, while our algorithm’s complexity has the form (∆t)∆t. The101

two algorithms are not directly comparable in performance: for some values of ∆, t one is102

better and for some the other (though the range of parameters where 2∆5t < (∆t)∆t is quite103

limited). As a result, even though Theorem 5 shows that no algorithm can beat the algorithm104

of Theorem 4 in all cases, it does not rule out the possibility that some algorithm beats105

it in some cases, for example when ∆ is much smaller than t, or vice-versa. We therefore106

need to work harder to argue that our algorithm is indeed optimal in essentially all cases.107

In particular, we show that even if pathwidth is constant the problem cannot be solved in108

∆o(∆)(nW )O(1) (Corollary 6); and even if ∆ and W are constant, the problem cannot be109

solved in po(p)nO(1) (Theorem 7). Hence, we succeed in covering essentially all corner cases,110

showing that our algorithm’s slightly super-exponential dependence on the product of ∆ and111

t is truly optimal, and we cannot avoid the slightly super-exponential on either parameter,112

even if we were to accept a much worse dependence on the other.113

An astute reader will have noticed a contradiction between our lower bounds and the114

algorithms of [37]. It is also worth noting that Theorem 7 applies to both the connected115

and disconnected cases of the problem, using an argument due to [37]. Hence, Theorem 7116

implies that, either the ETH is false, or neither of the aforementioned algorithms of [37]117

can have the claimed performance, as executing them on the instances produced by our118

reduction (which have ∆ = O(1)) would give parameter dependence 2O(t), which is ruled119

out by Theorem 7. Indeed, in Section 3 we explain in more detail that the argumentation of120

[37] lacks an ingredient (the partition of vertices in each neighborhood into coalitions) which121

turns out to be necessary to obtain a correct algorithm and also key in showing the lower122

bound. Hence, the slightly super-exponential dependence on t cannot be avoided (under the123

ETH), and the dependence on t promised in [37] is impossible to achieve: the best one can124

hope for is the slightly super-exponential dependence on both t and ∆ given in Theorem 4.125

In the second part of the paper, we consider Nash Stability on graphs of low treewidth,126

without making any further assumptions (in particular, we consider graphs of arbitrarily large127

degree). This parameterization was considered by Peters [37] who showed that the problem128
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is strongly NP-hard on stars and thus motivated the use of the double parameter t + ∆.129

This would initially appear to settle the problem. However, we revisit this question and130

make two key observations: first, the reduction of [37] does not show hardness for additive131

games, but for a more general version of the problem where preferences of players are not132

necessarily additive but are described by a collection of boolean formulas (HC-nets [18, 25]).133

It was therefore explicitly posed as an open question whether additive games are also hard134

[37]. Second, in the reduction of [37] coalitions are disconnected. As noted in [26, 37], there135

are situations where Nash Stable coalitions make more sense if they are connected in the136

underlying graph. We therefore ask whether Connected Nash Stability, where we impose137

a connectivity condition on coalitions, is an easier problem.138

Our first contribution is to resolve the open question of [37] by showing that imposing139

either one of these two modifications does not render the problem tractable: Nash Stability140

of additive hedonic games is still strongly NP-hard on stars (Theorem 9); and Connected141

Nash Stability of hedonic games encoded by HC-nets is still NP-hard on stars (Theorem 10).142

However, our reductions stubbornly refuse to work for the natural combination of these143

conditions, namely, Connected Nash Stability for additive hedonic games on stars.144

Surprisingly, we discover that this is with good reason: Connected Nash Stability turns145

out to be solvable in pseudopolynomial time on graphs of bounded treewidth (Theorem 11).146

More precisely, our algorithm, which uses standard dynamic programming techniques but147

crucially relies on the connectedness of coalitions, runs in “pseudo-XP” time, that is, in148

polynomial time when t = O(1) and weights are polynomially bounded. Completing our149

investigation we show that this is essentially best possible: obtaining a pseudo-polynomial150

time algorithm with FPT dependence on treewidth (or pathwidth) would contradict standard151

assumptions (Theorem 12). Hence, in this part we establish that there is an overlooked case152

of ASHGs that does become somewhat tractable when we only parameterize by treewidth,153

but this tractability is limited.154

Related work Deciding if an ASHG admits a partition that is Nash Stable or has other155

desirable properties is NP-hard [3, 5, 35, 39, 42]. Hardness remains even in cases where a156

Nash Stable solution is guaranteed, such as symmetric preferences, where the problem is157

PLS-complete [21], and non-negative preferences, where it is NP-hard to find a non-trivial158

stable partition [36]. The problem generally remains hard when we impose the requirement159

that coalitions must be connected [8, 26].160

A related Min Stable Cut problem is studied in [30], where we partition the vertices161

into two coalitions in a Nash Stable way. Interestingly, the complexity of that problem turns162

out to be 2O(∆t), since each vertex has 2 choices; this nicely contrasts with Nash Stability,163

where vertices have more choices, and which is slightly super-exponential parameterized by164

treewidth. Similar slightly super-exponential complexities have been observed with other165

problems involving treewidth and partitioning vertices into sets [24, 33].166

Organization The two parts of the paper are given in Sections 3 and 4. We make an effort167

to give a self-contained presentation of all the main ideas in the first 15 pages, which forces168

us to omit some proofs. All such proofs can be found in the appendix.169

2 Preliminaries170

We use standard graph-theoretic notation and assume that the reader is familiar with standard171

notions in parameterized complexity, including treewidth and pathwidth [14]. We mostly deal172
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with directed graphs and denote an arc from vertex u to vertex v as uv. When we talk about173

the degree or the neighborhood of a vertex v, we refer to its degree and its neighborhood174

in the underlying graph, that is, the graph obtained by forgetting the directions of all arcs.175

Throughout the paper ∆(G) (or simply ∆, when G is clear from the context) denotes the176

maximum degree of the underlying graph of G. The Exponential Time Hypothesis (ETH) is177

the assumption that there exists c > 1 such that 3-SAT on formulas with n variables does178

not admit a cn algorithm [28]. We will mostly use a somewhat simpler to state (and weaker)179

form of this assumption stating that 3-SAT cannot be solved in time 2o(n).180

In this paper we will be mostly interested in Additively Separable Hedonic Games (ASHG).181

In an ASHG we are given a directed graph G = (V, E) and a weight function w : V × V → Z182

that encodes agents’ preferences. The function w has the property that for all u, v ∈ V such183

that uv ̸∈ E we have w(u, v) = 0, that is, non-zero weights are only given to arcs. A solution184

to an ASHG is a partition π of V , where we refer to the sets of V as classes or, more simply,185

as coalitions. For each v ∈ V and S ⊆ V the utility that v derives from being placed in186

the coalition S is defined as pv(S) =
∑

u∈S\{v} w(v, u). A partition π is Nash Stable if we187

have the following: for each v ∈ V , if v belongs in the class S of π, we have pv(S) ≥ 0 and188

for each S′ ∈ π we have pv(S) ≥ pv(S′). In other words, no vertex can strictly increase its189

utility by joining another coalition of π or forming a singleton coalition. We also consider190

the notion of Connected Nash Stable partitions, which are Nash Stable partitions π with the191

added property that all classes of π are connected in the underlying undirected graph of G.192

3 Parameterization by Treewidth and Degree193

In this section we revisit Nash Stability parameterized by t + ∆, which was previously194

studied in [37]. Our main positive result is an algorithm given in Section 3.1 solving the195

problem with dependence (t∆)O(t∆).196

Our main technical contribution is then to show in Section 3.2 that this algorithm is197

essentially optimal, under the ETH. As explained, we need several different reductions to198

settle this problem in a satisfactory way. The main reduction is given in Theorem 5 and uses199

the fact that a partition restricted to the neighborhood of a vertex with degree ∆ encodes200

roughly ∆ log ∆ bits of information, because there are around ∆∆ partitions of ∆ elements201

into equivalence classes. This key idea allows the first reduction to compress the treewidth202

more and more as ∆ increases. Hence, we can produce instances where both t and ∆ are203

super-constant, but appropriately chosen to match our bound. In this way, Theorem 5204

rules out running times of the form, say (t∆)t+∆, as when t, ∆ are both super-constant,205

t + ∆ = o(t∆). By modifying the parameters of Theorem 5 we then obtain Corollary 6206

from the same construction, which states that no algorithm can have dependence ∆o(∆),207

even on graphs of bounded pathwidth. On the other hand, this type of construction cannot208

show hardness for instances of bounded degree, as when ∆ = O(1), then ∆∆ = O(1), so we209

cannot really compress the treewidth of the produced instance. Hence, we use a different210

reduction in Theorem 7, showing that the problem cannot be solved with dependence po(p)
211

on instances of bounded degree. This reduction uses a super-constant number of coalitions212

that “run through” the graph, and hence produces instances with super-constant t. The213

three complementary reductions together cover the whole range of possibilities and indicate214

that there is not much room for improvement in our algorithm.215

It is worth discussing here that, assuming the ETH, Theorem 7 contradicts the claimed216

algorithms of [37], which for ∆ = O(1) would solve (Connected) Nash Stability with217

dependence 2O(t), while Theorem 7 claims that the problem cannot be solved in time 2o(t log t).218
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Let us then briefly explain why the proof sketch for these algorithms in [37] is incomplete:219

the idea of the algorithms is to solve Connected Nash Stability, and use the arcs of the220

instance to verify connectivity. Hence, the DP algorithm will remember, in a ball of distance221

2 around each vertex, which arcs have both of their endpoints in the same coalition. The222

claim is that this information allows us to infer the coalitions. Though this is true if one is223

given this information for the whole graph, it is not true locally around a vertex where we224

only have information about other vertices which are close by. In particular, it could be the225

case that u has neighbors v1, v2, which happen to be in the same coalition, but such that226

the path proving that this coalition is connected goes through vertices far from u. Because227

this cannot be verified locally, any DP algorithm would need to store some connectivity228

information about the vertices in a bag which, as implied by Theorem 7 inevitably leads to a229

dependence of the form tt.230

3.1 Improved FPT Algorithm231

In order to obtain our algorithm for Nash Stability we will need two ingredients. The first232

ingredient will be a reformulation of the problem as a vertex coloring problem. We use the233

following definition where, informally, a vertex is stable if its outgoing weight to vertices of234

the same color cannot be increased by changing its color.235

▶ Definition 1. A Stable k-Coloring of an edge-weighted digraph G is a function c :236

V → [k] satisfying the following property: for each v ∈ V we have
∑

u∈c−1(c(v)) w(v, u) ≥237

maxj∈[k+1]
∑

u∈c−1(j) w(v, u).238

Note that in the definition above we take the maximum over j ∈ [k +1] of the total weight239

of v towards color class j. Since c is a function that uses k colors, we have c−1(k + 1) = ∅240

and hence this ensures that the total weight of v towards its own color must always be241

non-negative in a stable coloring. Also note that to calculate the total weight from v to242

a certain color class j, it suffices to consider the vertices of color j that belong in the243

out-neighborhood of v.244

Our strategy will be to show that, for appropriately chosen k, deciding whether a graph245

admits a stable k-Coloring is equivalent to deciding whether a Nash Stable partition exists.246

Then, the second ingredient of our approach is to use standard dynamic programming247

techniques to solve Stable k-Coloring on graphs of bounded treewidth and maximum degree.248

The key lemma for the first part is the following:249

▶ Lemma 2. Let G = (V, E) be an edge-weighted digraph whose underlying graph has250

maximum degree ∆ and admits a tree decomposition with maximum bag size t. Then, G has251

a Nash Stable partition if and only if it admits a Stable k-Coloring for k = t · ∆.252

Proof. First, suppose that we have a Stable k-Coloring c : V → [k] of the graph for some253

value k. We obtain a Nash Stable partition of V (G) by turning each color class into a254

coalition. By the definition of Stable k-Coloring, each vertex has at least as high utility in255

its own color class (and hence its own coalition) as in any other, so this partition is stable.256

For the converse direction, suppose that there exists a Nash Stable partition π of G.257

We will first attempt to color the coalitions of π in a way that any two coalitions which258

are at distance at most two receive distinct colors, while using at most t · ∆ colors. In259

the remainder, when we refer to the distance between two sets of vertices S1, S2, we mean260

minu∈S1,v∈S2 d(u, v), where distances are calculated in the underlying graph.261

Consider the graph G2 obtained from the underlying graph of G by connecting any two262

vertices which are at distance at most 2 in the underlying graph of G. We can construct a263
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tree decomposition of G2 where all bags contain at most t · ∆ vertices by taking the assumed264

tree decomposition of G and adding to each bag the neighbors of all vertices contained in265

that bag. Furthermore, we can assume without loss of generality that any equivalence class266

C of the Nash Stable partition π is connected in G2. If not, that would mean that there267

exists a class C that contains a connected component C ′ ⊆ C such that C ′ is at distance at268

least 3 from C \ C ′ in the underlying graph of G. In that case we could partition C into two269

classes C ′, C \ C ′, without affecting the stability of the partition.270

Formally now the claim we wish to make is the following:271

▷ Claim 3. There is a coloring c of the equivalence classes of π with k = t · ∆ colors such272

that any two classes C1, C2 of π which are at distance at most two in the underlying graph273

of G receive distinct colors.274

From Claim 3 we obtain a coloring of the equivalence classes of π with k = t · ∆ colors,275

such that any two equivalence classes which are at distance at most 2 in the underlying276

graph of G receive distinct colors. We now obtain a coloring of V by assigning to each vertex277

the color of its class. In the out-neighborhood of each vertex v the partition induced by the278

coloring is the same as that induced by π, since all the vertices in the out-neighborhood of279

v are at distance at most 2 from each other in G. Hence, the k-Coloring must be stable,280

because otherwise a vertex would have incentive to deviate in π by joining another coalition281

or by becoming a singleton. ◀282

▶ Theorem 4. There exists an algorithm which, given an ASHG defined on a digraph283

G = (V, E) whose underlying graph has maximum degree ∆ and a tree decomposition of284

the underlying graph of G of width t, decides if a Nash Stable partition exists in time285

(∆t)O(∆t) (n + log W )O(1), where n = |V | and W is the largest absolute weight.286

3.2 Tight ETH-based Lower Bounds287

▶ Theorem 5. If the ETH is true, there is no algorithm which decides if an ASHG on a288

graph with n vertices, maximum degree ∆, and pathwidth p admits a Nash Stable partition in289

time (p∆)o(p∆)(nW )O(1), where W is the maximum absolute weight.290

Proof. We will give a parametric reduction which, starting from a 3-SAT instance ϕ with n291

variables and m clauses, and for any desired parameter ∆ < n/ log n, constructs an ASHG292

instance G with the following properties:293

1. G can be constructed in time polynomial in n294

2. G has maximum degree O(∆)295

3. G has pathwidth O( n
∆ log ∆ )296

4. the maximum absolute value W is 2O(∆)
297

5. ϕ is satisfiable if and only if there exists a Nash Stable partition.298

Before we go on, let us argue why a reduction that satisfies these properties does indeed299

establish the theorem: given a 3-SAT instance on n variables, we set ∆ = ⌊
√

n⌋. We300

construct G in polynomial time, therefore the size of G is polynomially bounded by n.301

Deciding if G has a Nash Stable partition is equivalent to solving ϕ by the last property. By302

the third property, the pathwidth of the constructed graph is O(
√

n
log n ), so p∆ = O( n

log n ).303

Furthermore, W = 2O(
√

n). If deciding if a Nash Stable partition exists can be done in time304

(p∆)o(p∆)(|G| ·W )O(1), the total running time for deciding ϕ is (p∆)o(p∆)(|G| ·W )O(1) = 2o(n)
305

contradicting the ETH.306
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We now describe our construction. We are given a 3-SAT instance ϕ with variables307

x0, . . . , xn−1, and a parameter ∆, which we assume to be a power of 2 (otherwise we increase308

its value by at most a factor of 2). We also assume without loss of generality that all clauses309

of ϕ have size exactly 3 (otherwise we repeat literals). We construct the following graph:310

1. Selection vertices: for each i1 ∈ {0, . . . , ⌈ n
∆ log ∆ ⌉}, i2 ∈ {0, . . . , ∆ − 1}, j ∈ {1, . . . , m},311

we construct a vertex u(i1,i2,j).312

2. Consistency vertices: for each i1 ∈ {0, . . . , ⌈ n
∆ log ∆ ⌉}, j ∈ {1, . . . , m − 1}, we construct313

a vertex c(i1,j). For i2 ∈ {0, . . . , ∆ − 1} we give weights: w(c(i1,j), u(i1,i2,j)) = 4i2 ;314

w(c(i1,j), u(i1,i2,j+1)) = −4i2 ; w(u(i1,i2,j), c(i1,j)) = w(u(i1,i2,j+1), c(i1,j)) = −4∆.315

3. Clause gadget: for each j ∈ {1, . . . , m} we construct two vertices sj , s′
j and set316

w(sj , s′
j) = 2. We also construct three vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) and set w(ℓ(j,1), sj) =317

w(ℓ(j,2), sj) = w(ℓ(j,3), sj) = 2 and w(sj , ℓ(j,1)) = w(sj , ℓ(j,2)) = w(sj , ℓ(j,3)) = −1.318

4. Palette gadget: we construct a vertex p and a helper p′. We set w(p, p′) = w(p′, p) = 1.319

Furthermore, for i1 = ⌈ n
∆ log ∆ ⌉ and for all i2 ∈ {0, . . . , ∆ − 1}, we set w(p, u(i1,i2,0)) = 1320

and w(u(i1,i2,0), p) = −1.321

So far, we have described the main part of our construction, without yet specifying how322

we encode which literals appear in each clause. Before we move on to describe this part, let323

us give some intuition about the construction up to this point. The intended meaning of324

the palette gadget is that vertices u(i1,i2,0) for i1 = ⌈ n
∆ log ∆ ⌉ and i2 ∈ {0, . . . , ∆ − 1} should325

be placed in distinct coalitions (p can be thought of as a stalker). These vertices form a326

“palette”, in the sense that every other selection vertex encodes an assignment to some of327

the variables of ϕ by deciding which of the palette vertices it will join. Hence, we intend to328

extract an assignment of ϕ from a stable partition by considering each vertex u(i1,i2,0), for329

i1 ∈ {0, . . . , ⌈ n
∆ log ∆ ⌉ − 1}, i2 ∈ {0, . . . , ∆ − 1}. For each such vertex we test in which of the330

∆ palette partitions the vertex was placed, and this gives us enough information to encode331

log ∆ variables of ϕ. Since we have ⌈ n
∆ log ∆ ⌉ · ∆ ≥ n

log ∆ non-palette selection vertices, and332

each such selection vertex encodes log ∆ variables, we will be able to encode an assignment333

to n variables. The role of the consistency vertices is to make sure that the partition of334

the selection vertices (and hence, the encoded assignment) stays consistent throughout our335

construction.336

In order to complete the construction, let us make the above intuition more formal. For337

i1 ∈ {0, . . . , ⌈ n
∆ log ∆ ⌉ − 1}, i2 ∈ {0, . . . , ∆ − 1} and for any j ∈ {1, . . . , m}, we will say that338

u(i1,i2,j) encodes the assignment to variables xk, with k ∈ {i1 · ∆ log ∆ + i2 log ∆, · · · , i1 ·339

∆ log ∆ + i2 log ∆ + log ∆ − 1}. Equivalently, given an integer k, we can compute which340

selection vertices encode the assignment to xk by setting i1 = ⌊ k
∆ log ∆ ⌋ and i2 = ⌊ k−i1∆ log ∆

log ∆ ⌋.341

In that case, xk is represented by u(i1,i2,j) (for any j).342

Let us now explain precisely how an assignment to the variables of ϕ is encoded by the343

placement of selection vertices in coalitions. Let k be such that xk is encoded by u(i1,i2,j)344

and let i3 = k − i1∆ log ∆ − i2 log ∆. We have i3 ∈ {0, . . . , log ∆ − 1}. If xk is set to True345

in the assignment, then u(i1,i2,j) must be placed in the same coalition as a palette vertex346

u⌈ n
∆ log ∆ ⌉,i′

2,0 where i′
2 has the following property: if we write i′

2 in binary, then the bit in347

position i3 must be set to 1. Similarly, if xk is set to False, then we must place u(i1,i2,j) in348

the same coalition as a palette vertex u⌈ n
∆ log ∆ ⌉,i′

2,0 where writing i′
2 in binary gives a 0 in349

position i3. Observe that, given an assignment and a vertex u(i1,i2,j) which represents log ∆350

variables, this process fully specifies the palette vertex with which we must place u(i1,i2,j)351

to represent the assignment. In the converse direction, we can extract from the placement352

of u(i1,i2,j) an assignment to the vertices it represents if we know that all palette vertices353
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are placed in distinct components, simply by finding the palette vertex u(⌈ n
∆ log ∆ ⌉,i′

2,0) in the354

coalition of u(i1,i2), writing down i′
2 in binary, and using its log ∆ bits in order to give an355

assignment to the log ∆ variables represented by u(i1,i2,j).356

We are now ready to complete the construction by considering each clause. Each vertex357

ℓ(j,α), α ∈ {1, 2, 3}, corresponds to a literal of the j-th clause of ϕ. If this literal involves the358

variable xk, we calculate integers i1, i2, i3 from k as explained in the previous paragraph. Say,359

xk is the i3-th variable represented by u(i1,i2,j). We set w(ℓ(j,α), u(i1,i2,j)) = 1. Furthermore,360

for each i′
2 ∈ {0, . . . , ∆ − 1} we look at the i3-th bit of the binary representation of i′

2. If361

setting xk to the value of that bit would make the literal represented by ℓ(j,α) True, we set362

w(ℓ(j,α), u(⌈ n
∆ log ∆ ⌉,i′

2,j)) = 1; otherwise we set w(ℓ(j,α), u(⌈ n
∆ log ∆ ⌉,i′

2,j)) = 0. We perform the363

above process for all j ∈ {1, . . . , m}, α ∈ {1, 2, 3}.364

Our construction is now complete, so we need to show that we satisfy all the claimed365

properties. It is not hard to see that the graph can be built in polynomial time, and the366

maximum absolute weight used is 2O(∆) (on arcs incident on some consistency vertices). The367

vertices with maximum degree are the consistency vertices and the vertices representing368

literals, both of which have degree O(∆).369

To establish the bound on the pathwidth we first delete p, p′ from the graph, as this can370

decrease pathwidth by at most 2. Now observe that, for each j, the set Cj = {c(i1,j) | i1 ∈371

{0, . . . , ⌈ n
∆ log ∆ ⌉} } is a separator of the graph. We claim that if we fix a j, then the set372

Cj ∪ Cj+1 separates the set C ′
j = {u(i1,i2,j) |i1 ∈ {0, . . . , ⌈ n

∆ log ∆ ⌉}, i2 ∈ {0, . . . , ∆ − 1} } ∪373

{sj , s′
j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} from the rest of the graph. We claim that we can calculate a path374

decomposition of the graph induced by Cj ∪ C ′
j ∪ Cj+1 with width O( n

∆ log ∆ ) such that the375

first bag contains Cj and the last bag contains Cj+1. If we achieve this we can construct a376

path decomposition of the whole graph by gluing these decompositions together in the obvious377

way (in order of increasing j). However, a path decomposition of this induced subgraph can378

be constructed by placing Cj ∪ Cj+1 ∪ {sj , s′
j , ℓ(j,1), ℓ(j,2), ℓ(j,3)} and a distinct vertex of the379

remainder of C ′
j in each bag. This decomposition has width 2|Cj | + O(1) = O( n

∆ log ∆ ).380

Finally, let us establish the main property of the construction, namely that ϕ is satisfiable381

if and only if the ASHG instance admits a Nash Stable partition. If there exists a satisfying382

assignment to ϕ we construct a partition as follows: (i) p, p′ are in their own coalition383

(ii) each consistency vertex is a singleton (iii) for i2 ∈ {0, . . . , ∆ − 1}, the vertices of384

{u⌈ n
∆ log ∆ ⌉,i2,j | j ∈ {1, . . . , m}} are placed in a distinct coalition (iv) we place the remaining385

selection vertices in one of the previous ∆ coalitions in a way that represents the assignment386

as previously explained (v) for each j ∈ {1, . . . , m} the j-th clause contains a True literal; we387

place the corresponding vertex ℓ(j,α) together with its out-neighbor in the selection vertices,388

and the remaining literal vertices together with s, s′ in a new coalition. We claim that this389

partition is Nash Stable. We have the following argument: (i) p′ is with p, while p cannot390

increase her utility by leaving p′, since all its other out-neighbors are in distinct coalitions (ii)391

for each i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) are in the same coalition. Hence, the utility392

of each consistency vertex is 0 in any coalition, and such vertices are stable as singletons393

(iii) each selection vertex u(i1,i2,j) has utility 0, and such vertices only have out-going arcs of394

negative weight (iv) in each clause gadget we have a coalition with sj , s′
j together with two395

literal vertices, say ℓ(j,1), ℓ(j,2); no vertex has incentive to leave this coalition (v) finally, for396

literal vertices ℓ(j,α) which we placed together with a selection vertex, we observe that if the397

assignment sets the corresponding literal to True, the selection vertex that is an out-neighbor398

of ℓ(j,α) must have been placed in a coalition that contains a palette vertex towards which399

ℓ(j,α) has positive utility, hence the utility of ℓ(j,α) is 2 and this vertex is stable.400

For the converse direction, suppose that we have a Nash Stable partition π. We first401
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prove that all vertices u⌈ n
∆ log ∆ ⌉,i2,0, for i2 ∈ {0, . . . , ∆ − 1}, must be in distinct coalitions.402

Indeed, if two of them are in the same coalition, p will have incentive to join the coalition403

that has the maximum number of such vertices. However, once p joins such a coalition, these404

vertices will have negative utility, contradicting stability. Second, we prove that for each405

i1, i2, j, the vertices u(i1,i2,j), u(i1,i2,j+1) must be in the same coalition. If not, consider two406

such vertices which are in distinct coalitions and maximize i2. We claim that in this case407

c(i1,j) will always join u(i1,i2,j). Indeed, from the selection of i2, we have that for i′
2 > i2,408

the contribution of arcs with absolute weight 4i′
2 to the utility of c(i1,j) cancels out; while409

for i′
2 < i2 the sum of all absolute utilities of arcs with weights 4i′

2 is too low to affect the410

placement of c(i1,j) (in particular, 4i2 −
∑

j<i2
4j >

∑
j<i2

4j). But, if c(i1,j) joins such a411

coalition, a selection vertex has negative utility, contradicting stability.412

From the two properties above we can now extract an assignment to ϕ. For each selection413

vertex u(i1,i2,j), if this vertex is in the same coalition as u(⌈ n
∆ log ∆ ⌉,i′

2,0), we give an assignment414

to the variables represented by u(i1,i2,j) as described, that is, we write i′
2 in binary and use415

one bit for each variable. Note that the choice of j here is irrelevant, as we have shown that416

thanks to the consistency vertices, for each i1, i2, all vertices u(i1,i2,j) are in the same coalition.417

If u(i1,i2,j) is not in the same coalition as any u(⌈ n
∆ log ∆ ⌉,i′

2,0), we set its corresponding variables418

in an arbitrary way. To see that this assignment satisfies clause j, consider sj , which, without419

loss of generality is placed with s′
j . If three of the vertices ℓ(j,1), ℓ(j,2), ℓ(j,3) are in the same420

coalition as sj , then sj has negative utility, contradiction. Hence, one of these vertices, say421

ℓ(j,1), is in another coalition. But then, since the neighbors of this vertex among vertices422

u(⌈ n
∆ log ∆ ⌉,i2,j) are all in distinct coalitions, ℓ(j,1) is in the same coalition with one such vertex423

and its out-neighbor selection vertex. But this means that we have extracted an assignment424

from the corresponding vertex and that this assignment sets the corresponding literal to425

True, satisfying the clause. ◀426

▶ Corollary 6. If the ETH is true, there is no algorithm which decides if an ASHG on a427

graph with n vertices, maximum degree ∆, and constant pathwidth admits a Nash Stable428

partition in time ∆o(∆)(nW )O(1), where W is the maximum absolute weight.429

▶ Theorem 7. If the ETH is true, there is no algorithm which decides if an ASHG on a430

graph with n vertices, constant maximum degree ∆, and pathwidth p admits a Nash Stable431

partition in time po(p)nO(1), even if all weights have absolute value O(1).432

Proof. We describe a reduction from a 3-SAT formula ϕ with n variables and m clauses. Our433

goal is to build an equivalent instance with bounded maximum degree, bounded maximum434

weight, and pathwidth O(n/ log n). Suppose without loss of generality that n is a power of435

4 (otherwise add some dummy variables), and the variables of ϕ are x0, x1, . . . , xn−1. We436

construct a graph initially made up of the following parts:437

1. Palette Paths: For i ∈ {0, . . . ,
√

n − 1}, j ∈ {1, . . . , m + n}, we construct a vertex p(i,j).438

For j ∈ {1, . . . , m + n − 1} we set w(p(i,j+1), p(i,j)) = 1.439

2. Selection Paths: For i ∈ {0, . . . , ⌊ 2n
log n ⌋}, j ∈ {1, . . . , m + n}, we construct a vertex440

u(i,j). For i ∈ {0, . . . , ⌊ 2n
log n ⌋}, j ∈ {1, . . . , m + n − 1} we set w(u(i,j+1), u(i,j)) = 1.441

3. Palette Consistency Gadget: For each pair of indices i, i′ ∈ {1, . . . ,
√

n}, with i ≠ i′,442

we arbitrarily select a distinct index j ∈ {m + 1, . . . , m + n − 1}. We construct two443

vertices aj , bj and set w(aj , p(i,j)) = 1, w(aj , p(i′,j)) = −1, w(aj , bj) = 1, w(bj , aj) =444

w(bj , p(i,j)) = w(bj , p(i′,j)) = −1.445

At this point we have described the skeleton of our construction which will be sufficient446

to encode the variables of the original formula and their assignments. Before we proceed to447
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explain how we complete the construction to encode the clauses, we give some intuition. The448 √
n palette paths and the roughly 2n/ log n selection paths are intended to form coalitions, in449

the sense that for a fixed i, all vertices p(i,j) must belong in the same coalition, and similarly450

for all vertices of u(i,j). To ensure this, we will make sure that vertices p(i,j), u(i,j) have no451

other out-going arcs in our construction, hence each such vertex will always have an incentive452

to join its immediate neighbor in the path. The palette consistency gadgets will make sure453

that the
√

n palette paths form
√

n distinct coalitions.454

Armed with this intuition, we now explain how assignments will be encoded. Assuming the455 √
n palette paths form distinct coalitions, we can decide to place u(i,1) (and its corresponding456

selection path) inside any one of these
√

n coalitions. This choice encodes log(
√

n) = log n
2457

bits of information (which is an integer, because n is a power of 4). Hence, we define that the458

placement of u(i,1) encodes the assignment of variables xk for k ∈ { i log n
2 , . . . , (i+1) log n

2 − 1}.459

Equivalently, given k, we say that the assignment of xk is encoded by the placement of the460

vertex u(i,1), where i = ⌊ 2k
log n ⌋. To be more precise we will make the following correspondence:461

the placement of u(i,1) dictates that xk is set to True if i = ⌊ 2k
log n ⌋, u(i,1) is in the same coalition462

as p(i′,1), and the binary representation of i′ using log n
2 bits has a 1 at position k − i log n

2463

(where we number positions in the binary representation starting from 0); otherwise the464

placement of u(i,1) dictates that xk is set to False. It is easy to also make this correspondence465

in the opposite direction: if we have an assignment to the variables represented by u(i,1), we466

write these variables in binary in order of increasing index and let i′ be the resulting number.467

We place u(i,1) together with p(i′,1).468

Now that we have explained our intended encoding of the variable assignments we can469

complete the construction. Fix a j ∈ {1, . . . , m} and consider the j-th clause of ϕ which,470

without loss of generality, contains three literals (if not, we can repeat literals). Suppose471

the three (not necessarily distinct) variables involved in the clause are xk1 , xk2 , xk3 , and472

i1 = ⌊ 2k1
log n ⌋ (and i2, i3 are defined similarly). We construct the following gadgets:473

1. Indegree reduction: Construct three directed paths of length
√

n. Label their vertices474

ℓ(j,α,β), for α ∈ {1, 2, 3} and β ∈ {0, . . . ,
√

n − 1}. For all α ∈ {1, 2, 3} and β ∈475

{0, . . . ,
√

n − 2} we set w(ℓ(j,α,β), ℓ(j,α,β+1)) = 1. We also set w(ℓ(j,α,
√

n), u(iα,j)) = 1.476

2. Checker vertices: For each α ∈ {1, 2, 3} we do the following: for each i′ ∈ {0, . . . ,
√

n−1}477

we consider whether the assignment encoded by placing u(iα,j) in the coalition of p(i′,j)478

would satisfy the literal involving xkα (i.e. whether the binary representation of i′ has a 1479

at position kα − iα log n
2 if the literal is positive, and 0 if the literal is negated). If yes,480

we construct a checker vertex c(j,α,i′) and set w(c(j,α,i′), p(i′,j)) = w(c(j,α,i′), ℓ(j,α,i′)) = 1.481

Let Cj be the set containing all checker vertices we constructed in this step for a given j482

(for all α ∈ {1, 2, 3} and i′ ∈ {0, . . . ,
√

n − 1}). We have |Cj | ≤ 3
√

n.483

3. Or gadget: We construct for each k ∈ {1, . . . , |Cj |} three vertices rk, r′
k, r′′

k and set for484

all k, w(rk, r′
k) = 1, and w(rk, r′′

k) = −2. Furthermore, for all k ∈ {1, . . . , |Cj | − 1} we485

set w(rk, rk+1) = 2 and w(rk+1, rk) = −1. For each k ∈ {2, . . . , |Cj |} we pick a distinct486

vertex c ∈ Cj and set w(pk, c) = −1 and w(c, pk) = 2. Finally, for the remaining vertex c487

of Cj we set w(r1, c) = −2 and w(c, r1) = 2.488

The construction described above is repeated for each j ∈ {1, . . . , m}, in order to encode489

all m clauses of the instance. Let us give some intuition: first, the indegree reduction paths490

are not particularly important; all vertices ℓ(j,α,β) are intended to belong in the coalition491

of u(iα,j), and their role is only to allow us to avoid giving this vertex large in-degree (we492

re-route arcs that would have gone to u(iα,j) towards distinct vertices of the path). The493

checker vertices play the following role: if the encoded assignment sets a literal to True, then494
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one of the checkers will have utility 2 by joining the coalition of a vertex u(iα,j). In this495

case we say that this checker is “satisfied”. Other checkers will join the coalition of their496

out-neighbor in the Or gadget. Hence, the role of the Or gadget is to make sure that at least497

one checker vertex must be satisfied to obtain a stable partition.498

Let us now prove that our construction has all the necessary properties. First, it is not499

hard to see that the maximum degree ∆ and maximum absolute weight W are bounded500

by a constant. We claim that the pathwidth of our construction is O(n/ log n). To see501

this, let Bj = {u(i,j) | i ∈ {0, . . . , ⌊ 2n
log n ⌋}} ∪ {p(i,j) | i ∈ {0, . . . ,

√
n − 1}}. We construct a502

path decomposition using n + m − 1 bags, where for j ∈ {1, . . . , n + m − 1}, the j-th bag503

contains Bj ∪ Bj+1. This decomposition has width O(n/ log n) and already covers all palette504

and selection vertices and their induced edges. To complete the decomposition, for each505

j ∈ {1, . . . , m}, we add to the j-th bag all the (at most O(
√

n)) vertices we constructed506

to represent clause j (that is, the Or gadget, checkers, and indegree reduction vertices for507

clause j). Furthermore, for j ∈ {m + 1, . . . , m + n − 1}, we add to the j-th bag the palette508

consistency vertices aj , bj , if they exist. We obtain a decomposition of width O(n/ log n).509

Hence, if we prove that the new instance has a Nash Stable partition if and only if ϕ is510

satisfiable, we are done. Indeed, in that case an algorithm with running time po(p)nO(1)
511

would run in (n/ log n)o(n/ log n) = 2o(n) and would refute the ETH.512

What remains then is to prove that ϕ is satisfiable if and only if the ASHG instance513

we constructed has a stable partition. For the forward direction, suppose there exists514

a satisfying assignment. We construct a stable partition as follows: initially, for each515

i ∈ {0, . . . ,
√

n−1}, each palette path Pi = {p(i,j) | j ∈ {1, . . . , m+n}} forms its own coalition;516

furthermore for each i ∈ {0, . . . , ⌊ 2n
log n ⌋}, all vertices of the set {u(i,j) | j ∈ {1, . . . , m + n}}517

are placed in Pi′ , where i′ is obtained by writing the assignments to the variables xk for518

k ∈ { i log n
2 , i log n

2 + 1, . . . , (i+1) log n
2 − 1} and reading it as a binary number. Observe that all519

vertices described so far are stable. For palette consistency vertices aj , bj , we place bj as a520

singleton (which is stable), and aj together with its out-neighbor in the palette vertices that521

gives it positive utility. This is always possible, since each Pi is in a distinct coalition. For the522

clause gadgets, fix a j, and place all vertices ℓ(j,α,β) in the same coalition as u(iα,j). This is523

stable for these vertices (and indifferent for u(iα,j)). Because we have a satisfying assignment,524

there is a literal that is set to True, say the literal involving variable xkα . This implies that525

there exists i′ and checker vertex c(j,α,i′) such that the checker has positive utility for p(i′,j)526

and ℓ(j,α,i′), and the latter two vertices are in the same coalition. We place the checker527

in this coalition, where it receives utility 2 and is therefore stable. For each other checker528

c ∈ Cj , we place c together with its out-neighbor in the Or gadget, making c stable. Finally,529

there exists a k0 ∈ {1, . . . , |Cj |} such that the neighbor of rk0 in Cj is not placed together530

with rk0 . We place vertices of the Or gadget in coalitions as follows: for k ∈ {1, . . . , k0 − 1}531

we place rk, r′
k together with rk+1, and r′′

k as a singleton; for k ∈ {k0, . . . , |Cj | − 1} we place532

rk together with r′
k and place r′′

k together with rk+1; finally, r|Cj | is placed with r′
k. This533

partition is stable because for k < k0 the vertex rk receives utility 2 from its arc towards534

rk+1 and 1 from r′
k; rk0 receives at most −1 from rk0−1 (if k0 > 1) but also 1 from r′

k0
, so535

its utility is not negative; furthermore, since r′′
k0

, rk0+1 are together rk0 cannot increase its536

utility by switching; the same arguments apply for |Cj | > k > k0 while for r|Cj | its utility is537

also non-negative and this vertex is stable.538

For the converse direction, suppose that there exists a stable partition π. We first observe539

that for all i ∈ {0, . . . ,
√

n − 1}, Pi is contained in a coalition, otherwise, there would be540

a p(i,j+1) in a coalition distinct from that of p(i,j), but then the former vertex would have541

incentive to deviate. Furthermore, for i ̸= i′, Pi, Pi′ are contained in distinct coalitions.542
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To see this, consider the palette consistency gadget aj , bj we constructed for the pair i, i′.543

The vertex bj has to be a singleton (placing it together with one of its neighbors gives it544

negative utility). Therefore, aj must receive positive utility in another coalition. However,545

this would be impossible if the neighbors of aj in Pi, Pi′ were in the same coalition. We also546

observe that, for i ∈ {0, . . . , ⌊ 2n
log n ⌋} the vertices of the i-th selection path belong in the same547

coalition (with arguments similar to those for Pi). Hence, from this placement we extract an548

assignment for ϕ. If the vertex u(i,1) is placed together with p(i′,1), we write i′ in binary and549

use the bits to give values to the variables xk for k ∈ { i log n
2 , . . . , (i+1) log n

2 − 1}. If u(i,1) is550

not together with any palette vertex, we set these variables arbitrarily.551

We claim that the assignment we have extracted satisfies ϕ. To see this, consider the j-th552

clause. By arguments similar as above, all vertices of the path ℓ(j,α,β) are placed together553

with u(iα,j), because each such vertex only has one out-going arc, and this arc has positive554

weight. We observe that if one of the checker vertices of cj is satisfied, that is, if cj is placed555

in a coalition that does not contain its neighbor in the Or gadget, the utility of cj in its556

current coalition must be 2, because checker vertices only have three out-going arcs, one557

with weight 2 (towards the Or gadget) and two with weight 1. Hence, cj must be placed558

in the same component as a vertex u(iα,j) and a palette vertex p(i′,j), and furthermore, the559

placement of u(iα,j) in the coalition of Pi′ encodes an assignment that satisfies the clause560

(otherwise this checker would not have been constructed). We conclude that if there exists561

a cj that is not placed together with its neighbor in the Or gadget, the clause is satisfied.562

What remains, then, is to show that if each checker vertex was placed together with its563

neighbor in the Or gadget, the partition π would be unstable. Indeed, we observe that in564

this case r1 must be placed with r2 (otherwise r1 has negative utility). But we also note that565

if rk is placed together with rk+1, then rk+1 must be placed together with rk+2 (otherwise566

rk+1 has negative utility). Hence, all vertices rk for k ∈ {1, . . . , |Cj |} must be in the same567

coalition. But then, the utility of r|Cj | is negative, contradiction. ◀568

▶ Corollary 8. Theorem 7 also applies to Connected Nash Stability.569

4 Parameterization by Treewidth Only570

In this section we consider Nash Stability on graphs of bounded treewidth. Peters [37]571

showed that this problem is strongly NP-hard on stars, but for a more general version where572

preferences are described by boolean formulas (HC-nets). In Section 4.1 we strengthen this573

hardness result by showing that Nash Stability remains strongly NP-hard on stars for574

additive preferences. We also show that Connected Nash Stability is strongly NP-hard575

on stars, albeit also using HC-nets.576

The only case that remains is Connected Nash Stability with additive preferences.577

Somewhat surprisingly, we show that this case evades our hardness results because it is in578

fact more tractable. We establish this via an algorithm running in pseudo-polynomial time579

when the treewidth is constant in Section 4.2. As a result, this is the only case of the problem580

which is not strongly NP-hard on bounded treewidth graphs (unless P=NP).581

We then observe that our algorithm only establishes that the problem is in XP param-582

eterized by treewidth (for weights written in unary). We show in Section 4.3 that this is583

inevitable, as the problem is W[1]-hard parameterized by treewidth even when weights are584

constant. Hence, our “pseudo-XP” algorithm is qualitatively optimal.585
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4.1 Refined paraNP-hardnesss586

▶ Theorem 9. Nash Stability is strongly NP-hard for stars for additive preferences.587

Proof. We present a reduction from 3-Partition. In this problem we are given a set of 3n588

positive integers A, a target value T , and are asked to partition A into n triples, such that589

each triple has sum exactly T . This problem has long been known to be strongly NP-hard590

[22]. Furthermore, we can assume that the sum of all elements of A is nT (otherwise the591

answer is clearly No); and that all elements have values strictly between T/4 and T/2, so592

sets of sizes other than three cannot have sum T (this can be achieved by adding T to all593

elements and setting 4T as the new target).594

We construct an ASHG as follows: for each element of A we construct a vertex; we595

construct a set B of n additional vertices; we add a “stalker” vertex s and a helper s′. The596

preferences are defined as follows: for all x ∈ A ∪ B we set w(x, s) = −1; for each x ∈ B we597

set w(s, x) = 2T ; for each x ∈ A we set w(s, x) = −w(x), where w(x) is the value of the598

corresponding element in the original instance. Finally, we set w(s, s′) = T and w(s′, s) = 1.599

The graph is a star as all arcs are incident on s.600

If there exists a valid 3-partition of A, we construct a stable partition of the new instance601

by placing s with s′ and, for each triple placing its elements in a coalition with a distinct602

vertex of B. Vertices of A ∪ B have utility 0 in this configuration and no incentive to deviate;603

while s would have utility T in any existing coalition, so it has no incentive to leave s′; s′ is604

satisfied as she is together with s.605

For the converse direction, if we have a stable configuration π, s′ must be with s (otherwise606

s′ has incentive to deviate). Furthermore, s cannot be with any vertex of A ∪ B, as placing s607

with any such vertex would give that vertex incentive to leave. Hence, s, s′ are one coalition608

of the stable partition, and s has utility T in this coalition. This implies that every coalition609

formed by vertices of A ∪ B must have utility at most T for s.610

We now want to prove that every coalition of vertices of A ∪ B contains exactly one vertex611

of B. If we show this, then the weight of elements of A placed in each such coalition must be612

at least T , hence it must be exactly T (as the sum of all elements of A is nT ). Therefore, we613

obtain a solution to the original instance.614

To prove that every coalition that contains vertices of A ∪ B must contain exactly one615

vertex of B, suppose first the there exists a coalition that only contains vertices of A. Call616

the union of all such coalitions A′ ⊆ A. Let C1, . . . , Ck be the coalitions that contain some617

vertex of B, for some k ≤ |B| = n. We now reach a contradiction as follows: first, since618

s does not have incentive to join Ci, for i ∈ [k], we have
∑

v∈Ci
w(s, v) ≤ T , therefore619 ∑k

i=1
∑

v∈Ci
w(s, v) ≤ kT ≤ nT . On the other hand,

∑k
i=1

∑
v∈Ci

w(s, v) ≥
∑

v∈B w(s, v) +620 ∑
v∈A\A′ w(s, v) > 2nT − nT = nT , because if A′ is non-empty

∑
v∈A\A′ w(s, v) < nT .621

Hence we have a contradiction and from now on we suppose that every coalition that contains622

a vertex of A ∪ B has non-empty intersection with B.623

Finally, consider a coalition that contains k ≥ 1 vertices of B. These vertices give s624

utility 2kT , meaning that the sum of weights of vertices of A placed in this coalition must625

be at least (2k − 1)T . Let ti be the number of coalitions which contain exactly i ≥ 1 vertices626

of B. We obtain the inequality
∑

i ti(2i − 1)T ≤ nT , because the weight of all elements627

of A is nT . On the other hand
∑

i iti = n, as we have that |B| = n. We therefore have628 ∑
i ti(2i − 1) ≤ n ⇔

∑
i ti ≥ n =

∑
i iti ⇔

∑
i>1(1 − i)ti ≥ 0, which can only hold if ti = 0629

for i > 1. ◀630

▶ Theorem 10. Deciding if a graphical hedonic game represented by an HC-net admits a631

connected Nash Stable partition is NP-hard even if the input graph is a star and all weights632
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are in {1, −1}.633

4.2 Pseudo-XP algorithm for Connected Partitions634

▶ Theorem 11. There exists an algorithm which, given an ASHG instance on n vertices635

with maximum absolute weight W , along with a tree decomposition of the underlying graph636

of width t, decides if a connected Nash Stable partition exists in time (nW )O(t2).637

Proof. Due to space constraints, we only sketch the proof and defer details to the appendix.638

The algorithm uses standard DP techniques. In addition to connectivity information about639

which vertices of the bag are in the same connected component of the same coalition (which640

takes tO(t) to store in the DP table), we store for each vertex the utility it would have if it641

joined the coalition of each other vertex in the bag, and also the best coalition it has seen642

in the part of the graph that has already been processed. This gives (nW )t combinations643

per vertex in the bag, hence a DP table of the claimed size, and allows us to verify that644

all vertices are stable. The key property is that, since coalitions are connected, a coalition645

that has already been seen and does not contain any members in the bag is complete, in646

the sense that no further vertex can later be added to the coalition (as it would become647

disconnected). ◀648

4.3 W-hardness for Connected Partitions649

▶ Theorem 12. If the ETH is true, deciding if an ASHG of pathwidth p admits a connected650

Nash Stable configuration cannot be done in time f(p) ·no(p/ log p) for any computable function651

f , even if all weights are in {−1, 1}.652

By a slight modification of the previous proof we also obtain weak NP-hardness for the653

case where the input graph has vertex cover 2.654

▶ Corollary 13. It is weakly NP-hard to decide if an ASHG on a graph with vertex cover 2655

admits a connected Nash Stable partition.656

5 Conclusions and Open Problems657

Our results give strong evidence that the precise complexity of Nash Stability parameterized658

by t + ∆ is in the order of (t∆)O(t∆). It would be interesting to verify if the same is true659

for Connected Nash Stability, as this problem turned out to be slightly easier when660

parameterized only by treewidth, and is only covered by Corollary 8 for the case of bounded-661

degree graphs. Of course, it would also be worthwhile to investigate the fine-grained662

complexity of other notions of stability. In particular, versions which are complete for higher663

levels of the polynomial hierarchy [38] may well turn out to have double-exponential (or664

worse) complexity parameterized by treewidth [31, 32].665
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A Omitted Figures795
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Figure 1 Overview of the reduction of Theorem 5. Selection vertices form m columns of n/ log ∆
vertices each. An assignment is encoded by the partition of a column into coalitions. The n

∆ log ∆
consistency vertices that follow a column ensure that the partition is repeated in the next column,
because consistency vertices are disliked by everyone, so the only way to make the coalition stable is
to make sure they have utility 0 everywhere.
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Figure 2 On the left, an overview of the reduction of Theorem 7. We have n + m columns, each
with

√
n palette vertices and 2n

log n
selection vertices. Assignments are encoded by the placement of

selection vertices in coalitions. On the right, an OR gadget, where the right-most part depicts the
checker vertices. Such a vertex is satisfied if its two out-going arcs going to the rest of the graph
lead to the same coalition. Otherwise, the checker joins the Or gadget. On the left, the vertices
of the Or gadget starting from r1 at the top. Each ri has utility 2 for ri+1 but utility −1 for ri−1.
Each ri has two vertices attached, one that it likes (r′

i) and one that it dislikes (r′′
i ). If the checker

attached to rk0 joins the rest of the graph, we place r′′
k0 with rk0+1 and continue in this way to

obtain a stable partition of the Or gadget.
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B Omitted Proofs796

B.1 Proof of Claim 3797

Claim 3. We prove the claim by induction on the number of equivalence classes of π. If there798

is only one class the claim is trivial.799

Consider a rooted tree decomposition of G2. For an equivalence class C of π we say that800

the bag B is the top bag for C if B contains a vertex of C and no bag that is closer to801

the root contains a vertex of C. Select an equivalence class C of π whose top bag is as far802

from the root as possible. We claim that there are at most t · ∆ − 1 classes C ′ which are at803

distance at most 2 from C in G.804

In order to prove that there are at most t · ∆ − 1 other classes at distance at most two805

from C, consider such a class C ′, which is therefore at distance one from C in G2. Let B806

be the top bag of C. If C ′ does not contain any vertex that appears in B then we get a807

contradiction as follows: first, C ′ has a neighbor of a vertex of C, so these two vertices must808

appear together in a bag; since all vertices of C appear in the sub-tree rooted at B, some809

vertices of C ′ must appear strictly below B in the decomposition; since B is a separator of810

G2 and C ′ is connected, if no vertex of C ′ is in B then all vertices of C ′ appear below B in811

the decomposition; but then, this contradicts the choice of C as the class whose top bag is812

as far from the root as possible. As a result, for each C ′ that is a neighbor of C in G2, there813

exists a distinct vertex of C ′ in B. Since |B| ≤ t · ∆ and B contains a vertex of C, we get814

that the coalitions C ′ which are neighbors of C in G2 are at most t · ∆ − 1.815

We now remove all vertices of C from the graph and claim that π restricted to the new816

graph is still a Nash Stable partition. By induction, there is a coloring of the remaining817

coalitions of π that satisfies the claim. We keep this coloring and assign to C a color that is818

not used by any of the at most k − 1 coalitions which are at distance two from C. Hence, we819

obtain the claimed coloring of the classes of π. ◁820

B.2 Proof of Theorem 4821

Theorem 4. Using Lemma 2 we will formulate an algorithm that decides if the given instance822

admits a Stable k-Coloring for k = (t + 1)∆, since this is equivalent to deciding if a Nash823

Stable partition exists. We first obtain a tree decomposition of G2 by placing into each bag824

of the given decomposition all the neighbors of all the vertices of the bag.825

We now execute a standard dynamic programming algorithm for k-coloring on this new826

decomposition, so we sketch the details. The DP table has size k(t+1)∆ = (∆t)O(∆t) since827

we need to store as a signature of a partial solution the colors of all vertices contained in a828

bag. The only difference with the standard DP algorithm for coloring is that our algorithm,829

whenever a new vertex v is introduced in a bag B, considers all possible colors for v, and then830

for each u ∈ B, if all neighbors of u are contained in B, verifies for each signature whether u831

is stable. Signatures where a vertex is not stable are discarded. The key property is now that832

for any vertex u, there exists a bag B such that B contains u and all its neighbors (since in833

G2 the neighborhood of u is a clique), hence only signatures for which all vertices are stable834

may survive until the root of the decomposition. ◀835

B.3 Proof of Corollary 6836

Corollary 6. We use the same reduction as in Theorem 5, from a 3-SAT formula on n837

variables, but set ∆ = ⌊ n
2 log n ⌋. According to the properties of the construction, the838

pathwidth of the resulting graph is O( n
∆ log ∆ ) = O(1), the maximum degree is O(n/ log n),839
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the maximum weight is 2O(n/ log n) and the size of the constructed graph is polynomial in n.840

If there exists an algorithm for finding a Nash Stable partition in the stated time, this gives841

a 2o(n) algorithm for 3-SAT. ◀842

B.4 Proof of Corollary 8843

Corollary 8. We use an argument observed by Peters [37] to reduce the problem of finding a844

(possibly disconnected) Nash Stable partition, to the problem of finding a connected Nash845

Stable partition. Consider an ASHG instance G with maximum degree ∆ = O(1), maximum846

absolute weight W = O(1) and pathwidth p. According to Theorem 7, it is impossible to847

decide if G admits a Nash Stable partition in time po(p)nO(1). We construct a new instance848

G2 by adding an arc of weight 0 between any two vertices of G which are at distance exactly849

two in the underlying graph. We claim that G2 has (i) bounded maximum degree, as the850

maximum degree is now ∆2 (ii) pathwidth O(p), or more precisely, pathwidth upper-bounded851

by p∆, since we can obtain a decomposition of G2 by taking a decomposition of G and adding852

to each bag the neighbors of all its vertices. Finally, G2 has a connected Nash Stable partition853

if and only if G has a Nash Stable partition. One direction is trivial, since we did not change854

the preferences of any agent. For the other direction, if G has a (possibly disconnected) Nash855

Stable partition π, we check if π (which is stable in G2) becomes connected in G2. If yes, we856

are done. If not, this means there exists C ∈ π such that C contains a component C1 ⊆ C857

which is at distance at least 3 from all vertices of C \ C1 in the underlying graph of G. But858

then, we can obtain a new stable partition of G by splitting C into C1 and C \ C1. This does859

not change the utility of any agent, and it also does not create a new option for any agent,860

as anyone who has an arc towards C, either has arcs towards C1 or towards C \ C1. We861

continue in this way until π is connected in G2. We conclude that if there was an algorithm862

with parameter dependence po(p) for connected Nash Stability on bounded degree graphs,863

we would obtain such an algorithm for general Nash Stability on bounded degree graphs,864

contradicting the ETH. ◀865

B.5 Proof of Theorem 10866

Theorem 10. We present a reduction from 3-SAT. Before we proceed, let us briefly explain867

that in hedonic games representable by HC-nets, the utility of a vertex u in a coalition S868

is calculated as a function of N(u) ∩ S, using a set of given “rules”. A rule is a disjunctive869

term stating that some vertices of N(u) must or must not be present in S to activate the870

rule. Each activated rule has a pre-defined pay-off and the utility of u is the sum of pay-offs871

of activated rules.872

Given a CNF formula ϕ with n variables and m clauses, we construct a central vertex873

s, 2n literal vertices x1, x̄1, x2, x̄2, . . . , xn, x̄n, and m clause vertices c1, . . . , cm. The vertices874

form a star with s as center. For every cj we define its utility to be 1 if it is together with s.875

For s we have the following rules: for each i ∈ {1, . . . , n}, s has utility −1 if both xi, x̄i are876

in its coalition; for each clause cj , s has utility −1 if cj is in its coalition; for each clause cj877

and each of the (at most 7) assignments to its literals that satisfy the clause, we add a rule878

saying that s has utility 1 if the literals of this assignment are all in its coalition and their879

negations are not in the coalition.880

Suppose ϕ is satisfiable: we form one coalition with s, all clause vertices cj , and all true881

literals of a satisfying assignment; all other literal vertices are singletons. This partition is882

connected and stable. In particular, s has utility 0 (it receives −1 from each clause vertex,883

but +1 from satisfying each clause) and all cj have utility 1. For the converse direction, in884
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a stable partition s is in the same coalition as at most one of xi, ¬xi, for all i ∈ {1, . . . , n},885

otherwise it has negative utility, which means it prefers to be alone. From this we can extract886

an assignment to ϕ. This assignment must satisfy all clauses because all cj are with s (giving887

it utility −m), so m rules giving it utility 1 must be activated, and for each clause at most888

one such rule can be activated. ◀889

B.6 Proof of Theorem 11890

Theorem 11. Our algorithm performs dynamic programming on the tree decomposition891

following standard techniques, so we sketch some of the details and focus on the non-trivial892

parts of the algorithm. As usual, we assume we have a nice tree decomposition [14] and the893

main challenge is in defining a notion of signature of a solution, that is, the information that894

will be stored in each bag of the decomposition that will allow us to encode the structure of895

a solution as it interacts with the bag.896

Consider a rooted nice tree decomposition, a bag B and let B↓ be the set that contains897

all vertices of the input graph G that appear in B or in a descendant of B. The signature of898

a partition π of G = (V, E) with respect to B is a collection of the following information:899

1. A partition π1 of B into equivalence classes, such that x, y ∈ B are in the same class of900

π1 if and only if x, y are in the same coalition of π (so π1 is the restriction of π to B).901

2. A partition π2 of B into equivalence classes, such that x, y ∈ B are in the same class of π2902

if and only if x, y are in the same coalition of π and there exists a path in the underlying903

graph of G[B↓] whose internal vertices are in the same coalition of π as x, y. Observe904

that π2 is necessarily a refinement of π1. Informally, since π is a connected Nash Stable905

partition, the classes of π1 must eventually induce connected subgraphs. The partition906

π2 tells which parts of each class are already connected in B↓.907

3. For each x ∈ B its utility to its own coalition, that is, the sum of the weights of arcs908

(x, y) where y ∈ B↓ and y is in the same class of π as x.909

4. For each x, y ∈ B, such that x, y are not in the same class of π1, the utility that x would910

have if she joined y’s coalition, that is, the sum of the weights of arcs (x, y′), where911

y′ ∈ B↓ and y′ is in the same class of π as y.912

5. For each x ∈ B its maximum utility to any coalition that contains a neighbor of x and913

whose vertices are contained in B↓ \ B, that is, for each such equivalence class C of π914

that is fully contained in B↓ \ B we compute
∑

y∈C w(x, y) and store the maximum of915

these values in the signature.916

Informally, for each x ∈ B we store, in addition to its placement with respect to the other917

vertices of B, the utility that this vertex has in its current coalition, the utility that it would918

have if it joined the coalition of another vertex of B, and the utility that it would obtain if it919

joined the best (in its view) coalition that only contains vertices that appear strictly lower in920

the tree decomposition. We note here that a key observation is that the coalitions which921

contain a vertex of B↓ \ B but no vertex of B are already complete, in the sense that such922

a coalition cannot contain a vertex of V \ B↓ (in that case it would become disconnected).923

This ensures that the utility that x would have by joining such a coalition cannot change as924

we move up the tree decomposition and consider more vertices of V \ B↓. Intuitively, this is925

the key property that explains why looking for connected Nash Stable partitions has lower926

complexity than looking for (possibly disconnected) Nash Stable partitions.927

Having described the information that we store in our DP table, the rest of the algorithm928

only needs to ensure that we appropriately update our tables for Introduce, Join, and Forget929

nodes. Introducing a vertex x is straightforward, as we consider all signatures contained930



Tesshu Hanaka and Michael Lampis 23

in the child bag and for each such signature we consider all the ways we could insert the931

new vertex in π1, π2 and update weights according to the weights of arcs incident on x. If932

x creates a path between two vertices of its class of π1 which are in distinct classes of π2,933

we merge the two classes of π2. Crucially, x has no neighbors in B↓ \ B, so its utility to all934

coalitions contained in this set is 0.935

Forgetting a vertex is also straightforward, except that we need to make sure that,936

according to the current signature the vertex is stable in its coalition and its coalition is937

connected. Hence, when forgetting x ∈ B we discard all signatures where x has strictly938

higher utility in a coalition other than its own and all signatures where x has negative utility939

in its own coalition; furthermore we discard solutions where x is the only vertex of its class in940

π2 and there exists a y ∈ B such that x, y are in the same class of π1 but in distinct classes of941

π2. (Informally, π1 is the partition into connected coalitions we intend to form, and π2 is the942

connectivity we have already assured, so if x is not yet in the same component as some other943

vertex y in its coalition, the coalition will end up being disconnected, with x, y in distinct944

components). When forgetting x, if the class of x in π1 was a singleton, we also update the945

weights of each remaining y ∈ B by taking into account that the coalition that contains x is946

now contained in B↓ \ B (so we compare the utility that y would obtain by joining with the947

maximum utility it has in any such coalition and update the maximum accordingly).948

Finally, for Join nodes, we only consider pairs of signatures from the children bag that949

agree on π1. We combine the two partitions for π2 in the straightforward way to obtain a950

transitive closure. Finally, we update the utility that each x ∈ B has to the coalition of each951

y ∈ B by adding the utilities it has in the two sub-trees (taking care not to double count the952

arcs contained in B).953

The algorithm we sketched runs in time polynomial in the size of the DP tables, so what954

remains is to bound the number of possible signatures. The number of partitions of each955

bag is tO(t), while the utility of a vertex in any coalition is always in [−nW, nW ], as the956

maximum absolute weight is W . For each pair x ∈ B we store t + 1 such utilities in the957

worst case, so there are at most (nW )O(t2) possible distinct signatures. ◀958

B.7 Proof of Theorem 12959

Theorem 12. We present a reduction from Bin Packing. It was shown in [29] that Bin960

Packing with n items and k bins cannot be solved in time f(k) · no(k/ log k), assuming the961

ETH, even if weights are given in unary (that is, weights are polynomially bounded in n).962

Recall that in an instance of k-Bin Packing we are given n positive integers (the items)963

and a bin capacity B > 0 and our goal is to partition the n items into k sets such that each964

set has total sum at most B. We can assume without loss of generality that the sum of the965

integers given is exactly kB (if the sum is strictly higher the answer is clearly No, while if966

the sum is strictly lower we can pad the instance with items of weight 1).967

We construct an ASHG as follows: we construct k vertices b1, . . . , bk representing the968

bins; we construct k helpers b′
1, . . . , b′

k and set for each i weight w(bi, b′
i) = B; we construct969

a vertex vi for each item and set w(vi, bj) = 1 for all j ∈ {1, . . . , k} and w(bj , vi) = −w(vi)970

for all j, where w(vi) is the weight of this item in the Bin Packing instance.971

If the Bin Packing instance admits a solution, we form k coalitions by placing in the972

i-th coalition the vertices bi, b′
i and all items placed in bin i. We observe that this partition973

is stable, because vertices representing items have utility 1 and cannot increase their utility974

by changing sets; vertices bi have utility 0 and cannot obtain positive utility by abandoning975

b′
i; and vertices b′

i are indifferent.976

Conversely, if the ASHG has a connected Nash Stable configuration, we can see that no977
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coalition may contain vertices vi representing items of total weight more than B. To see this,978

observe that such a coalition must contain a vertex bi (otherwise it would be disconnected),979

but then that vertex will have negative utility. Furthermore, no vi can be alone, since these980

vertices always have an incentive to join some other vertex. Hence, a Nash Stable partition981

gives a partitition of the items into at most k groups of weight B.982

The graph constructed has vertex cover k, hence also treewidth and pathwidth ≤ k. To983

complete the proof we observe that an edge e = (u, v) of weight w(u, v) can be replaced984

by introducing w(u, v) new vertices, e1, . . . , ew(u,v) and setting w(ei, v) = 1 and w(u, ei) =985

sgn(w(u, v)), where sgn(x) is 1 if x is positive and −1 otherwise. Without loss of generality986

ei is always in the same coalition as v in any connected Nash Stable partition, so the solution987

is preserved. Furthermore, it is not hard to see that this modification does not increase the988

pathwidth of the graph. ◀989

B.8 Proof of Corollary 13990

Corollary 13. We perform the same reduction as in Theorem 12, except we start from an991

instance of 2-Bin Packing, which is also known as Partition and we do not perform the992

last step to obtain edges with weights in {−1, 1}. Partition is only weakly NP-hard [22],993

so we obtain weak NP-hardness. We note that a very similar reduction was given in [23], but994

for the problem where preferences are symmetric and we seek to find a stable partition of995

maximum social utility. ◀996
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