
Minimum Stable Cut and Treewidth1

Michael Lampis2

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France3

michail.lampis@lamsade.dauphine.fr4

Abstract5

A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing6

the side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of7

their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that8

has been studied in the context of local search and of algorithmic game theory.9

In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight,10

which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard,11

we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing12

that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone13

cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving14

the problem in time (∆ ·W)O(tw)nO(1), where tw is the treewidth, ∆ the maximum degree, and W15

the maximum weight. On the other hand, bounding ∆ is also not enough, as the problem is NP-hard16

for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw17

and ∆ and obtain an FPT algorithm running in time 2O(∆tw)(n + log W)O(1). Our main result for18

the weighted problem is to provide a reduction showing that both aforementioned algorithms are19

essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running20

in (nW)o(pw) or 2o(∆pw)(n + log W)O(1), then the ETH is false. Complementing this, we show that21

we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider22

almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight23

of its incident cut edges by more than a factor of (1 + ε).24

Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here25

our results already imply a much faster exact algorithm running in time ∆O(tw)nO(1). We show that26

this is also probably essentially optimal: an algorithm running in no(pw) would contradict the ETH.27

2012 ACM Subject Classification Mathematics of computing→Graph algorithms; Theory of Com-28

putation → Design and Analysis of Algorithms → Parameterized Complexity and Exact Algorithms29

Keywords and phrases Treewidth, Local Max-Cut, Nash Stability30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

Funding The author is supported by ANR JCJC project “ASSK” (ANR-18-CE40-0025-01)32

1 Introduction33

In this paper we study problems related to stable cuts in graphs. A stable cut of an edge-34

weighted graph G = (V,E) is a partition of V into two sets V0, V1 that satisfies the following35

property: for each i ∈ {0, 1} and v ∈ Vi, the total weight of edges incident on v whose other36

endpoint is in V1−i is at least half the total weight of all edges incident on v. In other words,37

a cut is stable if all vertices have the (weighted) majority of their incident edges cut.38

The notion of stable cuts has been very widely studied from two different points of view.39

First, in the context of local search, a stable cut is a locally optimal cut: switching the side40

of any single vertex cannot increase the total weight of the cut. Hence, stable cuts have41

been studied with the aim to further our understanding of the basic local search heuristic for42

Max Cut. Second, in the context of algorithmic game theory a Max Cut game has often43

been considered, where each vertex is an agent whose utility is the total weight of edges44

connecting it to the other side. In this game, a stable cut corresponds exactly to the notion45

of a Nash equilibrium, that is, a state where no agent has an incentive to change her choice.46

© Michael Lampis;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michail.lampis@lamsade.dauphine.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Minimum Stable Cut and Treewidth

The complexity of producing a Nash stable or locally optimal cut of a given edge-weighted47

graph has been heavily studied under the name Local Max Cut. The problem is known48

to be PLS-complete, under various restrictions (we give detailed references below).49

In this paper we focus on a different but closely related optimization problem: given an50

edge-weighted graph we would like to produce a stable cut of minumum total weight. We call51

this problem Min Stable Cut. In addition to being a fairly natural problem on its own, we52

believe that Min Stable Cut is interesting from the perspective of both local search and53

algorithmic game theory. In the context of local search, Min Stable Cut is the problem of54

bounding the performance of the local search heuristic on a particular instance. It is folklore55

(and easy to see) that in general there exist graphs where the smallest stable cut has size56

half the maximum cut (e.g. consider a C4) and this is tight since any stable cut must cut at57

least half the total edge weight. However, for most graphs this bound is far from tight. Min58

Stable Cut therefore essentially asks to estimate the ratio between the largest and smallest59

stable cut for a given specific instance. Similarly, in the context of algorithmic game theory,60

solving Min Stable Cut is essentially equivalent to calculating the Price of Anarchy of the61

Max Cut game on the given instance, that is, the ratio between the smallest stable cut and62

the maximum cut. Since we will mostly focus on cases where Max Cut is tractable, Min63

Stable Cut can, therefore, be seen as the problem of computing either the approximation64

ratio of local search or the Price of Anarchy of the Max Cut game on a given graph.65

Our results It appears that little is currently known about the complexity of Min Stable66

Cut. However, since finding a (not necessarily minimum) stable cut is PLS-complete, finding67

the minimum such cut would be expected to be hard. Our focus is therefore to study the68

parameterized complexity of Min Stable Cut using structural parameters such as treewidth69

and the maximum degree of the input graph1. Our results are the following.70

First, we show that bounding only one of the two mentioned parameters is not sufficient71

to render the problem tractable. This is not suprising for the maximum degree ∆, where72

a reduction from Max Cut allows us to show the problem is NP-hard for ∆ ≤ 6 even73

in the unweighted case (Theorem 4). It is, however, somewhat more disappointing that74

bounded treewidth also does not help, as the problem remains weakly NP-hard on trees75

of diameter 4 (Theorem 1) and bipartite graphs of vertex cover 2 (Theorem 3).76

These hardness results point to two directions for obtaining algorithms for Min Stable77

Cut: first, since the problem is “only” weakly NP-hard for bounded treewidth one could78

hope to obtain a pseudo-polynomial time algorithm in this case. We show that this is79

indeed possible and the problem is solvable in time (∆ ·W)O(tw)nO(1), where W is the80

maximum edge weight (Theorem 5). Second, one may hope to obtain an FPT algorithm81

when both tw and ∆ are parameters. We show that this is also possible and obtain an82

algorithm with complexity 2O(∆tw)(n+ logW)O(1) (Theorem 6).83

These two algorithms lead to two further questions. First, can the (∆ ·W)O(tw)nO(1) algo-84

rithm be improved to an FPT dependence on tw, that is, to running time f(tw)(nW)O(1)?85

And second, can the 2∆tw parameter dependence of the FPT algorithm be improved,86

for example to 2O(∆+tw) or even ∆O(tw)? We show that the answer to both questions87

is negative, even if we replace treewidth with pathwidth: under the ETH there is no88

algorithm running in (nW)o(pw) or 2o(∆tw)(n+ logW)O(1) (Theorem 8).89

1 We assume familiarity with the basics of parameterized complexity as given in standard textbooks [22].

M. Lampis 23:3

Complementing the above, we show that the problem does become FPT by treewidth90

alone if we allow the notion of approximation to be used in the concept of stability: there91

exists an algorithm which, for any ε > 0, runs in time (tw/ε)O(tw)(n+ logW)O(1) and92

produces a cut with the following properties: all vertices are (1 + ε)-stable, that is, no93

vertex can unilaterally increase its incident cut weight by more than a factor of (1 + ε);94

the cut has weight at most equal to that of the minimum stable cut.95

Finally, motivated by the above mostly negative results, we also consider Unweighted96

Min Stable Cut, the restriction of the problem where all edge weights are uniform.97

Our previous results give a much faster algorithm with parameter dependence ∆O(tw),98

rather than 2∆tw (Corollary 12). However, this poses the natural question if in this case99

the problem finally becomes FPT by treewidth alone. Our main result in this part is to100

answer this question in the negative and show that, under the ETH, Unweighted Min101

Stable Cut cannot be solved in time no(pw) (Theorem 13).102

Taken together, our results paint a detailed picture of the complexity of Min Stable103

Cut parameterized by tw and ∆. All our exact algorithms (Theorems 5, 6) are obtained104

using standard dynamic programming on tree decompositions, the only minor complication105

being that for Theorem 6 we edit the decomposition to make sure that for each vertex106

some bag contains all of its neighborhood (this helps us verify that a cut is stable). The107

main technical challenge is in proving our complexity lower bounds. It is therefore perhaps108

somewhat surprising that the lower bounds turn out to be essentially tight, as this indicates109

that for Min Stable Cut and Unweighted Min Stable Cut, the straightforward DP110

algorithms are essentially optimal, if one wants to solve the problem exactly.111

For the approximation algorithm, we rely on two rounding techniques: one is a rounding112

step similar to the one that gives an FPTAS for Knapsack by truncating weights so that the113

maximum weight is polynomially bounded. However, Min Stable Cut is more complicated114

than Knapsack, as an edge which is light for one of its endpoints may be heavy for the115

other. We therefore define a more general version of the problem, allowing us to decouple116

the contribution each edge makes to the stability of each endpoint. This helps us bound117

the largest stability-weight by a polynomial, but is still not sufficient to obtain an FPT118

algorithm, as the lower bound of Theorem 8 applies to polynomially bounded weights. We119

then go on to apply a technique introduced in [48] (see also [2, 10, 45, 46]) which allows us120

to obtain FPT approximation algorithms for problems which are W-hard by treewidth by121

applying a different notion of rounding to the dynamic program. This allows us to produce122

a solution that is simultaneously of optimal weight (compared to the best stable solution)123

and almost-stable, using essentially the same algorithm as in Theorem 5. However, it is124

worth noting that in general there is no obvious way to transform almost-stable solutions to125

stable solutions [12, 18], so our algorithm is not immediately sufficient to obtain an FPT126

approximation for Min Stable Cut if we insist on obtaining a cut which is exactly stable.127

Related work From the point of view of local search algorithms, there is an extensive128

literature on the Local Max Cut problem, which asks us to find a stable cut (of any size).129

The problem has long been known to be PLS-complete [44, 54]. It remains PLS-complete130

for graphs of maximum degree 5 [28], but becomes polynomial-time solvable for graphs of131

maximum degree 3 [50, 53]. The problem remains PLS-complete if weights are assigned to132

vertices, instead of edges, and the weight of an edge is defined simply as the product of the133

weights of its endpoints [32]. Even though the problem is PLS-complete, it has long been134

observed that local search quickly finds a stable solution in most practical instances. One135

theoretical explanation for this phenomenon was given in a recent line of work which showed136

CVIT 2016

23:4 Minimum Stable Cut and Treewidth

that Local Max Cut has quasi-polynomial time smoothed complexity [3, 13, 19, 30].137

Local Max Cut is of course polynomial time solvable if all weights are polynomially138

bounded in n, as local improvements always increase the size of the cut.139

In algorithmic game theory much work has been done on the complexity of computing140

Nash equilibria for the cut game and the closely related party affiliation game, in which141

players, represented by vertices, have to pick one of two parties and edge weights indicate how142

much two players gain if they are in the same party [6, 7, 20, 31, 37]. Note that for general143

graphical games finding an equilibrium is PPAD-hard on trees of constant pathwidth [26].144

Because computing a stable solution is generally intractable, approximate equilibria have145

also been considered [12, 18]. Note that the notion of approximate equilibrium corresponds146

exactly to the approximation guarantee given by Theorem 11, but unlike the cited works,147

Theorem 11 produces a solution that is both approximately stable and as good as the optimal.148

The problem we consider in this paper is more closely related to the problem of computing149

the worst (or best) Nash equilibrium, which in turn is closely linked to the notion of Price150

of Anarchy. For most problems in algorithmic game theory this type of question is usually151

NP-hard [14, 21, 27, 33, 36, 39, 55] and hard to approximate [5, 17, 23, 41, 51]. Even though152

these results show that finding a Nash equilibrium that maximizes an objective function is153

NP-hard under various restrictions (e.g. graphical games of bounded degree), to the best of154

our knowledge the complexity of finding the worst equilibrium of the Max Cut game (which155

corresponds to the Min Stable Cut problem of this paper) has not been considered.156

Finally, another topic that has recently attracted attention in the literature is that of157

MinMax and MaxMin versions of standard optimization problems, where we search the worst158

solution which cannot be improved using a simple local search heuristic. The motivation159

behind this line of research is to provide bounds and a refined analysis of such basic heuristics.160

Problems that have been considered under this lens are Max Min Dominating Set [8, 25],161

Max Min Vertex Cover [16, 56],Max Min Separator [40], Max Min Cut [29], Min162

Max Knapsack [4, 34, 38], Max Min Edge Cover [47], Max Min FVS [24]. Some163

problems in this area also arise naturally in other forms and have been extensively studied,164

such as Min Max Matching (also known as Edge Dominating Set [43]) and Grundy165

Coloring, which can be seen as a Max Min version of Coloring [1, 9].166

2 Definitions – Preliminaries167

We generally use standard graph-theoretic notation and consider edge-weighted graphs, that168

is, graphs G = (V,E) supplied with a weight function w : E → N. The weighted degree of a169

vertex v ∈ V is dw(v) =
∑
uv∈E w(uv). A cut of a graph is a partition of V into V0, V1. A170

cut is stable for vertex v ∈ Vi if
∑
vu∈E∧u∈V1−i

w(vu) ≥ dw(v)
2 , that is, if the total weight of171

edges incident on v crossing the cut is at least half the weighted degree of v. In the Min172

Stable Cut problem we are given an edge-weighted graph and are looking for a cut that is173

stable for all vertices that minimizes the sum of weights of cut edges (that is, edges with174

endpoints on both sides of the cut). In Unweighted Min Stable Cut we restrict the175

problem so that the w function returns 1 for all edges. When describing stable cuts we will176

sometimes say that we “assign” value 0 (or 1) to a vertex; by this we mean that we place177

this vertex in V0 (or V1 respectively).178

For the definitions of treewidth, pathwidth, and the related (nice) decompositions we179

refer to [22]. We will use as a complexity assumption the Exponential Time Hypothesis180

(ETH) [42] which states that there exists a constant c > 1 such that 3-SAT with n variables181

and m clauses cannot be solved in time cn+m. In fact, we will use the slightly weaker and182

M. Lampis 23:5

simpler form of the ETH which states that 3-SAT cannot be solved in time 2o(n+m).183

3 Weighted Min Stable Cut184

In this section we present our results on exact algorithms for (weighted) Min Stable Cut.185

We begin with some basic NP-hardness reductions in Section 3.1, which establish that the186

problem remains (weakly) NP-hard when either the treewidth or the maximum degree are187

bounded. These set the stage for two algorithms, given in Section 3.2, solving the problem in188

pseudo-polynomial time for constant treewidth; and in FPT time parameterized by tw + ∆.189

In Section 3.3 we present a more fine-grained hardness argument, based on the ETH, which190

shows that the dependence on tw and ∆ of our two algorithms is essentially optimal.191

3.1 Basic Hardness Proofs192

I Theorem 1. Min Stable Cut is weakly NP-hard on trees of diameter 4.193

Proof. We describe a reduction from Partition. Recall that in this problem we are given194

n positive integers x1, . . . , xn such that
∑n
i=1 xi = 2B and are asked if there exists S ⊆ [n]195

such that
∑
i∈S xi = B. We construct a star with n leaves and subdivide every edge once.196

For each i ∈ [n] we select a distinct leaf of the tree and set the weight of both edges in the197

path from the center to this leaf to xi. We claim that the graph has a stable cut of weight198

3B if and only if there is a partition of x1, . . . , xn into two sets with the same sum.199

For the first direction, suppose S ⊆ [n] is such that
∑
i∈S xi = B. For each i ∈ S we200

select a degree two vertex of the tree whose incident edges have weight xi and assign it value201

1. We assign all other degree two vertices value 0 and assign to all leaves the opposite of the202

value of their neighbor. We give the center value 0. This partition is stable as the center has203

edge weight exactly B towards each side, and all degree two vertices have a leaf attached that204

is placed on the other side and contributes half their total incident weight. The total weight205

cut is 2B from edges incident on leaves, plus B from half the weight incident on the center.206

For the converse direction, observe that in any stable solution all edges incident on leaves207

are cut, contributing a weight of 2B. As a result, in a stable cut of size 3B, the weight of cut208

edges incident on the center is at most B. However, this weight is also at least B, since the209

edge weight incident on the center is 2B. We conclude that the neighborhood of the center210

must be perfectly balanced. From this we can infer a solution to the Partition instance. J211

I Remark 2. Theorem 1 is tight, because Min Stable Cut is trivial on trees of diameter at212

most 3.213

I Theorem 3. Min Stable Cut is weakly NP-hard on bipartite graphs with vertex cover 2.214

I Theorem 4. Unweighted Min Stable Cut is strongly NP-hard and APX-hard on215

bipartite graphs of maximum degree 6.216

3.2 Algorithms217

I Theorem 5. There is an algorithm which, given an instance of Min Stable Cut with n218

vertices, maximum weight W , and a tree decomposition of width tw, finds an optimal solution219

in time (∆ ·W)O(tw)nO(1).220

I Theorem 6. There is an algorithm which, given an instance of Min Stable Cut with221

n vertices, maximum weight W , maximum degree ∆ and a tree decomposition of width tw,222

finds an optimal solution in time 2O(∆tw)(n+ logW)O(1).223

CVIT 2016

23:6 Minimum Stable Cut and Treewidth

Proof. We describe an algorithm which works in a way similar to the standard algorithm224

for Max Cut parameterized by treewidth, except that we work in a tree decomposition that225

is essentially a decomposition of the square of G. More precisely, before we begin, we do226

the following: for each v ∈ V we add to every bag of the decomposition that contains v all227

the vertices of N(v). It is not hard to see that we now have a decomposition of width at228

most (∆ + 1)(tw + 1) and also that the new decomposition is still a valid tree decomposition.229

Crucially, we now also have the following property: for each v ∈ V there exists at least one230

bag of the decomposition that contains all of N [v].231

The algorithm now performs dynamic programming by storing for each bag the value of232

the best solution for each partition of Bt. As a result, the size of the DP table is 2O(∆tw).233

The only difference with the standard Max Cut algorithm (beyond the fact that we are234

looking for a cut of minimum weight) is that when we consider a bag that contains all of N [v],235

for some v ∈ V , we discard all partitions which are unstable for v. Since the bag contains all236

of N [v], this can be checked in time polynomial in n and logW (assuming weights are given237

in binary). J238

3.3 Tight ETH-based Hardness239

We first give a reduction from 3-Set Splitting to Min Stable Cut whose main properties240

are laid out in Lemma 7. This reduction gives the lower bound of Theorem 8.241

I Lemma 7. There is a polynomial-time algorithm which, given a 3-Set Splitting instance242

H = (V,E) with n elements, produces a Min Stable Cut instance G with the following243

properties: (i) G is a Yes instance if and only if H is a Yes instance; (ii) if ∆ is the244

maximum degree of G and pw its pathwidth, then ∆ = O(logn) and pw = O(n/ logn); (iii)245

the maximum weight of G is W = O(2∆).246

...

}log n

{
n/ log n

...

...

...

1
2
4
8

2log n

Figure 1 Sketch of the construction of Lemma 7. On the left, the general architecture: m columns,
each with n vertices, partitioned into groups of size log n. On each column we add a checker vertex
(on top). Between the same groups of consecutive columns we add propagator vertices. On the right,
more details about the exponentially increasing weights of edges incident on propagators.

Proof. Let H = (V,E) be the given 3-Set Splitting instance, V = {v0, . . . , vn−1} and247

suppose that E contains e2 sets of size 2 and e3 sets of size 3, where |E| = e2 + e3 will be248

denoted by m. Assume without loss of generality that n is a power of 2 (otherwise add some249

dummy elements to V). Let δ = logn. We construct a graph by first making m copies of V ,250

M. Lampis 23:7

call them Vj , j ∈ [m] and label their vertices as Vj = {v(i,j) | i ∈ {0, . . . , n− 1}}. Intuitively,251

the vertices {v(i,j) | j ∈ [m]} are all meant to represent the element vi of H. We now add to252

the graph the following:253

1. Checkers: Suppose that the j-th set of E contains elements vi1 , vi2 , vi3 . Then we construct254

a vertex cj and connect it to v(i1,j), v(i2,j), v(i3,j) with edges of weight 1. If the j-th set255

has size two, we do the same (ignoring vi3).256

2. Propagators: For each j ∈ [m − 1] we construct ρ = dn/δe vertices labeled p(i,j), i ∈257

{0, . . . , ρ − 1}. Each p(i,j) is connected to (at most) δ vertices of Vj and δ vertices of258

Vj+1 with edges of exponentially increasing weight. Specifically, for i ∈ {0, . . . , ρ− 1}, ` ∈259

{0, . . . , δ − 1}, we connect p(i,j) to v(iδ+`,j) and to v(iδ+`,j+1) (if they exist) with an edge260

of weight 2`.261

3. Stabilizers: For each j ∈ [m], i ∈ {0, . . . , n − 1} we attach to v(i,j) a leaf. The edge262

connecting this leaf to v(i,j) has weight 3 · 2(i mod δ).263

This completes the construction of the graph. Let L be the total weight of edges incident264

on leaves and P be the total weight of edges incident on Propagator vertices p(i,j). We set265

B = L+ P
2 + e2 + 2e3 and claim that the new instance has a stable cut of weight B if and266

only if H can be split.267

For the forward direction, suppose that H can be split by the partition of V into268

L,R = V \ L. We assign the following values for our new instance: for each j ∈ [m] odd,269

we set v(i,j) to value 0 if and only if vi ∈ L; for each j ∈ [m] even, we set v(i,j) to value 0 if270

and only if vi ∈ R. In other words, we use the same partition for all copies of V , but flip271

the roles of 0, 1 between consecutive copies. We place leaves on the opposite side from their272

neighbors and greedily assign values to all other vertices of the graph to obtain a stable273

partition. Observe that all vertices v(i,j) are stable with the values we assigned, since the274

edge connecting each such vertex to a leaf has weight at least half its total incident weight.275

In the partition we have we observe that (i) all edges incident on leaves are cut (total276

weight L) (ii) all Propagator vertices have balanced neighborhoods, so exactly half of their277

incident weight is cut (total weight P/2) (iii) since L,R splits all sets of E, each checker278

vertex will have exactly one neighbor on the same side (total weight e2 + 2e3). So the total279

weight of the cut is B.280

For the converse direction, suppose we have a stable cut of size B in the constructed281

instance. Because of the stability condition, this solution must cut all edges incident on282

leaves (total weight L); at least half of the total weight of edges incident on Propagators283

(total weight P/2); and for each checker vertex all its incident edges except at most one284

(total weight at least e2 + 2e3). We conclude that, in order to achieve weight B, the cut285

must properly balance the neighborhood of all Propagators and make sure that each Checker286

vertex has one neighbor on its own side.287

We now argue that because the neighborhood of each Propagator is balanced we have for288

all i ∈ {0, . . . , n− 1}, j ∈ [m− 1] that v(i,j), v(i,j+1) are on different sides of the partition. To289

see this, suppose for contradiction that for two such vertices this is not the case and to ease290

notation consider the vertices v(iδ+`,j), v(iδ+`,j+1), where 0 ≤ ` ≤ δ− 1. Among all such pairs291

select one that maximizes `. Both vertices are connected to the Propagator p(i,j) with edges292

of weight 2`. But now p(i,j) has strictly larger edge weight connecting it to the side of the293

partition that contains v(iδ+`,j) and v(iδ+`,j+1) than to the other side because (i) for neighbors294

of p(i,j) connected to it with edges of higher weight, the neighborhood of p(i,j) is balanced by295

the maximality of ` (ii) the total weight of all other edges is 2 · (2`−1 + 2`−2 + . . .+ 1) < 2 · 2`.296

CVIT 2016

23:8 Minimum Stable Cut and Treewidth

We thus have that for all i, j, v(i,j), v(i,j+1) must be on different sides, and therefore all297

Vj are partitioned in the same way (except perhaps with the role of 0 and 1 reversed). From298

this, we obtain a partition of V . To conclude this direction, we argue that this partition of299

V must split all sets. Indeed, if not, there will be a checker vertex such that all its neighbors300

are on the same side, which, as we argued, means that the cut must have weight strictly301

more than B.302

Finally, let us show that the constructed instance has the claimed properties. The303

maximum degree is ∆ = 2δ = O(logn) in the Propagators vertices (all other vertices have304

degree at most 4); the maximum weight is O(2δ) = O(2∆). Let us also consider the pathwidth305

of the constructed graph. Let Gj be the subgraph induced by Vj and its attached leaves,306

the Checker cj , and all Propagators adjacent to Vj . We claim that we can build a path307

decomposition of Gj that contains all Propagators adjacent to Vj in all bags and has width308

O(n/ logn). Indeed, if we place all the (at most d2n/δe) Propagators and cj in all bags, we309

can delete them from Gj , and all that is left is a union of isolated edges, which has pathwidth310

1. Now, since the union of all Gj covers all vertices and edges, we can construct a path311

decomposition of the whole graph of width O(n/ logn) by gluing together the decompositions312

of each Gj , that is, by connecting the last bag of the decomposition of Gj to the first bag of313

the decomposition of Gj+1. J314

I Theorem 8. If the ETH is true then (i) there is no algorithm solving Min Stable Cut315

in time (nW)o(pw) (ii) there is no algorithm solving Min Stable Cut in time 2o(∆pw)(n+316

logW)O(1). These statements apply even if we restrict the input to instances where weights317

are written in unary and the maximum degree is O(logn).318

4 Approximately Stable Cuts319

In this section we present an algorithm which runs in FPT time parameterized by treewidth320

and produces a solution that is (1 + ε)-stable and has weight upper bounded by the weight321

of the optimal stable cut. Before we proceed, we will need to define a more general version322

of our problem. In Extended Min Stable Cut we are given as input: a graph G = (V,E);323

a cut-weight function w : E → N; and a stability-weight function s : E × V → N. For v ∈ V324

we denote ds(v) =
∑
vu∈E s(vu, v), which we call the stability degree of v. If we are also325

given an error parameter ρ > 1, we will then be looking for a partition of V into V0, V1 which326

satisfies the following: (i) each vertex is ρ-stable, that is, for each i ∈ {0, 1} and v ∈ Vi327

we have
∑
vu∈E∧u∈V1−i

s(vu, v) ≥ ds(v)
2ρ (ii) the total cut weight

∑
u∈V0,v∈V1,uv∈E w(uv) is328

minimum. Observe that this extended version of the problem contains Min Stable Cut as329

a special case if ρ = 1 and for all uv ∈ E we have s(uv, v) = s(uv, u) = w(uv).330

The generalization of Min Stable Cut is motivated by three considerations. First, the331

algorithm of Theorem 5 is inefficient because it has to store exact weight values to satisfy332

the stability constraints; however, it can efficiently store the total weight of the cut. We333

therefore decouple the contribution of an edge to the size of the cut (given by w) from a334

contribution of an edge to the stability of its endpoints (given by s). Second, our strategy335

will be to truncate the values of s so that the DP of the algorithm of Theorem 5 can be run336

more efficiently. To do this we will first simply divide all stability-weights by an appropriate337

value. However, a problem we run into if we do this is that the edge uv could simultaneously338

be one of the heavier edges incident on u and one of the lighter edges incident on v, so it339

is not clear how we can adjust its weight in a way that minimizes the distortion for both340

endpoints. As a result it is simpler if we allow edges to contribute different amounts to the341

stability of their endpoints. In this sense, s(uv, u) is the amount that the edge uv contributes342

M. Lampis 23:9

to the stability of u if the edge is cut. Observe that with the new definition, if we set a new343

stability-weight function for a specific vertex u as s′(uv, v) = c · s(uv, v) for all v ∈ N(u),344

that is, if we multiply the stability-weight of all edges incident on u by a constant c and345

leave all other values unchanged, we obtain an equivalent instance, and this does not affect346

the stability of other vertices. Finally, the parameter ρ allows us to consider solutions where347

a vertex is stable if its cut incident edges are at least a (1
2ρ)-fraction of its stability degree.348

Armed with this intuition we can now explain our approach to obtaining our FPT349

approximation algorithm. Given an instance of the extended problem, we first adjust the s350

function so that its maximum value is bounded by a polynomial in n. We achieve this by351

dividing s(uv, u) by a value that depends only on ds(u) and n. This allows us to guarantee352

that near-stable solutions are preserved. Then, given an instance where the maximum value353

of s is polynomially bounded, we apply the technique of [48], using the algorithm of Theorem354

5 as a base, to obtain our approximation. We give these separate steps in the Lemmas below.355

I Lemma 9. There is an algorithm which, given a graph G = (V,E) on n vertices and a356

stability-weight function s : E × V → N with maximum value S, runs in time polynomial in357

n+logS and produces a stability-weight function s′ : E×V → N with the following properties:358

(i) the maximum value of s′ is O(n2) (ii) for all partitions V into V0, V1, i ∈ {0, 1}, v ∈ Vi359

we have360

(
∑
vu∈E,u∈V1−i

s(vu, v)
ds(v))/(

∑
vu∈E,u∈V1−i

s′(vu, v)
ds′(v)) ∈ [1− 1/n, 1 + 1/n]

Using Lemma 9 we can assume that all stability-weights are bounded by n2. The most361

important part is that Lemma 9 guarantees us that almost-optimal solutions are preserved362

in both directions, as for any cut and for each vertex the ratio of stability weight going to363

the other side over the total stability-degree of the vertex does not change by more than a364

factor (1 + 1
n). Let us now see the second ingredient of our algorithm.365

I Lemma 10. There is an algorithm which takes as input a graph G = (V,E), a cut-weight366

function w : E → N with maximum W , a stability-weight function s : E × V → N with367

maximum S, a tree decomposition of G of width tw, and an error parameter ε > 0 and returns368

a (1+2ε)-stable solution that has cut-weight at most equal to that of the minimum (1+ε)-stable369

solution. If S = O(n2), then the algorithm runs in time (tw/ε)O(tw)(n+ logW)O(1).370

Proof. We use the methodology introduced in [48]. Before we proceed, let us explain that we371

are actually aiming for an algorithm with running time roughly (logn/ε)O(tw). This type of372

running time implies the time stated in the lemma using a standard Win/Win argument: if373

tw ≤
√

logn then (logn)O(tw) is no(1), so the lognO(tw) factor is absorbed in the nO(1) factor;374

while if logn ≤ tw2, then an algorithm running in (logn)tw actually runs in (tw)O(tw).375

To be more precise, if the given tree decomposition has height H, then we will formulate376

an algorithm with running time (H logS/ε)O(tw)(n+ logW)O(1). This running time achieves377

parameter dependence (logn/ε)O(tw) if we use the fact that S = O(n2) and a theorem due378

to [15] which proves that any tree decomposition can be edited (in polynomial time) so that379

its height becomes O(logn), without increasing its width by more than a constant factor.380

The basis of our algorithm will be the algorithm of Theorem 5, appropriately adjusted to381

the extended version of the problem. Let us first sketch the modifications to the algorithm382

of Theorem 5 that we would need to do to solve this more general problem, since the details383

are straightforward. First, we observe that in solution signatures we would now take into384

account stability-weights, and signatures would have values going up to S. Second, in Forget385

nodes, if we are happy with a (1 + ε)-solution, we would only discard solutions which violate386

CVIT 2016

23:10 Minimum Stable Cut and Treewidth

this constraint. With these modifications, we can run this exact algorithm to return the387

minimum (1 + ε)-stable solution in time (2S)O(tw)(n+ logW + log(1/ε))O(1).388

The idea is to modify this algorithm so that the DP tables go from size (2S)tw to roughly389

(H logS)tw. To do this, we define a parameter δ = ε
5H . We intend to replace every value x390

that would be stored in the signature of a solution in the DP table, with the next larger integer391

power of (1 + δ), that is, to construct a DP table where x is replaced by (1 + δ)dlog(1+δ) xe.392

More precisely, the invariant we maintain is the following. Consider a node t of the393

decomposition at height h, where h = 0 corresponds to leaves. We maintain a collection394

of solution signatures such that: (i) each signature contains a partition of Bt and for each395

v ∈ Bt an integer that is upper-bounded by dlog(1+δ) ds(v)e; (ii) Soundness: for each stored396

signature there exists a partition of B↓t which approximately corresponds to it. Specifically,397

the partition and the signature agree exactly on the assignment of Bt and the total cut-weight;398

the partition is (1 + 2ε)-stable for all vertices of B↓t \Bt; and for each v ∈ Bt, if the signature399

stores the value x(v) for v, that is, it states that v has approximate stability-weight (1+δ)x(v)
400

towards its own side in B↓t \ Bt, then in the actual partition the stability-weight of v to401

its own side of B↓t \ Bt is at most (1 + δ)h(1 + δ)x(v). (iii) Completeness: conversely, for402

each partition of B↓t that is (1 + ε)-stable for all vertices of B↓t \Bt there exists a signature403

that approximately corresponds to it. Specifically, the partition and signature agree on the404

assignment of Bt and the total cut-weight; and for each v ∈ Bt, if the stability-weight of v405

towards its side of the partition of B↓t \Bt is y(v), and the signature stores the value x(v),406

then (1 + δ)x(v) ≤ (1 + δ)hy(v).407

In more simple terms, the signatures in our DP table store values x(v) so that we estimate408

that in the corresponding solution v has approximately (1 + δ)x(v) weight towards its own409

side in B↓t , that is, we estimate that the DP of the exact algorithm would store approximately410

the value (1 + δ)x(v) for this solution. Of course, it is hard to maintain this relation exactly,411

so we are happy if for a node at height h the “true” value which we are approximating is at412

most a factor of (1 + δ)h off from our approximation.413

Now, the crucial observation is that the approximate DP tables can be maintained414

because our invariant allows the error to increase with the height. For example, suppose415

that t is a Forget node at height h and let u ∈ Bt be a neighbor of the vertex v we forget.416

The exact algorithm would construct the signature of a solution in t by looking at the417

signature of a solution in its child node, and then adding to the value stored for u the weight418

s(vu, u) (if u, v are on the same side). Our algorithm will take an approximate signature419

from the child node, which may have a value at most (1 + δ)h−1 the correct value, add to420

it s(vu, u) and then, perhaps, round-up the value to an integer power of (1 + δ). The new421

approximation will be at most (1 + δ)h larger than the value that the exact algorithm would422

have calculated. Similar argumentation holds for Join nodes. Furthermore, in Forget nodes423

we will only discard a solution if according to our approximation it is not (1 + 2ε)-stable.424

We may be over-estimating the stability-weight a vertex has to its own side of the cut by425

a factor of at most (1 + δ)h ≤ (1 + ε
5H)H ≤ 1 + ε

2 so if for a signature our approximation426

says that the solution is not (1 + 2ε)-stable, the solution cannot be (1 + ε)-stable, because427

(1 + ε)(1 + ε
2) < 1 + 2ε (for sufficiently small ε).428

Finally, to estimate the running time, the maximum value we have to store for each vertex429

in a bag is log(1+δ) S = logS
log(1+δ) ≤ O(logn

δ) = O(H logn
ε). Using the fact that H = O(logn)430

we get that the size of the DP table is (logn/ε)O(tw). J431

I Theorem 11. There is an algorithm which, given an instance of Min Stable Cut432

G = (V,E) with n vertices, maximum weight W , a tree decomposition of width tw, and a433

M. Lampis 23:11

desired error ε > 0, runs in time (tw/ε)O(tw)(n + logW)O(1) and returns a cut with the434

following properties: (i) for all v ∈ V , the total weight of edges incident on v crossing the435

cut is at least (1 − ε)dw(v)
2 (ii) the cut has total weight at most equal to the weight of the436

minimum stable cut.437

5 Unweighted Min Stable Cut438

In this section we consider Unweighted Min Stable Cut. We first observe that applying439

Theorem 5 gives a parameter dependence of ∆O(tw), since W = 1. We then show that this440

algorithm is essentially optimal, as the problem cannot be solved in no(pw) under the ETH.441

I Corollary 12. There is an algorithm which, given an instance of Unweighted Min442

Stable Cut with n vertices, maximum degree ∆, and a tree decomposition of width tw,443

returns an optimal solution in time ∆O(tw)nO(1).444

t1
T 1

T 2

T 3

T 4

t2

t3

t4

c

a

b

Figure 2 Checker gadget
for Theorem 13. On the right
two Selector gadgets. This
Checker verifies that we have
not taken an edge which has
endpoints (2, 3), hence t1, t3

are connected to the first 2 and
3 vertices of the Selectors.

We now first state our hardness result, then describe the445

construction of our reduction, and finally go through a series446

of lemmas that establish its correctness.447

I Theorem 13. If the ETH is true then no algorithm can solve448

Unweighted Min Stable Cut on graphs with n vertices in449

time no(pw). Furthermore, Unweighted Min Stable Cut450

is W[1]-hard parameterized by pathwidth.451

To prove Theorem 13 we will describe a reduction from k-452

Multi-Colored Independent Set, a well-known W[1]-hard453

problem that cannot be solved in no(k) time under the ETH [22].454

Recall that in this problem we are given a graph G = (V,E)455

with V partitioned into k color classes V1, . . . , Vk, each of size456

n, and we are asked to find an independent set of size k which457

selects one vertex from each Vi. In the remainder we use m to458

denote the number of edges of E and assume that vertices of V459

are labeled v(i,j), i ∈ [k], j ∈ [n], where Vi = {v(i,j) | j ∈ [n]}.460

Before we proceed, let us give some intuition. Our reduction461

will rely on a k × m grid-like construction, where each row462

represents the selection of a vertex in the corresponding color463

class of G and each column represents an edge of G. The main464

ingredients will be a Selector gadget, which will represent a choice of an index in [n]; a465

Propagator gadget which will make sure that the choice we make in each row stays consistent466

throughout; and a Checker gadget which will verify that we did not select the two endpoints467

of any edge. Each Selector gadget will contain a path on (roughly) n vertices such that any468

reasonable stable cut will have to cut exactly one edge of the path. The choice of where to469

cut this path will represent an index in [n] encoding a vertex of G.470

In our construction we will also make use of a simple but important gadget which we will471

call a “heavy” edge. Let A = n5. When we say that we connect u, v with a heavy edge we472

will mean that we construct A new vertices and connect them to both u and v. The intuitive473

idea behind this gadget is that the large number of degree two vertices will force u and v to474

be on different sides of the partition (otherwise too many edges will be cut). We will also475

sometimes attach leaves on some vertices with the intention of making it easier for this vertex476

to achieve stability (as its attached leaves will always be on the other side of the partition).477

Let us now describe our construction step-by-step.478

CVIT 2016

23:12 Minimum Stable Cut and Treewidth

1. Construct two “palette” vertices p0, p1 and a heavy edge connecting them. Note that all479

heavy edges we will add will be incident on at least one palette vertex.480

2. For each i ∈ [k], j ∈ [m] construct the following Selector gadget:481

a. Construct a path on n+ 1 vertices P(i,j) and label its vertices P 1
(i,j), . . . , P

n+1
(i,j) .482

b. If j is odd, then add a heavy edge from P 1
(i,j) to p1 and a heavy edge from Pn+1

(i,j) to p0.483

If j is even, then add a heavy edge from P 1
(i,j) to p0 and a heavy edge from Pn+1

(i,j) to p1.484

c. Attach 5 leaves to each P `(i,j) for ` ∈ {2, . . . , n}. Attach A + 5 leaves to P 1
(i,j) and485

Pn+1
(i,j) .486

3. For each i ∈ [k], j ∈ [m− 1] construct a new vertex connected to all vertices of the paths487

P(i,j) and P(i,j+1). This vertex is the Propagator gadget.488

4. For each j ∈ [m] consider the j-th edge of the original instance and suppose it connects489

v(i1,j1) to v(i2,j2). We construct the following Checker gadget (see Figure 2)490

a. We construct four vertices t1j , t2j , t3j , t4j . These are connected to existing vertices as491

follows: t1j is connected to {P 1
(i1,j), . . . , P

j1
(i1,j)} (that is, the first j1 vertices of the path492

P(i1,j)); t2j is connected to {P j1+1
(i1,j), . . . , P

n+1
(i1,j)} (that is, the remaining n+1−j1 vertices493

of Pi1,j); similarly, t3j is connected to {P 1
(i2,j), . . . , P

j2
(i2,j)}; and finally t4j is connected494

to {P j2+1
(i2,j), . . . , P

n+1
(i2,j)}.495

b. We construct four independent sets T 1
j , T

2
j , T

3
j , T

4
j with respective sizes j1, n + 1 −496

j1, j2, n+ 1− j2. We connect t1j to all vertices of T 1
j , t2j to T 2

j , t3j to T 3
j , and t4j to T 4

j .497

We attach two leaves to each vertex of T 1
j ∪ T 2

j ∪ T 3
j ∪ T 4

j .498

c. We construct three vertices aj , bj , cj . We connect cj to both aj and bj . We connect499

aj to an arbitrary vertex of T 1
j and an arbitrary vertex of T 3

j . We connect bj to an500

arbitrary vertex of T 2
j and an arbitrary vertex of T 4

j .501

Let L1 be the number of leaves of the construction we described above and L2 be the502

number of degree two vertices which are part of heavy edges. We set B = L1 + L2 + km+503

k(m− 1)(n+ 1) +m(2n+ 6).504

I Lemma 14. If G has a multi-colored independent set of size k, then the constructed505

instance has a stable cut of size at most B.506

I Lemma 15. If the constructed instance has a stable cut of size at most B, then G has a507

multi-colored independent set of size k.508

I Lemma 16. The constructed graph has pathwidth O(k).509

6 Conclusions510

Our results paint a clear picture of the complexity of Min Stable Cut with respect to tw511

and ∆. As directions for further work one could consider stronger notions of stability such512

as demanding that switching sets of k vertices cannot increase the cut, for constant k. We513

conjecture that, since the structure of this problem has the form ∃∀k, its complexity with514

respect to treewidth will turn out to be double-exponential in k [49]. Another direction is to515

consider hedonic games where vertices self-partition into an unbounded number of groups.516

The complexity of finding a stable solution in such games parameterized by tw + ∆ has517

already been considered by Peters [52], whose algorithm runs in time exponential in ∆5tw.518

Can we bridge the gap between this complexity and the 2O(∆tw) complexity of Min Stable519

Cut?520

M. Lampis 23:13

References521

1 Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy coloring &522

friends, half-graphs, bicliques. In STACS, volume 154 of LIPIcs, pages 58:1–58:18. Schloss523

Dagstuhl - Leibniz-Zentrum für Informatik, 2020.524

2 Eric Angel, Evripidis Bampis, Bruno Escoffier, and Michael Lampis. Parameterized power ver-525

tex cover. Discret. Math. Theor. Comput. Sci., 20(2), 2018. URL: http://dmtcs.episciences.526

org/4873.527

3 Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed528

polynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings529

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,530

QC, Canada, June 19-23, 2017, pages 429–437. ACM, 2017. doi:10.1145/3055399.3055402.531

4 Esther M. Arkin, Michael A. Bender, Joseph S. B. Mitchell, and Steven Skiena. The lazy532

bureaucrat scheduling problem. Inf. Comput., 184(1):129–146, 2003.533

5 Per Austrin, Mark Braverman, and Eden Chlamtac. Inapproximability of np-complete variants534

of nash equilibrium. Theory Comput., 9:117–142, 2013. doi:10.4086/toc.2013.v009a003.535

6 Baruch Awerbuch, Yossi Azar, Amir Epstein, Vahab S. Mirrokni, and Alexander Skopalik.536

Fast convergence to nearly optimal solutions in potential games. In Lance Fortnow, John Riedl,537

and Tuomas Sandholm, editors, Proceedings 9th ACM Conference on Electronic Commerce538

(EC-2008), Chicago, IL, USA, June 8-12, 2008, pages 264–273. ACM, 2008. doi:10.1145/539

1386790.1386832.540

7 Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Improved equilibria via public541

service advertising. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM542

Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009,543

pages 728–737. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496850.544

8 C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K.-M. Klein, M. Lampis, M. Liedloff,545

J. Monnot, and V. T. Paschos. The many facets of upper domination. Theoretical Computer546

Science, 717:2–25, 2018.547

9 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy548

distinguishes treewidth from pathwidth. In Fabrizio Grandoni, Grzegorz Herman, and Peter549

Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September550

7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 14:1–14:19. Schloss551

Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.14.552

10 Rémy Belmonte, Michael Lampis, and Valia Mitsou. Parameterized (approximate) defective553

coloring. SIAM J. Discret. Math., 34(2):1084–1106, 2020. doi:10.1137/18M1223666.554

11 Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended555

abstract). In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata,556

Languages and Programming, 26th International Colloquium, ICALP’99, Prague, Czech557

Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer Science,558

pages 200–209. Springer, 1999. doi:10.1007/3-540-48523-6_17.559

12 Anand Bhalgat, Tanmoy Chakraborty, and Sanjeev Khanna. Approximating pure nash560

equilibrium in cut, party affiliation, and satisfiability games. In David C. Parkes, Chrysanthos561

Dellarocas, and Moshe Tennenholtz, editors, Proceedings 11th ACM Conference on Electronic562

Commerce (EC-2010), Cambridge, Massachusetts, USA, June 7-11, 2010, pages 73–82. ACM,563

2010. doi:10.1145/1807342.1807353.564

13 Ali Bibak, Charles Carlson, and Karthekeyan Chandrasekaran. Improving the smoothed565

complexity of FLIP for max cut problems. In Timothy M. Chan, editor, Proceedings of566

the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San567

Diego, California, USA, January 6-9, 2019, pages 897–916. SIAM, 2019. doi:10.1137/1.568

9781611975482.55.569

14 Vittorio Bilò and Marios Mavronicolas. The complexity of computational problems about570

nash equilibria in symmetric win-lose games. CoRR, abs/1907.10468, 2019. URL: http:571

//arxiv.org/abs/1907.10468, arXiv:1907.10468.572

CVIT 2016

http://dmtcs.episciences.org/4873
http://dmtcs.episciences.org/4873
http://dmtcs.episciences.org/4873
https://doi.org/10.1145/3055399.3055402
https://doi.org/10.4086/toc.2013.v009a003
https://doi.org/10.1145/1386790.1386832
https://doi.org/10.1145/1386790.1386832
https://doi.org/10.1145/1386790.1386832
http://dl.acm.org/citation.cfm?id=1496770.1496850
https://doi.org/10.4230/LIPIcs.ESA.2020.14
https://doi.org/10.1137/18M1223666
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1145/1807342.1807353
https://doi.org/10.1137/1.9781611975482.55
https://doi.org/10.1137/1.9781611975482.55
https://doi.org/10.1137/1.9781611975482.55
http://arxiv.org/abs/1907.10468
http://arxiv.org/abs/1907.10468
http://arxiv.org/abs/1907.10468
http://arxiv.org/abs/1907.10468

23:14 Minimum Stable Cut and Treewidth

15 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for573

bounded treewidth. SIAM J. Comput., 27(6):1725–1746, 1998.574

16 É. Bonnet, M. Lampis, and V. T. Paschos. Time-approximation trade-offs for inapproximable575

problems. Journal of Computer and System Sciences, 92:171 – 180, 2018.576

17 Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best nash577

equilibrium in no(log n)-time breaks the exponential time hypothesis. In Piotr Indyk,578

editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-579

gorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 970–982. SIAM, 2015.580

doi:10.1137/1.9781611973730.66.581

18 Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopalik. Approximate pure582

nash equilibria in weighted congestion games: Existence, efficient computation, and structure.583

ACM Trans. Economics and Comput., 3(1):2:1–2:32, 2015. doi:10.1145/2614687.584

19 Xi Chen, Chenghao Guo, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Mihalis Yannakakis,585

and Xinzhi Zhang. Smoothed complexity of local max-cut and binary max-csp. In Konstantin586

Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,587

editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,588

STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1052–1065. ACM, 2020. doi:589

10.1145/3357713.3384325.590

20 George Christodoulou, Vahab S. Mirrokni, and Anastasios Sidiropoulos. Convergence and591

approximation in potential games. Theor. Comput. Sci., 438:13–27, 2012. doi:10.1016/j.592

tcs.2012.02.033.593

21 Vincent Conitzer and Tuomas Sandholm. New complexity results about nash equilibria. Games594

Econ. Behav., 63(2):621–641, 2008. doi:10.1016/j.geb.2008.02.015.595

22 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin596

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.597

doi:10.1007/978-3-319-21275-3.598

23 Argyrios Deligkas, John Fearnley, and Rahul Savani. Inapproximability results for constrained599

approximate nash equilibria. Inf. Comput., 262(Part):40–56, 2018. doi:10.1016/j.ic.2018.600

06.001.601

24 Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos602

Melissinos. (in)approximability of maximum minimal FVS. In ISAAC, volume 181 of LIPIcs,603

pages 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.604

25 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight605

algorithms for pathwidth and sub-exponential approximation. CoRR, abs/2101.07550, 2021.606

URL: https://arxiv.org/abs/2101.07550, arXiv:2101.07550.607

26 Edith Elkind, Leslie Ann Goldberg, and Paul W. Goldberg. Nash equilibria in graphical games608

on trees revisited. In Joan Feigenbaum, John C.-I. Chuang, and David M. Pennock, editors,609

Proceedings 7th ACM Conference on Electronic Commerce (EC-2006), Ann Arbor, Michigan,610

USA, June 11-15, 2006, pages 100–109. ACM, 2006. doi:10.1145/1134707.1134719.611

27 Edith Elkind, Leslie Ann Goldberg, and Paul W. Goldberg. Computing good nash equilibria612

in graphical games. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul Resnick, editors,613

Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San Diego, California,614

USA, June 11-15, 2007, pages 162–171. ACM, 2007. doi:10.1145/1250910.1250935.615

28 Robert Elsässer and Tobias Tscheuschner. Settling the complexity of local max-cut (almost)616

completely. In Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages617

and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July618

4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science, pages619

171–182. Springer, 2011. doi:10.1007/978-3-642-22006-7_15.620

29 Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, and Yusuke Kobayashi. Parameterized621

Algorithms for Maximum Cut with Connectivity Constraints. In IPEC 2019, pages 13:1–13:15,622

2019.623

https://doi.org/10.1137/1.9781611973730.66
https://doi.org/10.1145/2614687
https://doi.org/10.1145/3357713.3384325
https://doi.org/10.1145/3357713.3384325
https://doi.org/10.1145/3357713.3384325
https://doi.org/10.1016/j.tcs.2012.02.033
https://doi.org/10.1016/j.tcs.2012.02.033
https://doi.org/10.1016/j.tcs.2012.02.033
https://doi.org/10.1016/j.geb.2008.02.015
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2018.06.001
https://doi.org/10.1016/j.ic.2018.06.001
https://doi.org/10.1016/j.ic.2018.06.001
https://arxiv.org/abs/2101.07550
http://arxiv.org/abs/2101.07550
https://doi.org/10.1145/1134707.1134719
https://doi.org/10.1145/1250910.1250935
https://doi.org/10.1007/978-3-642-22006-7_15

M. Lampis 23:15

30 Michael Etscheid and Heiko Röglin. Smoothed analysis of local search for the maximum-cut624

problem. ACM Trans. Algorithms, 13(2):25:1–25:12, 2017. doi:10.1145/3011870.625

31 Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure626

nash equilibria. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium627

on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 604–612. ACM, 2004.628

doi:10.1145/1007352.1007445.629

32 Dimitris Fotakis, Vardis Kandiros, Thanasis Lianeas, Nikos Mouzakis, Panagiotis Patsilinakos,630

and Stratis Skoulakis. Node-max-cut and the complexity of equilibrium in linear weighted631

congestion games. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th632

International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,633

2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 50:1–50:19.634

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.635

50.636

33 Dimitris Fotakis, Spyros C. Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, and Paul G.637

Spirakis. The structure and complexity of nash equilibria for a selfish routing game. Theor.638

Comput. Sci., 410(36):3305–3326, 2009. doi:10.1016/j.tcs.2008.01.004.639

34 F. Furini, I. Ljubić, and M. Sinnl. An effective dynamic programming algorithm for the640

minimum-cost maximal knapsack packing problem. European Journal of Operational Research,641

262(2):438–448, 2017.642

35 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of643

NP-Completeness. W. H. Freeman, 1979.644

36 Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considerations.645

Games and Economic Behavior, 1(1):80–93, 1989.646

37 Laurent Gourvès and Jérôme Monnot. On strong equilibria in the max cut game. In Stefano647

Leonardi, editor, Internet and Network Economics, 5th International Workshop, WINE 2009,648

Rome, Italy, December 14-18, 2009. Proceedings, volume 5929 of Lecture Notes in Computer649

Science, pages 608–615. Springer, 2009. doi:10.1007/978-3-642-10841-9_62.650

38 Laurent Gourvès, Jérôme Monnot, and Aris Pagourtzis. The lazy bureaucrat problem with651

common arrivals and deadlines: Approximation and mechanism design. In FCT, volume 8070652

of Lecture Notes in Computer Science, pages 171–182. Springer, 2013.653

39 Gianluigi Greco and Francesco Scarcello. On the complexity of constrained nash equilibria654

in graphical games. Theor. Comput. Sci., 410(38-40):3901–3924, 2009. doi:10.1016/j.tcs.655

2009.05.030.656

40 Tesshu Hanaka, Hans L. Bodlaender, Tom C. van der Zanden, and Hirotaka Ono. On the657

maximum weight minimal separator. Theoretical Computer Science, 796:294 – 308, 2019.658

41 Elad Hazan and Robert Krauthgamer. How hard is it to approximate the best nash equilibrium?659

SIAM J. Comput., 40(1):79–91, 2011. doi:10.1137/090766991.660

42 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly661

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.662

1774.663

43 Ken Iwaide and Hiroshi Nagamochi. An improved algorithm for parameterized edge dominating664

set problem. J. Graph Algorithms Appl., 20(1):23–58, 2016.665

44 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local666

search? J. Comput. Syst. Sci., 37(1):79–100, 1988. doi:10.1016/0022-0000(88)90046-3.667

45 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,668

tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019.669

doi:10.1016/j.dam.2018.11.002.670

46 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized671

d-scattered set. Discrete Applied Mathematics, 2020. URL: http://www.sciencedirect.com/672

science/article/pii/S0166218X20301517, doi:10.1016/j.dam.2020.03.052.673

CVIT 2016

https://doi.org/10.1145/3011870
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.4230/LIPIcs.ICALP.2020.50
https://doi.org/10.4230/LIPIcs.ICALP.2020.50
https://doi.org/10.4230/LIPIcs.ICALP.2020.50
https://doi.org/10.1016/j.tcs.2008.01.004
https://doi.org/10.1007/978-3-642-10841-9_62
https://doi.org/10.1016/j.tcs.2009.05.030
https://doi.org/10.1016/j.tcs.2009.05.030
https://doi.org/10.1016/j.tcs.2009.05.030
https://doi.org/10.1137/090766991
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/j.dam.2018.11.002
http://www.sciencedirect.com/science/article/pii/S0166218X20301517
http://www.sciencedirect.com/science/article/pii/S0166218X20301517
http://www.sciencedirect.com/science/article/pii/S0166218X20301517
https://doi.org/10.1016/j.dam.2020.03.052

23:16 Minimum Stable Cut and Treewidth

47 Kaveh Khoshkhah, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian Sikora.674

Weighted upper edge cover: Complexity and approximability. J. Graph Algorithms Appl.,675

24(2):65–88, 2020.676

48 Michael Lampis. Parameterized approximation schemes using graph widths. In Javier Esparza,677

Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and678

Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,679

2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 775–786.680

Springer, 2014. doi:10.1007/978-3-662-43948-7_64.681

49 Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation revisited. In Daniel682

Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized683

and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of684

LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:685

10.4230/LIPIcs.IPEC.2017.26.686

50 Martin Loebl. Efficient maximal cubic graph cuts (extended abstract). In Javier Leach687

Albert, Burkhard Monien, and Mario Rodríguez-Artalejo, editors, Automata, Languages and688

Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991,689

Proceedings, volume 510 of Lecture Notes in Computer Science, pages 351–362. Springer, 1991.690

doi:10.1007/3-540-54233-7_147.691

51 Lorenz Minder and Dan Vilenchik. Small clique detection and approximate nash equilibria. In692

Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors, Approximation, Ran-693

domization, and Combinatorial Optimization. Algorithms and Techniques, 12th International694

Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA,695

USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in Computer Science,696

pages 673–685. Springer, 2009. doi:10.1007/978-3-642-03685-9_50.697

52 Dominik Peters. Graphical hedonic games of bounded treewidth. In Dale Schuurmans and698

Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial699

Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 586–593. AAAI Press, 2016.700

URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12400.701

53 Svatopluk Poljak. Integer linear programs and local search for max-cut. SIAM J. Comput.,702

24(4):822–839, 1995. doi:10.1137/S0097539793245350.703

54 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard to704

solve. SIAM J. Comput., 20(1):56–87, 1991. doi:10.1137/0220004.705

55 Grant Schoenebeck and Salil P. Vadhan. The computational complexity of nash equilibria706

in concisely represented games. ACM Trans. Comput. Theory, 4(2):4:1–4:50, 2012. doi:707

10.1145/2189778.2189779.708

56 M. Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM Journal on709

Discrete Mathematics, 31(4):2440–2456, 2017.710

https://doi.org/10.1007/978-3-662-43948-7_64
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.1007/3-540-54233-7_147
https://doi.org/10.1007/978-3-642-03685-9_50
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12400
https://doi.org/10.1137/S0097539793245350
https://doi.org/10.1137/0220004
https://doi.org/10.1145/2189778.2189779
https://doi.org/10.1145/2189778.2189779
https://doi.org/10.1145/2189778.2189779

M. Lampis 23:17

A Omitted Material711

A.1 Proof of Remark 2712

Proof. A tree of diameter at most 3 must be either a star, in which case there is only one713

feasible solution (up to symmetry); or a double-star, that is a graph produced by taking two714

stars and connecting their centers. In the latter case, the optimal solution is always to place715

the two centers on the same side if this is feasible (as otherwise all edges are cut). J716

A.2 Proof of Theorem 3717

Proof. We present a reduction from Partition similar to that of Theorem 1. Given an718

instance with values x1, . . . , xn we construct a bipartite graph K2,n. To ease presentation,719

we will call the part of K2,n that contains two vertices the “left” part, and the part that720

contains the remaining n vertices the “right” part. For each i ∈ [n] we select a vertex of the721

right part and set the weight of both its incident edges to xi. We claim that this graph has a722

stable cut of weight 2B if and only if the original instance is a Yes instance.723

If there is a partition S ⊆ [n] such that
∑
i∈S xi = B, we select the corresponding vertices724

of the right part and assign to them 0; we assign 1 to the other vertices of the right part;725

we assign 0 to one vertex of the left part and 1 to the other. This partition is stable, as all726

vertices have completely balanced neighborhoods. Furthermore, the weight of the cut is 2B.727

For the other direction, observe that if both vertices of the left part of K2,n are on the728

same side of the partition, then all edges will be cut, giving weight 4B. So a stable partition729

of weight 2B must place these two vertices on different sides. However, these vertices have730

the same neighbors (with the same edge weights), so if both are stable, their neighborhood731

must be properly balanced. From this we can infer a solution to the Partition instance. J732

A.3 Proof of Theorem 4733

Proof. We give a reduction from Max Cut on graphs of maximum degree 3, which is known734

to be APX-hard [11]. Given an instance G = (V,E) of Max Cut we sub-divide each edge735

of E once, and we attach three leaves to each vertex of V . We claim that if the original736

instance has a cut of size at least k then the new instance has a stable cut of size at most737

3|V |+ 2|E| − k.738

For one direction, suppose we have a cut of G of size k which partitions V into V0, V1. We739

use the same partition of V for the new instance. For each leaf, we assign it a value opposite740

of that of its neighbor. For each degree two vertex which was produced when sub-dividing an741

edge of E we give it a value that is opposite to that of at least one of its neighbors. Observe742

that this cut is stable: all leaves are stable; all vertices produced in sub-divisions have degree743

two and at least one neighbor on the other side; and all vertices of V are adjacent to three744

leaves on the other side and at most three other vertices (since G is subcubic). The edges745

cut are: 3|V | edges incident on leaves; 2 edges for each edge of E whose endpoints are on the746

same side; 1 edge for each cut edge of E. This gives 3|V |+ 2|E| − k edges cut overall.747

For the other direction, suppose we have a stable cut of the new graph. We use the same748

cut in G and claim that it must cut at least k edges. Indeed, in the new graph any stable749

cut must cut all 3|V | edges incident on leaves, and at least one of the two edges incident on750

each degree two vertex. Furthermore, if e = (u, v) ∈ E and u, v are on the same side of the751

cut, then both edges in the sub-divided edge e must be cut. We conclude that there must be752

at least k edges of G with endpoints on different sides of the cut. J753

CVIT 2016

23:18 Minimum Stable Cut and Treewidth

A.4 Proof of Theorem 5754

Proof. We sketch some of the details, since our algorithm follows the standard dynamic755

programming method for treewidth. We assume that we are given a nice tree decomposition756

of width tw for the input graph G = (V,E). For each node t of the decomposition, let Bt ⊆ V757

be the bag associated with t and B↓t ⊆ V the set of all vertices of G which appear in bags in758

the sub-tree rooted in t (that is, the vertices which appear below t in the decomposition).759

The signature of a solution in node t is defined as a tuple of the following information: (i) a760

partition of Bt into two sets, which encodes the intersections of Bt with V0, V1 (ii) for each761

v ∈ Bt an integer value in {0, . . . , dw(v)}, which encodes for each v ∈ Bt the total weight762

of its incident edges whose other endpoint is in B↓t \Bt and on the same side of the cut as763

v. Our dynamic program stores in each node Bt, for each possible signature s, a value c(s),764

which is the size of the best cut of B↓t that is consistent with the signature and is also stable765

for all vertices of B↓t \Bt. Observe that the total number of possible signatures is at most766

2|Bt|(max dw(v))|Bt| ≤ O(2tw(∆ ·W)tw+1), because dw(v) is always upper-bounded by ∆ ·W .767

Therefore, what remains is to show that we can maintain the dynamic programming tables768

in time polynomial in their size. If we do this then it’s not hard to see that examining the769

DP table of the root will allow us to find the optimal solution.770

As mentioned, the basic idea of the algorithm is that for a node t of the decomposition771

and a signature s, we will maintain the value c(s) if we have the following: (i) there exists a772

partition of B↓t into V0, V1 that is consistent with s in Bt, stable for all vertices of B↓t \Bt,773

such that the total weight of cut edges of G[B↓t] is c(s); (ii) for any other partition of B↓t774

that is consistent with s in Bt and stable for all vertices of B↓t \Bt, the total weight of its775

cut edges of G[B↓t] is at least c(s). To clarify what we mean that the partition is consistent776

with s in Bt, we recall that s specifies a partition of Bt with which the partition must agree;777

and furthermore s specifies for each v ∈ Bt its total incident edge weight leading to the same778

side of the partition in B↓t \Bt and the actual partition must also agree with these values.779

Given the above framework, it’s now not hard to complete the dynamic programming780

algorithm. For Leaf nodes, the table contains only the trivial signature, which has value781

0, since the corresponding bag is empty. For Introduce nodes that add a new vertex v, we782

consider every signature of the child node and extend it by considering placing v into V0 or783

V1. Since all neighbors of v in B↓t are contained in Bt, placing v doesn’t change the signature784

of other vertices and v has 0 weight to B↓t \ Bt. For Forget nodes that remove a vertex v,785

we discard all signatures in which v has more then dw(v)/2 of its incident weight going to786

its own side (since in such solution v will be unstable) and keep the remaining signatures,787

updating the weighted information of neighbors of v in Bt. Finally, for Join nodes, we only788

consider pairs of signatures which agree on the partition of Bt into V0, V1. For each such789

pair, we can compute the weighted degree of each v towards its side of the partition in790

B↓t \Bt, by adding the corresponding values in the two signatures. Observe that this doesn’t791

double-count any edge, as edge induced by Bt are taken care of in Forget nodes. J792

A.5 Proof of Theorem 8793

Proof. We recall that the standard chain of reductions from 3-SAT to 3-Set Splitting794

which establishes that the latter problem is NP-hard produces an instance with size linear in795

the original formula [35, 42]. We compose these reductions with the reduction of Lemma 7.796

Suppose we started with a formula with n variables and m clauses (so as an intermediate step797

we constructed a 3-Set Splitting instance with O(n+m) elements and sets). We therefore798

now have an instance with N = poly(n+m) vertices (since the reduction runs in polynomial799

M. Lampis 23:19

time), maximum degree ∆ = O(log(n+m)) and pathwidth pw = O((n+m)/ log(n+m)),800

and maximum weight W = poly(n+m). Plugging these relations into the running times of801

hypothetical algorithms for Min Stable Cut we obtain algorithms for 3-SAT running in802

time 2o(n+m) and contradicting the ETH. J803

A.6 Proof of Lemma 9804

Proof. For v ∈ V let S(v) = maxu∈N(v) s(vu, v). We define s′ as follows: s′(vu, v) =805

bn
2s(uv,v)
S(v) c. It is clear that the maximum value of s′ is n2 and that calculations can be806

carried out in the promised time. So what remains is to prove that for any partition the807

fraction
∑

vu∈E,u∈V1−i
s(vu,v)

ds(v) stays essentially unchanged.808

Observe that n2s(uv,v)
S(v) ≤ s′(vu, v) ≤ n2s(uv,v)

S(v) + 1. We therefore have809

n2ds(v)
S(v) ≤ ds′(v) ≤ n2ds(v)

S(v) + n

We also have:810

n2 ∑
vu∈E,u∈V1−i

s(vu, v)
S(v) ≤

∑
vu∈E,u∈V1−i

s′(vu, v) ≤
n2 ∑

vu∈E,u∈V1−i
s(vu, v)

S(v) + n

In both cases we have used the fact that the degree of v is at most n. Now with some811

calculation we get:812

∑
vu∈E,u∈V1−i

s(vu, v)

ds(v) + S(v)
n

≤
∑
vu∈E,u∈V1−i

s′(vu, v)
ds′(v) ≤

∑
vu∈E,u∈V1−i

s(vu, v) + S(v)
n

ds(v)

We can now use the fact that S(v) < ds(v) and that 1
1+ 1

n

> 1− 1
n .813

J814

A.7 Proof of Theorem 11815

Proof. We simply put together the algorithms of Lemmas 9 and 10. Fix an ε > 0. Once we816

execute the algorithm of Lemma 9 the weight of all cuts is preserved (since we do not change817

w), and a stable cut remains at least (1 + ε/2)-stable, if n is sufficiently large. We therefore818

execute the algorithm of Lemma 10 and this will output a (1 + ε)-stable cut with value at819

least as small as the minimum stable cut. J820

A.8 Proof of Lemma 14821

Proof. Let σ : [k] → [n] be a function that encodes a multi-colored independent set of G,822

that is, the set {v(i,σ(i)) | i ∈ [k]} is an independent set. We construct a partition of the new823

instance as follows: we assign 0 to p0, 1 to p1, and arbitrary values to the vertices of the824

heavy edge connecting p0 to p1; each other vertex that belongs to a heavy edge incident to825

p0 (respectively p1) is assigned 1 (respectively 0); each vertex connected via a heavy edge to826

p0 (respectively p1) is assigned 1 (respectively 0); for each Selector gadget P(i,j) we assign to827

the first σ(i) vertices of the path (that is, the vertices {P 1
i,j , . . . , P

σ(i)
i,j }) the same value as828

P 1
i,j (that is, 0 if j is odd and 1 if j is even); we assign to the remaining vertices of P(i,j) the829

CVIT 2016

23:20 Minimum Stable Cut and Treewidth

same value as Pn+1
(i,j) ; we assign to every leaf the opposite value from that of its neighbor; we830

assign an arbitrary value to each Propagator vertex. We have now described a partition of831

all the vertices except of the non-leaf vertices belonging to Checker gadgets.832

Before we describe the partition of the Checker gadgets let us establish some basic833

properties of the partition so far. First, all vertices for which we have given a value are stable,834

independent of the values we intend to assign to the non-leaf Checker gadget vertices. To see835

this we note that (i) all leaves have a value different from their neighbors (ii) all degree 2836

vertices that belong to heavy edges have two neighbors with distinct values (iii) p0 and p1837

have the majority of their neighbors on the other side of the partition (iv) for all non-leaf838

Selector gadget vertices at least half their neighbors are leaves (which are on the opposite839

side of the partition) (v) all Propagator vertices have exactly n+ 1 neighbors on each side of840

the partition. The total number of edges cut so far is (i) L1 edges incident on leaves (ii) L2841

edges incident on degree 2 vertices that belong to heavy edges (iii) one internal edge of each842

path P(i,j) giving km edges in total (iv) half of the 2n+ 2 edges incident on each Propagator843

vertex, of which there are k(m− 1), giving k(m− 1)(n+ 1) in total. Summing up, we have844

already cut L1 +L2 + km+ k(m− 1)(n+ 1) edges, meaning we can still cut m(2n+ 6) edges.845

We will describe a stable partition of the Checker gadgets which cuts exactly 2n+ 6 edges846

per gadget (not counting edges incident on leaves, since these are already counted in L1),847

and since we have m Checker gadgets this will complete the proof.848

Consider now the Checker gadget for edge j which connects v(i1,j1) to v(i2,j2) and without849

loss of generality assume that j is odd (otherwise the proof is identical with the roles of 0850

and 1 reversed). We claim that one of the vertices t1j , t2j , t3j , t4j must have neighbors on both851

sides of the partition in the Selector gadgets. To see this, suppose for contradiction that852

each of these vertices only has neighbors on one side of the partition so far. Then, since t1j is853

connected to P 1
(i1,j), which has color 0 and t2j is connected to Pn+1

(i1,j), which has color 1, and854

t1j is connected to the first j1 vertices of P(i1,j), we conclude that σ(i1) = j1, because the855

number of vertices of the path P(i1,j) which have value 0 is σ(i1). With the same argument,856

we must have σ(i2) = j2, contradicting the hypothesis that σ encodes an independent set.857

We can therefore assume that one of t1j , t2j , t3j , t4j has neighbors on both sides of the858

partition in the Selector gadgets. Without loss of generality suppose that t1j has this property859

(the proof is symmetric in other cases). We complete the partition as follows: we assign860

values to T 2
j , T

3
j , T

4
j in a way that t2j , t3j , t4j have the same number of neighbors on each861

side of the partition and that both neighbors of bj in T 2
j , T

4
j have value 0. This is always862

possible as t2j , t4j have a neighbor with value 1 in the Selectors, namely Pn+1
(i1,j) and Pn+1

(i2,j).863

We assign colors to T 1
j in a way that t1j has the same number of neighbors on each side and864

aj has two neighbors with distinct values in T 1
j ∪ T 3

j . This is always possible as we need865

to use both values in T 1
j , because t1j has neighbors with both values in P(i1,j). We give bj866

value 1, cj value 1 and aj value 0. This is stable as bj has two neighbors of value 0, cj has867

neighbors with distinct values, and aj has two neighbors with value 1. Furthermore, vertices868

in T 1
j ∪ T 2

j ∪ T 3
j ∪ T 4

j are stable because half their neighbors are leaves which are on the869

other side of the partition, and the neighborhoods of t1j , t2j , t3j , t4j are completely balanced, so870

these vertices can be arbitrarily set. The number of edges cut is half of the edges incident on871

t1j , t
2
j , t

3
j , t

4
j , giving 2n+ 2 edges, plus two edges incident on each of aj , bj , giving a total of872

2n+ 6 edges. J873

A.9 Proof of Lemma 15874

Proof. Suppose we have a stable cut of size at most B. This cut must include all L1 edges875

incident on leaves, and at least one edge for each of the L2 degree two vertices which belong876

M. Lampis 23:21

to heavy edges. Furthermore, if there is a heavy edge such that both of its endpoints have877

the same value, the number of edges cut incident on vertices that belong to heavy edges will878

be at least L2 +A. However, A = n5 > km+ k(m− 1)(n+ 1) +m(2n+ 6), so we would have879

a cut of size strictly larger than B. We conclude that in all heavy edges the two endpoints880

have distinct values. Without loss of generality assume value 0 is given to p0 and 1 to p1.881

We now observe that:882

1. At least one internal edge of each path P(i,j) is cut.883

2. At least n+ 1 edges incident on each Propagator vertex are cut.884

3. At least 2n+ 6 edges not incident to leaves are cut inside each Checker gadget.885

For the first claim, observe that if the endpoints of heavy edges take distinct values, this886

implies that in each path P(i,j) the first and last vertex have distinct values, so at least one887

edge of the path must be cut. The second claim is based on the fact that Propagator vertices888

have degree 2n+ 2. For the third claim, observe that t1j , t2j , t3j , t4j have 4n+ 4 edges incident889

on them, so at least 2n + 2 of these must be cut in a stable solution. Furthermore, aj , bj890

have degree 3, so at least 2 edges incident on each of these vertices are cut, giving a total of891

2n+ 6. (Here, we used the fact that {t1j , t2j , t3j , t4j , aj , bj} is an independent set).892

By the above observations we have that any stable cut must have size at least L1 + L2 +893

km+ k(m− 1)(n+ 1) +m(2n+ 6) = B. Furthermore, if a solution cuts more than one edge894

of a path P(i,j), or at least n+ 2 edges incident on a Propagator, or at least 2n+ 7 edges895

not incident to leaves in a Checker, then its total size must be strictly larger than B. We896

conclude that our solution must cut exactly one edge inside each Selector, properly balance897

the neighborhoods of all Propagators, and cut 2n+ 6 edges inside each Checker.898

Consider now two consecutive Selector gadgets P(i,j) and P(i,j+1). Since the solution899

cuts exactly one internal edge of each path, we can assume that the first x vertices of P(i,j)900

have the same value as P 1
(i,j) and the remaining n + 1 − x have the same value as Pn+1

(i,j) .901

Similarly, the first y vertices of P(i,j+1) have the same value as P 1
(i,j+1). Now, because j, j+ 1902

have different parities, this means that the Propagator connected to these two paths has903

n+ 1− x+ y neighbors on the same side as Pn+1
(i,j) . But this implies that x = y. Using the904

same reasoning we conclude that for all i, j, j′, the number of vertices of P(i,j) that share905

the value of P 1
(i,j) is equal to the number of vertices of P(i,j′) that share the value of P 1

(i,j′).906

Let σ(i) be the number of vertices of P(i,1) which share the value of P 1
(i,1). We claim that907

{v(i,σ(i)) | i ∈ [k]} is an independent set in G.908

To see this, suppose for contradiction that the j-th edge of G connects v(i1,σ(i1)) to909

v(i2,σ(i2)). We claim that in this case the Checker connected to P(i1,j), P(i2,j) will have at910

least 2n+ 7 cut edges. Indeed, observe that in this case the neighborhoods of t1j , t2j , t3j , t4j are911

all contained on one of the two sides of the partition. Then, either the neighborhood of one of912

these four vertices is not completely balanced, in which case the cut includes at least 2n+ 3913

edges incident on these plus at least 4 edges incident on aj , bj ; or the sets T 1
j , T

2
j , T

3
j , T

4
j are914

also all contained on one of the two sides of the partition and furthermore, T 1
j ∪ T 3

j are on915

one side and T 2
j ∪ T 4

j are on the other. This implies that aj , bj must be on distinct sides of916

the partition. As a result, no matter where cj is placed, one of aj , bj will have all three of917

its incident edges cut and as a result at least 2n+ 7 edges will be cut in this Checker. We918

conclude that σ must encode an independent set. J919

A.10 Proof of Lemma 16920

Proof. We will use the fact that deleting a vertex from a graph can decrease the pathwidth921

by at most 1, since we can take a path decomposition of the resulting graph and add this922

CVIT 2016

23:22 Minimum Stable Cut and Treewidth

vertex to all bags. We begin by deleting p0, p1 from the graph, as this decreases the pathwidth923

by at most 2. We will also use the fact that deleting all leaves from a graph can decrease924

pathwidth by at most 1, since we can take a path decomposition of the resulting graph and,925

for each leaf, find a bag of this decomposition that contains the leaf’s neighbor and insert a926

copy of this bag immediately after it, adding the leaf. We therefore remove all leaves from927

the graph, decreasing the pathwidth by at most 1 more. Let H be the resulting graph. We928

will show that H has pathwidth at most O(k). Observe that in H all heavy edges have929

disappeared, as their internal vertices became leaves when we deleted p0, p1.930

For j ∈ [m] let Hj be the graph induced by the set that contains all vertices of H from931

Selector gadgets P(i,j) for i ∈ [k], the (at most 2k) Propagator vertices connected to them,932

and the Checker gadget for the j-th edge. We will construct a path decomposition of Hj933

with the property that all bags include all Propagator vertices of Hj . If we achieve this then934

we can make a path decomposition of H by gluing together these decompositions, connecting935

the last bag of the decomposition of Hj with the first bag of the decomposition of Hj+1.936

Observe that the union of the graphs Hj covers all vertices and edges of H.937

To build such a path decomposition of Hj we can remove the 2k Propagators contained938

in Hj (since we will add them in all bags) and the vertices t1j , t2j , t3j , t4j , aj , bj , decreasing939

pathwidth by at most 2k+6. But the resulting graph is a union of paths and isolated vertices,940

so has pathwidth 1. We can therefore build a decomposition of Hj – and by extension of H –941

of width 2k +O(1). J942

	Introduction
	Definitions – Preliminaries
	Weighted Min Stable Cut
	Basic Hardness Proofs
	Algorithms
	Tight ETH-based Hardness

	Approximately Stable Cuts
	Unweighted Min Stable Cut
	Conclusions
	Omitted Material
	Proof of Remark 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 8
	Proof of Lemma 9
	Proof of Theorem 11
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

