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Abstract
Courcelle’s celebrated theorem states that all MSO-expressible properties can be decided in

linear time on graphs of bounded treewidth. Unfortunately, the hidden constant implied by this
theorem is a tower of exponentials whose height increases with each quantifier alternation in the
formula. More devastatingly, this cannot be improved, under standard assumptions, even if we
consider the much more restricted problem of deciding FO-expressible properties on trees.

In this paper we revisit this well-studied topic and identify a natural special case where the
dependence of Courcelle’s theorem can, in fact, be improved. Specifically, we show that all FO-
expressible properties can be decided with an elementary dependence on the input formula, if the
input graph has bounded pathwidth (rather than treewidth). This is a rare example of treewidth and
pathwidth having different complexity behaviors. Our result is also in sharp contrast with MSO logic
on graphs of bounded pathwidth, where it is known that the dependence has to be non-elementary,
under standard assumptions. Our work builds upon, and generalizes, a corresponding meta-theorem
by Gajarský and Hliněný for the more restricted class of graphs of bounded tree-depth.
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1 Introduction

Algorithmic meta-theorems are general statements of the form “all problems in a certain class
are tractable on a particular class of inputs”. Probably the most famous and celebrated result
of this type is Courcelle’s theorem [5], which states that all graph properties expressible in
Monadic Second Order (MSO) logic are solvable in linear time on graphs of bounded treewidth.
This result has proved to be of immense importance to parameterized complexity theory,
because a vast collection of natural NP-hard problems can be expressed in MSO logic (and
its variations that allow optimization objectives [1]) and because treewidth is the most well-
studied structural graph parameter. Thanks to Courcelle’s theorem, we immediately obtain
that all such problems are fixed-parameter tractable (FPT) parameterized by treewidth.

Despite its great success, Courcelle’s theorem suffers from a significant weakness: the
algorithm it guarantees has a running time that is astronomical for most problems. Indeed, a
careful reading of the theorem shows that the running time increases as a tower of exponentials
whose height is equal to the number of quantifier alternations of the input MSO formula.
Hence, even though Courcelle’s theorem shows that any MSO formula φ can be decided on
n-vertex graphs of treewidth tw in time f(φ, tw)n, the function f is non-elementary, that is,
it cannot be bounded from above by any tower of exponentials of fixed height.

One could hope that this terrible dependence on φ is an artifact of Courcelle’s proof
technique. Unfortunately, it was shown in a very influential work by Frick and Grohe [13]
that this non-elementary dependence on the number of quantifiers of φ is best possible
(under standard assumptions), even if one considers the severely restricted special case of
model-checking First Order (FO) logic on trees. Recall that FO logic is a basic logic formalism
that allows us to express graph properties using quantification over the vertices of the graph,
while MSO logic also allows quantification over sets of vertices. Since FO logic is trivially
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Parameter FO MSO
Treewidth Non-elementary on Trees [13] Non-elementary on Trees [13]
Pathwidth Elementary (Theorem 24) Non-elementary on Caterpillars [13]
Tree-depth Elementary [14] Elementary [14]
Table 1 Summary of the state of the art for FO and MSO model checking on graphs of bounded

treewidth, pathwidth, and tree-depth. Elementary (green cells) indicates that there is an algorithm
which, when the corresponding width is bounded by an absolute constant, decides any formula φ in
time f(φ)nO(1), where f is a function that can be bounded above by a finite tower of exponentials.
For the remaining cases, this is known to be impossible, under standard assumptions, hence it is
inevitable to have an f(φ) that is a tower of exponentials whose height increases with φ.

a subset of MSO logic and trees have treewidth 1, this result established that Courcelle’s
theorem is essentially best possible.

Frick and Grohe’s lower bound thus provided the motivation for the search for subclasses
of bounded-treewidth graphs where avoiding the non-elementary dependence on φ may
be possible. The obvious next place to look was naturally, pathwidth, which is the most
well-known restriction (and close cousin) of treewidth. Unfortunately, Frick and Grohe’s
paper provided a negative result for MSO model checking also for this parameter. More
precisely, they showed that MSO model checking on strings with a total order relation has a
non-elementary dependence on the formula (unless P=NP), but such structures can easily
be embedded into caterpillars (which are graphs of pathwidth 1) if one allows quantification
over sets. Notice, however, that this does not settle the complexity of FO logic for graphs of
counstant pathwidth, as it is not clear how one could implement the total ordering relation
of a string without access to set quantifiers (we expand on this question further below).

On the positive side, Frick and Grohe’s lower bounds motivated the discovery of sev-
eral meta-theorems with elementary dependence on the formula for other, more restricted
variations of treewidth (we review some such results below). Of all these results, the one
that is “closest” to treewidth, is the theorem of Gajarský and Hliněný [14], which states
that on graphs of constant tree-depth, MSO (and hence FO) model checking has elementary
dependence on the input formula. It is known that for all n-vertex graphs G we have
tw(G) ≤ pw(G) ≤ td(G) ≤ tw(G) logn, where tw,pw, td denote the treewidth, pathwidth
and tree-depth. In a sense, this positive result seemed to go as far as one could possibly go
towards emulating treewidth, while retaining the elementary dependence on the formula and
avoiding the lower bound of Frick and Grohe. This state of the art is summarized in Table 1.

Our result In this paper we revisit this well-studied topic and address the one remaining
case of Table 1 where it is still unknown whether it is possible to obtain an elementary
dependence on the formula for model checking. We answer this question positively, showing
that if we restrict ourselves to graphs of pathwidth p, where p is an absolute constant, then
FO formulas with q quantifiers can be decided in time f(q)nO(1), where f is an elementary
function of q. More precisely, the function f is at most a tower of exponentials of height
O(p). In other words, our result trades the non-elementary dependence on q which is inherent
in Courcelle’s theorem, with a non-elementary dependence on p. Though this may seem
disappointing at first, it is known that this is the best one could have hoped for. In fact,
the meta-theorem of [14] also has this behavior (its parameter dependence is a tower of
exponentials whose height increases with the tree-depth), and it was shown in [24] that this is
best possible (under standard assumptions). Since pathwidth is a more general parameter, we
cannot evade this lower bound and our algorithm needs to have a non-elementary dependence
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on pathwidth, if its dependence on the formula is elementary.
The result we obtain is, therefore, in a sense best possible and fills a natural gap in

our knowledge regarding FO model checking for a well-studied graph width. Beyond filling
this gap, the fact that we are able to give a positive answer to this question and obtain an
algorithm with “good” dependence on the formula is interesting, and perhaps even rather
striking, for several reasons. First, in many cases in this domain, it is impossible to obtain
an elementary dependence on q, no matter how much we are willing to sacrifice on our
dependence on the graph width, as demonstrated by the fact that the lower bounds of Table 1
apply for classes with the smallest possible width (trees and caterpillars). Second, even
though FO seems much weaker than MSO in general, the complexities of model checking
the two logics seem to be similar (that is, at most one level of exponentiation apart) for
most parameters (we review some further examples below). Indeed, a main contribution
of [14] was to prove that for graphs of bounded tree-depth, the two logics are actually
equivalent. It is therefore somewhat unusual (for this context) that for pathwidth FO has
quite different complexity from MSO logic. Third, even though treewidth and pathwidth are
arguably the two most well-studied graph widths in parameterized complexity, by and large
the complexities of the vast majority of problems are the same for both parameters (for more
information on this, see [2] which only recently discovered the first example of a natural
problem separating the two parameters). It is therefore remarkable that the complexity of
FO model checking is so different for pathwidth and treewidth.

Finally, one aspect of our result that makes it more surprising is that it does not seem to
generalize to dense graphs. Meta-theorems that give a non-elementary dependence on the
formula by using a restriction of treewidth, generally have a dense graph analogue, using a
restriction of clique-width (the dense graph analogue of treewidth). Indeed, this is the case
for vertex cover [23] (neighborhood diversity [23], twin cover [16]) but also for tree-depth
(shrub-depth [17]). One may have expected something similar to hold in our case. However,
the natural dense analogue of pathwidth is linear clique-width and it is already known that
FO logic has a non-elementary dependence on threshold graphs [24]. Since threshold graphs
have linear clique-width 2, we cannot hope to extend our result to this parameter and it
appears that the positive result of this paper is an isolated island of “tractability”.

High-level proof overview Our technique extends and builds upon the meta-theorem of
[14] which handles the more restricted case of graphs of bounded tree-depth. We recall
that the heart of this meta-theorem is the basic observation that FO logic has bounded
counting power: if our graph contains q+ 1 identical parts (for some appropriate definition of
“identical”), then deleting one cannot affect the validity of any FO formula with q quantifiers.
The approach of [14] is to partition the vertices of the graph depending on their height in
the tree-depth decomposition, then identify (and delete) identical vertices in the bottom
level. This bounds the degree of vertices one level up, which allows us to partition them
into a bounded number of types, delete components of the same type if we have too many,
hence bound the degree of vertices one level up, and so on until the size of the whole graph
is bounded.

Our approach borrows much of this general strategy: we will appropriately rank the
vertices of the graph and then move from lower to higher ranks, at each step bounding the
maximum degree of any vertex of the current rank. Besides the fact that ranking vertices
into levels is less obvious when given a path decomposition, rather than a tree of fixed height,
the main difficulty we encounter is that no matter where we start, we cannot in general easily
find identical parts where something can be safely deleted. Intuitively, this is demonstrated
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by the contrast between the simplest bounded tree-depth graph (a star, where leaves are
twins, hence one can easily delete one if we have at least q + 1) and the simplest bounded
pathwidth graph (a path, which contains no twins). In order to handle this more general
case, we need to combine the previous approach with arguments that rely on the locality of
FO logic.

To understand informally what we mean by this, recall the classical argument which
proves that Reachability is not expressible in FO logic. One way this is proved, is to show
that a graph G1 which is a long path (of say, 4q vertices) and a graph G2 which is a union of
a path and a cycle (of say, 2 · 4q−1 vertices each) are indistinguishable for FO formulas with
q quantifiers. Our strategy is to flip this argument: if we are asked to model check a formula
on a long path, we might as well model check the same formula on a simpler (less connected)
graph which contains a shorter path and a cycle. Of course, our input graphs will be more
complicated than long paths; we will, however, be dealing with long path-like structures, as
our graph has small pathwidth. Our strategy is to perform a surgical rewiring operation
on the path decomposition, producing the union of a shorter decomposition and a ring-like
structure, while still satisfying the same formulas (the reader may skip ahead to Figure 1
to get a feeling for this operation). In other words, the main technical ingredient of our
algorithm is inspired by (and exploits) a classical impossibility result on the expressiveness of
FO logic. The abstract idea is (in a rough sense) to apply this argument repeatedly, so that
if we started with a long path decomposition, we end up with a short path decomposition
and many “disconnected rings”. Eventually, we will be able to produce some such rings which
are identical, delete them, and simplify the graph.

There are, of course, now various technical difficulties we need to overcome in order to
turn this intuition into a precise argument. First, when we cut at two points in the path
decomposition to extract the part that will form the “ring”, we need to make sure that at an
appropriate radius around the cut points the decompositions are isomorphic. It is not hard
to calculate the appropriate radius we need in the graph (it is known that q-quantifier FO
formulas depend on balls of radius roughly 2q), but a priori two vertices which are close in
the graph could be far in the path decomposition. To handle this, we take care when we
rank the vertices, so that vertices of lower rank are guaranteed to only appear in a bounded
number of bags, hence distances in the path decomposition approximate distances in the
graph. Second, we need to calculate how long our decomposition needs to be before we
can guarantee that we will be able to find some appropriate cut points. Here we use some
counting arguments and pigeonhole principle to show that a path decomposition with length
double-exponential in the desired radius is sufficient. Finally, once we find sufficiently many
points to rewire and produce sufficiently many “rings”, we need to prove that this did not
affect the validity of the formula. Then, we are free to delete one, using the same argument
as [14] and obtain a smaller equivalent graph. In the end, once we can no longer repeat this
process, we obtain a bounded-degree graph, where it is known that FO model checking has
an elementary dependence on the formula.

Overall, even though the algorithm we present seems somewhat complicated, the basic
ingredients are simple and well-known: the fact that deleting one of many identical parts
does not affect the validity of the formula (which is also used in [14]); the fact that FO
formulas are not affected if we edit the graph in a way that preserves balls of a small radius
around each vertex; and simple counting arguments and the pigeonhole principle.

Paper Organization We conclude this section below with a short overview of other related
work on algorithmic meta-theorems and continue in Section 2 with definitions and notation.
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The rest of the paper is organized as follows:

1. In Section 3 we present two lemmas, which are standard facts on FO logic, with minor
adjustments to our setting. In particular, in Section 3.1 we present the lemma that states
that if we have q + 1 identical parts, it is safe to delete one; and in Section 3.2 we present
the lemma that states that if two graphs agree on the local extended neighborhoods
around each vertex (for some appropriate radius), then they satisfy the same formulas
(that is, FO logic is local). Since these facts are standard, the reader may wish to skip the
proofs of Section 3, which are given for the sake of completeness, during a first reading.

2. Then, in Section 4 we present the specific tools we will use to simplify our graph. In
Section 4.1 we explain how we rank the vertices of a path decomposition so that each
vertex has few neighbors of higher rank (but possibly many neighbors of lower rank).
This allows us to process the ranks from lower to higher, simplifying the graph step by
step. Then, in Section 4.2 we use some counting arguments to calculate the length of a
path decomposition that guarantees the existence of long isomorphic blocks, on which
we will apply the rewiring operation. We also show how distances in the graph can be
approximated by distances in the path decomposition, if we have bounded the number
of occurrences of each vertex in the decomposition. Finally, in Section 4.3 we formally
define the rewiring operation and show that if the points where we apply it are in the
middle of sufficiently long isomorphic blocks of the decomposition, this operation is safe.
We also show that the “rings” it produces can be considered identical, in a sense that
will allow us to invoke the lemma of Section 3.1 and delete one.

3. We put everything together in Section 5, where we explain how the lemmas we have
presented form parts of an algorithm that ranks the vertices of a graph supplied with
a path decomposition and then processes ranks one by one, decreasing the number of
occurences of each vertex in the decomposition without affecting the validity of any
formula (with q quantifiers). In the end, the processed graph has bounded degree and we
invoke known results to decide the formula.

Other related work Algorithmic meta-theorems are a very well-studied topic in param-
eterized complexity ([20]) and much work has been devoted in improving and extending
Courcelle’s theorem. Among such results, we mention the generalization of this theorem
to MSO for clique-width, which covers dense graphs [6]. For FO logic, fixed-parameter
tractability can be extended to much wider classes of graphs, with the recently introduced
notion of twin-width nicely capturing many results in the area [4, 9, 11, 12]. Of course,
since all these classes include the class of all trees, the non-elementary dependence on the
formula implied by the lower bound of [13] still applies. Meta-theorems have also been
given for logics other than FO and MSO, with the goal of either targeting a wider class of
problems [18, 21, 22, 29], or achieving better complexity [27]. Kernelization [3, 10, 19] and
approximation [8] are also topics where meta-theorems have been studied.

The meta-theorems which are more relevant to the current work are those which explicitly
try to improve upon the parameter dependence given by Courcelle, by considering more
restricted parameters. We mention here the meta-theorems for vertex cover, max-leaf, and
neighborhood diversity [23], twin-cover [16], shrub-depth [17], and vertex integrity [25]. As
mentioned, one common aspect of these meta-theorems is that they handle both FO and
MSO logic, without a huge difference in complexity (at most one extra level of exponentiation
in the parameter dependence), which makes the behavior of FO logic on treewidth somewhat
unusual. The only exception, is the meta-theorem on graphs of bounded max-leaf number
of [23] which does not generalize to MSO logic. It was later shown that this is with good
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reason, as MSO logic has a non-elementary dependence even for unlabeled paths [24], which
have the smallest possible max-leaf number. This is therefore the only previous result in the
literature which mirrors the situation for pathwidth.

A classical result, incomparable to the parameters mentioned above, is the fact that FO
model checking is FPT (with an elementary, triple-exponential dependence on the formula)
on graphs of bounded degree [28]. We will use this fact as the last step of our algorithm.

The complexity of model checking FO and MSO formulas on structures other than graphs,
such as posets [15] and strings has also been investigated. As mentioned, the case of strings is
of particular interest to us, because the standard structure that represents a string over a fixed
alphabet (a universe that contains the letters of the string, unary predicates that indicate for
each letter which character of the alphabet it corresponds to, and a total ordering relation ≺
which indicates the ordering of the letters in the string) allows us to easily translate MSO
properties of strings into MSO properties of an appropriate caterpillar. Indeed, to embed a
string into a caterpillar, we can start with a path with endpoints s, t, and use one vertex
of the path to represent each letter in the string. We can attach an appropriate (constant)
number of leaves on each vertex to signify which character it represents. The precedence
relation x ≺ y of the string now becomes the relation “every connected set that contains s
and y, also contains x”, which is MSO-expressible. Thanks to this simple transformation,
the lower bound result of [13] on model checking MSO (and even FO) logic on strings,
immediately carries over to graphs of pathwidth 1. Note, however, that the existence of
the ordering relation is crucial, as FO model checking on other models of strings (e.g. with
a successor relation) has elementary dependence on the formula, as such structures have
bounded degree [13]. Hence, it seems that if we focus on FO (rather than MSO) logic, the
similarity between model checking on bounded pathwidth graphs and strings becomes much
weaker: FO model checking is easier on graphs of bounded pathwidth than on strings with
an ordering relation, but harder than on strings with only a successor relation (as the lower
bound of [24] for tree-depth applies to pathwidth, and rules out an algorithm with “only”
triple-exponential dependence).

2 Definitions and Preliminaries

We use standard graph-theoretic notation and assume the reader is familiar with the basics
of parameterized complexity (see e.g. [7]). For a graph G = (V,E), and S ⊆ V , we use
G[S] to denote the subgraph of G induced by S. When r is a positive integer, we use
[r] to denote the set {1, . . . , r}, while for two integers s, t, we use [s, t] to denote the set
{i ∈ Z | s ≤ i ≤ t}. Note that if t < s then [s, t] = ∅. We define tow(i, n) as follows:
tow(0, n) = n and tow(i + 1, n) = 2tow(i,n). A function f : N → N is elementary if there
exists a fixed i such that for all n we have f(n) ≤ tow(i, n).

We recall the standard notion of path decomposition: a path decomposition of a graph
G = (V,E) is an ordered sequence of bags B1, B2, . . . , B`, where each Bi is a subset of V ,
that satisfies the following: (i)

⋃
j∈[`]Bj = V and for all uv ∈ E there exists i ∈ [`] such

that {u, v} ⊆ Bi (ii) for all i1 < i2 < i3, with i1, i2, i3 ∈ [r] we have Bi1 ∩ Bi3 ⊆ Bi2 . The
width of a path decomposition is the number of vertices in the largest bag (minus one). The
pathwidth of a graph G is the smallest width of any path decomposition of G.

First Order Logic We use a standard form of First Order (FO) logic on graphs, where
quantified variables are allowed to range over vertices. To simplify the presentation of some
results, we will allow our formulas to also refer to vertex constants, corresponding to some
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specific vertices of the graph. More formally, the structures on which we will perform model
checking are k-terminal graphs as defined below.

I Definition 1. For a positive integer k, a k-terminal graph G = (V,E) is a graph supplied
with a function T : [k]→ V , called the terminal labeling function. For i ∈ [k], we say that
T (i) is the i-th terminal of G. The set of terminals is the set T of images of T in V . Vertices
of V \ T are called non-terminals.

Intuitively, terminals will play two roles: on the one hand, we define FO logic on graphs
(below) in a way that allows formulas to refer to the terminal vertices; on the other, in some
parts of our algorithm we will use a set of terminals that form a separator of the graph
and hence allow us to break down the graph into smaller components. Note, however, that
Definition 1 does not require the k terminals to be a separator, or have any other particular
property.

A formula of FO logic is made up of the following vocabulary: (i) vertex variables, denoted
x1, x2, . . . (ii) vertex constants denoted `1, `2, . . . (iii) existential quantification ∃ (iv) the
boolean operations ¬,∨ (v) the binary predicates ∼ (for adjacency) and = (for equality).
More formally, a First Order formula is a formula produced by the following grammar, where
x represents a vertex variable and y represents a vertex variable or constant:

φ→ ∃x.φ | ¬φ | φ ∨ φ | y ∼ y | y = y

A FO formula φ is called a sentence if every vertex variable x appearing in φ is quantified,
that is, x appears within the scope of ∃x. A variable that is not quantified is called a free
variable. For a formula φ that contains a free variable x, we will write φ[x/`i] to denote the
formula obtained by replacing every occurrence of x in φ by the constant `i.

The main problem we are concerned with is model checking: given a k-terminal graph
G and a sentence φ, decide if G satisfies φ. We define the semantics of what this means
inductively in a standard way, as follows. We say that a k-terminal graph G = (V,E) with
labeling function T models (or satisfies) a formula φ, and write G, T |= φ (or simply G |= φ

if T is clear from the context) if and only if we have one of the following:

1. φ := (`i = `j), where i, j ∈ [k] and T (i) is the same vertex as T (j).
2. φ := (`i ∼ `j), where i, j ∈ [k] and T (i)T (j) ∈ E.
3. φ := (¬ψ) and it is not the case that G, T |= ψ.
4. φ := (ψ1 ∨ ψ2) and at least one of G |= ψ1, G |= ψ2 holds.
5. φ := (∃x.ψ) and there exists v ∈ V such that G, T ′ |= ψ[x/`(k+1)], where T ′ is the

labeling function that sets T ′(k + 1) = v and T ′(i) = T (i) for i ∈ [k].

Note that we have not included in our definition universal quantification or other boolean
connectives such as ∧. However, this is without loss of generality as ∀x.φ can be thought of
as shorthand for ¬∃x.¬φ and all missing boolean connectives can be simulated using ¬ and
∨.

Let us also define a kind of isomorphism between labeled graphs that is guaranteed to
leave terminal vertices untouched.

I Definition 2. A terminal-respecting isomorphism between two k-terminal graphs G1 =
(V1, E1) and G2 = (V2, E2) with terminal labeling functions T1, T2 is a bijective function
f : V1 → V2 such that (i) for all u, u′ ∈ V1 we have uu′ ∈ E1 if and only if f(u)f(u′) ∈ E2
(ii) for each i ∈ [k], f(T1(i)) = T2(i).
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We recall the following basic fact about FO logic which states that isomorphic structures
satisfy the same sentences (see e.g. Lemma 9 of [25] for a proof).

I Lemma 3. If G1, G2 are two k-terminal graphs such there exists a terminal-respecting
isomorphism from G1 to G2, then, for all FO sentences φ we have G1 |= φ if and only if
G2 |= φ.

3 Two Basic Lemmas

The purpose of this section is to establish two basic ingredients that will allow us to simplify
the input graph without affecting whether it satisfies any FO formula with at most a given
number q of quantified variables. The first lemma (Lemma 5) is rather simple and states
that if a graph contains many “identical” components, we can safely remove one. Despite
its simplicity, this idea has been sufficient to obtain many of the best currently known
meta-theorems with non-elementary dependence in the formula, such as the meta-theorem of
[14] for graphs of bounded tree-depth.

The second lemma (Lemma 9) is a variation of standard arguments regarding the locality
of FO logic. It states that if we have two graphs which look locally the same, in the sense
that for each vertex of one graph there exists a vertex of the other whose r-neighborhood is
the same, for some appropriately chosen r, then actually the two graphs are indistinguishable
by FO formulas with q quantifiers (even though they are not necessarily isomorphic). As we
explained, we intend to use this to allow us to take parts of the graph that resemble “long”,
low-pathwidth components and cut them up into smaller, disconnected components. The
strategy is to eventually produce a large enough number of such components that we can
apply Lemma 5 and simplify the graph.

3.1 Identical Parts
We would now like to show that if the given graph contains many (say, at least q + 1)
“identical” parts, then it is safe to delete one without affecting whether the graph satisfies
any FO formula with at most q quantifiers. We first define what we mean that two sets of
vertices are identical in a k-terminal graph and then prove that if we can find q + 1 such sets
in a graph, we can safely delete one without affecting whether any FO formula with at most
q quantifiers is satisfied.

I Definition 4. Let G = (V,E) be a k-terminal graph with labeling function T and terminal
set T . We say that two disjoint sets of vertices C1, C2 are identical if there exists a terminal-
respecting isomorphism from G to G that maps all vertices of C1 to C2 and all vertices of
C2 to C1, and maps every vertex of V \ (C1 ∪ C2) to itself.

Before we proceed, let us make two easy observations. First, if C1, C2 are identical, it
must be the case that (C1 ∪C2)∩ T = ∅, because C1, C2 are disjoint and terminal-respecting
isomorphisms must map vertices of T to themselves. Second, the relation of being identical is
an equivalence relation on a collection of pairwise disjoint sets of vertices, that is, if C1, C2, C3
are disjoint, C1 is identical to C2, and C2 is identical to C3, then C1 is identical to C3.

I Lemma 5. Fix a positive integer q. Let G = (V,E) be a k-terminal graph with labeling
function T and terminal set T and suppose that C1, C2, . . . , Cq+1 are q + 1 sets of vertices
of G which are pairwise identical. Then, for all FO sentences with at most q quantifiers we
have that G, T |= φ if and only if G[V \ C1], T |= φ.
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3.2 Similar Neighborhoods
We now move on to present a lemma that will allow us to claim that two graphs are
indistinguishable for FO formulas with q quantifiers if they are locally the same. This is a
standard argument in FO logic, going back to Gaifman, though we need to adjust the proof
to our purposes to handle terminal vertices appropriately. In particular, we will on the one
hand be stricter on the isomorphisms we allow before we consider that the neighborhoods of
two vertices are the same (because we only allow terminal-respecting isomorphisms), but on
the other, we will only consider the extended neighborhood around a vertex by considering
paths that go through non-terminals. This is important, because it allows us to work around
the case where, for example, a terminal vertex is connected to everything and hence the
diameter of the graph is 2. In such a case, the extended neighborhood of a non-terminal
vertex will not trivially contain the whole graph, because we exclude paths that go through
the supposed universal terminal.

According to this discussion, we define the notion of a ball of radius r around a vertex
v, denoted Br(v), in a way that only takes into account paths whose internal vertices are
non-terminals, as follows.

I Definition 6. Let G = (V,E) be a k-terminal graph with terminal labeling function T and
terminal set T , r be a positive integer, and v ∈ V . We define BG

r (v) (and simply write Br(v)
if G is clear from the context) to be the k-terminal subgraph of G that has labeling function
T and is induced by T ∪ V ′, where V ′ is the set of all vertices reachable by v via a path of
length at most r whose internal vertices are all in V \ T .

I Definition 7. Let G1 = (V1, E1), G2 = (V2, E2) be two k-terminal graphs, with terminal
labeling functions T1, T2 and terminal sets T1, T2. For a non-negative integer r, we will say
that v1 ∈ V1 is r-similar to v2 ∈ V2, if there exists a terminal-respecting isomorphism from
BG1

r (v1) to BG2
r (v2) that maps v1 to v2.

Note that in the above definition, G1, G2 may be the same graph. It is not hard to see
that r-similarity is an equivalence relation on the vertices of V1 ∪ V2. Definition 7 allows us
to set r = 0, in which case we are testing if the graphs induced by T ∪ {v1} and T ∪ {v2} are
isomorphic. Let us also make the following easy observation that decreasing r cannot make
two similar vertices dissimilar.

I Observation 8. Let G1, G2 be two graphs as in Definition 7 and v1 ∈ V (G1), v2 ∈ V (G2)
be two vertices which are r-similar. Then, for all non-negative integers r′ ≤ r, v1 is r′-similar
to v2.

The main lemma of this section is then the following.

I Lemma 9. Let q, k be positive integers and set r = 2q − 1. Let G1, G2 be two k-terminal
graphs that contain some non-terminal vertices, with labeling functions T1, T2 and terminal
sets T1, T2. Suppose that there exists a bijective mapping f : V (G1)→ V (G2) such that (i)
for all i ∈ [k] we have f(T1(i)) = T2(i) (ii) for all non-terminal vertices v ∈ V (G1) \ T1 we
have that v is r-similar to f(v) ∈ V (G2) \ T2. Then, for all FO sentences φ with at most q
quantifiers we have G1 |= φ if and only if G2 |= φ.

4 Simplification Operations on Path Decompositions

In this section we present the main technical ingredients of our algorithm. In Section 4.1 we
show how we can rank the vertices to bound the number of higher-rank neighbors of any
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vertex; in Section 4.2 we use the pigeonhole principle to show that for sufficiently long path
decompositions we can always find long isomorphic blocks; and in Section 3.1 we describe the
rewiring operation we will use in these blocks and show that it does not affect the validity of
any formula and that it produces identical parts, in the sense of Lemma 5.

4.1 Normalized Path Decompositions
I Definition 10. A ranked path decomposition of a graph G = (V,E) where all bags have
size at most p is a path decomposition together with a ranking function ρ : V → N that has
the property that no bag Bi of the decomposition contains two vertices u, v ∈ Bi for which
ρ(u) = ρ(v).

I Lemma 11. Given a graph G = (V,E) and a path decomposition of G where each bag
contains at most p vertices, it is possible in polynomial time to convert it into a ranked path
decomposition with a ranking function ρ : V → [8p] and the property that for each i < j with
i, j ∈ [8p] we have that for every vertex v with ρ(v) = i, there exist at most two vertices u1, u2
with ρ(u1) = ρ(u2) = j that appear in a bag together with v. Furthermore, the produced
decomposition has the property that each bag contains at least one vertex that does not appear
in the previous bag.

We will call the ranked path decompositions that satisfy the properties of the decomposi-
tions produced by Lemma 11 normalized path decompositions. Since such a decomposition
can always be obtained without using too many ranks in the ranking function, we will from
now on focus on the case where we are given a normalized decomposition. Furthermore, we
will usually use p to denote the maximum rank, rather than the pathwidth; this will not
have a significant impact as, according to Lemma 11 we can make sure that the two are at
most a constant factor apart.

4.2 Finding Isomorphic Bag Intervals
As mentioned, our high-level strategy will be to identify parts of the graph which are locally
isomorphic, so that we can apply Lemma 9 to obtain a simpler (less well-connected) graph,
and eventually Lemma 5 in order to decrease the size of the graph. In order to identify such
parts, we first define what it means for two blocks of bags of a given decomposition to be
isomorphic.

I Definition 12. Let G = (V,E) be a k-terminal graph with terminal set T , and B1, . . . , B`

a ranked path decomposition of G with ranking function ρ : V → [p]. Let s1, t1, s2, t2 be
positive integers with s1 ≤ t1 and t1 − s1 = t2 − s2. We define the block corresponding to
[s1, t1] and write B(s1, t1) to be {Bj | j ∈ [s1, t1] }. We say that B(s1, t1) is block-isomorphic
to B(s2, t2) if

1. For each j ∈ [s1, t1] and rank i we have |ρ−1(i) ∩Bj | = |ρ−1(i) ∩Bs2+(j−s1)|.
2. For each j ∈ [s1 + 1, t1] and rank i we have that Bj contains a vertex v with ρ(v) = i

such that v 6∈ Bj−1 if and only if Bs2+(j−s1) contains a vertex v′ with ρ(v′) = i such that
v′ 6∈ Bs2+(j−s1)−1.

3. The following mapping f is a terminal-respecting isomorphism from G[T ∪ (
⋃

j∈[s1,t1]Bj)]
to G[T ∪ (

⋃
j∈[s2,t2]Bj)]. For each v ∈

⋃
j∈[s1,t1]Bj we let jv be the minimum index in

[s1, t1] such that v ∈ Bjv and define f(v) to be the (unique) vertex of Bs2+(jv−s1) such
that ρ(v) = ρ(f(v)).
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I Definition 13. Let L ≥ 0 and G, k, T, `, ρ as in Definition 12. For positive integers
s1, s2 ∈ [`− L] we will write s1 ≈L s2 to indicate that B(s1, s1 + L) is block-isomorphic to
B(s2, s2 + L).

Note that the isomorphism of Definition 12 is well-defined, because according to the first
condition, if Bj contains a vertex of rank i, then so does Bs2+(jv−s1), and such a vertex is
unique by the definition of ranked path decomposition. According to Definition 12, two
blocks of bags are isomorphic only if the subgraphs induced by the bags they contain (and
the terminals of G) are isomorphic under the trivial mapping function which maps each
vertex of a bag from one block to the vertex of the corresponding bag of the other block that
has the same rank. Despite the fact that this restricts the class of isomorphisms we may
consider quite a bit, the block-isomorphism relation is an equivalence relation that does not
have too many equivalence classes. In particular, we have the following.

I Lemma 14. Let L ≥ 0, G = (V,E) be a k-terminal graph with terminal set T , and
B1, . . . , B` a ranked path decomposition of G with ranking function ρ : V → [p]. Let t1, t2
be integers such that for all j, j′ ∈ [t1, t2] we have Bj ∩ T = Bj′ ∩ T . Then, the relation ≈L

is an equivalence relation on the set [t1, t2 − L] with at most 2(L+1)(p2+2p+kp) equivalence
classes.

Proof. The fact that ≈L is an equivalence relation is easy to see, as terminal-respecting
isomorphisms can be composed to show transitivity. The interesting part of the lemma is
then the bound on the number of equivalence classes. We prove this by induction on L.

For L = 0, we claim there are at most 2p+p2+kp equivalence classes of bags (in this case,
each block consists of a single bag). Indeed, in order to decide if B(s1, s1) = {Bs1} and
B(s2, s2) = {Bs2} are block-isomorphic, we first need to check if Bs1 , Bs2 contain vertices
of the same ranks, and for this there are 2p equivalence classes. If they do, then we must
check, for each i1, i2 ∈ [p] if the vertices of ranks i1, i2 in each of Bs1 , Bs2 are adjacent, and
for this we have 2(p

2) < 2p2 equivalence classes. Finally, since the isomorphism has to be
terminal-respecting, we have to check for each rank i ∈ [p] if the vertex of rank i in each of
Bs1 , Bs2 is connected to each of the k terminals, which gives at most kp edges which may or
may not exist. (Note that we have to check these edges, even though the two bags contain
the same terminals, because terminal-respecting isomorphisms must also preserve the edges
towards terminals outside the bag). Overall we have at most 2p+p2+kp < 2p2+2p+kp choices.
If we make the same choices for two bags, the two bags are block-isomorphic, hence we have
bounded the number of equivalence classes for L = 0.

Suppose now that L > 0 and we have shown that the number of equivalence classes of
≈L−1 is at most 2L(p2+2p+kp). Consider two indices s1, s2 for which we want to check if
s1 ≈L s2. We claim that for this it is sufficient to have s1 ≈L−1 s2 and to satisfy certain
conditions for the bags Bs1+L, Bs2+L for which we have at most 2p2+2p+kp choices. More
precisely, for each rank i, we have three possibilities for the bag Bs1+L: either the bag
contains no vertex of rank i; or it contains a vertex of rank i that also appears in Bs1+L−1;
or it contains a vertex of rank i that appears for the first time in Bs1+L (and hence this
vertex is a non-terminal). Suppose now that for each rank i, the bags Bs1+L, Bs2+L agree on
the choice of which of these three possibilities holds (there are 3p < 22p possibilities in total),
and furthermore, that the graphs induced by Bs1+L ∪ T and Bs2+L ∪ T are isomorphic for
the natural terminal-respecting isomorphism that matches vertices of the same rank (at most
2p2+kp possibilities). Then, if s1 ≈L−1 s2, we now have s1 ≈L s2. Therefore, each of the
2L(p2+2p+kp) equivalence classes of ≈L−1 has been refined into at most 22p+p2+kp equivalence
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classes, giving that the number of equivalence classes of ≈L is at most 2(L+1)(p2+2p+kp), as
desired. J

Now that we know that block-isomorphism has a bounded number of equivalence classes
(if k, p, L are bounded), we can try to look for “copies” of the same block in our path
decomposition. We observe the following lemma.

I Lemma 15. Let L be a non-negative integer, G = (V,E) be a k-terminal graph with
terminal set T , and B1, . . . , B` a ranked path decomposition of G with ranking function
ρ : V → [p]. We define R = (L + 1)(2(L+1)(p2+2p+kp) + 1). Let t1, t2 be integers such that
for all j, j′ ∈ [t1, t2] we have Bj ∩ T = Bj′ ∩ T . Then, for every s ∈ [t1, t2 −R], there exist
s1, s2 ∈ [s, s+R− (L+ 1)] such that s1 + L < s2 and s1 ≈L s2.

What we have shown so far is that if we take sufficiently many (at least R) consecutive bags
in our decomposition, we will find two blocks of length (roughly) L which are block-isomorphic.
Let us now move a step further.

I Lemma 16. Let L be a non-negative integer, G = (V,E) be a k-terminal graph with
terminal set T , B1, . . . , B` a ranked path decomposition of G with ranking function ρ :
V → [p], and t1, t2 as defined in Lemma 15. Let q,R be positive integers. We define
R∗ = (R + 1)(q2(R+1)(p2+2p+kp) + 1). Then, for every s ∈ [t1, t2 − R∗] there exist q + 1
distinct s1, s2, . . . , sq+1 ∈ [s, s + R∗ − (R + 1)], such that for any two distinct si, sj with
i, j ∈ [q + 1] we have |si − sj | > R and si ≈R sj.

Note that Lemma 15 and Lemma 16 are non-vacuous only if we find a long enough
interval where all bags contain the same terminals, that is if t2 − t1 ≥ R or t2 − t1 ≥ R∗

respectively. We will take this into account when we use these lemmas in the next section.
At this point we are almost done in our search for appropriate isomorphic parts of the

graph. What we have proved is that, if we fix some appropriate radius L, there is some
larger radius R∗ (double-exponential in L), such that if we look at any interval of the path
decomposition of length R∗, we will be able to find q+ 1 isomorphic R-blocks, which are long
enough to guarantee the existence of two isomorphic L-blocks inside them. What remains
is to ask what value of L will be appropriate for our purposes. Ideally, we would like to
calculate a value L that will allow us to preserve the balls around vertices for a suitable
radius and apply Lemma 9. However, we can only give such a bound if we know that vertices
of our path decomposition do not appear in too many bags.

I Lemma 17. Let G = (V,E) be a k-terminal graph with terminal set T and B1, . . . , B` a
ranked path decomposition of G with the additional property that any non-terminal vertex
appears in at most ∆ bags of the decomposition. Then, for each r ≥ 0 and for each non-
terminal vertex v, if v ∈ Bj , then each non-terminal vertex of Br(v) is contained in a bag of
B(j − r∆, j + r∆).

4.3 Rewiring Operation
The goal of Section 4.2 was to present the basic tools which will allow us to find isomorphic
parts of the input graph. Ideally, we would then like to use Lemma 5 and delete one such
part. However, this is in general not possible, as the isomorphism guaranteed by the lemmas
of Section 4.2 is not sufficient to obtain identical sets, in the sense of Definition 4. What we
need to do, then, is to edit the graph in a way that does not affect the validity of any FO
formula with q quantifiers but leverages the isomorphic parts we have found to construct
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X Y ZBs1 Bs2

X

Y

ZBs1

Bs2

Figure 1 The rewiring operation of Definition 18. Edges from Y to Bs1 are rerouted towards Bs2 ,
while edges from Z to Bs2 are rerouted towards Bs1 . Edges incident on terminals are not modified.

q + 1 identical parts on which Lemma 5 can be applied. We now present the basic edit
operation which will allow us to achieve this for appropriate parameters.

I Definition 18 (Rewiring). Let G = (V,E) be a k-terminal graph for which we are given
a ranked path decomposition with ranking function ρ : V → [p]. Let Bs1 , Bs2 be two bags
of this decomposition, for s1 < s2. We define the rewiring operation on (s1, s2) as follows:
(i) for every non-terminal vertex v ∈ Bs1 which is adjacent to a non-terminal vertex u ∈
Bj \ (Bs1 ∪Bs2) for some j ∈ [s1 + 1, s2 − 1] we delete the edge uv and add to the graph the
edge uv′, where v′ ∈ Bs2 and ρ(v) = ρ(v′), if such a v′ exists (ii) for every non-terminal
vertex v ∈ Bs2 which is adjacent to a non-terminal vertex u ∈ Bj \Bs2 for some j > s2, we
delete the edge uv and add to the graph the edge uv′, where v′ ∈ Bs1 and ρ(v) = ρ(v′), if
such a v′ exists.

Some explanations are in order regarding the motivation of the rewiring operation. We
refer the reader to Figure 1. From standard properties of path decompositions, Bs1 , Bs2

are separators which break down the graph into three parts, call them X,Y, Z, which are
respectively vertices which appear in a bag before Bs1 , between Bs1 and Bs2 , and after Bs2 .
The rewiring operation leaves all edges incident on terminals and all edges incident on X
unchanged. What it does is replace edges from Y to Bs1 with edges from Y to Bs2 and edges
from Z to Bs2 with edges from Z to Bs1 . Intuitively, what this is meant to achieve is to break
down the long path-like structure X −Bs1 −Y −Bs2 −Z into the shorter path-like structure
X − Bs1 − Z and the ring-like structure Y − Bs2 . The idea here is that the Y − Bs2 part
is “disconnected” from the rest of the graph (more precisely, the k terminals separate this
part from the rest of the graph, since terminals are not modified by this operation). Hence if
we find many isomorphic such parts, they will also be identical in the sense of Definition 4,
allowing us to delete one using Lemma 5. This argument is made precise in Lemma 20.

Before we do all these things, however, we need to be sure that the rewiring operation
did not affect the validity of any FO formula of at most q quantifiers. The main claim now
is that if s1, s2 are sufficiently far apart, we have a bound on the number of occurrences of
non-terminal vertices in bags, and a sufficiently large block around Bs1 is block-isomorphic
to a sufficiently large block around Bs2 , then the ball of radius r = 2q − 1 around any vertex
has remained unchanged. Hence, we can invoke Lemma 9 to conclude that the rewired graph
is indistinguishable from the original graph for FO formulas with q quantifiers. Our main
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X Y ZBs1 Bs2X1 Y1 Y2 Z1

f1

f2

Figure 2 Schematic view of the two mappings of the proof of Lemma 19.

tool in proving this will be the following lemma.

I Lemma 19. Let G = (V,E) be a k-terminal graph with terminal set T , B1, . . . , B` a
ranked path decomposition of G with ranking function ρ : V → [p] with the additional property
that any non-terminal vertex appears in at most ∆ bags of the decomposition. Fix an integer
q ≥ 0 and let L = ∆(2q − 1). Let s1, s2 be such that (i) we have s1 > 4L, s2 < ` − 4L,
s2 − s1 > 6L (ii) B(s1 − L, s1 + L) is block-isomorphic to B(s2 − L, s2 + L). Let G′ be the
graph obtained by applying the rewiring operation on (s1, s2). Then, for all FO formulas φ
with at most q quantifiers we have G |= φ if and only if G′ |= φ.

Finally, we argue that if we apply the rewiring operation on two block-isomorphic parts,
then we obtain two parts of the graph which are identical in the sense of Definition 4. This
will allow us to delete a part of the graph, once we gather sufficiently many identical parts.

I Lemma 20. Let R be a positive integer, G = (V,E) be a k-terminal graph with terminal
set T , B1, . . . , B` a ranked path decomposition of G with ranking function ρ : V → [p] with
the property that no non-terminal vertex appears in more than R bags. Let s1, s2 be positive
integers such that s2 − s1 > 4R and B(s1, s1 +R) is block-isomorphic to B(s2, s2 +R). Let
j1, j2 ∈ [0, R− 1] with j1 < j2 and let G′ be the graph obtained after applying the rewiring
operation on (s1 + j1, s1 + j2) and also on (s2 + j1, s2 + j2). Let Y1 be the set of vertices that
appear in a bag with index in [s1 + j1 + 1, s1 + j2 − 1], but not in Bs1+j1 ∪Bs1+j2 . Similarly,
let Y2 be the set of vertices that appear in a bag with index in [s2 + j1 + 1, s2 + j2 − 1], but
not in Bs2+j1 ∪Bs2+j2 . Then (Y1 ∪Bs1+j2) \ T is identical to (Y2 ∪Bs2+j2) \ T .

5 Putting Everything Together

We are now ready to put everything together to obtain our model checking algorithm for FO
logic. We formulate a procedure which can either simplify the graph in a way that does not
affect the validity of the given formula (or any formula with the same number of quantifiers),
or certify that the graph has bounded degree, and hence we can use known algorithms with
an elementary dependence on the formula. On a high level, we take as input a graph G, a
path decomposition of G, and a formula φ with q quantifiers and we will do the following:

1. Use Lemma 11 to normalize the decomposition and obtain a ranking of the vertices. In
this ranking, vertices of rank 1 appear in a constant number of bags. We would like to
extend this so that every vertex appears in a bounded number of bags. In the remainder
we will use the number of bags a vertex appears in as a proxy bound for its degree.

2. Define a function ∆(i) which defines an acceptable bound for the number of occurrences
in distinct bags for a vertex of rank i. This function will be a tower of exponentials of
height roughly 2i, but this is acceptable, since the maximum rank is upper-bounded by a
function of the pathwidth, which we consider to be an absolute constant.
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3. Examine the graph and check if any vertex of rank i appears in more than ∆(i) bags. If
this is not the case, we can bound the maximum degree of the graph, and we are done.

4. Otherwise, find a vertex v of minimum rank i that appears more than ∆(i) times. Find
a section of the decomposition where v appears, and where all bags contain the same
vertices of rank higher than i (if ∆(i) is large, we can find such a section that is quite
long). We label as terminals the vertices of the first and last bag of the section, and the
vertices of rank at least i appearing in the section.

5. Now, the remaining vertices of the section appear a bounded (by ∆(i− 1)) number of
times, and are separated from the rest of the graph by k = O(p) terminals. However,
they are quite numerous, as we assumed that v appears too many times. Therefore,
we can invoke the machinery of Section 4.2 to find some isomorphic parts. Note that
it is important that vertices of rank at least i (which are now terminals) are common
throughout the section, which allows us to invoke Lemmas 15 and 16.

6. Having found many isomorphic parts, we use the tools of Section 4.3 to perform the
rewiring operation that will produce q + 1 identical parts, of which we can remove one.
We then “undo” the operation on the remaining parts, and obtain a smaller graph, where
v appears in fewer bags, without changing whether φ is satisfied.

I Definition 21. Let p, q be positive integers. We define the function ∆p,q(i) as follows:

∆p,q(1) = 3p and ∆p,q(i+ 1) = 22∆p,q(i)·220qp2

. When p, q are clear from the context, we will
write ∆(i) to denote ∆p,q(i).

I Observation 22. For each fixed p, i, the function ∆p,q(i) is an elementary function of q.
Furthermore, ∆p,q(i) is a strictly increasing function of i.

I Lemma 23. There is an algorithm that takes as input an FO formula φ with q quantifiers,
an n-vertex graph G = (V,E), a normalized ranked path decomposition of G with ranking
function ρ : V → [p], such that G contains a vertex that appears in at least 3p ·∆(p) bags of
the decomposition. Then, the algorithm runs in polynomial time and outputs a smaller graph
G′ and a normalized ranked path decomposition of G′ with the same ranking function ρ, such
that G |= φ if and only if G′ |= φ.

I Theorem 24. For every fixed p, model checking a formula φ on a graph G with pathwidth
p can be performed in time f(φ)|G|O(1), where f is an elementary function.

6 Conclusions

We have shown that FO model checking for graphs of bounded pathwidth has a complexity
behavior that is in sharp contrast with both MSO logic for the same class of graphs and the
complexity of FO logic on graphs of bounded treewidth. It may be interesting to improve
upon our result by noting that our algorithm’s dependence on the pathwidth is a tower of
exponentials whose height is O(pw), where the hidden constant is roughly 16. This is in
contrast with the meta-theorem of [14], where the height of the tower is roughly equal to the
tree-depth. Can the height of the tower in our case can be made pw +O(1), or is FO model
checking on bounded pathwidth truly harder than for bounded tree-depth?

Another interesting research direction would be to explore parameters which lie between
pathwidth and treewidth to attempt to trace the frontier of where the arguments of this
paper break down. One idea would be to consider tree decompositions with a bounded
number of leaf bags, which would generalize pathwidth, and see if, as long as the number
of leaf bag and the width of the decomposition is an absolute constant, we can hope for an
elementary dependence on the formula for FO model checking.
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A Omitted Proofs

A.1 Proof of Lemma 5
Lemma 5. We prove the lemma by structural induction on the formula φ.

1. If φ := (`i = `j) or φ := (`i ∼ `j), then whether the formula φ is satisfied only depends
on the graph induced by the terminal vertices T and the labeling function T . Since both
are the same in G and G[V \ C1], the base case holds.

2. If φ := (¬ψ1) or φ = (ψ1 ∨ ψ2), then we can assume that by inductive hypothesis ψ1, ψ2
do not distinguish between G,G[V \ C1]. Hence, if G |= ψ1 then G[V \ C1] |= ψ1, and
therefore both G,G[V \ C1] satisfy ψ1 ∨ ψ2 (and similarly for the case of negation).

3. Finally, if φ := (∃x.ψ) we first prove that if G[V \C1], T |= φ then G, T |= φ. In this case,
there must exist v ∈ V \C1 such that G[V \C1], T ′ |= ψ[x/`(k+1)], where T ′ is the labeling
function that agrees with T on i ∈ [k] and sets T ′(k + 1) = v. We now observe that
we can apply the inductive hypothesis on ψ,G,G[V \ C1] for the new labeling function
T ′, because even if v ∈

⋃
i=2...q+1 Ci, there still exist q identical components among

C1, . . . , Cq+1 in G,G[V \C1] and ψ has q− 1 quantifiers. By the inductive hypothesis we
have G, T ′ |= ψ[x/`(k+1)], which implies that G, T |= φ.
For the converse direction, suppose G, T |= φ and we want to prove that in this case
G[V \ C1], T |= φ. Again, by definition there exists v ∈ V such that G, T ′ |= ψ[x/`(k+1)],
where T ′ is the labeling function that sets T ′(k + 1) = v and agrees with T elsewhere.
Now, if v 6∈ C1, then we use the inductive hypothesis, as in the previous paragraph,
to argue that G[V \ C1], T ′ |= ψ[x/`(k+1)] and hence G[V \ C1] |= φ. Suppose then
that v ∈ C1. We recall that there exists a terminal-respecting isomorphism f : V → V

that maps C1 to C2 and all other vertices to themselves, since C1, C2 are identical. Let
u = f(v). We claim that for the labeling function T ′′ which sets T ′′(k + 1) = u and
T ′′(i) = T (i) for i ∈ [k], we have G, T ′′ |= ψ[x/`(k+1)]. Indeed, this is a consequence of
Lemma 3 and the fact that f is a terminal-respecting isomorphism from G, T ′ (which
satisfies the same formula) to G, T ′′. Hence, we have reduced this to the case where
v 6∈ C1 and we are done.

J

A.2 Proof of Observation 8
Observation 8. We prove the observation for r > 0 and r′ = r− 1, as this is sufficient. Since
v1, v2 are r-similar, there exists a terminal-respecting isomorphism f : BG1

r (v1)→ BG2
r (v2).

We use the same isomorphism, but restricted to BG1
r′ (v1). The image of f is now BG2

r′ (v2),
because isomorphisms preserve distances and it is not hard to see that all other requirements
are also satisfied. J

A.3 Proof of Lemma 9
Lemma 9. We prove the statement by induction on q. For q = 0 the graph induced by the
terminals of G1 is isomorphic to the graph induced by the terminals of G2. To see this,
take any non-terminal vertex v1 ∈ V (G1) and v2 = f(v1) ∈ V (G2) and note that, since by
assumption v1, v2 are r-similar (and r = 0), we have that G1[T1 ∪{v1}] and G2[T2 ∪{v2}] are
isomorphic. Hence, G1, G2 satisfy the same quantifier-free FO formulas, because non-terminal
vertices are irrelevant for such formulas.
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Suppose now that q > 0 and the statement is true for formulas with at most q − 1
quantifiers. Consider a formula φ with q quantifiers and suppose that φ = ∃x.ψ(x). We
claim that this is without loss of generality: if φ has the form ∀x.ψ(x) we could apply our
argument to ¬φ = ∃x.(¬ψ(x)), while if φ is a Boolean combination of other formulas we can
consider each subformula separately.

Suppose that G1, T1 |= φ. We will show that this implies that G2, T2 |= φ. Since we can
inverse the roles of G1, G2 by taking the inverse mapping f−1, by symmetry this will also
establish the converse implication and hence the lemma.

Since G1, T1 |= ∃x.ψ(x), there must exist a vertex v1 ∈ V1 such that G1, T ′1 |= ψ[x/`(k+1)],

where T ′1 (i) =
{
T1(i) if i ≤ k
v1 otherwise . Let v2 ∈ V2 be the vertex for which f(v1) = v2. Define

T ′2 (i) =
{
T2(i) if i ≤ k
v2 otherwise . We claim that we can apply the inductive hypothesis to show

that G2, T ′2 |= ψ[x/`(k+1)] and hence that G2, T2 |= φ, as desired.
To prove this claim, we first distinguish the easy case where v1 ∈ T1, and hence v2 ∈ T2.

In this case, for all non-terminal vertices v the ball Br(v) remains unchanged in both graphs,
as the set of terminals is unchanged. Hence, if a non-terminal v ∈ V (G1) was r-similar to
f(v), v is still r′-similar to v, for r′ = 2q−1 − 1 < r under the new labelings T ′1 , T ′2 (using
Observation 8). Hence, since ψ has q − 1 quantifiers, we can apply the inductive hypothesis
using the same bijective mapping f .

For the more interesting case where v1 6∈ T1, we note that v2 6∈ T2 is r-similar to v1, for
r = 2q − 1, that is, BG1

r (v1) has a terminal-respecting isomorphism to BG2
r (v2).

To show that the inductive hypothesis applies to G1, G2, which are now (k + 1)-terminal
graphs for the labeling functions T ′1 , T ′2 , we need to produce a new bijective mapping
f ′ : V (G1) → V (G2). Setting f ′(v) = f(v) for v ∈ T1 ∪ {v1} satisfies the first necessary
property of the mapping, so what remains is to take care of non-terminals. We therefore need
the property that for all non-terminals v ∈ V (G1), v is r′-similar to f ′(v), where r′ = 2q−1−1,
taking into account the new terminal which has been added to the labeling functions. In
order to do so, we construct a bipartite graph H with vertex set V (G1)∪ V (G2). Recall that
we were initially given a mapping f : V (G1)→ V (G2); for each v ∈ V (G1) we add the edge
vf(v) in H. Call the edges we added so far blue edges. Furthermore, recall that v2 = f(v1)
is r-similar to v1, therefore by definition there exists a terminal-respecting isomorphism, call
it f∗ : BG1

r (v1)→ BG2
r (v2). Note that f∗ is terminal-respecting also if we take into account

the new terminal, as f∗(v1) = v2. For a vertex v ∈ BG1
r (v1) we will say that v is close to v1

if there exists a path of length at most r′ + 1 connecting v to v1 in G1 without using any
internal terminal vertices. For each v ∈ BG1

r (v1) that is close to v1 we add in H the edge
vf∗(v). Call such edges red edges.

Observe now that in H every vertex is incident to exactly one blue edge and at most one
red edge. Hence, every connected component of H is either an even cycle with the same
number of red and blue edges, or an alternating blue-red path, where the first and last edges
are blue. We define the mapping f ′ as follows: for each v ∈ V (G1) which is incident on a
red edge, we set f ′(v) to be the other endpoint of that edge; for each remaining v ∈ V (G1),
we observe that v must be an endpoint of an alternating blue-red path in H, and we set
f ′(v) to be the other endpoint of that path. It is not hard to see that this mapping is indeed
one-to-one.

To complete the proof we need to show that the mapping f ′ matches vertices which are
r′-similar in G1, G2 with respect to the new labelings T ′1 , T ′2 . Consider first a v ∈ V (G1)
which is incident on a red edge of H. Hence, v is close (that is, at distance at most r′ + 1) to
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v1 in BG1
r (v1) and f ′(v) = f∗(v). We now observe that BG1

r′ (v) is fully contained in BG1
r (v1),

because any vertex that is at distance at most r′ from v is at distance at most r′+(r′+1) = r

from v1. Because f∗ is an isomorphism from BG1
r (v1) to BG2

r (v2), we have that BG1
r′ (v) is

isomorphic to BG2
r′ (f∗(v)). Hence, v and f ′(v) are r′-similar in the new labeled graphs, as

desired.
Finally, consider a vertex v ∈ V (G1) which is incident only on a blue edge of H and has

been matched to the other endpoint of the alternating blue-red path starting at v (note that
this path could consist of a single blue edge). Suppose the other endpoint of this path is
v′ ∈ V (G2). We want to show that v, v′ are r′-similar, taking into account the new terminal.
We first observe that any two vertices which are connected by a blue edge in H are r-similar
in G1, G2 with the old labeling functions T1, T2. Such vertices are also r′-similar, as r′ ≤ r,
by Observation 8. Furthermore, vertices connected by a red edge are also r′-similar in G1, G2,
because, as we argued in the previous paragraph, a ball of radius r′ around such a vertex is
fully contained in BG1

r (v1) or BG2
r (v2). Recall that r′-similarity is an equivalence relation.

As a result, v, v′ are r′-similar in G1, G2. To conclude that they are still similar after adding
the extra terminal, we observe that both v, v′ are at distance at least r′ + 2 from v1, v2
respectively (otherwise they would have been incident on a red edge), hence in both BG1

r′ (v)
and BG2

r′ (v′), the (k + 1)-th terminal is disconnected from all non-terminal vertices. J

A.4 Proof of Lemma 11
Lemma 11. Let us start with the last property which states that each bag introduces at
least one new vertex. We can assume that this is always the case, as if Bi+1 ⊆ Bi, we can
delete Bi+1 from the decomposition and still have a valid decomposition. Suppose then that
we delete a bag that is a subset of the previous bag, and continue doing this until it is no
longer possible. In the end we obtain a decomposition that satisfies the claimed property. In
the remainder we do not edit this decomposition further, since we only need to produce a
ranking function to complete the proof.

To produce the ranking function, we will consider the interval graph that corresponds to
the given path decomposition and use known facts about the performance of first-fit coloring
on interval graphs. First, suppose that the given path decomposition has bags B1, . . . , B`.
For each v ∈ V , we denote by s(v) (respectively t(v)) the smallest (respectively largest) index
of a bag that contains v. In other words, v appears in all bags in the interval [s(v), t(v)]. It
is now well-known (and easy to see) that G is actually a subgraph of the interval graph H
formed by the collection of intervals {[s(v), t(v)] | v ∈ V }. Two vertices are connected in
H if and only if they appear together in a bag of the decomposition. We will produce the
ranking function by appropriately coloring H.

In order to produce a ranked path decomposition of G, we now need to assign ranks to
vertices of G so that for each i, ρ−1(i) forms an independent set on H, as two vertices that
have the same rank must not be in the same bag. We are therefore aiming to color H with
at most 8p colors, in a way that respects the extra property of the lemma, which states that
each vertex of rank i must have at most two neighbors of rank j (for j > i) in the interval
graph H.

We produce a ranking in the following greedy way: Initially let S1 = ∅ and as long as
there exists v ∈ V such that S1 ∪ {v} is an independent set of H, select among such vertices
the vertex v that has minimum t(v) and add it to S1. Once no such vertex v exists (that is,
S1 is a maximal independent set of H), we set ρ(v) = 1 for all v ∈ S1. We then remove all
vertices of S1 from the graph and recursively execute the same algorithm on the remaining
graph. If ρ′ is the ranking returned, we set for all v ∈ V \ S1 that ρ(v) = ρ′(v) + 1. In other
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words, the idea is that we greedily select an independent set S1, assign its vertices rank 1,
then greedily select an independent set in the remaining graph and assign its vertices rank 2,
and so on, until all vertices have an assigned rank.

It is clear that the ranking we produced respects Definition 10, because two vertices
which share a bag are neighbors in H and hence are assigned distinct ranks. We now prove
that no vertex is assigned a rank higher than 8p, that is, our coloring uses at most 8p colors.
To see this, recall the basic first-fit coloring algorithm, which does the following: given the
vertices of a graph G, presented in some order, the algorithm assigns to each vertex the
lowest possible color that does not make any edge, whose other endpoint is already colored,
monochromatic. We can now produce an ordering of H such that the first-fit algorithm would
return a coloring that is identical to our ranking, by presenting to the algorithm the sets of
vertices ρ−1(1), ρ−1(2), . . . in this order (with the order inside sets being irrelevant). It is now
not hard to see that, because ρ−1(1) is a maximal independent set of G, the first-fit algorithm
will indeed only use color 1 for ρ−1(1), and the same can be shown for the remaining colors
by induction. We now invoke a result of [26] which states that, on an interval graph H,
the first-fit algorithm always produces a coloring with at most 8χ(H) colors, for any vertex
ordering. Since χ(H) = ω(H) = p (because H is an interval graph, and interval graphs are
perfect), we have that our ranking uses at most 8p ranks.

Finally, the extra property of the ranked path decompositions we produce is guaranteed
by the greedy criterion we used in constructing our ranking. Suppose that our algorithm
sets ρ(v) = i and fix a j > i, for i, j ∈ [8p]. We claim that no vertex u exists that has
ρ(u) = j and [s(u), t(u)] ⊆ [s(v), t(v)− 1]. If such a vertex u existed, since every neighbor
of u is a neighbor of v in H and t(u) < t(v), then u would have been selected instead of v
when constructing the i-th color class. Hence, every vertex u that is a neighbor of v in H
must have either t(v) ∈ [s(u), t(u)] or s(v) ∈ [s(u), t(u)]. But, since vertices of rank j are an
independent set, we may have at most one vertex from each case, hence v has at most two
neighbors of rank j in H. J

A.5 Proof of Lemma 15
Lemma 15. Consider the set of indices S = {s, s+L+1, s+2(L+1), . . . , s+R−(L+1)}. The
number of distinct indices in |S| is R

(L+1) = 2(L+1)(p2+2p+kp) + 1. Therefore, by pigeonhole
principle there must exist s1, s2 ∈ S such that s1 ≈L s2, as ≈L has 2(L+1)(p2+2p+kp)

equivalence classes. Since any two elements of S have difference at least L+ 1, the lemma
follows. J

A.6 Proof of Lemma 16
Lemma 16. As in the proof of Lemma 15, consider the set of indices S = {s, s+R+ 1, s+
2(R + 1), . . . , s+R∗ − (R + 1)}. These are R∗

R+1 = q2(R+1)(p2+2p+kp) + 1 distinct indices, all
of which have pairwise difference at least R+ 1. Since ≈R has 2(R+1)(p2+2p+kp) equivalence
classes, by pigeonhole principle there must exist a subset of S of size at least q + 1 such that
any two of its elements are equivalent for ≈R. J

A.7 Proof of Lemma 19
Lemma 19. Note that G,G′ are two graphs on the same set of vertices, for which we use
the same labeling function (the rewiring operation only edits edges of the graph). Our plan
is to use the identity mapping f : V → V which sets f(v) = v for all v ∈ V and prove that
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this mapping is sufficient to invoke Lemma 9. The mapping is clearly bijective and maps
terminals to themselves, hence the first condition is trivially satisfied. What remains is to
prove that for all non-terminal vertices v, BG

r (v) is isomorphic to BG′

r (v), where r = 2q − 1.
Let us identify some interesting sets of vertices of G. We define the following:

1. X1 is the set of all non-terminal vertices which appear in a bag Bj , with j ∈ [s1−L, s1−1]
but do not appear in Bs1 .

2. Y1 is the set of all non-terminal vertices which appear in a bag Bj , with j ∈ [s1 +1, s1 +L]
but do not appear in Bs1 ∪Bs2 .

3. Y2 is the set of all non-terminal vertices which appear in a bag Bj , with j ∈ [s2−L, s2−1]
but do not appear in Bs1 ∪Bs2 .

4. Z1 is the set of all non-terminal vertices which appear in a bag Bj , with j ∈ [s2 +1, s2 +L]
but do not appear in Bs2 .

Recall that since B(s1 − L, s1 + L) is block-isomorphic to B(s2 − L, s2 + L), there
exists a terminal-respecting isomorphism f∗ from G[T ∪ (

⋃
j∈[s1−L,s1+L]Bj)] to G[T ∪

(
⋃

j∈[s2−L,s2+L]Bj)] as prescribed in Definition 12. We claim that f∗ is a bijection from X1
to Y2, from Bs1 to Bs2 , and from Y1 to Z1. This follows immediately from Definition 12,
because each vertex v ∈ Bs1−L must be mapped to a vertex of Bs2−L, and each vertex that
is introduced in Bj for j ∈ [s1 − L + 1, s1 + L] must be mapped to a vertex of the bag
Bs2+(j−s1).

We use f∗ to construct some helpful mappings as follows:

1. f1 : V → V is defined as f1(v) =


f∗(v) if v ∈ Y1
f−1
∗ (v) if v ∈ Z1
v otherwise

2. f2 : V → V is defined as f2(v) =


f∗(v) if v ∈ Bs1 ∪X1
f−1
∗ (v) if v ∈ Bs2 ∪ Y2
v otherwise

We observe that f1, f2 are bijections from V to V . In particular, f1 translates Y1 to Z1,
using the bijective mapping f∗ between them, and leaves all other vertices unchanged, while
f2 translates Bs1 ∪X1 to Bs2 ∪ Y2. We invite the reader to take a look at Figure 2 for a
schematic view of these mappings.

We now claim that for any non-terminal vertex, either f1 or f2 is a terminal-respecting
isomorphism from BG

r (v) to BG′

r (v). In particular, we have two cases:

1. If v appears in a bag Bj with j ∈ [1, s1] ∪ [s2 − 3L, s2], then f1 is a terminal-respecting
isomorphism from BG

r (v) to BG′

r (v).
2. Otherwise, that is, if v only appears in bags Bj with j ∈ [s1 + 1, s2 − 3L − 1] ∪ [s2, `],

then f2 is a terminal-respecting isomorphism from BG
r (v) to BG′

r (v).

Indeed, suppose that v appears in a bag Bj with j ∈ [1, s1]. Then, according to Lemma 17,
all vertices of BG

r (v) appear in a bag Bj with j ∈ [1, s1 +L]. All such vertices are mapped to
themselves by f1, except for vertices of Y1 which are mapped to Z1 in a way that preserves
internal edges. What we need, then, is to argue that the rewiring operation translates edges
from Y1 to Bs1 to edges from Z1 to Bs1 (we do not need to worry about edges from Y1 to
Bj for j < s1, as Bs1 is a separator). Now we claim that for every y ∈ Y1 which had an edge
to v ∈ Bs1 in G, the vertex f∗(y) ∈ Z1 has an edge to v in G′, by the rewiring operation.
More precisely, the edge yv has been deleted by the first part of the rewiring operation, but
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because f∗ is an isomorphism, we know that f∗(y)f∗(v) is an edge of G, with f∗(v) ∈ Bs2 ,
and the second part of the rewiring operation will replace this edge with the edge f∗(y)v.

Suppose then that v appears in a bag Bj with j ∈ [s2 − 3L, s2], therefore all vertices of
BG

r (v) appear in a bag Bj with index j ∈ [s2 − 4L, s2 + L]. All such vertices are mapped
to themselves by f1, except for vertices of Z1, which are mapped to Y1. As in the previous
paragraph, we need to check that if for z ∈ Z1 and v ∈ Bs2 we have the edge zv in G, then
we have the edge f−1

∗ (z)v in G′. Because f∗ is an isomorphism, we know that f−1
∗ (z)f−1

∗ (v)
is an edge of G, with f−1

∗ (z) ∈ Y1 and f−1
∗ (v) ∈ Bs1 . The first part of the rewiring operation

will replace the edge f−1
∗ (z)f−1

∗ (v) with f−1
∗ (z)v.

Consider now the case where v appears in a bag Bj with j ∈ [s1 +1, s2−3L−1], therefore
all vertices of BG

r (v) are contained in a bag Bj with j ∈ [s1 + 1− L, s2 − 2L− 1]. All such
vertices are mapped to themselves by f2 except vertices of X1 ∪Bs1 , which are mapped to
Y2∪Bs2 . What we need to argue now is that the rewiring operation has translated edges from
Y1 to Bs1 to edges from Y1 to Bs2 (edges from Y1 to X1 don’t exist, as Bs1 is a separator).
Let y ∈ Y1 and v ∈ Bs1 such that yv is an edge of G. The first part of the rewiring operation
will replace this edge with yf∗(v), with f∗(v) ∈ Bs2 .

Finally, if v appears in a bag Bj with j ∈ [s2, `], we have that all vertices of BG
r (v) are

contained in a bag with index in [s2 − L, `] and f2 maps all such vertices to themselves,
except vertices of Y2 ∪Bs2 are mapped to X1 ∪Bs1 . We need to check that an edge from Z1
to Bs2 is mapped to an edge from Z1 to Bs1 in G′. Suppose that for z ∈ Z1 and v ∈ Bz2 we
have the edge zv in G. The second part of the rewiring operation will replace this edge with
the edge zf−1

∗ (v), with f−1
∗ (v) ∈ Bs1 .

We have now explained how for each non-terminal vertex v, BG
r (v) and BG′

r (v) are
isomorphic, thanks to either f1 or f2. The only thing that remains is to explain why these
mappings are also terminal-respecting. However, this is easy to see as these mappings either
map a vertex to itself, or map v to f∗(v) (or f−1

∗ (v)), and f∗(v) is a terminal-respecting
isomorphism. As a result, if v is connected to a terminal vertex, then f1(v), f2(v) are also
connected to the same terminal vertex and our mapping is terminal-respecting. J

A.8 Proof of Lemma 17
Lemma 17. We prove the lemma by induction on r. If r = 0, then the only non-terminal
vertex of Br(v) is v itself, which is contained in Bj ∈ B(j, j).

Suppose r > 0 and the lemma is true up to r − 1. Consider a non-terminal vertex u of
Br(v). If there is a path without internal terminal vertices from u to v that has length at most
r−1, then by inductive hypothesis u is contained in a bag of B(j−(r−1)∆, j+(r−1)∆), hence
also in B(j− r∆, j+ r∆). Suppose then that the shortest such path from u to v has length r,
and that the vertex immediately after u in this path is w. By inductive hypothesis, since w
is at distance at most r − 1 from v, it is contained in a bag of B(j − (r − 1)∆, j + (r − 1)∆).
Furthermore, w must be contained in a bag together with u, since they are neighbors. But,
if u does not appear in any bag with index in the interval [j − r∆, j + r∆], that means that
w must appear either in Bj−r∆−1 or in Bj+r∆+1. In both cases, w appears in strictly more
than ∆ bags, contradiction. Therefore, u must appear in some bag with index in the interval
[j − r∆, j + r∆], as desired. J

A.9 Proof of Lemma 20
Lemma 20. First, observe that s1, s2 are far enough apart that the two rewiring operations
are applied to disjoint sets of non-terminals (and terminal vertices are unaffected by these
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operations), so it is not important which operation happens “first”.
Since B(s1, s1 + R) is block-isomorphic to B(s2, s2 + R) there is a terminal-respecting

isomorphism f∗ which maps Y1 ∪ Bs1+j2 to Y2 ∪ Bs2+j2 . More precisely, f∗ maps vertices
of
⋃

j∈[s1+j1+1,s1+j2]Bj to
⋃

j∈[s2+j1+1,s2+j2]Bj , and by excluding vertices of Bs1+j1 we get
a mapping from Y1 ∪ Bs1+j2 to Y2 ∪ Bs2+j2 . It is easy to see that if f∗ is an isomorphism
before we apply the rewiring operation, it remains an isomorphism afterwards, since we apply
the same operation on isomorphic graphs.

We claim that this isomorphism also proves that the two sets are identical. Indeed,
consider the mapping that maps each vertex v ∈ Y1 ∪ Bs1+j2 to f∗(v), maps each vertex
v ∈ Y2 ∪Bs2+j2 to f−1

∗ (v), and maps all other vertices to themselves. To see that this is a
terminal-respecting isomorphism, we observe that adjacency relations with terminals are
preserved, as f∗ is terminal-respecting. To see that edges between non-terminals are preserved,
we note that edges with both endpoints inside Y1 ∪ Bs1+j2 or Y2 ∪ Bs2+j2 are preserved
because f∗ is an isomorphism, while edges with both endpoints outside the sets are trivially
preserved. What remains is to note that there is no non-terminal in Y1∪Bs1+j2 ∪Y2∪Bs2+j2

which has an edge to a non-terminal outside the set. This is a result of the rewiring operation:
every edge from Y1 to Bs1+j1 has been replaced by an edge to Bs1+j2 , and since Bs1+j1 is
a separator, there are no edges from Y1 towards bags further to the left. Similarly, every
edge from Bs1+j2 to a vertex that appears in Bs1+j2+1 or later has been replaced with an
edge from Bs1+j1 . Hence, the sets Y1 ∪Bs1+j2 , Y2 ∪Bs2+j2 have no edges connecting them
to the outside without going through terminals and the mapping we defined proves they are
identical. J

A.10 Proof Lemma 23
Lemma 23. We begin by locating a vertex v such that ρ(v) = i, v appears in at least 3p ·∆(i)
bags, and i is minimized. Note that such a vertex exists, since we assume that there exists a
vertex which appears 3p ·∆(p) times. We now have the property that any vertex of rank at
most i− 1 appears at most 3p ·∆(i− 1) times, since i was selected to be minimum. Note
that i > 1, because by construction vertices of rank 1 appear at most 2p times. This follows
because each bag of a normalized decomposition must add a new vertex, and vertices of rank
1 have at most 2p vertices with which they share a bag.

Suppose that v appears in the bags Bj with indices in the interval [a1, a2]. We say that a
bag Bj of this interval is interesting, if there exists i′ > i such that a vertex v′ with ρ(v′) = i′

belongs in exactly one of Bj , Bj−1. In other words, a bag is interesting if the higher-rank
vertices it contains changed with respect to the previous bag. We observe that there are
at most 2p interesting bags, because v has at most 2p neighbors of higher rank, and an
interesting bag can either forget (remove) a neighbor of v which was already present (once),
or add a neighbor of v (once). Define a section to be a maximal contiguous interval of bags
which contain the same vertices of rank at least i. There must exist a section that contains
at least 3p∆(i)

2p+1 ≥ ∆(i) bags, suppose this section is [a3, a4] ⊆ [a1, a2]. All bags of the section
contain the same vertices of rank i′ ≥ i. We now add a labeling function T to G and set as
terminals all the vertices of Ba3 ∪ Ba4 . Since the graph was previously unlabeled, adding
these new labels which do not appear in φ does not affect the validity of φ. Note that this
means that any vertex of rank at least i which appears in a bag in [a3, a4] is now a terminal.
Furthermore, any terminal of rank at least i appears in all bags of the section. We define
t1 = a3 + 3p ·∆(i− 1) and t2 = a4 − 3p ·∆(i− 1). We now have that all bags of the interval
[t1, t2] contain the same set of terminals (because terminals of rank less than i appear in
at most 3p∆(i− 1) bags), therefore the terminals of Ba3 , Ba4 of low rank do not appear in
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[t1, t2]. This setup will allow us to invoke Lemma 15 and Lemma 16 on the interval [t1, t2].
Recall that Lemma 15 and Lemma 16 use the values L,R = (L+ 1)(2(L+1)(p2+kp+2p) + 1),

and R∗ = (R + 1)(q2(R+1)(p2+kp+2p) + 1). We will use similar values, but we will be a
bit more generous with the constants to allow us to more easily use the machinery of
Section 4.3. We define L̂ = 3p ·∆(i− 1) · (2q − 1), R̂ = (20L̂+ 1)(2(20L̂+1)(p2+kp+2p) + 1),
and R̂∗ = (5R̂+ 1)(q2(5R̂+1)(p2+kp+2p) + 1).

We first show that t2 − t1 > R̂∗. To see this, we will take some loose upper bounds,
simplifying things by using the fact that x ≤ 2x for any non-negative integer x. We have
L̂ ≤ ∆(i − 1) · p2q+2 ≤ ∆(i − 1) · 2p+q+2; R̂ ≤ 22(20L̂+1)5p2 ≤ 2250L̂p2 , where we used that

k ≤ 2p; R̂∗ ≤ 250R̂qp2 . Putting these together we get that R̂∗ ≤ 250qp2·2(250L̂p2)
≤ 22300qp2L̂ ≤

22300qp2·(∆(i−1)·2p+q+2)
≤ 22∆(i−1)·210qp2

. We now observe that t2 − t1 ≥ ∆(i) − 3p ·∆(i − 1),

so it suffices to have that ∆(i) ≥ 22∆(i−1)·210qp2

+ 3p ·∆(i− 1). Since ∆(i) = 22∆(i−1)·220qp2

,
this is clearly satisfied.

Because t2 − t1 > R̂∗ and all bags of [t1, t2] contain the same terminals, we can invoke
Lemma 16, replacing R with 5R̂. We get that there is a set of q+1 indices S = {s1, . . . , sq+1}
in [t1, t2−5R̂] such that for all j, j′ ∈ [q+1] we have |sj−sj′ | > 5R̂ and sj ≈5R̂ sj′ . Consider
the set of indices S′ = {sj + 2R̂ | j ∈ [q+ 1]}. It is not hard to see that for any two elements
x, y ∈ S′ we have x− y > 5R̂ and x ≈R̂ y (we are essentially looking at the middle fifth of
each interval of length 5R̂). We now apply Lemma 20, replacing R with R̂. We conclude that
if we apply the rewiring operations q + 1 times, once in each interval [s, s+ R̂], for s ∈ S′,
we will create q + 1 identical new parts in the graph as described in Lemma 20. What we
now need to argue is that we can apply this rewiring operation in appropriate places in each
such interval of length R̂ so that the validity of φ is not affected.

Consider now an interval [s, s+ R̂], for s ∈ S′. We want to use Lemma 19 to show that
applying the rewiring operation in two appropriate bags of this interval does not affect the
validity of φ. Since all such intervals are isomorphic for any s ∈ S′, it suffices to consider
one. We invoke Lemma 15 with 20L̂ in the place of L. We get that there exist two indices
q1, q2 ∈ [s, s+R̂] such that |q2−q1| ≥ 20L̂ and q1 ≈20L̂ q2. Define q′1 = q1+10L̂, q′2 = q2+10L̂.
We have |q′2− q′1| ≥ 20L̂ and also that q1, q2 are at distance at least 4L̂ from the endpoints of
the interval [s, s+ R̂]. Furthermore, B(q1− L̂, q1 + L̂) is block-isomorphic to B(q2− L̂, q2 + L̂).
Since every non-terminal appears in at most 3p ·∆(i − 1) bags of the decomposition and
L̂ = 3p ·∆(i− 1) · (2q − 1), we can apply Lemma 19 and conclude that applying the rewiring
operation on q′1, q′2 does not affect the validity of the formula.

We are now almost done. We have located q + 1 pairs of indices such that applying the
rewiring operation one each pair does not affect the validity of the formula, and such that
the new parts we obtain from this operation are identical. Invoking Lemma 5, we conclude
that we can delete one such part without affecting the validity of φ. Let G1 be the graph
we obtain when we do this. G1 is indeed smaller than G and we have G |= φ if and only if
G1 |= φ. The only problem is that G1 actually has higher pathwidth than G, so we cannot
simply return G1. To work around this difficulty, we will “undo” the rewiring operation on
the q remaining index pairs.

More precisely, let Q be the set of the q+ 1 pairs of indices where we applied the rewiring
operation and (q1, q2) ∈ Q be one such pair. Let G2 be the graph we obtain if instead of
rewiring at (q1, q2) we do the following: we identify each vertex of Bq1 with the vertex of
Bq2 which has the same rank; and we delete every vertex that appears in a bag of [q1, q2]
without appearing in Bq1 ∪Bq2 . We now observe that applying the rewiring operation on G2
on every pair of Q \ {(q1, q2)} will produce a graph isomorphic to G1. Indeed, what we did
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in G2 was delete the new part that would have been produced by the rewiring operation on
(q1, q2) before rewiring the rest. But if this is the case, with the same arguments as before
we can invoke Lemma 19 and claim that G2 |= φ if and only if G1 |= φ. Now, we are finally
done, because we can return G2. A path decomposition of G2 can easily be obtained from
the path decomposition of G and we retain the same ranking function and drop the labeling
function, which we no longer need. J

A.11 Proof of Theorem 24
Theorem 24. Let q be the number of quantifiers in φ. We first compute a normalized path
decomposition using Lemma 11. Let p′ ≤ 8p be the number of ranks used by the ranking
function.

We first check if the graph contains a vertex that appears in more than 3p′∆(p′) bags,
on which we could apply Lemma 23. Clearly, this can be done in time ∆(p′)nO(1), which is
FPT with an elementary dependence on q (if p is a fixed constant). If we find such a vertex,
we invoke Lemma 23 and obtain a smaller graph together with a path decomposition of the
same width. We repeat this process as long as possible, and this adds at most a factor of n
to the running time.

Once we can no longer find such a vertex, we have an elementary (in q) upper bound
on the maximum degree of the current graph, because a vertex that appears in δ bags can
have at most pδ neighbors. We then invoke the algorithm of [28] which handles FO model
checking on graphs of bounded degree and has an elementary dependence on q, and output
the result of this algorithm. J
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