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Abstract

We study the approximability of the NP-complete Maximum Minimal
Feedback Vertex Set problem. Informally, this natural problem seems to
lie in an intermediate space between two more well-studied problems of this
type: Maximum Minimal Vertex Cover, for which the best achievable
approximation ratio is

√
n, and Upper Dominating Set, which does not

admit any n1−ε approximation. We confirm and quantify this intuition by
showing the first non-trivial polynomial time approximation for Max Min
FVS with a ratio of O(n2/3), as well as a matching hardness of approxima-
tion bound of n2/3−ε, improving the previous known hardness of n1/2−ε. The
approximation algorithm also gives a cubic kernel when parameterized by
the solution size. Along the way, we also obtain an O(∆)-approximation and
show that this is asymptotically best possible, and we improve the bound
for which the problem is NP-hard from ∆ ≥ 9 to ∆ ≥ 6.

Having settled the problem’s approximability in polynomial time, we
move to the context of super-polynomial time. We devise a generaliza-
tion of our approximation algorithm which, for any desired approximation
ratio r, produces an r-approximate solution in time nO(n/r3/2). This time-
approximation trade-off is essentially tight: we show that under the ETH, for
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any ratio r and ε > 0, no algorithm can r-approximate this problem in time
nO((n/r3/2)1−ε), hence we precisely characterize the approximability of the
problem for the whole spectrum between polynomial and sub-exponential
time, up to an arbitrarily small constant in the second exponent.

Keywords: Approximation Algorithms, ETH, Inapproximability

1. Introduction1

In a graph G = (V,E), a set S ⊆ V is called a feedback vertex set (fvs2

for short) if the subgraph induced by V \ S is a forest. Typically, fvs is3

studied with a minimization objective: given a graph we are interested in4

finding the best (that is, smallest) fvs. In this paper we are interested in5

an objective which is, in a sense, the inverse: we seek an fvs S which is as6

large as possible, while still being minimal. We call this problem Max Min7

FVS.8

MaxMin and MinMax versions of many famous optimization problems9

have recently attracted much interest in the literature (we give references10

below) and Max Min FVS can be seen as a member of this framework.11

Although the initial motivation for studying such problems was a desire to12

analyze the worst possible performance of a naive heuristic, these problems13

have gradually been revealed to possess a rich combinatorial structure that14

makes them interesting in their own right. Our goal in this paper is to15

show that Max Min FVS displays an interesting complexity behavior with16

respect to its approximability.17

Our motivation for focusing on Max Min FVS is the contrast between18

two of its more well-studied cousins: the Max Min Vertex Cover (Max19

Min VC) and Upper Dominating Set (UDS) problems (we give references20

below), where the objective is to find the largest minimal vertex cover or21

dominating set, respectively. At first glance, one would expect Max Min22

VC to be the easier of these two problems: both problems can be seen as23

trying to find the largest minimal hitting set of a hypergraph, but in the24

case of Max Min VC the hypergraph has a very restricted structure, while25

in UDS the hypergraph is essentially arbitrary. This intuition turns out to26

be correct: while UDS admits no n1−ε-approximation [5], Max Min VC27

admits a
√
n-approximation (but no n1/2−ε-approximation) [9].28

This background leads us to the natural question of the approximability29

of Max Min FVS. On an intuitive level, one may be tempted to think that30

this problem should be harder than Max Min VC, since hitting cycles is31

more complex than hitting edges, but easier than UDS, since hitting cycles32
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still offers us more structure than an arbitrary hypergraph. However, to the33

best of our knowledge, no n1−ε-approximation algorithm is currently known34

for Max Min FVS (so the problem could be as hard as UDS), and the35

best hardness of approximation bound known is n1/2−ε [38] (so the problem36

could be as easy as Max Min VC).37

Our main contribution in this paper is to fully answer this question,38

confirming and precisely quantifying the intuition that Max Min FVS is a39

problem that lies “between” Max Min VC and UDS: we give a polynomial-40

time approximation algorithm with ratio O(n2/3) and a hardness of approx-41

imation reduction which shows that (unless P = NP) no polynomial-time42

algorithm can obtain a ratio of n2/3−ε, for any ε > 0. This completely settles43

the approximability of the problem in polynomial time. Along the way, we44

also prove that Max Min FVS admits a cubic kernel when parameterized45

by the solution size, give an approximation algorithm with ratio O(∆), show46

that no algorithm can achieve ratio ∆1−ε, for any ε > 0, and improve the47

best known NP-completeness proof for Max Min FVS from ∆ ≥ 9 [38] to48

∆ ≥ 6, where ∆ is the maximum degree of the input graph.49

One interesting aspect of our results is that they have an interpretation50

from extremal combinatorics which nicely mirrors the situation for Max51

Min VC. Recall that a corollary of the
√
n-approximation for Max Min52

VC [9] is that any graph without isolated vertices has a minimal vertex53

cover of size at least
√
n, and this is tight (see Remark 3). Hence, the54

algorithm only needs to trivially preprocess the graph (deleting isolated ver-55

tices) and then find this set, which is guaranteed to exist. Our algorithms56

can be seen in a similar light: we prove that if one applies two almost trivial57

pre-processing rules to a graph (deleting leaves and contracting edges be-58

tween degree-two vertices), a minimal fvs of size at least n1/3 (and Ω(n/∆))59

is always guaranteed to exist, and this is tight (Corollary 1 and Remark60

2). Thus, the approximation ratio of n2/3 is automatically guaranteed for61

any graph where we exhaustively apply these very simple rules and our al-62

gorithms only have to work to construct the promised set. This makes it63

somewhat remarkable that the ratio of n2/3 turns out to be best possible.64

Having settled the approximability of Max Min FVS in polynomial65

time, we consider the question of how much time needs to be invested if one66

wishes to guarantee an approximation ratio of r (which may depend on n)67

where r < n2/3. This type of time-approximation trade-off was extensively68

studied by Bonnet et al. [8], who showed that Max Min VC admits an69

r-approximation in time 2O(n/r2) and this is optimal under the randomized70

ETH.71

For Max Min FVS we cannot hope to obtain a trade-off with perfor-72
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mance exponential in n/r2, as this implies a polynomial-time
√
n-approximation.73

It therefore seems more natural to aim for a running time exponential in74

n/r3/2. Indeed, generalizing our polynomial-time approximation algorithm,75

we show that we can achieve an r-approximation in time nO(n/r3/2). Al-76

though this algorithm reuses some ingredients from our polynomial-time77

approximation, it is significantly more involved, as it is no longer sufficient78

to compare the size of our solution to n. We complement our result with a79

lower bound showing that our algorithm is essentially best possible under80

the randomized ETH for any r (not just for polynomial time), or more pre-81

cisely that the exponent of the running time of our algorithm can only be82

improved by no(1) factors.83

Related work To the best of our knowledge, Max Min FVS was first84

considered by Mishra and Sikdar [38], who showed that the problem does85

not admit an n1/2−ε approximation (unless P = NP), and that it remains86

APX-hard for ∆ ≥ 9. On the other hand, UDS and Max Min VC are87

well-studied problems, both in the context of approximation and in the con-88

text of parameterized complexity [1, 5, 9, 11, 13, 14, 19, 30, 35, 41, 43, 21].89

Many other classical optimization problems have recently been studied in90

the MaxMin or MinMax framework, such as Max Min Separator [27],91

Max Min Cut [23], Min Max Knapsack (also known as the Lazy Bu-92

reaucrat Problem) [3, 25, 26], and some variants of Max Min Edge93

Cover [37, 28]. Some problems in this area also arise naturally in other94

forms and have been extensively studied, such as Min Max Matching95

(also known as Edge Dominating Set [34]), Grundy Coloring, which96

can be seen as a Max Min version of Coloring [2, 6], and Max Min VC97

in hypergraphs, which is known as Upper Transversal[39, 31, 32, 33].98

The idea of designing super-polynomial time approximation algorithms99

which obtain guarantees better than those possible in polynomial time has100

attracted much attention in the last decade [4, 10, 16, 18, 22, 24, 36]. As101

mentioned, the result closest to the time-approximation trade-off we give in102

this paper is the approximation algorithm for Max Min VC given by Bon-103

net et al. [8]. It is important to note that such trade-offs are only generally104

known to be tight up to poly-logarithmic factors in the exponent of the run-105

ning time. As explained in [8], current lower bound techniques can rule out106

improvements in the running time that shave at least nε from the exponent,107

but not improvements which shave poly-logarithmic factors, due to the state108

of the art in quasi-linear PCP constructions. Indeed, such improvements are109

sometimes possible [4] and are conceivable for Max Min VC and Max Min110

FVS. Such lower bounds rely on the (randomized) Exponential Time Hy-111
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pothesis (ETH), which states that there is no (randomized) algorithm for112

3-SAT running in time 2o(n).113

2. Preliminaries114

We use standard graph-theoretic notation and only consider simple (with-115

out parallel edges) loop-less graphs. For a graph G = (V,E) and S ⊆ V116

we denote by G[S] the graph induced by S. For u ∈ V , G − u is the117

graph G[V \ {u}]. We write N(u) to denote the set of neighbors of u and118

d(u) = |N(u)| to denote its degree. For S ⊆ V , N(S) =
⋃
u∈S N(u) \S. We119

use ∆(G) (or simply ∆) to denote the maximum degree of G. For uv ∈ E120

the graph G/uv is the graph obtained by contracting the edge uv, that is,121

replacing u, v by a new vertex connected to N({u, v}). In this paper we will122

only apply this operation when N(u) ∩N(v) = ∅, so the result will always123

be a simple graph.124

A forest is a graph that does not contain cycles. A feedback vertex set125

(fvs for short) is a set S ⊆ V such that G[V \ S] is a forest. An fvs S is126

minimal if no proper subset of S is an fvs. It is not hard to see that if S is127

minimal, then every u ∈ S has a private cycle, that is, there exists a cycle in128

G[(V \S)∪ {u}], which goes through u. A vertex u of a feedback vertex set129

S that does not have a private cycle (that is, S \{u} is also an fvs), is called130

redundant. For a given fvs S, we call the set F = V \ S the corresponding131

induced forest. If S is minimal, then F is maximal.132

The main problem we are interested in is Max Min FVS: given a graph133

G = (V,E), find a minimal fvs of G of maximum size. Since this problem134

is NP-hard, we will be interested in approximation algorithms. An approx-135

imation algorithm with ratio r ≥ 1 (which may depend on n, the number136

of vertices of the graph) is an algorithm which, given a graph G, returns a137

solution of size at least mmfvs(G)
r , where mmfvs(G) is the size of the largest138

minimal fvs of G.139

We make two basic observations about our problem: deleting vertices or140

contracting edges can only decrease the size of the optimal solution.141

Lemma 1. Let G = (V,E) be a graph and u ∈ V . Then, mmfvs(G) ≥142

mmfvs(G − u). Furthermore, given any minimal feedback vertex set S of143

G − u, it is possible to construct in polynomial time a minimal feedback144

vertex set of G of the same or larger size.145

Proof. Let S be a minimal fvs of G− u. We observe that S ∪ {u} is an fvs146

of G. If S ∪ {u} is minimal, we are done. If not, we delete vertices from147
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it until it becomes minimal. We now note that the only vertex which may148

be deleted in this process is u, since all vertices of S have a private cycle in149

G−u (that is, a cycle not intersected by any other vertex of S). Hence, the150

resulting set is a superset of S.151

Lemma 2. Let G = (V,E) be a graph, u, v ∈ V with N(u) ∩N(v) = ∅ and152

uv ∈ E. Then mmfvs(G) ≥ mmfvs(G/uv). Furthermore, given any minimal153

feedback vertex set S of G/uv, it is possible to construct in polynomial time154

a minimal feedback vertex set of G of the same or larger size.155

Proof. Before we prove the Lemma we note that the contraction operation,156

under the condition that N(u) ∩N(v) = ∅, preserves acyclicity in a strong157

sense: G is acyclic if and only if G/uv is acyclic. Indeed, if we contract158

an edge that is part of a cycle, this cycle must have length at least 4 since159

N(u) ∩ N(v) = ∅, and will therefore give a cycle in G/uv. Of course,160

contractions never create cycles in acyclic graphs.161

Let G′ = G/uv and w be the vertex of G′ which has replaced u, v. Let162

V ′ = V (G′), and S be a minimal fvs of G′. We have two cases: w ∈ S or163

w 6∈ S.164

In case w ∈ S, we start with the set S′ = (S \ {w}) ∪ {u, v}. It is not165

hard to see that S′ is an fvs of G. Furthermore, no vertex of S′ \ {u, v}166

is redundant: for all z ∈ S \ {w}, there is a cycle in G′[(V ′ \ S) ∪ {z}],167

therefore there is also a cycle in G[(V \ S′) ∪ {z}]. Furthermore, we claim168

that S′\{u, v} is not a valid fvs. Indeed, there must be a cycle contained (due169

to minimality) in G1 = G′[(V ′ \ S) ∪ {w}]. Therefore, if there is no cycle in170

G2 = G[(V \S′)∪{u, v}], we get a contradiction, as G1 can be obtained from171

G2 by contracting the edge uv and contracting edges preserves acyclicity.172

We conclude that even if S′ is not minimal, if we remove vertices until it173

becomes minimal, we will remove at most one vertex, so the size of the fvs174

obtained is at least |S|.175

In case w 6∈ S, we will return the same set S. Let F = V \S, F ′ = V ′ \S.176

By definition, G′[F ′] is acyclic. To see that G[F ] is also a forest, we note177

that G′[F ′] is obtained from G[F ] by contracting uv, and as we noted in the178

beginning, the contractions we use strongly preserve acyclicity. To see that179

S is minimal, take z ∈ S and consider the graphs G1 = G[(V \ S) ∪ {z}]180

and G2 = G′[(V ′ \ S) ∪ {z}]. We see that G2 can be obtained from G1 by181

contracting uv. But G2 must have a cycle, by the minimality of S, so G1182

also has a cycle. Thus, S is minimal in G.183
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3. Polynomial Time Approximation Algorithm184

In this section we present a polynomial-time algorithm which guaran-185

tees an approximation ratio of n2/3. As we show in Theorem 4, this ratio186

is the best that can be hoped for in polynomial time. Later (Theorem187

2) we show how to generalize the ideas presented here to obtain an algo-188

rithm that achieves a trade-off between the approximation ratio and the189

(sub-exponential) running time, and show that this trade-off is essentially190

optimal.191

On a high level, our algorithm proceeds as follows: first we identify192

some easy cases in which applying Lemma 1 or Lemma 2 is safe, that is,193

the value of the optimal solution is guaranteed to stay constant, namely194

deleting vertices of degree at most 1, and contracting edges between vertices195

of degree 2. After we apply these reduction rules exhaustively, we compute196

a minimal fvs S in an arbitrary way. If S is large enough (larger than n1/3),197

we simply return this set.198

If not, we apply some counting arguments to show that a vertex u ∈ S199

with high degree (≥ n2/3) must exist. We then have two cases: either we are200

able to construct a large minimal fvs just by looking at the neighborhood201

of u in the forest (and ignoring S \ {u}), or u must share many neighbors202

with another vertex v ∈ S, in which case we construct a large minimal fvs203

in the common neighborhood of u, v.204

Because our algorithm is constructive (and runs in polynomial time),205

we find it interesting to remark an interpretation from the point of view of206

extremal combinatorics, given in Corollary 1.207

3.1. Basic Reduction Rules and Combinatorial Tools208

We begin by showing two safe versions of Lemmas 1, 2.209

Lemma 3. Let G, u be as in Lemma 1 with d(u) ≤ 1. Then mmfvs(G−u) =210

mmfvs(G).211

Proof. We only need to show that mmfvs(G) ≤ mmfvs(G − u) (the other212

direction is given by Lemma 1). Let S be a minimal fvs of G. Then, S is213

an fvs of G − u. Furthermore, u 6∈ S, as S is minimal in G. To see that S214

is also minimal in G − u, note that any cycle of G also exists in G − u (as215

no cycle contains u).216

Lemma 4. Let G, u, v be as in Lemma 2 with d(u) = d(v) = 2. Then217

mmfvs(G/uv) = mmfvs(G).218
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Proof. Let G′ = G/uv, w be the vertex that replaced u, v in G′, and V ′ =219

V (G′).220

We only need to show that mmfvs(G) ≤ mmfvs(G′), as the other direc-221

tion is given by Lemma 2. Let S be a minimal fvs of G. We consider two222

cases:223

If u, v 6∈ S, then we claim that S is also a minimal fvs of G′. Indeed,224

G′[V ′ \ S] is obtained from G[V \ S] by contracting uv, so both are acyclic.225

Furthermore, for all z ∈ S, G′[(V ′\S)∪{z}] is obtained from G[(V \S)∪{z}]226

by contracting uv, therefore both have a cycle, hence no vertex of S is227

redundant in G′.228

If {u, v} ∩ S 6= ∅, we claim that exactly one of u, v is in S. Indeed, if229

u, v ∈ S, then G[(V \S)∪ {u}] does not contain a cycle going through u, as230

u has degree 1 in this graph. Without loss of generality, let u ∈ S, v 6∈ S.231

We set S′ = (S \ {u}) ∪ {w} and claim that S′ is a minimal fvs of G′. It232

is not hard to see that S′ is an fvs of G′, since it corresponds to deleting233

S ∪ {v} from G. To see that it is minimal, for all z ∈ S′ \ {w} we observe234

that G′[(V ′ \S′)∪{z}] obtained from G′[(V \S)∪{z}] by deleting v, which235

has degree 1. Therefore, this deletion strongly preserves acyclicity. Finally,236

to see that w is not redundant for S′, we observe that G[(V \ S) ∪ {u}] has237

a cycle, and a corresponding cycle must be present in G′[(V ′ \ S′) ∪ {w}],238

which is obtained from the former graph by contracting uv.239

Definition 1. For a graph G = (V,E) we say that G is reduced if it is not240

possible to apply Lemma 3 or Lemma 4 to G.241

We now present a counting argument which will be useful in our algo-242

rithm and states, roughly, that if in a reduced graph we find an (not neces-243

sarily minimal) fvs, that fvs must have many neighbors in the corresponding244

forest.245

Lemma 5. Let G = (V,E) be a reduced graph and S ⊆ V a feedback vertex246

set of G. Let F = V \ S. Then, |N(S) ∩ F | ≥ |F |4 .247

Proof. Let n1 be the number of leaves of F , which are vertices with at248

most one neighbor in F , n3 the number of vertices of F with at least three249

neighbors in F , n2a the number of vertices of F with two neighbors in F250

and at least one neighbor in S, and n2b the number of remaining vertices of251

F . We have n1 + n2a + n2b + n3 = |F |. Note also that the vertices counted252

in n2b have two neighbors in F and no neighbor in S, since the vertices of253

degree at most one in F are counted in n1, vertices of degree at least 3 in F254

are counted in n3, vertices of degree 2 in F and with at least one neighbor255

in S are counted in n2a, and G has no isolated vertices since it is reduced.256
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Claim 1. In a forest, the number of leaves is greater or equal to the number257

of vertices of degree at least 3.258

Proof. The average degree in a tree is less than 2. Indeed, we have
∑

u∈T d(u) =259

2|E(T )|, for a tree T . And we know that |E(T )| ≤ n − 1 since T is a tree.260

So the average degree in a tree is (
∑

u∈T d(u))/n ≤ 2 − 2/n. Thus, since261

the average degree in a tree is less than 2, we cannot have more vertices262

of degree at least 3 than vertices of degree at most 1, and thus the claim263

follows.264

Finally, the same holds for a forest since all connecting components of a265

forest are trees.266

By the previous Claim, we directly have n3 ≤ n1.267

We observe that all isolated vertices of F have a neighbor in S because268

G do not have any isolated vertices. Furthermore, all leaves of F have269

a neighbor in S (otherwise we would have applied Lemma 3). This gives270

|N(S) ∩ F | ≥ n1 + n2a.271

Furthermore, none of the n2b vertices, which have degree two in F and272

no neighbors in S, can be connected to each other, since then Lemma 4273

would apply. Therefore, n2b ≤ n1 +n2a +n3. Indeed, if n2b > n1 +n2a +n3,274

then n2b > |F |/2, and since these n2b vertices form an independent set, we275

would have |E(F )| ≥ 2n2b > |F |, contradicting the assumption that F is a276

forest.277

Putting things together we get |F | = n1 +n2a +n2b +n3 ≤ 2n1 + 2n2a +278

2n3 ≤ 4n1 + 2n2a ≤ 4|N(S) ∩ F |.279

We note that Lemma 5 immediately gives an approximation algorithm280

with ratio O(∆).281

Lemma 6. In a reduced graph G with n vertices and maximum degree ∆,282

every feedback vertex set has size at least n
5∆ .283

Proof. Let S be a feedback vertex set of G and F the corresponding forest.284

If |S| < n
5∆ then |N(S) ∩ F | < n

5 since the maximum degree is ∆. So by285

Lemma 5, we have |F | < 4n
5 . But then |V | = |S| + |F | < n, which is a286

contradiction.287

Remark 1. Lemma 5 is tight.288

Proof. Take two copies of a rooted binary tree with n leaves and connect289

their roots. The resulting tree has 2n leaves and 2n− 2 vertices of degree 3.290

Subdivide every edge of this tree. Add two vertices u, v connected to every291
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leaf. In the resulting graph S = {u, v} is an fvs. The corresponding forest292

has 8n − 5 vertices. Indeed, we have: 2n − 3 new vertices obtained from293

the subdivisions between the degree-3 vertices; 2n − 2 vertices of degree 3;294

and 2(2n) leaves and their adjacent new vertices. And we have 2n vertices295

connected to S. The graph is reduced.296

3.2. Polynomial Time Approximation and Extremal Results297

We begin with a final intermediate lemma that allows us to construct a298

large minimal fvs in any reduced graph that is a forest plus one vertex.299

Lemma 7. Let G = (V,E) be a reduced graph and u ∈ V such that G − u300

is acyclic. Then it is possible to construct in polynomial time a minimal301

feedback vertex set S of G with |S| ≥ d(u)/2.302

Proof. Let F = V \{u}. Since the graph is reduced, all trees of G[F ] contain303

at least two neighbors of u. Indeed, every tree T of G[F ] contains at least304

two vertices, because otherwise Lemma 3 would apply. Thus every tree T305

contains at least two leaves, and all leaves must be neighbors of u, because306

otherwise Lemma 3 would apply.307

Now, we edit the graph. As long as there exist v, w ∈ F with vw ∈ E308

and {v, w} 6⊆ N(u), we contract the edge (v, w). Note that we can apply309

Lemma 2 since v and w do not have any common neighbors (u is not a310

common neighbor by assumption, and they cannot have a common neighbor311

in the forest without forming a cycle). This operation does not change d(u),312

since for two vertices v, w in F that are neighbors of u, the edge vw is not313

contracted. Therefore, it will be sufficient to construct a minimal fvs in the314

resulting graph after applying this operation exhaustively, since by Lemma315

2 we will be able to construct a minimal fvs in G of the same or greater size.316

Suppose now that we have applied this operation exhaustively. We even-317

tually arrive at a graph where u is connected to all vertices of F , since every318

tree of F initially contain at least two neighbors of u, since all the non-319

neighbors of u are absorbed by the contraction operation (each contraction320

decreases |F \N(u)|), and since neighbors of u in F are never absorbed by321

the contraction operation. Therefore, we arrive at a graph with d(u) = |F ′|322

for the new forest F ′. And every tree of F ′ contains at least two vertices.323

Now, since G[F ′] is a forest, it is bipartite, so there is a bipartition324

F ′ = L∪R. Without loss of generality, |L| ≤ |R|. We return the set S = R.325

First, S does have the promised size, since |S| ≥ |F ′|/2 = d(u)/2. Second,326

S is an fvs, as L is an independent set and L ∪ {u} is a star. Finally, S is327

minimal, because every v ∈ S is connected to u, and also has at least one328

neighbor w ∈ L which is also connected to u.329
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Figure 1: (a) vertex u is a minimal fvs of the given graph and has 4 neighbors in G[F ].
(b) a contracted form of G[F ] with 4 vertices. (c) a new minimal fvs of the result graph
of size 3.

An illustration of the process is presented in Figure 1.330

We now present the main result of this section.331

Theorem 1. There is a polynomial time approximation algorithm for Max332

Min FVS with ratio O(n2/3).333

Proof. We are given a graph G = (V,E). We begin by applying Lemmas 3334

and 4 exhaustively in order to obtain a reduced graph G′ = (V ′, E′). Clearly,335

if we obtain a solution of size at least |V ′|1/3 in G′, since the transformations336

applied do not change the optimal, and since we can construct a solution of337

the same size in G (we can construct such a minimal fvs by Lemmas 1 and 2,338

and it will be of the same size by Lemmas 3 and 4), we get |V ′|2/3 ≤ |V |2/3339

approximation ratio in G. So, in the remainder, to ease presentation, we340

assume that G is already reduced and has n vertices.341

Our algorithm begins with an arbitrary minimal fvs S. It can be con-342

structed, for example, by starting with S = V , and by removing vertices343

from S until it becomes minimal. If |S| ≥ n1/3, then we return S. Since344

the optimal solution cannot have size more than n, we already have a n2/3-345

approximation.346

So suppose that |S| < n1/3. Let F be the corresponding forest. We have347

|F | > n−n1/3 > n/2 for n sufficiently large. By Lemma 5, |N(S)∩F | ≥ n/8.348

Since |S| < n1/3, there must exist a vertex u ∈ S with at least |N(S)∩F |
|S| >349

n2/3

8 neighbors in F .350
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Now, let w ∈ F ∩N(u). We say that w is a good neighbor of u if there351

exists another vertex w′ ∈ F ∩N(u) with w′ 6= w and w′ is in the same tree352

of G[F ] as w. Otherwise, we say that w is a bad neighbor of u. By extension,353

a tree of G[F ] that contains a good (resp. bad) neighbor of u will be called354

good (resp. bad). Note that every vertex of N(u)∩F is either good or bad.355

Recall that |N(u)∩F | ≥ n2/3

8 . We distinguish between the following two356

cases: either u has at least n2/3

16 good neighbors in F , or it has at least that357

many bad neighbors in F .358

In the former case, we delete from the graph the set S \ {u}, and apply359

Lemmas 3 and 4 exhaustively again. We claim that the number of good360

neighbors of u does not decrease in this process. Indeed, two good neigh-361

bors of u cannot be contracting using Lemma 4, since they have a common362

neighbor, namely u. Furthermore, suppose w is the first good neighbor of363

u to be deleted using Lemma 3. This would mean that w currently has364

no other neighbor except u. However, since w is good, there initially was365

a vertex w′ ∈ N(u) in the same tree of G[F ] as w. And since w′ has not366

been deleted yet, since we assumed that w was the first to be deleted, and367

since Lemmas 3 and 4 cannot disconnect two vertices which are in the same368

component, we obtain that the vertex w cannot be removed by Lemma 3.369

Thus, we have a reduced graph, where {u} is an fvs, and with d(u) ≥ n2/3

16 .370

So, by Lemma 7, we obtain a minimal fvs of size at least n2/3

32 , which is an371

O(n1/3)-approximation.372

In the latter case, u has at least n2/3

16 bad neighbors in F . Consider such373

a bad tree T . The tree T must have a neighbor in S \{u}. Indeed, if |T | = 1,374

then the vertex in T must have another neighbor in S, because otherwise it375

should have been deleted by Lemma 3. And if |T | ≥ 2, then one vertex is376

a neighbor of u and at least one leaf is connected to S, because otherwise377

this leaf should have been deleted by Lemma 3. Furthermore, since u is378

connected to one vertex in each bad tree, u is connected to at least n2/3

16 bad379

trees. We now find a vertex v ∈ S \ {u} such that v is connected to the380

maximum number of bad trees connected to u. Since |S| < n1/3, v must be381

connected to at least n2/3

16|S| ≥
n1/3

16 bad trees connected to u.382

Now, we delete from the graph the set S \ {u, v} as well as all trees of383

G[F ], except the bad trees connected to u and v. Consider such a bad tree384

T connected to both u and v, and let u′ ∈ T ∩N(u) and v′ ∈ T ∩N(v) such385

that u′ and v′ are as close as possible in T (note that perhaps u′ = v′). We386

delete all vertices of the tree T except those on the path from u′ to v′, and387

then we contract all internal edges of this path (note that internal vertices of388
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this path are not connected to u and v by the selection of u′, v′). By Lemma389

1 and 2, if we are able to produce a large minimal fvs in the resulting graph,390

we obtain a solution for G, since we have applied these two Lemmas to391

obtain the resulting graph. We have that in the resulting graph, every bad392

tree T connected to u and v has been reduced to a single vertex connected393

to u and v. So the graph is either a K2,s with s ≥ n1/3

16 , or the same graph394

with the addition of the edge uv. In either case, by starting with the fvs395

that contains all vertices except u and v, and making it minimal, we obtain396

a solution of size at least s− 1, which gives a O(n2/3)-approximation.397

Corollary 1. For any reduced graph G on n vertices we have mmfvs(G) =398

Ω(n1/3).399

Proof. We simply note that the algorithm of Theorem 1 always constructs400

a solution of size at least n1/3

c , where c is a small constant, assuming that401

the original n-vertex graph G was reduced.402

Remark 2. Corollary 1 is tight.403

Proof. Take a Kn and for every pair of vertices u, v in the clique, add 2n404

new vertices connected only to u and v. The graph has order n + 2n
(
n
2

)
=405

n+n2(n− 1) = n3−n2 +n ≥ n3/2 for n sufficiently large. Any minimal fvs406

of this graph must contain at least n− 2 vertices of the clique. As a result407

its maximum size is at most n− 2 + 2n ≤ 3n. We have mmfvs(G) ≤ 3n so408

mmfvs(G) = O(|V (G)|1/3).409

Theorem 1 also implies the existence of a cubic kernel of Max Min FVS410

when parameterized by the solution size k. Recall that the reduction rules411

do not change the solution size. We suppose that the reduced graph has n412

vertices. For a small constant c, if n ≥ c3k3, then we can always produce a413

solution of size at least n1/3/c = k, and thus the answer is YES. Otherwise,414

we have a cubic kernel.415

Corollary 2. Max Min FVS admits a cubic kernel when parameterized by416

the solution size.417

Finally, we remark that a similar combinatorial point of view can be418

taken for the related problem of Max Min VC, giving another intuitive419

explanation for the difference in approximability between the two problems.420

Remark 3. Any graph G = (V,E) without isolated vertices, has a minimal421

vertex cover of size at least
√
|V |, and this is asymptotically tight.422
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Proof. We will prove the statement under the assumption that G is con-423

nected. If not, we can treat each component separately. If the components of424

G have sizes n1, . . . , nk, then we rely on the fact that
∑k

i=1

√
ni ≥

√∑k
i=1 ni425

and that the union of the minimal vertex covers of each component is a min-426

imal vertex cover of G.427

If G = (V,E) has a vertex u of degree at least
√
n, then we begin with428

the vertex cover V \ {u} and remove vertices until it becomes minimal.429

In the end, our solution contains a superset of N(u), therefore we have a430

minimal vertex cover of size at least
√
n as promised. If, on the other hand,431

∆(G) <
√
n, then any vertex cover of G must have size at least

√
n. Indeed,432

a vertex cover of size at most
√
n−1 can cover at most (

√
n−1)

√
n < n−1433

edges, but since G is connected we have |E(G)| ≥ n − 1. So, in this case,434

any minimal vertex cover has the promised size.435

To see that the bound given is tight, take a Kn and attach n leaves to436

each of its vertices. This graph has n2 + n vertices, but any minimal vertex437

cover has size at most (n− 1) + n = 2n− 1.438

4. Sub-exponential Time Approximation439

In this section we give an approximation algorithm that generalizes our440

n2/3-approximation and is able to guarantee any desired performance, at441

the cost of increased running time. On a high level, our initial approach442

again constructs an arbitrary minimal fvs S and if S is clearly large enough,443

returns it. However, things become more complicated from then on, as444

it is no longer sufficient to consider vertices of S individually or in pairs.445

We therefore need several new ideas, one of which is given in the following446

lemma, which states that we can find a constant factor approximation in447

time exponential in the size of a given fvs. This will be useful as we will use448

the assumption that S is “small” and then cut it up into even smaller pieces449

to allow us to use Lemma 8.450

Lemma 8. Given a graph G = (V,E) on n vertices and a feedback vertex451

set S0 ⊆ V of size k, it is possible to produce a minimal fvs S′ of G of size452

|S′| ≥ mmfvs(G)
3 in time nO(k).453

Before we prove this Lemma, let us point out that for k = 1, Max Min454

FVS can be solved optimally in time O(n), using standard arguments from455

parameterized complexity. Indeed, in this case, the graph G has treewidth456

2, so by invoking Courcelle’s Theorem and since the properties “S is an457

fvs” and “S is minimal” are MSO-expressible [15], we can solve the problem458
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optimally in time O(n). Unfortunately, this type of argument is not good459

enough for larger value of k, as the running time guaranteed by Courcelle’s460

Theorem could depend super-exponentially on k. We could try to avoid461

this by formulating a treewidth-based dynamic programming algorithm to462

obtain a better running time, but we prefer to give a simpler more direct463

branching algorithm, since this is good enough for the super-polynomial464

approximation algorithm we seek to design.465

Proof. We will assume that S0 is minimal, because otherwise we can remove466

vertices from it to make it minimal, and this only decreases the running467

time of our algorithm. As a result, we assume also that mmfvs(G) ≥ 3k, as468

otherwise S0 is already a 3-approximation.469

Let S∗ be a maximum minimal fvs in G, and let F ∗ = V \ S∗. We470

formulate an algorithm that maintains two disjoint sets of vertices S and F ,471

which, intuitively, correspond to the vertices we have decided to place in the472

fvs or in the induced forest, respectively. We will denote U = V \ (S ∪ F )473

the set of “undecided” vertices. Our algorithm will sometimes “guess’ some474

vertices of U to be placed in S or F , and we will upper-bound the guessing475

possibilities by nO(k).476

Throughout the algorithm, we will work to maintain the following four477

invariants:478

1. S ∪ F is an fvs of G;479

2. S ⊆ S∗ and F ⊆ F ∗;480

3. G[F ] is acyclic and has at most 2k components;481

4. All vertices of S have at least two neighbors in F .482

The algorithm consists of the following five steps.483

Step 1. We are guessing a set F0 ⊆ S0 such that G[F0] is acyclic and we484

set F = F0 and S = S0 \ F0. Then, if there exists a vertex u ∈ S which485

does not satisfy Property 4, we guess one or two vertices from N(u)∩U and486

place them into F , so that u has indeed two neighbors in F . We continue487

in this way until Property 4 is satisfied for all vertices of S.488

Step 2. Now, we need to define the notion of “connector”. Formally, a489

connector is a path V (P ) ⊆ F ∗ \ F such that G[F ∪ P ] has strictly fewer490

components than G[F ]. Our algorithm will now repeatedly guess if a con-491

nector exists, and if it does it will guess the first and last vertices u and v of492

P . Then, we set F = F ∪ P , and we continue guessing until we guess that493

no connector exists.494
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Step 3. We consider every vertex u ∈ U that has at least two neighbors495

in F and place all such vertices in S. We are now in a situation where every496

vertex of U has at most one neighbor in F .497

Step 4. We construct a new graph H by deleting from G all of S and498

replacing F by a single vertex f that is connected to N(F ) ∩ U . Note that499

H is a simple graph, i.e. it has no parallel edges, because otherwise a vertex500

of U would have two neighbors in F , and we have put all these vertices of U501

in S in the previous step. Moreover, H has an fvs of size 1, namely the set502

{f}. We therefore use the aforementioned algorithm implied by Courcelle’s503

Theorem to produce a maximum minimal fvs of H, which, without loss of504

generality, does not contain f . Let SH ⊆ U be this fvs.505

Step 5. Finally, in G, the set S ∪ SH is an fvs. But it might be not506

minimal, so we remove vertices from it until it is minimal. Let S′ be this507

minimal fvs obtained.508

Now let us prove that in each step of the algorithm, if we have made509

the correct guesses, then the sets S and F satisfy all the four properties.510

Furthermore, we will prove that the number of guesses in each step are511

bounded by nO(k).512

In the first half of step one, Property 1 is satisfied as S ∪ F = S0 is513

an fvs of G and Property 2 is satisfied for the right guess F0 = F ∩ S0.514

In the second half of step one we add vertices in F until Property 4 is515

satisfied for all vertices of S. Observe that any u ∈ S has a private cycle in516

G[F ∗ ∪ {u}] so if we have made correct guesses all the properties 1, 2 and 4517

must be satisfied. Last, because we have added at most 2 vertices for each518

vertex of S, it follows that F contains at most 2k vertices, hence at most 2k519

components, so Property 3 is also satisfied. So far, the total running time520

is upper-bounded by 2kn2k: 2k for guessing F0 ⊆ S0 and n2k for guessing at521

most two neighbors for every u ∈ S.522

In the second step we are guessing the first and last vertices u and v of a523

connector P . Note that u, v ∈ U , and if we rightfully guess u and v, then we524

can infer all of P , since G[U ] is acyclic and there is at most one path from525

u to v in G[U ]. Note that guessing the two endpoints of a connector gives526

n2 possibilities, and that adding a connector to F decreases the number of527

connected components of F by at least one, which can happen at most 2k528

times by Property 3. So the total running time of this procedure is upper-529

bounded by nO(k). We now show that the four properties are satisfied so530

far. Property 1 is satisfied since S ∪F was already a fvs of G before adding531

the connectors to F . For the right guess of u and v of a connecter P ,532

V (P ) ⊆ F ∗ \ F holds, which implies that adding the vertices of V (P ) to533

F preserves Property 2. Property 3 is satisfied since adding a connector534
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decreases the number of components by at least one. And Property 4 is535

satisfied since every vertex of S already had two neighbors in F before536

adding the connectors.537

In the third step, it is easy to see that Properties 1, 3 and 4 are still538

satisfied. Furthermore, if our guesses so far are correct, all vertices u ∈ U539

such that u has at least two neighbors in F belong to S∗. Indeed, they540

have at least two neighbors in F which are connected to each other, because541

otherwise they would function as connectors in F , and we assume that we542

have correctly guessed that no more connectors exist. Thus, these vertices543

u must be in S∗ in order to dominate the cycle that go through their two544

neighbors in F .545

In the fourth and fifth steps we do not change the sets S and F any more.546

Therefore, we only need to prove that this solution S′ is a 3-approximation.547

To see that the resulting solution has the desired size, we focus on the548

case where all guesses were correct, and therefore where Properties 1-4 were549

maintained throughout the execution of the algorithm. As mentioned earlier,550

the total running time of this algorithm is nO(k).551

We first observe that mmfvs(H) ≥ mmfvs(G) − |S|. Indeed, the set552

S1 = S∗ \ S is a minimal fvs of H. To see that S1 is a fvs, suppose that H553

contains a cycle after deleting S1. This cycle must necessarily go through554

f , since G[U ] is acyclic. Now, let P be the vertices of this cycle except f .555

We have P ⊆ U \ S∗, so P ⊆ F ∗. However, this means that either P forms556

a cycle with a component of F , which contradicts the acyclicity of F ∗ by557

Property 2, or P is a connector, which contradicts our guess that no other558

connector exists. Therefore, we obtain a contradiction, and S1 must be an559

fvs of H. To see that it is minimal, we note that for every u ∈ S1, there is a560

private cycle in G[U ∪ F ∪ {u}], since S1 = S∗ \ S and S ⊆ S∗ by Property561

2. And this private cycle is not destroyed by contracting the vertices of F562

into f , since F ⊆ F ∗ by Property 2.563

We now have that |SH ∪ S| ≥ |S∗|, because |SH | ≥ |S∗ \ S|. We argue564

that in the process of making SH minimal to obtain S′, we delete at most565

2k vertices. Indeed, every time a vertex u of S is removed from S ∪ SH566

as redundant, since u has at least two neighbors in F by Property 4, the567

number of components of G[F ] must decrease. Similarly, every time a vertex568

u ∈ SH is removed as redundant, consider the private cycle of u in H \ SH .569

All of the vertices of this cycle are present in G after we remove SH , except570

f . Therefore, this cycle must form a path between two distinct components571

of G[F ], since G[U ] is acyclic, and because u has been considered redundant572

if its private cycle in G[H] does not exist in G, thus if this cycle forms a path573

with two distinct components of G[F ]. We conclude that, since removing574
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a vertex from S ∪ SH decreases the number of components in G[F ], and575

since they are at most 2k such components in G[F ] by Property 3, we have576

|S′| ≥ |S∗| − 2k. But recall that we have assumed k ≤ |S∗|
3 , so we obtain577

|S′| ≥ |S
∗|

3 .578

We now present the main result of this section.579

Theorem 2. There is an algorithm which, given an n-vertex graph G =580

(V,E) and a value r, produces an r-approximation for Max Min FVS in581

G in time nO(n/r3/2).582

Proof. First, let us note that we may assume that r is ω(1), because if r583

is bounded above by a constant, then we can solve the problem exactly584

in the given time. To ease presentation, we will give an algorithm with585

approximation ratio O(r). A ratio of approximation ratio exactly r can be586

obtained by multiplying r with an appropriate small constant.587

Our algorithm borrows several of the basic ideas from Theorem 1, but588

requires some new ingredient, including the algorithm of Lemma 8. The589

first step is, again, to construct a minimal fvs S in some arbitrary way,590

for example by setting S = V and then removing vertices from S until it591

becomes minimal. If |S| ≥ n/r, then we already have an r-approximation,592

so in this case we simply return S. So we assume that |S| < n/r. From593

this point, this algorithm departs from the algorithm of Theorem 1, because594

it is no longer sufficient to compare the size of the output solution with a595

function of n, we need to compare it to the actual optimal value in order to596

obtain a ratio of r.597

Let us now present our algorithm. Let k = d
√
re. Partition S into k598

almost equal-sized parts S1, . . . , Sk. Our algorithm proceeds as follows: for599

each i, j ∈ {1, . . . , k} with i and j not necessarily distinct, consider the graph600

Gi,j obtained by deleting all vertices of S \ (Si ∪ Sj). Compute, using the601

algorithm of Lemma 8, a solution for Gi,j , taking into account that Si∪Sj is602

a fvs of Gij , though not necessarily minimal. Then, for each of the solutions603

found, extend it to a solution of G using Lemma 1. Finally, output the604

largest solution encountered.605

The algorithm runs in the promised time: we have |Si ∪Sj | < 2n
rk , so the606

algorithm of Lemma 8 runs in time nO(n/r3/2), and the rest of the algorithm607

runs in polynomial time.608

Let us now analyze the approximation ratio of the produced solution.609

Let S∗ be an optimal solution, and let F = F \ S and F ∗ = V \ S∗ be the610

induced forests corresponding to S and S∗, respectively. We would like to611
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argue that one of the considered sub-problems contains at least 1/r fraction612

of S∗, and that most of these vertices form part of a minimal fvs of that613

subgraph.614

We will define the notion of “type” for every u ∈ S∗ ∩ F . For each such615

u, there must exist a private cycle in the graph G[F ∗ ∪ {u}], since S∗ is616

a minimal fvs. Call this cycle c(u), and consider one such cycle if several617

exist. The cycle c(u) must intersect with S since S is an fvs. So let v be618

the vertex of c(u) ∩ S closest to u on this cycle, and let v′ be the vertex of619

c(u) ∩ S closest to u if we traverse the cycle in the opposite direction. Note620

that perhaps v = v′. Suppose that v ∈ Si and v′ ∈ Sj , and without loss of621

generality, i ≤ j. We then say that u ∈ S∗ ∩ F has type (i, j). In this way,622

we define a type of every u ∈ S∗∩F . Note that, according to our definition,623

all internal vertices of the paths in c(u) from u to v and from u to v′ belong624

to F ∗ ∩ F .625

According to the definition of the previous paragraph, there are
(
k
2

)
+k =626

k(k + 1)/2 ≤ r possible types of vertices in S∗ ∩ F . Therefore, there must627

exist a type (i, j) such that at least |S
∗∩F |
r vertices have this type. We now628

concentrate on the corresponding graph Gi,j , for the type (i, j) that satisfies629

this condition. Our algorithm has constructed Gi,j be deleting all vertices630

of S \ (Si∪Sj). We will prove that this graph has a minimal feedback vertex631

set of size comparable to |S
∗∩F |
r .632

For the sake of the analysis, construct a minimal feedback vertex set Si,j633

of Gi,j as follows: start with the fvs Si,j = S∗ ∩ (F ∪ Si ∪ Sj). Let Fi,j be634

the corresponding induced forest Fi,j = F ∗ ∩ (F ∪ Si ∪ Sj). The set Si,j is635

a feedback vertex set of Gi,j as it contains all vertices of S∗ found in Gi,j636

and S∗ is a feasible fvs of all of G. We then make Si,j minimal by removing637

vertices from it until it becomes minimal. Call the resulting set S′i,j ⊆ Si,j638

and the corresponding induced forest F ′i,j ⊇ Fi,j .639

We will prove now that the number of vertices of S∗ ∩ F of type (i, j)640

which have been deleted in the process of making Si,j minimal is upper-641

bounded by |Si ∪ Sj |. Consider such a vertex u ∈ (Si,j ∩ F ) \ S′i,j of type642

(i, j), and let c(u) be the cycle that defines the type of u, and v, v′ be the643

vertices of Si ∪Sj which are closest to u on the cycle in either direction. As644

we have mentioned earlier, all vertices of c(u) in the paths from u to v and645

from u to v′ belong to F ∗ ∩ F and therefore to Fi,j . If u was removed as646

redundant, this means that v and v′ must have been in distinct connected647

components at the moment u was removed from the fvs Si,j , because since648

c(u) is a private cycle of u, if u has been removed, it means that v and v′ are649

only connected by a path going through u and no other vertex. However,650
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the addition of u to the induced forest creates a path from v to v′ in the651

induced forest, and hence decreases the number of connected components652

containing vertices of Si ∪ Sj . The number of such connected components653

cannot decrease more than |Si ∪ Sj | times. Thus, in the process of making654

Si,j minimal, we have removed at most |Si ∪ Sj | vertices of type (i, j) from655

Si,j ∩ F .656

Using the above analysis, and the assumption that Si,j contains at least657

|S∗∩F |
r vertices of type (i, j), we have that mmfvs(Gi,j) ≥ |S′i,j | ≥

|S∗∩F |
r −658

|Si ∪ Sj |. Now, we can assume that |S∗ ∩ S| < |S∗|
r , because otherwise S is659

already an r-approximation. So we can assume that |S∗ ∩ F | ≥ (r−1)|S∗|
r .660

Furthermore, we obtain |Si∪Sj | ≤ 2|S|√
r
≤ 2|S∗|

r
√
r

, where again we assume that661

S is not already an r-approximation. Putting things together, we obtain662

mmfvs(Gi,j) ≥ (r−1)|S∗|
r2

− 2|S∗|
r
√
r
≥ |S

∗|
r , for r sufficiently large. Hence, since663

our algorithm will return a solution that is at least as large as
mmfvs(Gi,j)

3 ,664

we obtain an O(r)-approximation.665

5. Hardness of Approximation and NP-hardness666

In this section we establish lower bound results showing that the approx-667

imation algorithms given in Theorems 1 and 2 are essentially optimal, under668

standard complexity assumptions.669

5.1. Hardness of Approximation in Polynomial Time670

We begin by showing that the best approximation ratio achievable in671

polynomial time is indeed (essentially) n2/3. For this, we rely on the cele-672

brated result of H̊astad on the hardness of approximating Max Indepen-673

dent Set, which was later derandomized by Zuckerman, cited below.674

Theorem 3. [29, 42] For any ε > 0, there is no polynomial time algorithm675

which approximates Max Independent Set with a ratio of n1−ε, unless676

P = NP.677

Starting from this result, we present a reduction to Max Min FVS.678

Theorem 4. For any ε > 0, Max Min FVS is inapproximable within a679

factor of n2/3−ε unless P = NP.680

Proof. We give a gap-preserving reduction from Max Independent Set,681

which cannot be approximated within a factor of n1−ε, unless P = NP.682

We are given a graph G = (V,E) on n vertices as an instance of Max683
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Independent Set. Recall that α(G) denotes the size of the maximum684

independent set of G.685

We transform G into an instance of Max Min FVS as follows: For every686

pair of u, v ∈ V , we add n vertices such that they are adjacent only to u and687

v. We denote by Iuv the set of such vertices. Then Iuv is an independent688

set. Let G′ = (V ′, E′) be the constructed graph.689

We now make the following two claims:690

Claim 2. mmfvs(G′) ≥ (n− 1)
(
α(G)

2

)
691

Proof. We construct a minimal fvs of G′ as follows: let C be a minimum692

vertex cover of G. Then we begin with the set that contains C and the693

union of all Iuv (which is clearly an fvs) and remove vertices from it until it694

becomes minimal. Let S be the final minimal fvs. We observe that for all695

u, v ∈ V \ C, S contains at least n − 1 of the vertices of Iuv. Since C is a696

minimum vertex cover of G, there are
(
α(G)

2

)
pairs u, v ∈ V \ C.697

Claim 3. mmfvs(G′) ≤ n
(

2α(G)
2

)
+ n698

Proof. Let S be a minimal fvs of G′ and F be the corresponding forest. It699

suffices to show that |S \ V | ≤ n
(

2α(G)
2

)
, since |S ∩ V | ≤ n. Consider now a700

set Iuv. If u ∈ S or v ∈ S, then Iuv ∩ S = ∅, because all vertices of Iuv have701

at most one neighbor in F , and are therefore redundant. So, Iuv contains (at702

most n) vertices of S only if u, v ∈ F . However, |F ∩ V | ≤ 2α(G), because703

F is bipartite, so F ∩ V induces two independent sets, both of which must704

be at most equal to the maximum independent set of G. So the number of705

pairs u, v ∈ F ∩ V is at most
(

2α(G)
2

)
and since each corresponding Iuv has706

size n, we get the promised bound.707

The two claims together imply that there exist constants c1, c2 such that708

(for sufficiently large n) we have c1n(α(G))2 ≤ mmfvs(G′) ≤ c2n(α(G))2.709

That is, mmfvs(G′) = Θ(n(α(G))2).710

Suppose now that there exists a polynomial-time approximation algo-711

rithm which, given a graph G′, produces a minimal fvs S with the property712

mmfvs(G′)
r ≤ |S| ≤ mmfvs(G′), that is, there exists an r-approximation for713

Max Min FVS. Running this algorithm on the instance we constructed, we714

obtain that c1n(α(G))2

r ≤ |S| ≤ c2n(α(G))2. Therefore, α(G)√
rc2/c1

≤
√
|S|
c2n
≤715

α(G). As a result, we obtain an O(
√
r) approximation for the value of α(G).716

We therefore conclude that, unless P = NP, any such algorithm must have717 √
r > n1−ε, for any ε > 0, hence, r > n2−ε, for any ε > 0. Since the graph718
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G′ has N = Θ(n3) vertices, we get that no approximation algorithm can719

achieve a ratio of N2/3−ε.720

We notice that in the construction of the previous theorem, the maximum721

degree of the graph is approximately equal to the approximation gap. Thus,722

the following corollary also holds.723

Corollary 3. For any positive constant ε, Max Min FVS is inapproximable724

within a factor of ∆1−ε unless P = NP.725

5.2. Hardness of Approximation in Sub-Exponential Time726

In this section we extend Theorem 4 to the realm of sub-exponential727

time algorithms. We recall the following result of Chalermsook et al.:728

Theorem 5. [12] For any ε > 0 and any sufficiently large r, if there ex-729

ists an r-approximation algorithm for Max Independent Set running in730

2(n/r)1−ε, then the randomized ETH is false.731

We remark that Theorem 5, which gives an almost tight running time732

lower bound for Max Independent Set, has already been used as a start-733

ing point to derive a similarly tight bound for the running time of any sub-734

exponential time approximation for Max Min VC. Here, we modify the735

proof of Theorem 4 to obtain a similarly tight result for Max Min FVS.736

Nevertheless, the reduction for Max Min FVS is significantly more chal-737

lenging, because the ideas used in Theorem 4 involve an inherent quadratic738

(in n) blow-up of the size of the instance. As a result, in addition to ex-739

ecuting an appropriately modified version of the reduction of Theorem 4,740

we are forced to add an extra “sparsification” step, and use a probabilistic741

analysis with Chernoff bounds to argue that this step does not destroy the742

inapproximability gap.743

Theorem 6. For any ε > 0 and any sufficiently large r, if there exists an744

r-approximation algorithm for Max Min FVS running in 2(n/r3/2)1−ε, then745

the randomized ETH is false.746

Proof. We recall some details about the reduction used to prove Theorem 5.747

The reduction of [12] begins from a 3-SAT instance φ on n variables, and748

for any ε, r, constructs a graph G with n1+εr1+ε vertices which (with high749

probability) satisfies the following properties: if φ is satisfiable, then α(G) ≥750

n1+εr; otherwise α(G) ≤ n1+εr2ε. Hence, any approximation algorithm with751

ratio r1−2ε for Max Independent Set would be able to distinguish between752
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the two cases (and solve the initial 3-SAT instance). If, furthermore, this753

algorithm runs in 2(|V |/r)1−2ε
, we get a sub-exponential algorithm for 3-SAT.754

Suppose we are given ε, r, and we want to prove the claimed lower bound755

on the running time of any algorithm that r-approximates Max Min FVS.756

To ease presentation, we will assume that r is the square of an integer757

(this can be achieved without changing the value of r by more than a small758

constant). We will also perform a reduction from 3-SAT to show that an759

algorithm that achieves this ratio too rapidly would give a sub-exponential760

(randomized) algorithm for 3-SAT. We begin by executing the reduction761

of [12], starting from a 3-SAT instance φ on n variables, but adjusting762

their parameter r appropriately so we obtain a graph G with the following763

properties (with high probability):764

• |V (G)| = n1+εr1/2+ε
765

• If φ is satisfiable, then α(G) ≥ n1+εr1/2
766

• If φ is not satisfiable, then α(G) ≤ n1+εr2ε
767

We now construct a graph G′ as follows: for each pair u, v ∈ V (G), we768

introduce an independent set Iuv of size
√
r connected to u, v. We claim769

that G′ has the following properties (assuming G has the properties cited770

above):771

• |V (G′)| = Θ(n2+2εr3/2+2ε)772

• If φ is satisfiable, then mmfvs(G′) = Ω(n2+2εr3/2)773

• If φ is not satisfiable, then mmfvs(G′) = O(n2+2εr1/2+4ε)774

Before proceeding, let us establish the properties mentioned above. The775

size of |V (G′)| is easy to bound, as for each of the
(|V (G)|

2

)
pairs of vertices776

of G we have constructed an independent set of size
√
r. If φ is satisfiable,777

we construct a minimal fvs of G′ by starting with a minimum vertex cover778

C of G to which we add all vertices of all Iuv. We then make this fvs779

minimal. We claim that for each Iuv for which u, v ∈ V \ C, our set will in780

the end contain all of Iuv, except maybe at most one vertex. Furthermore,781

if one vertex of Iuv is removed from the fvs as redundant, this decreases782

the number of components of the induced forest that contain vertices of V783

(as u, v are now in the same component). This cannot happen more than784

|V (G)| times. The number of Iuv with u, v ∈ V \ C is
(
α(G)

2

)
= Ω(n2+2εr).785

So, mmfvs(G′) = Ω(n2+2εr3/2 − |V (G)|).786
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For the third property, take any minimal fvs S of G′ and let F be the787

corresponding forest. We have |F ∩ V | ≤ 2α(G), because F is bipartite. It788

is sufficient to bound |S \V | to obtain the bound (as |S∩V | is already small789

enough). To do this, we note that in a set Iuv where u, v are not both in F ,790

we have Iuv ∩ S = ∅, as all vertices of Iuv are redundant. So, the number791

of sets Iuv which contribute vertices to S is at most
(|F∩V |

2

)
= O(n2+2εr4ε).792

Each such set has size
√
r, giving the claimed bound.793

We have now constructed an instance where the gap between the values794

for mmfvs(G′), depending on whether φ is satisfiable, is almost r (in fact,795

it is r1−4ε, but we can make it equal to r by adjusting the parameters796

accordingly). The problem is that the order of the new graph depends797

quadratically on n. This blow-up makes it impossible to obtain a running798

time lower bound, as a fast approximation algorithm for Max Min FVS (say799

with running time 2n/r
2
) would not result in a sub-exponential algorithm800

for 3-SAT. We therefore need to “sparsify” our instance.801

We construct a graph G′′ by taking G′ and deleting every vertex of802

V (G′)\V (G) with probability n−1
n . That is, every vertex of the independent803

sets Iuv we added survives (independently) with probability 1/n. We now804

claim the following properties hold with high probability:805

• |V (G′′)| = Θ(n1+2εr3/2+2ε)806

• If φ is satisfiable, then mmfvs(G′′) = Ω(n1+2εr3/2)807

• If φ is not satisfiable, then mmfvs(G′′) = O(n1+2εr1/2+4ε)808

Before we proceed, let us explain why if we establish that G′′ satisfies809

these properties, then we obtain the theorem. Indeed, suppose that for some810

sufficiently large r and ε > 0, there exists an approximation algorithm for811

Max Min FVS with ratio r1−5ε running in time 2(N/r3/2)1−10ε
for graphs812

with N vertices. The algorithm has sufficiently small ratio to distinguish813

between the two cases in our constructed graph G′′, as the ratio between814

mmfvs(G′′) when φ is satisfiable or not is Ω(r1−4ε) (and r is sufficiently815

large), so we can use the approximation algorithm to solve 3-SAT. Further-816

more, to compute the running time we see that N/r3/2 = Θ(n1+2εr2ε) =817

O(n1+4ε). Therefore, (N/r3/2)1−10ε = o(n) and we get a sub-exponential818

time algorithm for 3-SAT. We conclude that for any sufficiently large r819

and any ε > 0, no algorithm achieves ratio r1−5ε in time 2(N/r3/2)1−10ε
. By820

adjusting r, ε appropriately we get the statement of the theorem.821

Let us therefore try to establish that the three claimed properties all hold822

with high probability. We will use the following standard Chernoff bound:823
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suppose X =
∑n

i=1Xi is the sum of n independent random 0/1 variables824

Xi and that E[X] =
∑n

i=1E[Xi] = µ. Then, for all δ ∈ (0, 1) we have825

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.826

The first property is easy to establish: we define a random variable Xi for827

each vertex of each Iuv of G′. This variable takes value 1 if the corresponding828

vertex appears in G′′ and 0 otherwise. Let X be the sum of the Xi variables,829

which corresponds to the number of such vertices appearing in G′′. Suppose830

that the number of vertices in sets Iuv of G′ is cn2+2εr3/2+2ε, where c is a831

constant. Then, E[X] = cn1+2εr3/2+2ε. Also, Pr[|X − E[X]| ≥ E[X]
2 ] ≤832

2e−E[X]/12 = o(1). So with high probability, |V (G′′)| is of the promised833

magnitude.834

The second property is also straightforward. This time we consider a835

maximum minimal fvs S of G′ of size cn2+2εr3/2. Again, we define an indi-836

cator variable for each vertex of this set in sets Iuv. The expected number of837

such vertices that survive in G′′ is cn1+2εr3/2. As in the previous paragraph,838

with high probability the actual number will be close to this bound. We839

now need to argue that (almost) the same set is a minimal fvs of G′′. We840

start in G′′ with (the surviving vertices of) S, which is clearly an fvs of G′′,841

and delete vertices until the set is minimal. We claim that the size of the842

set will decrease by at most |V (G)| = n1+εr1+ε. Indeed, if S ∩ Iuv 6= ∅, then843

u, v 6∈ S. The two vertices u, v are (deterministically) included in G′′ and844

start out in the corresponding induced forest in our solution. If a vertex of845

S∩Iuv is deleted as redundant, placing that vertex in the forest will put u, v846

in the same component, reducing the number of components of the forest847

with vertices from |V (G)|. This can happen at most |V (G)| times. Since848

|V (G)| < c
10(n1+2εr3/2) (for n, r sufficiently large), deleting these redundant849

vertices will not change the order of magnitude of the solution.850

Finally, in order to establish the third property we need to consider every851

possible minimal fvs of G′′ and show that none of them end up being too852

large. Consider a set F ⊆ V (G) that induces a forest in G. Our goal is853

to prove that any minimal fvs S of G′′ that satisfies V (G) \ S = F has a854

probability of being “too large” (that is, violating our claimed bound) much855

smaller than 2−|V (G)|. If we achieve this, then we can take a union bound856

over all sets F and conclude that with high probability no minimal fvs of857

G′′ is too large.858

Suppose then that we have fixed an acyclic set F ⊆ V (G). We have859

|F | ≤ 2α(G) ≤ 2n1+εr2ε. Any minimal fvs with V (G) \ S = F can only860

contain vertices from a set Iuv if u, v ∈ F . The total number of such vertices861

in G′ is at most O(n2+2εr1/2+4ε). The expected number of such vertices862
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Figure 2: The edge gadget of e = (u, v) in the constructed graph G.

that survive in G′′ is (for some constant c) at most µ = cn1+2εr1/2+4ε.863

Now, using the Chernoff bound cited above we have Pr[|X − µ| ≥ µ
2 ] ≤864

2e−µ/12. We claim 2e−µ/12 = o(2−|V (G)|). Indeed, this follows because865

|V (G)| = n1+εr1/2+ε = o(µ). As a result, the probability that a large866

minimal fvs exists for a fixed set F ⊆ V (G) exists is low enough that taking867

the union bound over all possible sets F we have that with high probability868

no minimal fvs exists with value higher than 3µ/2, which establishes the869

third property.870

5.3. NP-hardness for ∆ = 6871

Theorem 7. Max Min FVS is NP-hard on planar bipartite graphs with872

∆ = 6.873

Proof. We give a reduction from Max Min VC, which is NP-hard on planar874

bipartite graphs of maximum degree 3 [43]. Note that the NP-hardness875

in [43] is stated for Minimum Independent Dominating Set, but any876

independent dominating set is also a maximal independent set (and vice-877

versa) and the complement of the minimum maximal independent set of878

any graph is a maximum minimal vertex cover. Thus, we also obtain NP-879

hardness for Max Min VC on the same instances.880

We are given a graph G = (V,E). For each edge e = (u, v) ∈ E, we add881

a path of length three from u to v going through two new vertices e(1), e(2)
882

(see Figure 2). Note that u, e(1), e(2), v form a cycle of length 4. Then we add883

two cycles of length 4, e(i), c
(i)
e1 , c

(i)
e2 , c

(i)
e3 and e(i), c

(i)
e4 , c

(i)
e5 , c

(i)
e6 for i ∈ {1, 2}.884

Let G′ = (V ′, E′) be the constructed graph. Because ∆(G) = 3, we have885

∆(G′) = 6. Moreover, since G is planar and bipartite, G′ is also planar and886

bipartite. We will show that there is a minimal vertex cover of size at least887

k in G if and only if there is a minimal feedback vertex set of size at least888

k + 4|E| in G′.889

26



Given a minimal vertex cover S of size at least k in G, we construct the890

set S′ = S ∪
⋃
e∈E{c

(1)
e1 , c

(1)
e4 , c

(2)
e1 , c

(2)
e4 }. Then |S′| ≥ k + 4|E|. Let us first891

argue that S′ is an fvs of G′. For each e = (u, v) ∈ E we have at least892

one of u, v ∈ S, without loss of generality let u ∈ S. Now in G′[V ′ \ S′]893

the edges (e(1), e(2)) and (e(2), v) are bridges and therefore cannot be part894

of any cycle. The remaining cycles going through e(1), e(2) are handled by895

{c(1)
e1 , c

(1)
e4 , c

(2)
e1 , c

(2)
e4 }. Furthermore, since G′[V \ S] is an independent set, it896

is also acyclic. To see that S′ is a minimal fvs, we remark that for each897

c
(i)
e1 , c

(i)
e4 contained in S′ there is a private cycle in G′[V ′ \ S′]. We also note898

that since S is a minimal vertex cover of G, for each u ∈ S, there exists899

v 6∈ S with e = (u, v) ∈ E. This means that u has the private cycle formed900

by {u, v, e(1), e(2)} in G′[V ′ \ S′]. Therefore, S′ is a minimal fvs.901

Conversely, suppose we are given a minimal fvs S′ of G′ with |S′| ≥ k+902

4|E|. We will edit S′ so that is contains only vertices in V ′\
⋃
e∈E{e(1), e(2)},903

without decreasing its size.904

First, suppose e(1), e(2) ∈ S′, for some e ∈ E. We construct a new905

minimal fvs S′′ = S′ \ {e(2)} ∪ {c(2)
e1 , c

(2)
e4 } which is larger that S′, since by906

minimality we have c
(2)
ei 6∈ S′ for i ∈ {1, . . . , 6}. It is not hard to see that907

S′′ is indeed an fvs, as no cycle can go through e(2) in G′[V ′ \ S′′]. The two908

vertices we added have a private cycle, while all vertices of S′ ∩ S′′ retain909

their private cycles, so S′′ is a minimal fvs. As a result in the remainder we910

assume that S′ contains at most one of {e(1), e(2)} for all e ∈ E.911

Suppose now that for some e = (u, v) ∈ E, we have S′ ∩ {u, v} 6= ∅912

and S′ ∩ {e(1), e(2)} 6= ∅. Without loss of generality, let e(1) ∈ S′. We set913

S′′ = S′\{e(1)}∪{c(1)
e1 , c

(1)
e4 } and claim that S′′ is a larger minimal fvs than S.914

Indeed, no cycle goes through e(1) in G′[V ′ \S′′], the new vertices we added915

to S′ have private cycles, and all vertices of S′∩S′′ retain their private cycles916

in G′[V ′ \S′′]. Therefore, we can now assume that if for some e = (u, v) ∈ E917

we have S′ ∩ {e(1), e(2)} 6= ∅ then u, v 6∈ S′.918

For the remaining case, suppose that for some e = (u, v) ∈ E we have919

u, v 6∈ S′ and (without loss of generality) e(1) ∈ S′. We construct the set920

S′′ = S′ \ {e(1)} ∪ {c(1)
e1 , c

(2)
e4 , u}. Note that |S′′| ≥ |S′|+ 2. It is not hard to921

see that S′′ is an fvs, since by adding c
(1)
e1 , c

(1)
e4 , u to our set we have hit all922

cycles containing e(1) in G′. The problem now is that S′′ is not necessarily923

minimal. We greedily delete vertices from S′′ to obtain a minimal fvs S∗.924

We claim that in this process we cannot delete more than two vertices,925

that is |S∗ \ S′′| ≤ 2. To see this, we first note that c
(1)
e1 , c

(2)
e4 , u cannot be926

removed from S′′ as they have private cycles in G[V ′\S′′]. Suppose now that927
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w1 ∈ S′′ \ S∗ is the first vertex we removed from S′′, so G′[(V ′ \ S′′)∪ {w1}]928

is acyclic. This vertex must have had a private cycle in G′[V ′ \ S′], which929

was necessarily going through u. Therefore, G′[(V ′ \S′′)∪ {w1}] has a path930

connecting two neighbors of u and this path does not exist in G′[(V ′ \ S′′)].931

With a similar reasoning, removing another vertex w2 ∈ S′′ from the fvs932

will create a second path between neighbors of u in the induced forest. We933

conclude that this cannot happen a third time, since |N(u)| ≤ 3, and if we934

create three paths between neighbors of u, this will create a cycle. As a935

result, |S∗| ≥ |S′|. We assume in the remainder that S′ does not contain936

e(1), e(2) for any e ∈ E.937

Now, given a minimal fvs S′ of G′ with |S′| ≥ k + 4|E| and S′ ∩938

(∪e∈E{e(1), e(2)}) = ∅ we set S = S′ ∩ V and claim that S is a mini-939

mal vertex cover of G with |S| ≥ k. Indeed S is a vertex cover, as for940

each e = (u, v) ∈ E, if u, v 6∈ S′ then we would get the cycle formed by941

{u, v, e(1), e(2)}. To see that S is minimal, suppose NG[u] ⊆ S′. We claim942

that in that case u has no private cycle in G′[V ′ \ S′] (this can be seen by943

deleting all bridges in G′[V ′ \ S′], which leaves u isolated). This contradicts944

the minimality of S′. Finally, we argue that |S′ \ V | ≤ 4|E|, which gives945

the desired bound on |S|. Consider an e = (u, v) ∈ E. S′ cannot contain946

more than one vertex among c
(1)
e1 , c

(1)
e2 , c

(1)
e3 , since any of these vertices hits947

the cycle that goes through the others. With similar reasoning for the three948

other length-four cycles we conclude that S′ contains at most 4 vertices for949

each edge e ∈ E.950

6. Conclusions951

We have essentially settled the approximability of Max Min FVS for952

polynomial and sub-exponential time, up to sub-polynomial factors in the953

exponent of the running time. It would be interesting to see if the running954

time of our sub-exponential approximation algorithm can be improved by955

poly-logarithmic factors in the exponent, as in [4]. In particular, improv-956

ing the running time to 2O(n/r3/2) seems feasible, but would likely require957

a version of Lemma 8 which uses more sophisticated techniques, such as958

Cut&Count [7, 15, 17]. For the parameterized complexity perspective, we959

gave a cubic kernel when parameterized by solution size. A natural direction960

of future work is the deep analysis of parameterized complexity of Max Min961

FVS. Finally, we showed that Max Min FVS is NP-hard even on graphs962

of maximum degree 6. An interesting open problem is the complexity on963

graphs of maximum degree 3, where Min FVS can be solved in polynomial964

time [40].965
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Another problem of similar spirit which deserves to be studied is Max966

Min OCT, where an odd cycle transversal (OCT) is a set of vertices whose967

removal makes the graph bipartite. This problem could also potentially be968

“between” Max Min VC and UDS, but obtaining a n1−ε approximation969

for it seems much more challenging than for Max Min FVS.970
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