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Abstract8

Vertex Integrity is a graph measure which sits squarely between two more well-studied notions,9

namely vertex cover and tree-depth, and that has recently gained attention as a structural graph10

parameter. In this paper we investigate the algorithmic trade-offs involved with this parameter from11

the point of view of algorithmic meta-theorems for First-Order (FO) and Monadic Second Order12

(MSO) logic. Our positive results are the following: (i) given a graph G of vertex integrity k and an13

FO formula φ with q quantifiers, deciding if G satisfies φ can be done in time 2O(k2q+q log q) + nO(1);14

(ii) for MSO formulas with q quantifiers, the same can be done in time 22O(k2+kq)
+ nO(1). Both15

results are obtained using kernelization arguments, which pre-process the input to sizes 2O(k2)q and16

2O(k2+kq) respectively.17

The complexities of our meta-theorems are significantly better than the corresponding meta-18

theorems for tree-depth, which involve towers of exponentials. However, they are worse than the19

roughly 2O(kq) and 22O(k+q)
complexities known for corresponding meta-theorems for vertex cover. To20

explain this deterioration we present two formula constructions which lead to fine-grained complexity21

lower bounds and establish that the dependence of our meta-theorems on k is best possible. More22

precisely, we show that it is not possible to decide FO formulas with q quantifiers in time 2o(k2q),23

and that there exists a constant-size MSO formula which cannot be decided in time 22o(k2)
, both24

under the ETH. Hence, the quadratic blow-up in the dependence on k is unavoidable and vertex25

integrity has a complexity for FO and MSO logic which is truly intermediate between vertex cover26

and tree-depth.27
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1 Introduction34

An algorithmic meta-theorem is a general statement proving that a large class of problems is35

tractable. Such results are of great importance because they allow one to quickly classify36

the complexity of a new problem, before endeavoring to design a fine-tuned algorithm.37

In the domain of parameterized complexity theory for graph problems, possibly the most38

well-studied type of meta-theorems are those where the class of problems in question is39

defined using a language of formal logic, typically a variant of First-Order (FO) or Monadic40

Second-Order (MSO) logic, which are the logics that allow quantification over vertices or41

sets of vertices respectively1. In this area, the most celebrated result is Courcelle’s theorem42

1 Note that the version of MSO logic we use in this paper is sometimes also referred to as MSO1 to
distinguish from the version that also allows quantification over sets of edges.

© Michael Lampis and Valia Mitsou;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.orcid.org/0000-0002-5791-0887
mailto:michail.lampis@lamsade.dauphine.fr
mailto:vmitsou@irif.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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[6], which states that all properties expressible in MSO logic are solvable in linear time,43

parameterized by treewidth and the size of the MSO formula. In the thirty years since the44

appearance of this fundamental result, numerous other meta-theorems in this spirit have45

followed (we give an overview of some such results below).46

Despite its great success, Courcelle’s theorem suffers from one significant weakness: the47

algorithm it guarantees for deciding an MSO formula φ on a graph G with n vertices and48

treewidth k has running time f(k, φ) ·n, where f is, in the worst case, a tower of exponentials49

whose height can only be bounded as a function of φ. Unfortunately, it has been known50

since the work of Frick and Grohe [20] that this terrible parameter dependence cannot be51

avoided, even if one only considers FO logic on trees (or MSO logic on paths [40]). This has52

motivated the study of the complexity of FO and MSO logic with parameters which are more53

restrictive than treewidth. In the context of such parameters, fixed-parameter tractability54

for all MSO-expressible problems is already given by Courcelle’s theorem, so the goal is to55

obtain more “fine-grained” meta-theorems which achieve a better dependence on φ and k.56

The two results from this line of research which are most relevant to our paper are the57

meta-theorems for vertex cover given in [39], and the meta-theorem for tree-depth given by58

Gajarský and Hliněný [21]. Regarding vertex cover, it was shown in [39] that FO and MSO59

formulas with q quantifiers can be decided on graphs with vertex cover k in time roughly60

2O(kq+q log q) and 22O(k+q) respectively. Both of these results were shown to be tight, in the61

sense that improving their dependence on k would violate the Exponential Time Hypothesis62

(ETH). For tree-depth, it was shown in [21] that FO and MSO formulas with q quantifiers can63

be decided on graphs with tree-depth k with a complexity that is roughly k-fold exponential.64

Hence, for fixed k, the complexity we obtain is elementary, but the height of the tower of65

exponentials increases with k, and this cannot be avoided under the ETH [40].66

Vertex cover and tree-depth are among the most well-studied measures in parameterized67

complexity. In all graphs G we have vc(G)+1 ≥ td(G) ≥ pw(G) ≥ tw(G), so these parameters68

form a natural hierarchy with pathwidth and treewidth, with vertex cover being the most69

restrictive. As explained above, the distance between the performance of meta-theorems for70

vertex cover (which are double-exponential for MSO) and for tree-depth (which give a tower71

of exponentials of height td) is huge, but conceptually this is perhaps not surprising. Indeed,72

one could argue that the structural distance between graphs of vertex cover k from the class73

of graphs of tree-depth k is also huge. As a reminder, a graph has vertex cover k if we can74

delete k vertices to obtain an independent set; while a graph has tree-depth k if there exists75

k′ ≤ k such that we can delete k′ vertices to obtain a disjoint union of graphs of tree-depth76

k − k′. Clearly, the latter (inductive) definition is more powerful and covers vastly more77

graphs, so it is natural that model-checking should be significantly harder for tree-depth.78

The landscape of parameters described above indicates that there should be space to79

investigate interesting structural parameters between vertex cover and tree-depth, exactly80

because the distance between these two is large in terms of generality and complexity. One81

notion that has recently attracted attention in this area is Vertex Integrity [11], denoted as82

ι(G). A graph has vertex integrity k if there exists k′ ≤ k such that we can delete k′ vertices83

and obtain a disjoint union of graphs of size at most k − k′. Hence, the definition of vertex84

integrity is the same as for tree-depth, except that we replace the inductive step by simply85

bounding the size of the components that result after deleting a separator of the graph. This86

produces a notion that is more restrictive than tree-depth, but still significantly more general87

than vertex cover (where the resulting components must be singletons). In all graphs G,88

we have vc(G) + 1 ≥ ι(G) ≥ td(G), so it becomes an interesting question to investigate the89

complexity trade-off associated with these parameters, that is, how the complexity of various90
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problems deteriorates as we move from vertex cover, to vertex integrity, to tree-depth. This91

type of study was recently undertaken systematically for many problems by Gima et al. [29].92

In this paper we make an investigation in the same direction from the lens of algorithmic93

meta-theorems.94

Our results We consider the problem of verifying whether a graph G satisfies a property95

given by an FO or MSO formula with q quantifiers, assuming ι(G) ≤ k. Our goal is to give a96

fine-grained determination of the complexity of this problem as a function of k. We obtain97

the following two positive results:98

1. FO formulas with q quantifiers can be decided in time 2O(k2q+q log q) + nO(1).99

2. MSO formulas with q vertex and set quantifiers can be decided in time 22O(k2+kq) + nO(1).100

Hence, we obtain meta-theorems stating that any problem that can be expressed in101

FO or MSO logic can be solved in the aforementioned times. Both of these results are102

obtained through a kernelization argument, similar in spirit to the arguments used in the103

meta-theorems of [21, 39]. To describe the main idea, recall that if ι(G) ≤ k, then there104

exists a separator S of size at most k, such that removing it will disconnect the graph into105

components of size at most k. The key now is that these components can be partitioned into106

2k2 equivalence types, where components of the same type are isomorphic. We then argue107

that if we have a large number of isomorphic components, it is always safe to delete any one108

of them from the graph, as this does not change whether the given formula holds (Lemmas109

12 and 14). We then complete the argument by applying the standard brute-force algorithms110

for FO and MSO logic on the kernels.111

We complement the results above by showing that the approach of kernelizing and then112

executing the brute-force algorithm is best possible. More precisely, we show that, under113

the ETH, it is not possible to obtain a model-checking algorithm for FO logic running in114

time 2o(k2q)nO(1); while for MSO we construct a constant-sized formula which cannot be115

model-checked in time 22o(k2) . Hence, the quadratic dependence on k, which distinguishes our116

meta-theorems from the corresponding meta-theorems for vertex cover, cannot be avoided.117

Related work The study of structural parameters which trade off the generality of treewidth118

for improved algorithmic properties is by now a standard topic in parameterized complexity.119

The most common type of work here is to consider a problem that is intractable parameterized120

by treewidth and see whether it becomes tractable parameterized by vertex cover or tree-121

depth [2, 10, 13, 16, 17, 31, 32, 35, 34, 36, 42, 41]. See [1] for a survey of results of this type.122

In this context, vertex integrity has only recently started being studied as an intermediate123

parameter between vertex cover and tree-depth, and it has been discovered that fixed-124

parameter tractability for several problems which are W-hard by tree-depth can be extended125

from vertex cover to vertex integrity [4, 12, 25, 27, 29]. Note that some works use a measure126

called core fracture number, which is an equivalent notion to vertex integrity.127

Algorithmic meta-theorems are a well-studied topic in parameterized complexity (see128

[30] for a survey). Courcelle’s theorem has been extended to the more general notion of129

clique-width [7], and more efficient versions of these meta-theorems have been given for the130

more restricted parameters twin-cover [22], shrub-depth [24, 23], neighborhood diversity and131

max-leaf number [39]. Meta-theorems have also been given for even more general graph132

parameters, such as [5, 14, 19, 18], and for logics other than FO and MSO, with the goal133

of either targeting a wider class of problems [26, 37, 38, 44], or achieving better complexity134

[43]. Meta-theorems have also been given in the context of kernelization [3, 15, 28] and135

CVIT 2016
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approximation [9]. To the best of our knowledge, the complexity of FO and MSO model136

checking parameterized by vertex integrity has not been explicitly studied before, but since137

vertex integrity is a restriction of tree-depth and a generalization of vertex cover, the138

algorithms of [21] and the lower bounds of [39] apply in this case.139

2 Definitions and Preliminaries140

First, let us formally define the notion of vertex integrity of a graph.141

I Definition 1. A graph G is said to have vertex integrity ι(G) when there exists a set142

S ⊂ V (G) such that, if S′ ⊂ V (G) is the set of vertices of the largest connected component143

of G \ S then |S|+ |S′| ≤ ι(G).144

We recall that Drange et al. [11] have shown that deciding if a graph has ι(G) ≤ k admits145

a kernel of order O(k3). Hence, given a graph G that is promised to have vertex integrity k,146

we can execute this kernelization algorithm and then look for the optimal separator S in the147

kernel. As a result, finding a separator S proving that ι(G) ≤ k can be done in kO(k) +nO(1).148

Since this running time is dominated by the running times of our meta-theorems, we will149

always silently assume that the separator S is given in the input when the input graph has150

vertex integrity k.151

A main question that will interest us is whether a graph satisfies a property expressible in152

First-Order (FO) or Monadic Second-Order (MSO) logic. Let us briefly recall the definitions153

of these logics. We use xi, i ∈ IN to denote vertex (FO) variables and Xi, i ∈ IN to denote set154

(MSO) variables. Vertex variables take values from a set of vertex constants U = {ui, i ∈ IN},155

whereas vertex set variables take values from a set of vertex set constants D = {Di, i ∈ IN}.156

Now, given a graph G, in order to say that the assignment of a vertex variable xi or a157

vertex set variable Xi to a constant corresponds to a particular vertex or vertex set of G, we158

make use of a labeling function ` that maps vertex constants to vertices of V (G) and of a159

coloring function C that maps vertex set constants to vertex sets of V (G). More formally,160

`, C are partial functions ` : U → V (G) and C : D → 2V (G). The functions may be undefined161

for some constants, for example, if ` is not defined for the constant ui we write `(ui) ↑.162

I Definition 2. Given a triplet G, `, C, a vertex v ∈ V (G) is said to be unlabeled if 6 ∃ui ∈ U163

such that `(ui) = v. A set of vertices C1 ⊆ V (G) is unlabeled if all the vertices of C1 are164

unlabeled.165

I Definition 3. We say that two labeling functions `, `′ agree on a constant ui if either they166

are both undefined on ui or `(ui) = `′(ui). Similarly, two coloring functions C, C′ agree on167

Di if they are both undefined or C(Di) = C′(Di).168

I Definition 4. Given two triplets G1, `1, C1 and G2, `2, C2 and a bijective function f :169

V (G1) → V (G2). For C1 ⊆ V (G1), we define f(C1) =
⋃
v∈C1
{f(v)}. We say that V (G1)170

and V (G2) have the same labelings for f if ∀ui ∈ U , either both `1(ui), `2(ui) are undefined or171

f(`1(ui)) = `2(ui); we say that V (G1) and V (G2) have the same colorings for f if ∀Di ∈ D,172

either both C1(Di), C2(Di) are undefined or f(C1(Di)) = C2(Di).173

I Definition 5. An isomorphism between two triplets G1, `1, C1 and G2, `2, C2 is a bijective174

function f : V (G1)→ V (G2) such that (i) for all v, w ∈ V (G1) we have (v, w) ∈ E(G1) if and175

only if (f(v), f(w)) ∈ E(G2), (ii) V (G1) and V (G2) have the same labelings and colorings176

for f . Two triplets G1, `1, C1 and G2, `2, C2 are isomorphic if there exists an isomorphism177

between them.178
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I Definition 6. Given a triplet G, `, C. We say that two sets C1 ⊆ V (G) and C2 ⊆ V (G)179

have the same type if there exist `′, C′ and an isomorphism f : V (G)→ V (G) between the180

triplets G, `, C and itself such that f maps elements of C1 to C2 and vice versa and elements181

from V (G) \ (C1 ∪ C2) to themselves.182

Notice that only for vertices that don’t belong in the sets C1 and C2 (which f maps to183

themselves) we can have that f(`(ui)) = `(ui). This leads to the following observation:184

B Observation 7. In order for two disjoint sets C1 and C2 to have the same type, they185

should necessarily be unlabeled (that is, ∀ui, `(ui) 6∈ C1 ∪ C2).186

I Definition 8. Given a triplet G, `, C and a set C1 ⊂ V (G). The restriction of C to G \ C1187

is a function C′ : D → V (G) \ C1 such that C′(Di) = C(Di) \ C1 for all Di ∈ D for which188

C(Di) ∩ C1 6= ∅ and C, C′ agree on the rest of Di.189

An MSO formula is a formula produced by the following grammar, where X represents a190

set variable, x a vertex variable, y a vertex variable or vertex constant, and Y a set variable191

or constant:192

φ → ∃X.φ | ∃x.φ | φ ∨ φ | ¬φ | y ∼ y | y = y | y ∈ Y193

The operations above are vertex set quantification, vertex quantification, disjunction,194

negation, edge relation, vertex equality, and set inclusion respectively. Their semantics are195

defined inductively in the usual way: given a triplet G, `, C and an MSO formula φ, we say196

that the graph satisfies the property described by φ, or simply that G, `, C models φ, and197

write G, `, C |= φ according to the following rules:198

G, `, C |= ui ∈ Dj if `(ui) is defined and `(ui) ∈ C(Dj).199

G, `, C |= ui = uj if `(ui), `(uj) are defined and `(ui) = `(uj).200

G, `, C |= ui ∼ uj if `(ui), `(uj) are defined and (`(ui), `(uj)) ∈ E(G).201

G, `, C |= φ ∨ ψ if G, `, C |= φ or G, `, C |= ψ.202

G, `, C |= ¬φ if it is not the case that G, `, C |= φ.203

G, `, C |= ∃xi.φ if there exists v ∈ V (G) such that G, `′, C |= φ[xi \ ui], where `(ui) ↑,204

φ[xi \ ui] is the formula obtained from φ if we replace every occurence of xi with the205

(new) constant ui and `′ : U → V (G) is a partial function for which `′(ui) = v, and `′, `206

agree on all other values uj 6= ui.207

G, `, C |= ∃Xi.φ if there exists S ⊆ V (G) such that G, `, C′ |= φ[Xi \Di], where C(Di) ↑,208

φ[Xi \Di] is the formula obtained from φ if we replace every occurence of Xi with the209

(new) constant Di and C′ : D → 2V (G) is a partial function for which C′(Di) = S and210

C′, C agree on all other values Dj 6= Di.211

If none of the above applies then G, `, C does not model φ and we write G, `, C 6|= φ.212

Observe that, from the syntactic rules presented above, a formula can have free (non-213

quantified) variables. However, we will only define model-checking for formulas without214

free variables (also called sentences). Slightly abusing notation, we will write G |= φ to215

mean G, `, C |= φ for the nowhere defined functions `, C. Note that our definition does not216

contain conjunctions or universal quantifiers, but these can be obtained from disjunctions217

and existential quantifiers using negations in the usual way, so we will use them freely when218

constructing formulas.219

An FO formula is defined as an MSO formula that uses no set variables Xi. In the220

remainder, we will assume that all formulas are given to us in prenex form, that is, all221

CVIT 2016
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quantifiers appear in the beginning of the formula. We call the problem of deciding whether222

G, `, C |= φ the model-checking problem.223

We recall the following basic fact:224

I Lemma 9. Let G1, `1, C1 and G2, `2, C2 be two isomorphic triplets. Then, for all MSO225

formulas φ we have G1, `1, C1 |= φ if and only if G2, `2, C2 |= φ.226

Proof. G1, `1, C1 and G2, `2, C2 are isomorphic. Thus there exists a bijective function f :227

V (G1)→ V (G2) such i) f preserves in G2 the (non-)edges between the pairs of images of228

vertices in G1 and ii) V (G1) and V (G2) have the same labelings and colorings for f .229

We proceed by induction on the structure of φ.230

For φ := ui ∈ Dj . G1, `1, C1 |= φ iff `1(ui) ∈ C1(Dj) iff f(`1(ui)) ∈ f(C1(Dj)) iff231

`2(ui) ∈ C2(Dj) iff G2, `2, C2 |= φ232

For φ := ui = uj . G1, `1, C1 |= φ iff `1(ui) = `1(uj) iff f(`1(ui)) = f(`1(uj)) iff233

`2(ui) = `2(uj) iff G2, `2, C2 |= φ234

For φ := ui ∼ uj . G1, `1, C1 |= φ iff (`1(ui), `1(uj)) ∈ E(G1) iff (f(`1(ui)), f(`1(uj))) ∈235

E(G2) iff (`2(ui), `2(uj)) ∈ E(G2) iff G2, `2, C2 |= φ236

For φ := φ′∨φ′′, or φ := ¬φ′ By the inductive hypothesis, G1, `1, C1 |= φ′ iff G2, `2, C2 |= φ′237

and G1, `1, C1 |= φ′′ iff G2, `2, C2 |= φ′′. Thus the statement also holds for φ.238

For φ := ∃xi.φ′. We prove the one direction, the other is identical if we use f−1 instead239

of f in our arguments.240

G1, `1, C1 |= ∃xi.φ′ if there exists v ∈ V (G1) such that G1, `
′
1, C1 |= φ[xi \ ui], where241

`1(ui) ↑, `′1(ui) = v, and `′1, `1 agree on all other values uj 6= ui. We define a partial242

labeling function `′2 : U → V (G2), such that `′2(ui) = f(`′1(ui)) = f(v) and `′2, `2 agree243

on all other values. It is easy to see that G1, `
′
1, C1 and G2, `

′
2, C2 are isomorphic, thus244

by the inductive hypothesis G2, `
′
2, C2 |= φ[xi \ ui]. Since ∃f(v) ∈ V (G2) such that245

G2, `
′
2, C2 |= φ[xi \ ui] and `2(ui) ↑ (since `1(ui) ↑ and V (G1) and V (G2) have the same246

labelings for f), therefore G2, `2, C2 |= ∃xi.φ′.247

For φ := ∃Xi.φ
′. The proof is similar with the above case. Once again we will only show248

the one direction.249

G1, `1, C1 |= ∃Xi.φ
′ if there exists S ⊆ V (G1) such that G1, `1, C′1 |= φ[Xi \Di], where250

C1(Di) ↑, C′1(Di) = S and C′1, C1 agree on all other values Dj 6= Di.251

We define a partial coloring function C′2 : D → 2V (G2) such that C′2(Di) = f(C′1(Di)) =252

f(S) and C′2, C2 agree on all other values. Once again, G1, `1, C′1 and G2, `2, C′2 are253

isomorphic, thus by the inductive hypothesis G2, `2, C′2 |= φ[Xi\Di]. Since ∃f(S) ⊆ V (G2)254

such that G2, `2, C′2 |= φ[Xi \Di] and we have that C2(Di) ↑, therefore G2, `2, C2 |= ∃Xi.φ
′.255

J256

3 FPT algorithms for FO and MSO Model-Checking parameterized257

by vertex integrity258

In this section we prove Theorems 10 and 11. The statements appear right below.259

I Theorem 10. Given a graph G with ι(G) ≤ k and an FO formula φ in prenex form having260

at most q quantifiers. Then deciding if G |= φ can be solved in time (2O(k2) · q)q + poly(|G|).261

I Theorem 11. Given a graph G with ι(G) ≤ k and an MSO formula φ in prenex form262

having at most q1 vertex variable quantifiers and at most q2 vertex set variable quantifiers.263

Then deciding if G |= φ can be solved in time
(

22O(k2+kq2) · q1

)q1
+ poly(|G|).264
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The proofs are heavily based on Lemmata 12 and 14. The first, which is about FO265

Model-Checking, says that if we have at least q+ 1 components of the same type then we can266

erase one such component from the graph. The reason essentially is that, if G, `, C models φ267

by labeling a vertex v that belongs to the component to be removed, we can replace that268

vertex by a corresponding vertex in another component having the same type. Notice that269

the formula has q quantifiers and thus the graph will have q labels after the assignment.270

Since we have q + 1 components of the same type, for one of these components the vertex271

that corresponds to v will be unlabeled.272

The second, which is about MSO Model-Checking, says that since we can quantify over273

sets of vertices, unlike the case for FO, each set quantification can potentially affect a large274

number of components that originally had the same type (by coloring its intersection with275

each of them). However, since each component has size at most k, we have 2k ways that276

the quantified set can overlap with the components. Thus, if we originally had a sufficiently277

large number of same type components, even after the coloring, we will still have a sufficient278

number of components that are of the same type, such that even if we remove one such279

component the answer of the problem won’t change.280

Lemmata 12 and 14, together with the fact that there exist a bounded number of types281

of components, give the kernels (Lemma 13 for FO and Lemma 15 for MSO).282

I Lemma 12. Given a triplet G, `, C having q + 1 vertex sets C1, C2, . . . , Cq+1 of the same283

type and φ an FO formula in prenex form having q quantifiers. Then G, `, C |= φ if and only284

if G \ C1, `, C′ |= φ, where C′ is the restriction of C to V (G) \ C1.285

Proof. We proceed by induction on the structure of the formula φ.286

1. For φ := ui ∈ Dj , φ := u1 = u2, or φ := u1 ∼ u2. From Observation 7 the sets are287

unlabeled. Thus 6 ∃v ∈ C1 for which `(u1) = v or `(u2) = v. Thus the statement of the288

lemma holds for the base case.289

2. For φ := φ1 ∨ φ2 or φ := ¬φ1. From the inductive hypothesis, we have that G, `, C |= φ1290

if and only if G \ C1, `, C′ |= φ1 and that G, `, C |= φ2 if and only if G \ C1, `, C′ |= φ2.291

It is easy to see that the statement of the lemma holds also for φ.292

3. The most interesting case is for φ := ∃xi.φ′. If G, `, C |= φ then from the definition of293

the semantics of φ there exists v ∈ V (G) such that G, `′, C |= φ[xi \ ui] with `(ui) ↑ and294

`′ : U → V (G) being a partial function for which `′(ui) = v, and `′ agrees with ` on all295

other values uj 6= ui.296

First we prove that without loss of generality v 6∈ C1. Suppose that v ∈ C1. Since C1 and297

C2 have the same type on G, `, C, by Definition 6 there exists an isomorphism f : C1 → C2.298

Consider now a labeling function `′′ : U → V (G) where `′′(ui) = f(`′(ui)) = f(v),299

otherwise `′, `′′ agree on uj 6= ui. Observe that G, `′, C and G, `′′, C are isomorphic, thus300

from Lemma 9 we have that G, `′, C |= φ iff G, `′′, C |= φ. In that case, instead of v ∈ C1301

we shall consider f(v) ∈ C2. Thus, from now on we can assume that v 6∈ C1302

For the triplet G, `′, C q of the sets C1, C2, . . . , Cq+1 are still unlabeled and have the303

same type (C1 is among them). Also φ′ has q − 1 quantifiers. Thus, by the inductive304

step, G, `′, C |= φ′ if and only if G \ C1, `
′, C′ |= φ′. Since v ∈ V (G) \ C1, we have that305

G \ C1, `, C′ |= φ.306

For the other direction, observe that v ∈ V (G) \ C1 implies that v ∈ V (G). Thus the307

statement holds with similar reasoning as above.308

J309

I Lemma 13. For a triplet G, `, C with vertex integrity ι(G) ≤ k and with `, C everywhere310

undefined and for a formula φ with q quantifiers, FO Model Checking has a kernel of size311
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O(2k2 · q · k), assuming we are given in the input S ⊆ V (G) such that the largest component312

of G \ S has size at most k − |S|.313

Proof. We give a polynomial-time algorithm to calculate an upper bound on the number of314

components of G \ S having the same type. Observe that types are only specified by the315

neighborhoods of the vertices of the components (` and C are everywhere undefined thus316

there are no labels or colors on G).317

First, we arbitrarily number the vertices of S and of each component. In order to classify318

the components into types, we map each component Ci to a vector [N1, N2, . . . , N|Ci|], where319

Nj is an ordered set containing the (numbered) neighbors of the jth vertex of Ci (starting320

from the neighbors in S). Clearly, two components having the same vectors also have the321

same type, using the isomorphism that maps the i-th vertex of one to the i-th vertex of the322

other.323

Since each component has at most k vertices and each vertex has at most 2k different324

types of neighborhoods Nj , we can have at most 2k2 vectors, thus at most 2k2 types of325

components. Furthermore, since we are given S, we can test in polynomial time if two326

components have the same type under the arbitrary numbering we used. From Lemma 12, if327

more than q components have the same type we can remove one such component without328

changing the answer of the problem, thus we can in polynomial time either reduce the graph329

or conclude that each component type appears at most q times. In the end we will have at330

most 2k2 · q components, each having at most k vertices, thus the result. J331

By applying the straightforward algorithm which runs in time |V (G)|q · poly(|G|) for FO332

Model Checking, together with Lemma 13 we get the complexity promised by Theorem 10.333

In order to prove Theorem 11 we need a stronger version of Lemma 12.334

I Lemma 14. Given a triplet G, `, C with at least q′ = 2k·q2 ·q1 +1 vertex sets C1, C2, . . . , Cq′335

having the same type and sizes at most k and an MSO formula φ in prenex form with q1 FO336

quantifiers and q2 MSO quantifiers. Then G, `, C |= φ if and only if G \ C1, `, C1 |= φ, where337

C1 is the restriction of C to V (G) \ C1.338

Proof. We proceed by induction on the structure of φ. We can reuse the arguments of339

Lemma 12, except for the case where φ := ∃Xi.φ
′, so we focus on this case.340

For the one direction, if G, `, C |= φ, from the definition of the semantics of φ, then there341

exists S ⊆ V (G) such that G, `, C′ |= φ[Xi \Di] with C(Di) ↑ and C′ : D → 2V (G) being a342

partial function for which C′(Di) = S, and C′ agrees with C on all other values Dj 6= Di.343

Since each of the vertex sets C1, C2, . . . , Cq′ has size at most k, there are at most 2k344

possible ways for S to intersect with each of them. Therefore, by pigeonhole principle, one345

such intersection appears in at least d q
′

2k e = 2k(q2−1) · q1 + 1 sets, call that group M . In346

order to be able to apply the inductive hypothesis, we need to prove that, without loss of347

generality, C1 ∈M .348

Suppose that C1 6∈M . We will do a “swapping” of C1 with a vertex set (say C2 without349

loss of generality) that does belong in the group M . Since C1 and C2 have the same type,350

that means that there exists an isomorphism f : C1 → C2.351

We consider a new coloring function C′′ that agrees with C′ everywhere but on the constant352

Di. This new coloring function will map Di to the set of vertices S′ (instead of S), where we353

have replaced every v ∈ S ∩ C1 with f(v) and every v ∈ S ∩ C2 with f−1(v) (see Figure 1).354

More formally, C′′(Di) = S′ where S′ = (S \ (C1 ∪ C2)) ∪ f(C1 ∩ S) ∪ f−1(C2 ∩ S). Then355

the triplets G, `, C′ and G, `, C′′ are isomorphic and from Lemma 9 we have that G, `, C′ |= φ356

iff G, `, C′′ |= φ. From now on we assume that C1 belongs in M .357
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C1

S S'

2

f

C C1 2C

Figure 1 The way the vertex set S′ intersects the vertex sets C1 and C2.

For the triplet G, `, C′, the sets in M have all the same type and |M | ≥ 2k(q2−1) · q1 + 1.358

Furthermore, the function φ′ has q1 FO and q2 − 1 MSO quantifiers. Therefore, by the359

inductive hypothesis we can remove a set from M and the answer of the problem won’t360

change, in other words we have that G, `, C′ |= φ′ iff G \ C1, `, C′1 |= φ′, where C′1 is the361

restriction of C′ on V (G) \ C1. From the semantics of φ we have that G \ C1, `, C1 |= φ.362

For the other direction, if G \ C1, `, C1 |= φ then there exists S1 ⊆ V (G) \ C1 such that363

G \ C1, `, C′1 |= φ[Xi \Di] with C1(Di) ↑ and C1 being a partial coloring function for which364

C′1(Di) = S1, and C′1 agrees with C1 on all other values Dj 6= Di.365

As previously, S1 partitions C2, . . . , Cq′ into 2k equivalence classes, depending on the366

intersection of each set with S1, such that sets placed in the same class (i.e. having isomorphic367

intersection with S1) have the same type in G \C1, `, C′1. Hence, one of these classes has size368

at least q′−1
2k = 2k(q2−1) · q1, call this class M ′. We construct a triplet G, `, C∗ as follows: let369

Cj ∈M ′ and f ′ be the isomorphism from Cj to C1; We set that C∗ agrees with C on all sets370

except Di; and for Di we have C∗(Di) = C′1(Di) ∪ f ′(S1 ∩ Cj). In other words, we define C∗371

in such a way that the set C1 has the same type as all sets of the class M ′. But then we372

have |M ′ ∪ {C1}| ≥ 2k(q2−1) · q1 + 1 sets of the same type and by inductive hypothesis we373

have G, `, C∗ |= φ[Xi \Di]. Therefore, by the semantics of MSO we have G, `, C |= φ. J374

I Lemma 15. For a triplet G, `, C with vertex integrity ι(G) ≤ k and with `, C everywhere375

undefined and for a formula φ with q1 FO quantifiers and q2 MSO quantifiers, MSO Model376

Checking has a kernel of size O(2(k2+kq2) · q1 · k), assuming we are given in the input377

S ⊆ V (G) such that the largest component of G \ S has size at most k − |S|.378

Proof. The proof is the same as for Lemma 13. The only thing that changes is the number379

of same-type components required to have before removing one such component (q′ required380

by Lemma 14 versus q + 1 required by Lemma 12). J381

Applying the straightforward algorithm for MSO Model-Checking that runs in 2q2·V (G) ·382

V (G)q1 · poly|G| and Lemma 15 gives the complexity promised by Theorem 11.383

4 Lower Bounds384

In this section we show that the dependence of our meta-theorems on vertex integrity cannot385

be significantly improved, unless the ETH is false. Our strategy will be to present a unified386

construction which, starting from an arbitrary graph G with n vertices, produces a new387

graph H(G), with small vertex integrity, such that we can deduce if two vertices of G are388

connected using appropriate constant-sized FO formulas of H. This will, in principle, allow389

us to express an FO or MSO-expressible property of G as a corresponding property of H(G),390

and hence, if the original property is hard, to obtain a lower bound on model-checking on H.391

Let us describe this construction in more details.392
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S W47

w

s

(47,3)

w(47,2)

w(47,1)

1

s6
s5
s4
s3
s2

  

Figure 2 The connection between S and the set W47. For this example k = 3, we can represent
up to 29 numbers in binary. In order to represent 4710 = 0001011112, we shall connect w(47,1) with
s4, s5 and s6 in order to represent the three least significant bits (which are all 1), and w(47,2) with
s4 and s6 to represent the next triad of bits. The three most significant bits are all 0.

Construction We are given a graph G on n vertices, say V (G) = {v1, . . . , vn}, and m edges.393

Let k = d
√

logne. We construct a graph H as follows:394

1. We begin constructing V (H) by forming n+m+ 1 sets of vertices, called S, W1, . . . ,Wn,395

and Y1, . . . , Ym. We have |S| = 2k, |Wi| = k for all i ∈ [n], and |Yj | = 2k + 1 for all396

j ∈ [m]. The vertices of S are numbered arbitrarily as s1, s2, . . . , s2k.397

2. Internally, S induces an independent set, each Wi, for i ∈ [n] induces a clique, and each398

Yj , for j ∈ [m] induces a graph made up of two disjoint cliques of size k, denoted Y 1
j , Y

2
j ,399

and a vertex connected to all 2k vertices of the cliques Y 1
j , Y

2
j .400

3. For each i ∈ [n], we attach a leaf to each vertex of Wi. For each j ∈ [m], we attach two401

leaves to each vertex of Y 1
j , three leaves to each vertex of Y 2

j , and four leaves to the402

remaining vertex of Yj .403

4. For each i ∈ [n], number the vertices of Wi arbitrarily as w(i,1), w(i,2), . . . , w(i,k). For each404

β ∈ [k] we connect w(i,β) to sβ . Furthermore, let b1b2 . . . bk2 be the binary representation of405

i−1 with the least significant digit first, that is, a sequence of bits such that
∑
β bβ2β−1 =406

i− 1. Note that k2 ≥ logn, therefore k2 bits are sufficient to represent all numbers from407

0 to n− 1. We partition this binary representation into k blocks of k bits. For β ∈ [k]408

we consider the bits b(β−1)k+1 . . . bβk and we use these bits to determine the connections409

between w(i,β) and the vertices sk+1, . . . , s2k. More precisely, for β, γ ∈ [k], we set that410

w(i,β) is connected to sk+γ if and only if b(β−1)k+γ is equal to 1.411

5. For each j ∈ [m] we do the following. Suppose the j-th edge of G has endpoints vi1 , vi2 .412

We number the vertices of Y 1
j as y1

(j,1), . . . , y
1
(j,k), and the vertices of Y 2

j as y2
(j,1), . . . , y

2
(j,k)413

in some arbitrary way. Now for all β ∈ [k] we set that y1
(j,β) has the same neighbors in S414

as w(i1,β) and y2
(j,β) has the same neighbors in S as w(i2,β).415

The construction of our graph is now complete. The intuition behind this construction is416

that each clique Wi represents a vertex vi ∈ V (G). In order to distinguish the vertices, we417

use the k2 ≥ logn possible edges between vertices in Wi and the second part of S, that is418

{sk+1, . . . , s2k}. These edges should represent the binary representation of i. See Figure 2419

for an example.420

Vertices of H may be (arbitrarily) labeled for the purpose of the construction but for the421

purpose of Model-Checking the graph H is unlabeled. In order to give a numbering to the422

vertices of Wi, we use the matching between Wi and the first k vertices of the set S (the423

first vertex of Wi connects to the first vertex of S, etc).424

The sets Yj represent edges in G. If the jth edge in E(G) is the edge (vi1vi2), then Y 1
j425

should have the same connections with S as the set Wi1 (similarly Y 2
j , Wi2). In order to426

check in H whether (vi1 , vi2) is an edge, we shall check if there exists a set Yj such that each427



Michael Lampis and Valia Mitsou 23:11

vertex of Y 1
j has the same neighborhood in S as a vertex of Wi1 and each vertex of Y 2

j has428

the same neighborhood in S as a vertex of Wi2 .429

It is crucial here that the construction is such that Wi,Wi′ are distinguishable for i 6= i′ in430

terms of their neighborhoods in S, that is, there always exists w ∈Wi for which no w′ ∈Wi′431

has N(w) ∩ S = N(w′) ∩ S. We will show that it is not hard to express this property in FO432

logic. Furthermore, the leaves we have attached to various vertices will allow us to distinguish433

in FO logic whether a vertex belongs in a set Wi, Y 1
j , or Y 2

j .434

We now establish some basic properties about H and what can be expressed about its435

vertices in FO logic:436

I Lemma 16. The graph H satisfies the following properties, for any coloring function C.437

1. We have ι(H) = O(
√

logn) and |V (H)| = O(n2√logn).438

2. For each i, i′ ∈ [n] with i 6= i′, there exists a vertex w ∈Wi such that for all w′ ∈Wi′ we439

have N(w) ∩ S 6= N(w′) ∩ S.440

3. There exist constant-sized FO formulas φW (x1), φY 1(x1), φY 2(x1), φS(x1) using one free441

variable x1, such that H, `, C |= φW [x1 \ u1] (respectively H, `, C |= φY 1[x1 \ u1], H, `, C |=442

φY 2[x1 \u1], H, `, C |= φS [x1 \u1]) if and only if `(u1) ∈Wi for some i ∈ [n] (respectively443

`(u1) ∈ Y 1
j , `(u1) ∈ Y 2

j , for some j ∈ [m], `(u1) ∈ S).444

4. There exists a constant-sized FO formula φWY using only two free variables x1, x2 such445

that H, `, C |= φWY [x1 \u1][x2 \u2] if and only if `(u1) ∈Wi for some i ∈ [n], `(u2) ∈ Y αj446

for some j ∈ [m], α ∈ {1, 2}, and for all β ∈ [k] we have N(w(i,β)) ∩ S = N(yα(j,β)) ∩ S.447

5. There exists a constant-sized FO formula φadj using only two free variables x1, x2 such448

that H, `, C |= φadj [x1 \ u1][x2 \ u2] if and only if `(u1) ∈ Wi and `(u2) ∈ Wi′ for some449

i, i′ ∈ [n] such that (vi, vi′) ∈ E(G).450

Proof. For the first property, we observe that the largest component of H \ S has size at451

most 10
√

logn+ 2, while |S| ≤ 2
√

logn+ 2. Furthermore, we have at most m+ n = O(n2)452

components after removing S.453

For the second property, since i 6= i′, their binary representations differ in some bit. Let454

β, γ ∈ [k] be such that if b1 . . . bk2 is the binary representation of i− 1 and b′1 . . . b′k2 is the455

binary representation of i′ − 1, we have b(β−1)k+γ 6= b′(β−1)k+γ . But then, exactly one of456

w(i,β), w(i′,β) is connected to sk+γ . Furthermore, w(i,β) is connected to sβ , but the only457

neighbor of sβ in Wi′ is w(i′,β). Hence, w(i,β) is the claimed vertex.458

For the third property, observe that, in H, vertices of S have no leaves attached, vertices459

of each Xi have one leaf attached, vertices of Y 1
j have two leaves attached, vertices of Y 2

j have460

three leaves attached, and the remaining vertices have four leaves attached. Hence, it suffices461

to be able to express in FO, with a constant-sized formula, the property “x1 has exactly c leaves462

attached”, where c ∈ {0, 1, 2, 3}. This is not hard to do. For example, the formula φ2(x1) :=463

∃x2∃x3∀x4 ((x2 ∼ x1) ∧ (x3 ∼ x1) ∧ (x2 6= x3) ∧ ((x4 = x1) ∨ (¬(x4 ∼ x2) ∧ ¬(x4 ∼ x3)))) ex-464

presses the property that x1 has at least two leaves attached to it. Using the same ideas we can465

construct φc(x1), for c ∈ {1, 2, 3, 4} and then φS(x1) := ¬φ1(x1), φW (x1) := φ1(x1)∧¬φ2(x1),466

φY 1 := φ2(x1) ∧ ¬φ3(x1), φY 2(x1) := φ3(x1) ∧ ¬φ4(x1).467

For the fourth property, we set φWY (x1, x2) := φWY 1(x1, x2) ∨ φWY 2(x1, x2), where we468

define two formulas φWY α depending on whether α = 1 or α = 2. We have469

φWY α(x1, x2) := φW (x1) ∧ φY α(x2) ∧ ∀x3
(
(¬φW (x3)) ∨ (¬(x3 ∼ x1) ∧ ¬(x3 = x1)) ∨470

∃x4 (φY 1(x4) ∧ (x4 ∼ x2 ∨ x4 = x2) ∧ ∀x5 (φS(x5)→ (x5 ∼ x3 ↔ x5 ∼ x4)))
)

471

What we are saying here is that φWY 1[x1\u1][x2\u2] is satisfied if `(u1) ∈Wi, `(u2) ∈ Y 1
j ,472

for some i ∈ [n], j ∈ [m], and for every x3 ∈Wi there exists x4 ∈ Y 1
j such that N(x3) ∩ S =473
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N(x4) ∩ S. Therefore, if this property holds, then Wi and Y 1
j represent the same vertex of474

V (similarly for φWY 2).475

For the last property, we set476

φadj(x1, x2) := φW (x1) ∧ φW (x2) ∧ ∃x3∃x4
(
(φY 1(x3) ∧ φY2(x4)) ∨ (φY 1(x4) ∧ φY2(x3))

)
∧477

φWY (x1, x3) ∧ φWY (x2, x4) ∧ ∃x5(¬φS(x5) ∧ x3 ∼ x5 ∧ x4 ∼ x5)478

In other words, H, `, C |= φadj [x1 \ u1][x2 \ u2] if (i) `(u1) ∈Wi and `(u2) ∈Wi′ , for some479

i, i′ ∈ [n] (ii) there exist x3, x4 such that x3 ∈ Y 1
j and x4 ∈ Y 2

j for the same j; this is verified480

because x3, x4 have a common neighbor x5 that does not belong in S (iii) Wi,Wi′ correspond481

to the same pair of vertices as the set Yj = Y 1
j ∪ Y 2

j , which means that (vi, vi′) ∈ E(G). J482

We are now ready to prove our lower bounds.483

I Theorem 17. If there exists an algorithm which, given a graph G with n vertices and484

ι(G) = k and an FO formula φ with q quantifiers, decides whether G |= φ in time 2o(k2q)nO(1),485

then the ETH is false.486

Proof. We perform a reduction from q-Clique. It is well-known that, given a graph G on n487

vertices it is not possible to decide if G contains a clique of size q in time no(q), unless the488

ETH is false [8]. We claim that we will construct the graph H(G), as previously described,489

and an FO formula φC such that φC will contain O(q) quantifiers and H, `, C |= φC for the490

nowhere defined functions `, C if and only if G has a q-clique. If we achieve this, then, since491

by Lemma 16 we have k = O(
√

logn), and the size of H is polynomially related to the size492

of G, the stated running time would become 2o(q(
√

logn)2)nO(1) = no(q) and we refute the493

ETH. Our goal is then to define such an FO formula φC . We define494

φC := ∃x1∃x2 . . . ∃xq
∧
i∈[q]

φW (xi) ∧
∧

i,i′∈[q],i6=i′
(xi 6= xi′)495

∀xq+1∀xq+2
∧
i∈[q]

(
¬(xq+1 = xi)

)
∨
∧
i∈[q]

(
¬(xq+2 = xi)

)
∨ (xq+1 = xq+2) ∨496

φadj(xq+1, xq+2)497

We now claim that by the construction of H, we have that H, `, C |= φC if and only if G498

has a clique. If G has a clique {vi1 , vi2 , . . . , viq}, we map x1, x2, . . . , xq to arbitrary vertices499

of Wi1 , . . . ,Wiq . For the next part of the formula, either xq+1, xq+2 correspond to some500

(different) xi, xi′ or the formula is true. Last, we claim thatH, `′, C |= φadj [xq+1\ui][xq+2]\ui′ ],501

where xi, xi′ are substituted by ui, ui′ and `′(ui) ∈ Wi, `
′(ui′) ∈ Wi′ . Indeed, because we502

have a clique in G, by construction there exists a Yj such that each vertex of Y 1
j has the503

same neighborhood in S as Wi and each vertex of Y 2
j has the same neighborhood in S as504

Wi′ (or the same with the roles of Y 1
j , Y

2
j reversed). Hence, φadj is satisfied.505

For the converse direction, suppose that H, `, C |= φC for the nowhere defined labeling506

function `. Then there exists a labeling function `′ that assigns `′(u1), `′(u2), . . . , `′(uq) to507

some vertices of
⋃
i∈[n] Wi and is undefined everywhere else such that `′(ui) 6= `′(ui′) for508

i 6= i′ and H, `′, C |= φC′ where509

φC′ := ∀xq+1∀xq+2
∧
i∈[q]

(
¬(xq+1 = ui)

)
∨
∧
i∈[q]

(
¬(xq+2 = ui)

)
∨(xq+1 = xq+2)∨φadj(xq+1, xq+2)510

We extract a multi-set S of q vertices of G as follows: for β ∈ [q], if `′(uβ) ∈ Wi, then511

we add vi to S. We claim that for any two elements vi, vi′ of S we have (vi, vi′) ∈ E. If we512

prove this, then the vertices of S are distinct and form a q-clique in G.513
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Since we have universal quantifications for xq+1, xq+2, we can define a new labeling514

function `′′, with `′′(uq+1) = `′(ui) and `′′(uq+2) = `′(ui′), for any i, i′ ∈ [q], i 6= i′, with `′′, `′515

agreeing everywhere else. Observe that this selection imposes that H, `′′, C |= φadj [xq+1 \516

ui][xq+2 \ ui′ ] and from property 5 of Lemma 16 we get that `′(ui), `′(ui′) belong to two517

different Wj ,Wj′ that correspond to the endpoints of an edge of G. J518

I Theorem 18. If there exists an algorithm which, given a graph G with n vertices and519

ι(G) = k and an MSO formula φ with constant size, decides whether G |= φ in time520

22o(k2)
nO(1), then the ETH is false.521

Proof. Our strategy is similar to that of Theorem 17, except that we will now reduce522

from 3-Coloring, which is known not to be solvable in 2o(n) on graphs on n vertices,523

under the ETH [33]. We will produce a constant-sized formula φCol with the property that524

H, `, C |= φCol for the nowhere defined functions `, C if and only if G is 3-colorable. Since525

k = O(
√

logn) an algorithm running in 22o(k2) would imply a 2o(n) algorithm for 3-coloring526

G, contradicting the ETH. We define527

φCol := ∃X1∃X2∃X3∀x1∀x2(x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧528 ∧
i=1,2,3

φadj(x1, x2)→
(
x1 ∈ Xi → ¬(x2 ∈ Xi)

)
529

Assume that G has a proper 3-coloring c : V → [3]. Then we define, for α ∈ [2]530

Sα =
⋃
i:c(vi)=αWi and S3 = V (H) \ (S1 ∪ S2). Let C′ be a coloring function such that531

C′(Dα) = Sα for α = 1, 2, 3 and C′(Dα′) ↑ for α′ 6∈ [3]. We claim that H, `, C′ |= φCol[X1 \532

D1][X2 \ D2][X3 \ D3]. Indeed, for any labeling function `′ that defines only `′(u1) and533

`′(u2) we have (i) H, `′, C′ |= u1 ∈ D1 ∨ u1 ∈ D2 ∨ u1 ∈ D3 (since C′(D1), C′(D2), C′(D3) is534

a partition of V (H)); (ii) If H, `′, C′ |= φadj [x1 \ u1][x2 \ u2] then `′(u1) ∈ Wi, `
′(u2) ∈ Wi′535

for some i, i′ ∈ [n], i 6= i′ with (vi, vi′) ∈ E(G) (from property 5 of Lemma 16). Therefore536

c(vi) 6= c(vi′) so for α ∈ [3] H, `′, C′ |= u1 ∈ Dα → ¬u2 ∈ Dα.537

For the converse direction, suppose that H, `, C |= φCol for the nowhere defined `, C.538

Then there exists a coloring function C′ such that C′(Dα) = Sα, for α ∈ [3] and H, `, C′ |=539

φCol[X1 \D1][X2 \D2][X3 \D3]. We extract a coloring of V (G) as follows: for i ∈ [n] we set540

c(vi) to be the minimum α such that Wi ∩Sα 6= ∅. We show that the coloring c : V (G)→ [3]541

defined in this way is proper. Consider i, i′ ∈ [n] such that (vi, vi′) ∈ E(G). Let `′ be a542

labeling function such that `′(u1) ∈ Wi ∩ Sc(vi) and `′(u2) ∈ Wi′ ∩ Sc(vi′ ). Observe that543

Wi∩Sc(vi) 6= ∅ by the definition of c(vi). Then H, `′, C′ |= φadj [x1 \u1][x2 \u2]. Therefore we544

have that for α ∈ [3], H, `′, C′ |= u1 ∈ Dα → ¬(u2 ∈ Dα). Therefore Sc(vi) 6= Sc(vi′ ), which545

means that c(vi) 6= c(vi′). J546
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