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Rémy Belmonte1, Tesshu Hanaka2, Masaaki Kanzaki3, Masashi Kiyomi4,
Yasuaki Kobayashi5, Yusuke Kobayashi5, Michael Lampis6, Hirotaka Ono7,

and Yota Otachi3

1 The University of Electro-Communications, Chofu, Tokyo, Japan
remybelmonte@gmail.com

2 Chuo University, Bunkyo-ku, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

3 Kumamoto University, Kumamoto, 860-8555, Japan
c5744@st.cs.kumamoto-u.ac.jp, otachi@cs.kumamoto-u.ac.jp

4 Yokohama City University, Yokohama, Japan
masashi@yokohama-cu.ac.jp

5 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp, yusuke@kurims.kyoto-u.ac.jp
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Abstract. Given a graph G = (V,E), A ⊆ V , and integers k and `,
the (A, `)-Path Packing problem asks to find k vertex-disjoint paths
of length ` that have endpoints in A and internal points in V \ A. We
study the parameterized complexity of this problem with parameters |A|,
`, k, treewidth, pathwidth, and their combinations. We present sharp
complexity contrasts with respect to these parameters. Among other
results, we show that the problem is polynomial-time solvable when ` ≤
3, while it is NP-complete for constant ` ≥ 4. We also show that the
problem is W[1]-hard parameterized by pathwidth+ |A|, while it is fixed-
parameter tractable parameterized by treewidth + |`|.

Keywords: A-path packing, fixed-parameter tractability, treewidth

1 Introduction

Let G = (V,E) be a graph and A ⊆ V . A path P in G is an A-path if the first and
the last vertices of P belong to A and all other vertices of P belong to V \A. Given
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G and A, A-Path Packing is the problem of finding the maximum number of
vertex-disjoint A-paths in G. The A-Path Packing problem is well studied
and even some generalized versions are known to be polynomial-time solvable
(see e.g., [14,22,7,6,25,26]). Note that A-Path Packing is a generalization of
Maximum Matching since they are equivalent when A = V .

In this paper, we study a variant of A-Path Packing that also generalizes
Maximum Matching. An A-path of length ` is an (A, `)-path, where the length
of a path is the number of edges in the path. Now our problem is defined as
follows:

(A, `)-Path Packing (ALPP)
Input: A tuple (G,A, k, `), where G = (V,E) is a graph, A ⊆ V , and k

and ` are positive integers.
Question: Does G contain k vertex-disjoint (A, `)-paths?

To the best of our knowledge, this natural variant of A-Path Packing was
not studied in the literature. Our main motivation of studying ALPP is to see
theoretical differences from the original A-Path Packing, but practical motiva-
tions of having the length constraint may come from some physical restrictions
or some fairness requirements. Note that if ` = 1, then ALPP is equivalent to
Maximum Matching.

In the rest of paper, we assume that k ≤ |A|/2 in every instance as otherwise
the instance is a trivial no-instance. The restricted version of the problem where
the equality k = |A|/2 is forced is also of our interest as that version corresponds
to a “full” packing of A-paths. We call this version Full (A, `)-Path Packing
(Full-ALPP, for short). In this paper, all our positive results showing tractability
of some cases will be on the general ALPP, while all our negative (or hardness)
results will be on the possibly easier Full-ALPP.

We assume that the reader is familiar with terminologies in the parameterized
complexity theory. See the textbook by Cygan et al. [10] for standard definitions.

Our results

In summary, we show that ALPP is intractable even on very restricted inputs,
while it has some nontrivial cases that admit efficient algorithms. (See Fig. 1.)

We call |A|, k, and ` the standard parameters of ALPP as they naturally arise
from the definition of the problem. We determine the complexity of ALPP with
respect to all standard parameters and their combinations. We first observe that
Full-ALPP is NP-complete for any constant |A| ≥ 2 (Observation 3.1) and for
any constant ` ≥ 4 (Observation 3.2), while it is polynomial-time solvable when
` ≤ 3 (Theorem 3.3). On the other hand, ALPP is fixed-parameter tractable
when parameterized by k+ ` and thus by |A|+ ` as well (Theorem 3.5). We later
strengthen Observation 3.2 by showing that NP-complete for every fixed ` ≥ 4
even on grid graphs (Theorem 5.1).

We then study structural parameters such as treewidth and pathwidth in
combination with the standard parameters. We first observe that ALPP can be
solved in time nO(tw) (Theorem 4.1), where n and tw are the number of vertices
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and the treewidth of the input graph, respectively. Furthermore, we show that
ALPP parameterized by tw+` is fixed-parameter tractable (Theorem 4.2). We fi-
nally show that Full-ALPP parameterized by pw+|A| is W[1]-hard (Theorem 4.5),
where pw is the pathwidth of the input graph.

treewidth

pathwidth

treedepth

treedepth + |A|

treewidth + |A|

pathwidth + |A|

treedepth + `

treewidth + `

pathwidth + `

|A| `

k + `

|A|+ `

paraNP-complete

XP

W[1]-hard

FPT

∗ ∗

∗

∗
∗ ∗

Fig. 1: Summary of the results. An arrow α→ β indicates that there is a function
f such that α ≥ f(β) for every instance of ALPP. Some possible arrows are
omitted to keep the figure readable. The results on the parameters marked with
∗ are explicitly shown in this paper, and the other results follow by the hierarchy
of the parameters. We have a bidirectional arrow treedepth ↔ treedepth + `
because the maximum length of a path in a graph is bounded by a function of
treedepth [24, Section 6.2].

2 Preliminaries

A graph G = (V,E) is a grid graph if V is a finite subset of Z2 and E =
{{(r, c), (r′, c′)} | |r − r′| + |c − c′| = 1}. From the definition, all grid graphs
are planar, bipartite, and of maximum degree at most 4. To understand the
intractability of a graph problem, it is preferable to show hardness on a very
restricted graph class. The class of grid graphs is one of such target classes.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F )), where Xi ⊆ V for each i and T is a tree such that

– for each vertex v ∈ V , there is i ∈ I with v ∈ Xi;
– for each edge {u, v} ∈ E, there is i ∈ I with u, v ∈ Xi;
– for each vertex v ∈ V , the induced subgraph T [{i | v ∈ Xi}] is connected.

The width of a tree decomposition ({Xi | i ∈ I}, T ) is maxi∈I |Xi| − 1, and
the treewidth of a graph G, denoted tw(G), is the minimum width over all tree
decompositions of G.

The pathwidth of a graph G, denoted pw(G), is defined by restricting the
trees T in tree decompositions to be paths. We call such decompositions path
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decompositions. It is easy to observe that subdividing some edges and attaching
paths to some vertices do not change pathwidth significantly.

Corollary 2.1 (F8). Let G = (V,E) be a graph without isolated vertices. If G′

is a graph obtained from G by subdividing a set of edges F ⊆ E arbitrary times,
and attaching a path of arbitrary length to each vertex in a set U ⊆ V , then
pw(G′) ≤ pw(G) + 2.

3 Standard parameterizations of ALPP

In this section, we completely determine the complexity of ALPP with respect
to the standard parameters |A|, k, `, and their combinations. (Recall that k ≤
|A|/2.) We first observe that using one of them as a parameter does not make
the problem tractable. That is, we show that the problem remains NP-complete
even if one of |A|, k, ` is a constant. We then show that the problem is tractable
when ` ≤ 3 or when k + ` is the parameter.

3.1 Intractable cases

The first observation is that Full-ALPP is NP-complete even if |A| = 2 (and thus
k = 1). This can be shown by an easy reduction from Hamiltonian Cycle [15].
This observation is easily extended to every fixed even |A|.

Observation 3.1 (F). For every fixed even α ≥ 2, Full-ALPP on grid graphs
is NP-complete even if |A| = α.

The NP-hardness of Full-ALPP for fixed ` can be shown also by an easy
reduction from a known NP-hard problem, but in this case only for ` ≥ 4. This
is actually tight as we see later that the problem is polynomial-time solvable
when ` ≤ 3 (see Theorem 3.3).

Observation 3.2 (F). For every fixed ` ≥ 4, Full-ALPP is NP-complete.

We can strengthen Observation 3.2 to hold on grid graphs by constructing
an involved reduction from scratch. As the proof is long and the theorem does
not really fit the theme of this section, we postpone it to Section 5.

3.2 Tractable cases

Theorem 3.3. If ` ≤ 3, then ALPP can be solved in polynomial time.

Proof. Let (G,A, k, `) with G = (V,E) be an instance of ALPP with ` ≤ 3. If
` = 1, then the problem can be solved by finding a maximum matching in G[A],
which can be done in polynomial time [11].

Consider the case where ` = 2. We reduce this case to the case of ` = 3.
We can assume that G[A] and G[V \A] do not contain any edges as such edges

8 A star F means that the proof is omitted and moved to the appendix.
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are not included in any (A, 2)-path. New instance (G′, A, k, 3) is constructed by
adding a true twin v′ to each vertex v ∈ V \A; i.e., V (G′) = V ∪{v′ | v ∈ V \A}
and E(G′) = E ∪ {{v, v′} | v ∈ V \A} ∪ {{u, v′} | u ∈ A, v ∈ V \A, {u, v} ∈ E}.
Clearly, (G,A, k, 2) is a yes-instance if and only if so is (G′, A, k, 3).

For the case of ` = 3, we construct an auxiliary graph G′ = (A∪V1∪V2, EA,1∪
E1,2 ∪ E2,2) as follows (see Fig. 2):

Vi = {vi | v ∈ V \A} for i ∈ {1, 2},
EA,1 = {{u, v1} | u ∈ A, v ∈ V \A, {u, v} ∈ E},
E1,2 = {{v1, v2} | v ∈ V },
E2,2 = {{u2, v2} | u, v ∈ V \A, {u, v} ∈ E}.

We show that (G,A, k, 3) is a yes-instance if and only if G′ has a matching of
size k + |V \ A|, which implies that the problem can be solved in polynomial
time.

a b c d

u v w x y z

A

V \A

a b c d

u2 v2 w2 x2 y2 z2

u1 v1 w1 x1 y1 z1

A

V2

V1

Fig. 2: The construction of G′ (right) from G (left).

To prove the only-if direction, let P1, . . . , Pk be k vertex-disjoint (A, 3)-path
in G. We set M = MA,1 ∪M1,2 ∪M2,2, where

MA,1 = {{u, v1} ∈ EA,1 | edge {u, v} appears in some Pi},
M1,2 = {{v1, v2} ∈ E1,2 | vertex v does not appear in any Pi},
M2,2 = {{u2, v2} ∈ E2,2 | edge {u, v} appears in some Pi}.

Since the (A, 3)-paths P1, . . . , Pk are pairwise vertex-disjoint, M is a matching.
We can see that |M | = k + |V \ A| as |M2,2| = k and |MA,1| + |M1,2| = |V1| =
|V \A|.

To prove the if direction, assume that G′ has a matching of size k + |V \A|.
Let M be a maximum matching of G′ that includes the maximum number of
vertices in V1 ∪ V2 among all maximum matchings of G′. We claim that M
actually includes all vertices in V1 ∪ V2. Suppose to the contrary that v1 or v2 is
not included in M for some v ∈ V \ A. Now, since M is maximum, exactly one
of v1 and v2 is included in M .
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Case 1: v1 ∈ V (M) and v2 /∈ V (M). There is a vertex u ∈ A such that
{u, v1} ∈ M . The set M − {u, v1} + {v1, v2} is a maximum matching that uses
more vertices in V1 ∪ V2 than M . This contradicts how M was selected.

Case 2: v1 /∈ V (M) and v2 ∈ V (M). There is a vertex w2 ∈ V2 such that
{v2, w2} ∈ M . The edge set M ′ := M − {v2, w2} + {v1, v2} is a maximum
matching that uses the same number of vertices in V1 ∪ V2 as M . Since M ′ is
maximum and w2 is not included in M ′, the vertex w1 has to be included in M ′,
but such a case leads to a contradiction as we saw in Case 1.

Now we construct k vertex-disjoint (A, 3)-paths from M as follows. Let
{u2, v2} ∈M ∩E2,2. Since M includes all vertices in V1, it includes edges {u1, x}
and {v1, y} for some x, y ∈ A. This implies that G has an (A, 3)-path (x, u, v, y).
Let (x′, u′, v′, y′) be the (A, 3)-path constructed in the same way from a differ-
ent edge in M ∩ E2,2. Since M is a matching, these eight vertices are pairwise
distinct, and thus (x, u, v, y) and (x′, u′, v′, y′) are vertex-disjoint (A, 3)-paths.
Since |M | ≥ k + |V \ A| and each edge in EA,1 ∪ E1,2 uses one vertex of V1, M
includes at least k edges in E2,2. By constructing an (A, 3)-path for each edge
in M ∩ E2,2, we obtain a desired set of k vertex-disjoint (A, 3)-paths. ut

In their celebrated paper on Color-Coding [1], Alon, Yuster, and Zwick
showed the following result.

Proposition 3.4 ([1, Theorem 6.3]). Let H be a graph on h vertices with
treewidth t. Let G be a graph on n vertices. A subgraph of G isomorphic to H,
if one exists, can be found in time O(2O(h) · nt+1 log n).

By using Proposition 3.4 as a black box, we can show that ALPP parameter-
ized by k + ` is fixed-parameter tractable.

Theorem 3.5. ALPP on n-vertex graphs can be solved in O(2O(k`)n6 log n)
time.

Proof. Let (G,A, k, `) be an instance of ALPP. Observe that the problem ALPP
can be seen as a variant of the Subgraph Isomorphism problem as we search for
H = kP`+1 in G as a subgraph with the restriction that each endpoint of P`+1 in
H has to be mapped to a vertex in A, where P`+1 denotes an (`+1)-vertex path
(which has length `) and kP`+1 denotes the disjoint union of k copies of P`+1.
We reduce this problem to the standard Subgraph Isomorphism problem [15].

Let G′ and H ′ be the graphs obtained from G and H, respectively, by sub-
dividing each edge once. The graphs G′ and H ′ = kP2`+1 are bipartite. We then
construct G′′ from G′ by attaching a triangle to each vertex in A; that is, for each
vertex u ∈ A we add two new vertices v, w and edges {u, v}, {v, w}, and {w, u}.
Similarly, we construct H ′′ from H ′ by attaching a triangle to each endpoint of
each P2`+1. Note that |V (G′′)| ∈ O(n2), |V (H ′′)| = k(2`+ 1), and tw(H ′′) = 2.
Thus, by Proposition 3.4, it suffices to show that (G,A, k, `) is a yes-instance of
ALPP if and only if G′′ has a subgraph isomorphic to H ′′.

To show the only-if direction, assume that G has k vertex-disjoint (A, `)-
paths P1, . . . , Pk. In G′′, for each Pi, there is a unique path Qi of length 2` plus
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triangles attached to the endpoints; that is, Qi consists of the vertices of Pi,
the new vertices and edges introduced by subdividing the edges in Pi, and the
triangles attached to the endpoints of the subdivided path. Furthermore, since
the paths Pi are pairwise vertex-disjoint, the subgraphs Qi of G′′ are pairwise
vertex-disjoint. Thus, G′′ has a subgraph isomorphic to H ′′ =

⋃
1≤i≤kQi.

To prove the if direction, assume that G has a subgraph H ′ isomorphic to H.
Let R1, . . . , Rk be the connected components of H ′. Each Ri is isomorphic to a
path of length 2` with a triangle attached to each endpoint. Let u, v ∈ V (Ri)
be the degree-3 vertices of Ri. Since G′′ is obtained from the triangle-free graph
G′ by attaching triangles at the vertices in A, we have u, v ∈ A. Since the
u-v path of length 2` in Ri is obtained from a u-v path of length ` in G by
subdividing each edge once, the graph G[V (Ri)∩V (G)] contains an (A, `)-path.
Since V (R1), . . . , V (Rk) are pairwise disjoint, G contains k vertex-disjoint (A, `)-
paths. ut

4 Structural parameterizations

In this section, we study structural parameterizations of ALPP. First we present
XP and FPT algorithms parameterized by tw and tw + `, respectively.

The XP-time algorithm parameterized by tw is based on an efficient algorithm
for computing a tree decomposition [5] and a standard dynamic-programming
over nice tree decompositions [20]. The FPT algorithm parameterized tw + ` is
achieved by expressing the problem in the monadic second-order logic (MSO2)
of graphs [2,9,3]. The proofs of them are omitted.

Theorem 4.1 (F). ALPP can be solved in time nO(tw).

Theorem 4.2 (F). ALPP parameterized by tw+ ` is fixed-parameter tractable.

Now we show that Full-ALPP is W[1]-hard parameterized by pathwidth (and
hence also by treewidth), even if we also consider |A| as an additional parame-
ter. We present a reduction from a W[1]-complete problem k-Multi-Colored
Clique (k-MCC) [13], which goes through an intermediate version of our prob-
lem. Specifically, we will consider a version of Full-ALPP with the following mod-
ifications: the graph has (positive integer) edge weights, and the length of a path
is the sum of the weights of its edges; the set A is given to us partitioned into
pairs indicating the endpoints of the sought A-paths; for each such pair the value
of ` may be different.

More formally, Extended-ALPP is the following problem: we are given a
graph G = (V,E), a weight function w : E → Z+, and a sequence of r triples
(s1, t1, `1), . . . , (sr, tr, `r), where all the si, ti ∈ V are distinct vertices and
`i ∈ Z+ for all i ∈ [r]9. We are asked if there exists a set of r vertex-disjoint
paths in G such that for all i ∈ [r] the i-th path in this set has endpoints si, ti
and the sum of the weights of its edges is `i. We first show that establishing that
this variation of the problem is hard implies also the hardness of Full-ALPP.

9 For a positive integer r, we denote the set {1, 2, . . . , r} by [r].



8 Belmonte et al.

Lemma 4.3. There exists an algorithm which, given an instance of Extended-
ALPP on an n-vertex graph G with r triples and maximum edge weight W ,
constructs in time polynomial in n + W an equivalent instance (G′, A, |A|/2, `)
of Full-ALPP with the properties: (i) |A| = 2r, (ii) pw(G′) ≤ pw(G) + 2.

Proof. First, we simplify the given instance of Extended-ALPP by removing edge
weights: for every edge e = {u, v} ∈ E(G) with w(e) > 1, we remove this edge
and replace it with a path from u to v with length w(e) going through new
vertices (in other words we subdivide e w(e) − 1 times). It is not hard to see
that we have an equivalent instance of Extended-ALPP on the new graph, which
we call G1, where the weight of all edges is 1 and |V (G1)| ≤ n2W . We now
give a polynomial-time reduction from this new instance of Extended-ALPP to
Full-ALPP.

Let n1 = |V (G1)| and ` = n31. For each i ∈ [r] we do the following: we
construct a new vertex s′i and connect it to si using a path of length i ·n21 going
through new vertices; we construct a new vertex t′i and connect it to ti using a
path of length (n1 − i) · n21 − `i through new vertices. We set A to contain all
the vertices s′i, t

′
i for i ∈ [r]. This completes the construction and it is clear that

|A| = 2r (because the si, ti vertices are distinct), the new graph G′ has order at
most n51 ≤ n10 ·W 5 and can be constructed in time polynomial in n+W .

We claim that the new graph G′ has |A|/2 vertex-disjoint (A, `)-paths if and
only if the Extended-ALPP instance of G1 has a positive answer. Indeed, if there
exists a collection of r vertex-disjoint paths in G1 such that the i-th path has
endpoints si, ti and length `i, we add to this path the paths from s′i to si and from
ti to t′i and this gives a path of length ` = n31 with endpoints in A. Observe that
all these paths are vertex-disjoint, so we obtain a yes-certificate of Full-ALPP.
For the converse direction, suppose that G′ has a set A of |A|/2 vertex-disjoint
(A, `)-paths. If A contains a path P with endpoints s′i and s′j , then considering

the length of P we get (i + j) · n21 + 1 ≤ n31 ≤ (i + j) · n21 + n1 − 1. The first
inequality implies i + j ≤ n1 − 1, but then this implies (i + j) · n21 + n1 − 1 ≤
n31 − n21 + n1 − 1 < n31, a contradiction. Also, there cannot be a path in A with
endpoints t′i and t′j , since existence of such a path implies, by the pigeon hole
principle, that there is a path in A with endpoints s′p and s′q. Assume that A
contains a path with endpoints s′i and t′j . Then the length of this path is at least

i · n21 + (n1 − j) · n21 − `j + 1 and at most i · n21 + (n1 − j) · n21 − `j + n1 − 1.
Therefore, if this path has length exactly ` = n31, it must be the case that i = j.
Furthermore, if i = j we infer that the length of the part of the path from si to
ti is exactly `i. We therefore obtain a solution to the Extended-ALPP instance.

Finally, observe that the only modifications we have done on G is to subdivide
some edges and to attach paths to some vertices. By Corollary 2.1, the pathwidth
is increased only by at most 2. ut

We can now reduce the k-MCC problem to Extended-ALPP.

Lemma 4.4. There exists a polynomial-time algorithm which, given an instance
of k-MCC on a graph G with n vertices, produces an equivalent instance of
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Extended-ALPP on a graph G′, with r ∈ O(k2) triples, pw(G′) ∈ O(k2), and
maximum edge weight W ∈ nO(1).

Proof. We are given a graphG = (V,E) with V partitioned into k sets V1, . . . , Vk,
and are asked for a clique of size k that contains one vertex from each set. To
ease notation, we will assume that n is even and |Vi| = n for i ∈ [k] (so the graph
has kn vertices in total) and that the vertices of Vi are numbered 1, . . . , n. We
define two lengths L1 = n3 + (k + 1)(2n+ 2) and L2 = n6.

For i ∈ [k] we construct a vertex-selection gadget as follows (see Fig. 3): we
make 2n + 3 paths of length k, call them Pi,j , where j ∈ [2n + 3]. Let ai,j , bi,j
be the first and last vertex of path Pi,j respectively. We label the remaining
vertices of the path Pi,j as xi,j,i′ for i′ ∈ {1, . . . , k}\{i} in some arbitrary order.
Then for each j ∈ [2n+ 2] we connect ai,j to ai,j+1 and bi,j to bi,j+1. All edges
constructed so far have weight 1. We add two vertices si, ti, connect si to ai,1
with an edge of weight n3/2 and ti to ai,2n+3 also with an edge of weight n3/2.
We add to the instance the triple (si, ti, L1).

ai,1 ai,2 ai,2n+3

bi,1 bi,2 bi,2n+3

si ti

xi,1,1

xi,1,3

xi,1,4

xi,2n+3,1

xi,2n+3,3

xi,2n+3,4

n3/2n3/2

Pi,j

ai,j

Fig. 3: An example of the vertex-selection gadget for n = 3, k = 4, and i = 2.

We now need to construct an edge-verification gadget as follows (see Fig. 4):
for each i1, i2 ∈ [k] with i1 < i2 we construct three vertices si1,i2 , ti1,i2 , pi1,i2 . For
each edge e of G between Vi1 and Vi2 we do the following: suppose e connects
vertex j1 of Vi1 to vertex j2 of Vi2 . We add the following four edges:

1. An edge from si1,i2 to xi1,2j1,i2 . This edge has weight L2/4 + j1n
4 + j2n

2.
2. An edge from xi1,2j1,i2 to pi1,i2 . This edge has weight L2/4.
3. An edge from pi1,i2 to xi2,2j2,i1 . This edge has weight L2/4.
4. An edge from xi2,2j2,i1 to ti1,i2 . This edge has weight L2/4− j1n4 − j2n2.

We call the edges constructed in the above step heavy edges, since their
weight is close to L2/4. We add the k(k − 1)/2 triples (si1,i2 , ti1,i2 , L2) to the
instance, for all i1, i2 ∈ [k], with i1 < i2.
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i1 i2

si1,i2 ti1,i2

pi1,i2

xi1,1,i2 xi1,2n+3,i2

xi2,1,i1 xi2,2n+3,i1

Fig. 4: An example of the edge-verification gadget for Vi1 and Vi2 (i1 < i2). In
this example, there are exactly three edges between Vi1 and Vi2 .

Note that in the above description we have created some parallel edges, for
example from si1,i2 to xi1,2j1,i2 (if the vertex j1 of Vi1 has several neighbors in
Vi2). This can be avoided by subdividing such edges once and assigning weights
to the new edges so that the total weight stays the same. For simplicity we ignore
this detail in the remainder since it does not significantly affect the pathwidth
of the graph (see Corollary 2.1). This completes the construction.

Let us now prove correctness. First assume that we have a k-multicolored
clique in G, encoded by a function σ : [k] → [n], that is, σ(i) is the vertex of
the clique that belongs in Vi. For the i-th vertex-selection gadget we have the
triple (si, ti, L1). We construct a path from si to ti as follows: we take the edge
(si, ai,1), then for each j < 2σ(i) we follow the path Pi,j from ai,j to bi,j if j
is odd, and in the reverse direction if j is even. We thus arrive to the vertex
bi,2σ(i)−1. We then skip the path Pi,σ(i), proceed through bi,2σ(i) to the vertex
bi,2σ(i)+1 and traverse the paths by reversing our parity rule: for j > 2σ(i) we
traverse Pi,j from bi,j to ai,j if j is odd, and in the reverse direction otherwise.
Hence, the last vertex of this traversal is ai,2n+3, after which we reach ti. The
first and last edge of this path have total cost n3; we have traversed 2n+2 paths
Pi,j , each of which has k edges; we have also traversed 2n+ 2 edges connecting
adjacent paths. The total length is therefore, n3 + (2n + 2)k + 2n + 2 = L1.
In this way we have satisfied all the k triples (si, ti, L1) and have not used the
vertices xi,2σ(i),i′ for any i′ 6= i.

Consider now a triple (si1,i2 , ti1,i2 , L2), for i1 < i2. Because we have se-
lected a clique, there exists an edge between vertex σ(i1) of Vi1 and σ(i2) of
Vi2 . For this edge we have constructed four edges in our new instance, link-
ing si1,i2 to ti1,i2 with a total weight of L2. We use these paths to satisfy

the
(
k
2

)
triples (si1,i2 , ti1,i2 , L2). These paths are disjoint from each other: when

i1 < i2, xi1,2σ(i1),i2 is only used in the path from si1,i2 to ti1,i2 and when i1 > i2,
xi1,2σ(i1),i2 is only used in the path from si2,i1 to ti2,i1 . Furthermore, these paths
are disjoint from the paths in the vertex-selection gadgets, as we observed that
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xi,2σ(i),i′ are not used by the path connecting si to ti. We thus have a valid
solution. See Fig. 5.

si1

si1,i2 ti1,i2

pi1,i2

xi1,1,i2 xi1,2n+3,i2

xi2,1,i1 xi2,2n+3,i1

σ(i1) = 3 σ(i2) = 1

ti1 si2 ti2

Fig. 5: Construction of paths from σ.

For the converse direction, suppose we have a valid solution for the Extended-
ALPP instance. First, consider the path connecting si to ti. This path has length
L1, therefore it cannot be using any heavy edges, since these edges have cost at
least L2/4 − n5 − n3 > L1. Inside the vertex-selection gadget, the path may
use either all of the edges of a path Pi,j or none. Let us now see how many
Pi,j are unused. First, a simple parity argument shows that, because si, ti are
both connected to an ai,j vertex, the number of paths traversed in the ai,j → bi,j
direction is equal to those traversed in the opposite direction, so the total number
of used paths is even. Since we have an odd number of paths in total, at least
one path is not used. We conclude that exactly one Pi,j is not used, otherwise
the path from si to ti would be too short. Let σ(i) be defined as the index j such
that the internal vertices of Pi,j are not used in the si → ti path of the solution.
We define a clique in G by selecting for each i the vertex bσ(i)/2c.

Let us argue why this set induces a clique. Let j1, j2 be the vertices selected
in Vi1 , Vi2 respectively, with i1 < i2, and consider the triple (si1,i2 , ti1,i2 , L2).
This triple must be satisfied by a path that uses exactly four heavy edges, since
each heavy edge has weight strictly larger than L2/5 and strictly smaller than
L2/3 and all other edges together are either incident on another terminal or have
weight smaller than L2/5n

2. Hence, every such path is using at least two internal
vertices of some Pi,j because every heavy edge is incident on such a vertex. But,
by our previous reasoning, the paths that satisfy the (si, ti, L1) triples have used
all such vertices except for one path Pi,j for each i. There exist therefore exactly
k(k−1) such vertices available, so each of the k(k−1)/2 triples (si1,i2 , ti1,i2 , L2)
has a path using exactly two of these vertices. Hence, each such path consists of
four heavy edges and no other edges.

Such a path must therefore be using one edge incident on si1,i2 , one edge
incident on ti1,i2 and two edges incident on pi1,i2 . The used edge incident on
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si1,i2 must have as other endpoint xi1,2j1,i2 , which implies that its weight is
L2/4 + j1n

4 + j′2n
2, for some j′2. Similarly, the edge incident on ti1,i2 must have

weight L2/4 − j′1n
4 − j2n

2, as its other endpoint is necessarily xi2,2j2,i1 . We
conclude that the only way that the length of this path is L2 is if j1 = j′1 and
j2 = j′2. Therefore, we have an edge between the two selected vertices, and as a
result a k-clique.

To conclude we observe that deleting the O(k2) vertices si1,i2 , pi1,i2 , ti1,i2
disconnects the graph into components that correspond to the vertex gadgets.
Each vertex gadget has pathwidth at most 4 as it can be seen as a subgraph of a
subdivision of the 2× (2n+ 4) grid. As a result the whole graph has pathwidth
O(k2). ut

Theorem 4.5. Full-ALPP is W[1]-hard parameterized by pw + |A|.

Proof. We compose the reductions of Lemmas 4.3 and 4.4. Starting with an
instance of k-MCC with n vertices this gives an instance of Full-ALPP with
nO(1) vertices, |A| = O(k2), and pathwidth O(k2). ut

5 Hardness on grid graphs

We first reduce Planar Circuit SAT to Full-ALPP on planar bipartite graphs
of maximum degree at most 4. We then modify the instance by subdividing
edges and adding terminal vertices in a appropriate way, and have an equivalent
instance on grid graphs. All proofs in this section is omitted.

Theorem 5.1 (F). For every fixed ` ≥ 4, Full-ALPP is NP-complete on grid
graphs.

6 Concluding remarks

In this paper, we have introduced a new problem (A, `)-Path Packing and
showed tight complexity results. One possible future direction would be the
parameterization by clique-width cw, a generalization of treewidth (see [16]). In
particular, we ask the following two questions.

– Does ALPP admit an algorithm of running time O(ncw)?
– Is ALPP fixed-parameter tractable parameterized by cw + `?

References

1. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856,
1995. doi:10.1145/210332.210337.

2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/

0196-6774(91)90006-K.

http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1016/0196-6774(91)90006-K


Parameterized Complexity of (A, `)-Path Packing 13

3. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/

S0097539793251219.
4. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.

Theoretical Computer Science, 209(1):1–45, 1998. doi:10.1016/S0304-3975(97)

00228-4.
5. Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V. Fomin, Daniel

Lokshtanov, and Micha l Pilipczuk. A ckn 5-approximation algorithm for treewidth.
SIAM J. Comput., 45(2):317–378, 2016. doi:10.1137/130947374.

6. Maria Chudnovsky, William H. Cunningham, and Jim Geelen. An algorithm for
packing non-zero a-paths in group-labelled graphs. Combinatorica, 28(2):145–161,
2008. doi:10.1007/s00493-008-2157-8.

7. Maria Chudnovsky, Jim Geelen, Bert Gerards, Luis A. Goddyn, Michael Lohman,
and Paul D. Seymour. Packing non-zero a-paths in group-labelled graphs. Com-
binatorica, 26(5):521–532, 2006. doi:10.1007/s00493-006-0030-1.

8. Stephen A. Cook. The complexity of theorem-proving procedures. In STOC 1971,
pages 151–158, 1971. doi:10.1145/800157.805047.

9. Bruno Courcelle. The monadic second-order logic of graphs III: tree-
decompositions, minor and complexity issues. Theor. Inform. Appl., 26:257–286,
1992. doi:10.1051/ita/1992260302571.

10. Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. doi:10.1007/978-3-319-21275-3.

11. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965. doi:10.4153/CJM-1965-045-4.

12. John A. Ellis, Ivan Hal Sudborough, and J. Turner. The vertex separation and
search number of a graph. Inform. Comput., 113:50–79, 1994. doi:10.1006/inco.
1994.1064.

13. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane
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A Omitted proofs in Section 2

A.1 Proof of Corollary 2.1

A useful characterization of pathwidth is via the following search game. We
are given a graph G = (V,E) with all edges contaminated. The goal in this
game is to clear all edges. In each turn, we can place a searcher on a vertex or
delete a searcher from a vertex. An edge is cleared by having searchers on both
endpoints. A cleared edge is immediately recontaminated when a deletion of a
searcher results in a path not passing through any searchers from the edge to a
contaminated edge. The minimum number of searchers needed to clear all edges
of G is the node search number, and we denote it by ns(G). It is known that
ns(G) = pw(G) + 1 for every graph G [19,12,4].

Lemma A.1 (Folklore). Let G = (V,E) be a graph. If G′ is a graph obtained
from G by subdividing a set of edges F ⊆ E arbitrary times, then pw(G′) ≤
pw(G) + 2.

Proof. Let p = pw(G) + 1. Since ns(G) ≤ p, there is a sequence S of placements
and deletions of searchers to clear all edges of G using at most p searchers. To
clear all edges of G′, we extend S as follows. For each placement of a searcher
on a vertex v ∈ V , we insert, right after this placement, a subsequence that
clears all paths corresponding to the edges between v and its neighbors having
searchers on them at this point. This can be done with two extra searchers that
clear the paths one-by-one The extra searchers are deleted in the end of the
subsequence, and thus we only need two extra searchers in total. This implies
that pw(G′) = ns(G′)− 1 ≤ ns(G) + 1 = pw(G) + 2. ut

Lemma A.2 (Folklore). Let G = (V,E) be a graph without isolated vertices.
If G′ is a graph obtained from G by attaching a path of arbitrary length to each
vertex in a set U ⊆ V , then pw(G′) ≤ pw(G) + 1.

Proof. There is a sequence S of placements and deletions of searchers to clear
all edges of G using at most p = pw(G) + 1 searchers. To clear all edges of G′,
we extend S as follows. We replace each placement of a searcher on a vertex
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http://dx.doi.org/10.1007/978-3-642-27875-4
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u ∈ U with a subsequence that clears the path P = (u, p1, p2, . . . , pq) attached
to u. This can be done with two searchers by first placing a searcher on pq, then
placing a searcher on pq−1, deleting a searcher on pq, placing a searcher on pq−2,
and so on. At the end of the subsequence, u has a searcher on it and all other
vertices in P do not have searchers. We need only one extra searcher in total.
Hence, pw(G′) = ns(G′)− 1 ≤ ns(G) = pw(G) + 1. ut

In the proofs of Lemmas A.1 and A.2, we show that search sequences for
the original graph can be “locally” extended for the new graph by using one or
two temporal searchers. Thus we can have the following combined version of the
lemmas as Corollary 2.1.

B Omitted proofs in Section 3

B.1 Proof of Observation 3.1

Proof. Let G = (V,E) be an instance of Hamiltonian Cycle on grid graphs,
which is known to be NP-complete [17]. Since Full-ALPP is clearly in NP, it
suffices to construct an equivalent instance of Full-ALPP in polynomial time.

Observe that the minimum degree δ(G) of G is at most 2. If δ(G) < 2, then G
is a no-instance of Hamiltonian Cycle, and thus we can construct trivial no-
instance of Full-ALPP. Assume that δ(G) = 2, and let v be a vertex of degree 2 in
G with the neighbors u and w. Let G′ be the graph obtained from G by removing
v and adding a (possibly empty) set of α/2− 1 new paths of length |V | − 2. Let
Q be the set of endpoints of the new paths. Then, (G′, {u,w} ∪Q,α/2, |V | − 2)
is a yes-instance of Full-ALPP if and only if G has a Hamiltonian cycle. This
can be seen by observing that each Hamiltonian cycle of G includes edges {u, v}
and {v, w} and that each ({u,w}, |V | − 2)-path in G′ can be extended to a
Hamiltonian cycle of G by using v and the edges {u, v} and {v, w}. ut

B.2 Proof of Observation 3.2

Proof. Given a graph G = (V,E), the λ-Path Partition problem asks whether
G contains k := |V |/(λ + 1) vertex-disjoint paths of length λ. For every fixed
λ ≥ 2, λ-Path Partition is NP-complete [18]. We construct G′ from G by
adding a set A of 2k new vertices, where A is an independent set in G′ and G′

has all possible edges between A and V . We can see that G is a yes-instance
of λ-Path Partition if and only if (G′, A, k, `) is a yes-instance of Full-ALPP,
where ` = λ+ 2 ≥ 4. ut

C Omitted proofs in Section 4

C.1 Proof of Theorem 4.1

Proof. Let G be an n-vertex graph of treewidth at most tw. We compute the
maximum number of vertex-disjoint (A, `)-paths by a standard dynamic pro-
gramming algorithm over a tree decomposition. To this end, it is helpful to use
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so called nice tree decompositions [20]. A tree decomposition ({Xi | i ∈ I}, T =
(I, F )) is nice if T is a rooted tree, each node of T has at most two children, and

– if i ∈ I has no children, then |Xi| = 1;
– if i ∈ I has exactly one child j, then Xi = Xj ∪ {u} for some u /∈ Xj or
Xi = Xj \ {v} for some v ∈ Xj ;

– if i ∈ I has exactly two children j and h, then Xi = Xj = Xh.

We compute a tree decomposition of width at most w = 5tw + 4 in time
2O(tw)n [5], and then convert it in linear time to a nice tree decomposition ({Xi |
i ∈ I}, T = (I, F )) of the same width having O(n) nodes in the tree T [20].

Let Vi =
⋃
j Xj , where the union is taken over all descendants j of i in

T (including i itself). For each i ∈ I, we define the DP table dpi(α, λ, δ, κ) ∈
{true, false} with the indices α : Xi → {B ⊆ A | |B| ≤ 2}, λ : Xi → {0, . . . , `},
δ : Xi → {0, 1, 2}, κ ∈ {0, . . . , |A|/2} such that dpi(α, λ, δ, κ) = true if and only if
there exists a spanning subgraph H of G[Vi] such that all the following conditions
are satisfied.

– all connected components of H are paths, and κ of them are (A, `)-paths;
– each vertex in A ∩ Vi has degree at most 1 in H;
– for each v ∈ Xi, α(v) = V (C(v))∩A, where C(v) is the connected component

of H containing v;
– C(v) contains exactly λ(v) edges for each v ∈ Xi;
– each v ∈ Xi has degree δ(v) in H.

The size of the table dpi is O(|A|2w · (` + 1)w · 3w · |A|/2). Since |A| and ` are
at most n, this table size can be bounded by nO(tw). If we know all table entries
for the root r of T , then we can find the maximum number of vertex-disjoint
(A, `)-paths in G in time nO(tw), by just finding the maximum number κ such
that there exist α, λ, and δ with dpi(α, λ, δ, κ) = true.

It is trivial to compute all the entries for a node i with no children in time
nO(tw). For a node i with one or two children, if the table entries for the children
are already computed, then it is straightforward to compute the table entries
for i in time polynomial in the total table size of the children. This running
time is again nO(tw). Since there are O(n) nodes in T , the total running times is
nO(tw). ut

C.2 Proof of Theorem 4.2

Proof. To show the fixed-parameter tractability of ALPP parameterized by tw+`,
we use the monadic second-order logic (MSO2) of graphs. In an MSO2 formula,
we can use (i) the logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices,
edges, vertex sets, and edge sets, (iii) the quantifiers ∀ and ∃ applicable to these
variables, and (iv) the following binary relations:

– u ∈ U for a vertex variable u and a vertex set variable U ;
– d ∈ D for an edge variable d and an edge set variable D;
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– inc(d, u) for an edge variable d and a vertex variable u, where the interpre-
tation is that d is incident with u;

– equality of variables.

In the following expressions, we use some syntax sugars, such as 6= and /∈, ob-
viously obtained from the definition of MSO2 for ease of presentation. Also, we
follow the convention that in MSO2 formulas, the set variables V and E denote
the vertex and edges sets of the input graph, respectively.

Let ϕ be a fixed MSO2 formula. It is known that given an n-vertex graph of
treewidth w and assignments to some free variables of ϕ, one can find in time
O(f(|ϕ|+w) · n), where f is some computable function, assignments to the rest
of free variables that satisfies ϕ and maximizes a given linear function in the
sizes of the free variables of ϕ [2,9,3].

We can express a formula (A, `)-paths(F ) that is true if and only if F is the
edge set of a set of (A, `)-paths as follows:

(A, `)-paths(F ) := paths(F ) ∧ `-components(F )

∧ (∀v ∈ V (deg=1(v, F ) =⇒ v ∈ A)),

where paths(F ) is true if and only if F is the edge set of a set of paths,
`-components(F ) is true if and only if F is the edge set of a graph that only
has size-` components, and deg=1(v, F ) is true if and only if exactly one edge in
F has v as an endpoint. We can easily express these three subformulas in such
a way that the length of the formula (A, `)-paths(F ) depends only on `. (See
Appendix C.3.)

The formula (A, `)-paths(F ) has two free variables A and F . We assign (or
identify) the terminal vertex set A in the input of ALPP to the variable A,
and maximize the size of F . As mentioned above, this can be done in time
O(f(|ϕ| + w) · n) for n-vertex graphs of treewidth at most w, where f is some
computable function. ut

C.3 Proof of Theorem 4.2

We present the three missing expressions in the proof of Theorem 4.2. Recall that
paths(F ) is true if and only if F is the edge set of a set of paths, `-components(F )
is true if and only if F is the edge set of a graph and deg=1(v, F ) is true if and
only if exactly one edge in F has v as an endpoint.

The following formula deg≤d(v,D) has length depending only on d and is
true if and only if at most d edges in D has v as an endpoint.

deg≤d(v,D) := @e1, . . . , ed+1 ∈ D

 ∧
1≤i≤d+1

inc(ei, v)

 .

Now it is straightforward to express deg=1(v,D) and paths(F ):

deg=1(v,D) := deg≤1(v,D) ∧ ¬deg≤0(v,D),

paths(F ) :=
(
∀v ∈ V (deg≤2(v, F ))

)
∧
(
∀C ⊆ F,∃v ∈ V (deg≤1(v, C))

)
.
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We can express `-components(F ) as follows

`-components(F ) := ∀C ⊆ F (component(C,F ) =⇒ size=`(C)),

where component(C,F ) is true if and only if C is the edge set of a connected
component (i.e., an inclusion-wise maximal connected subgraph) of the graph
induced by F , and size=`(C)) is true if and only if C includes exactly ` edges.

As we allow the expression of size=`(C) to have length depending on `, it is
trivially expressible, e.g., as follows:

size=`(C) := ∃e1, . . . , e` ∈ C ∧
1≤i<j≤`

(ei 6= ej) ∧

∀e′
 ∧

1≤i≤`

(ei 6= e′) =⇒ e′ /∈ C

 .

Expressing the connectivity of the graph induced by an edge set C is a nice
exercise and well known to have the following solution:

connected(C) := ∃U ⊆ V (∀v ∈ V (v ∈ U ⇐⇒ ∃e ∈ C(inc(e, v))))

∧ (∀W ⊆ U(W = U ∨ (∃w ∈W, ∃z /∈W, adj(w, z)))),

where adj(w, z) := ∃e ∈ E(inc(e, w) ∧ inc(e, z)). Using this expression,
component(C,F ) can be presented as follows:

component(C,F ) := connected(C)

∧ ∀e ∈ F (e /∈ C =⇒ ¬connected(C ∪ {e})).

D Omitted proofs in Section 5

The input of Circuit SAT is a Boolean circuit with a number of inputs and
one output. The question is whether the circuit can output true by appropriately
setting its inputs. Circuit SAT is NP-complete since CNF SAT [8] can be
see as a special case. When the underlying graph of the circuit is planar, the
problem is called Planar Circuit SAT. Using planar crossover gadgets [23],
we can show that Planar Circuit SAT is NP-complete. Furthermore, since
NOR gates can replace other gates such as AND, OR, NOT, NAND, and XOR
without introducing any new crossing, we can conclude that Planar Circuit
SAT having NOR gates only is NP-complete.

Let I = (G,A, `) be an instance of Full-ALPP with G = (V,E). Let ψ be a
mapping that assigns each e ∈ E an (A, `)-path inG, and ψ(E) = {ψ(e) | e ∈ E}.
We say that ψ is a guide to I if every set of |A|/2 vertex-disjoint (A, `)-paths, if
any exists, is a subset of ψ(E). When a guide is given additionally to an instance
of Full-ALPP, we call the problem Guided Full-ALPP. Observe that a guide to an
instance is not a restriction but just additional information.

Lemma D.1. For every fixed ` ≥ 4, Guided Full-ALPP is NP-complete on planar
bipartite graphs of maximum degree at most 4.
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Proof. Given a planar circuit with only NOR gates, we construct an equivalent
instance of Guided Full-ALPP with the fixed `. We only need input gadget, output
gadget, split gadget, NOR gadget, and a way to connect the gadgets. See Fig. 6
for the high-level idea of the reduction.

x1

x2
y

split
gadget

NOR
gadget NOR

gadget

x1

x2
y

Fig. 6: A planar circuit and the corresponding ALPP instance (simplified). The
vertices in V \ A are omitted. The connection pairs are marked with dashed
rectangles.

We explicitly present the gadgets for the cases ` = 4 and ` = 5. For even
(odd) ` > 5, the gadgets can be obtained from the one for ` = 4 (` = 5, resp.)
by subdividing b`/2c − 2 times each edge incident to a vertex in A.

Connections between gadgets. We first explain how the gadgets are connected.
Each gadget has one, two, or three pairs of vertices that are shared with other
gadgets. We call them connection pairs. All those vertices belong to the terminal
set A. In the figures, we draw each connection pair so that the two vertices are
next to each other vertically and mark them with a dashed rectangle. If the
(A, `)-paths using the vertices of a connection pair are going to the positive
direction, then we interpret it as that a true signal is sent via the connection
pair. If the paths are going to the negative direction, then the connection pair
is carrying a false signal. (See Fig. 7.) Note that our reduction below forces the
paths at each connection pair to proceed in the same direction.

true false

Fig. 7: (A, `)-paths at a connection pair. We draw an (A, `)-path as a gray bar.

Input gadgets. The input gadget is simply a path of length 3`, where the end-
points form its unique connection pair. See Fig. 8. For a full (A, `)-path packing,
we only have two options. One corresponds to true input (Fig. 8c) and the other
to false input (Fig. 8d).
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(a) ` = 4. (b) ` = 5.

true

(c) When input is
true.

false

(d) When input is
false.

Fig. 8: The input gadgets. The black vertices belong to A and the white vertices
belong to V \A.

Output gadgets. The output gadget consists of two paths of length `, where its
unique connection pair includes one endpoint from each path. See Fig. 9. To
have a full packing, the input to this gadget has to be true.

(a) ` = 4 (b) ` = 5

true

(c) When output is
true.

false

(d) When output is
false.

Fig. 9: The output gadgets.

Split gadgets. To simulate the split of a wire depicted in Fig. 10, the split gadget
consists of three paths of length 3`, each of which is identical to the input gadget,
and a cycle of length 10` that synchronizes the three paths. See Fig. 11. To have
a full (A, `)-path packing, there are only two ways to pack (A, `)-paths into a
split gadget. Fig. 12 shows the two ways: one on the left corresponds to a split
of a true signal, and the other a split of a false signal.

x
y1

y2

Fig. 10: Splitting a wire in a circuit.

NOR gadgets. Recall that NOR stands for “NOT OR” and that the output y
of a NOR gate is true if and only if both inputs x1 and x2 are false. The NOR
gadgets are given in Fig. 13. The structure of the gadget is rather involved. It
has three connection pairs, two for the inputs and one for the output, and the
endpoints of each pair are connected by a path of length 5`. Additionally, there is
a long self-intersecting cycle that somehow entangles the inputs and the output.
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x y1

y2

(a) ` = 4.

x y1

y2

(b) ` = 5.

Fig. 11: The split gadgets.

x y1

y2

true true

true

(a) Splitting true signal.

x y1

y2

false false

false

(b) Splitting false signal.

Fig. 12: The possible (A, `)-path packings of the split gadget.

There are only four ways to fully pack (A, `)-paths into a NOR gadget, and each
packing corresponds to a correct behavior of a NOR gate (see Fig. 14). To see
the correctness of Fig. 14, it is important to observe that in the NOR gadgets
for even `, there are some (A, `)-paths that are never used in a full (A, `)-path
packing. For example, the (A, `)-path with endpoints v1 and v2 in Fig. 13a is
such a path. In a full (A, `)-path packing, w2 has to be an endpoint of an (A, `)-
path either with w1 or w3. Hence, if we use the (A, `)-path with endpoints v1
and v2, then one of u1 and u2 cannot belong to any (A, `)-path in the packing.

Guides. The guide ψ(e) for each e ∈ E can be easily set from Figures 8c, 8d,
9c, 12a, 12b, 14a, 14b, 14c, and 14d. For each edge e, the unique gray bar that
includes the edge represents the (A, `)-path ψ(e).

Correctness. The correctness of each gadget implies the correctness of the whole
reduction. Thus, it suffices to show that the output of the reduction is planar
bipartite graph of maximum degree at most 4. The resultant graph clearly has
maximum degree 4 and is planar. To see that the graph is bipartite, consider
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x1

x2

y

x
y1
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x1

x2

y x1
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y

(a) ` = 4.

x1

x2

y

(b) ` = 5.

Fig. 13: The NOR gadgets.

a 2-coloring of a gadget, which is not the output gadget. If ` is even, then all
vertices in the connection pairs have the same color. If ` is odd, then each upper
vertex of a connection pair in the figures has the same color, and the other
vertices in the connection pairs have the other color. Therefore, the entire graph
is 2-colorable. ut

Let (G,A, `, ψ) be an instance of Guided Full-ALPP with G = (V,E). For
e = {v, w} ∈ E, we denote by de the length of the subpath of ψ(e) starting at
v, passing w, and reaching an endpoint of ψ(e). Let Ge be the graph obtained
from G by subdividing e, 2` times. Let Pe be the v-w path of length 2`+1 in Ge
corresponding to e. We set Ae = A ∪ {x0, x1}, where x0 and x1 are the vertices
that have distance de and de + ` from v in Pe, respectively. (See Fig. 15.)

For each edge h of Ge, we set ψe(h) = ψ(h) if h is not contained in the path
Pψ(e) of length 3` that corresponds to ψ(e). If h is contained in Pψ(e), then we set
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y

x1

x2
false

true

true

(a) When input is (true, true).

y

x1

x2
false

true

false

(b) When input is (true, false).

y

x2

x1

false

true

false

(c) When input is (false, true).

y

x1

x2
true

false

false

(d) When input is (false, false).

Fig. 14: The possible (A, `)-path packings of the NOR gadget.

v w

v w

v w

v w

v w

v w

v w

v w

Fig. 15: Subdividing e and introducing two new terminals (` = 4).

ψe(h) to be the unique (A, `)-path in Pψ(e) that contains h. Observe that ψe is a
guide to (Ge, Ae, `). Furthermore, (G,A, `, ψ) and (Ge, Ae, `, ψe) are equivalent
(see Fig. 16): if ψ(e) is used in a full (A, `)-path packing of G, then we use two
(A, `)-paths in Pψ(e); otherwise we use the middle (A, `)-path in Pψ(e) connecting
two new terminals.

Observation D.2. (G,A, `, ψ) and (Ge, Ae, `, ψe) are equivalent instances of
Guided Full-ALPP.

Now we are ready to prove the main theorem of this section.

Theorem D.3 (Theorem 5.1). For every fixed ` ≥ 4, Full-ALPP is NP-
complete on grid graphs.
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Fig. 16: Equivalence of (G,A, `, ψ) and (Ge, Ae, `, ψe).

Proof. We reduce Guided Full-ALPP on planar bipartite graphs of maximum
degree at most 4 for fixed ` ≥ 4 (which is NP-complete by Lemma D.1) to Full-
ALPP on grid graphs for the same `. Let (G,A, `, ψ) be an instance of Guided
Full-ALPP, where G = (V,E) is a planar bipartite graph of maximum degree at
most 4.

A rectilinear embedding of a graph is a planar embedding into the Z2 grid
such that

– each vertex is mapped to a grid point;
– each edge {u, v} is mapped to a rectilinear path between u and v consisting

of vertical and horizontal segments connecting grid points;
– the rectilinear paths corresponding to two different edges may intersect only

at their endpoints.

Every planar graph of maximum degree at most 4 has a rectilinear embedding,
and a rectilinear embedding of area at most (n+ 1)2 can be computed in linear
time [21], where n is the number of vertices.

Let R1 be a rectilinear embedding of G with area at most (n + 1)2. By
multiplying each coordinate in the embedding by 2`, we obtain an enlarged
rectilinear embedding R2 of G. Let U be one color class of a 2-coloring of G. Now,
for each v ∈ U , we locally modify R2 around the grid point (xv, yv) corresponding
to v as illustrated in Fig. 17. We denote by R3 the locally modified embedding.

Fig. 17: Local modification around v. The grid point of v is moved to (xv+1, yv).

From R3, we construct a new graph G′ and its rectilinear embedding R′

by inserting degree-2 vertices at each intersection point of a grid point and the
inner part of a rectilinear path corresponding to an edge. Clearly, G′ is a grid
graph. Let e ∈ E and λe be the (geometric) length of the rectilinear path in
R1 corresponding to e. Then the rectilinear path in R3 corresponding to e has
length 2` · λe + 1. Therefore, G′ is the graph obtained from G by subdividing
each edge e, 2` ·λe times. By Observation D.2, we can easily compute A′ and ψ′
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such that (G,A, `, ψ) is equivalent to (G′, A′, `, ψ′). Finally, from the definition
of a guide to an instance of Full-ALPP, (G′, A′, `, ψ′) is equivalent to (G′, A′, `).
As everything in this reduction can be done in time polynomial, the theorem
holds. ut
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