
Parameterized Max Min Feedback Vertex Set1

Michael Lampis #2

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France3

Nikolaos Melissinos #4

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical5

University in Prague, Czech Republic6

Manolis Vasilakis #7

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France8

Abstract9

Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices10

of size at least k whose deletion destroys all cycles. We present several results that improve upon11

the state of the art of the parameterized complexity of this problem with respect to both structural12

and natural parameters.13

Using standard DP techniques, we first present an algorithm of time twO(tw)nO(1), significantly14

generalizing a recent algorithm of Gaikwad et al. of time vcO(vc)nO(1), where tw, vc denote the input15

graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms16

are essentially optimal, since a vco(vc)nO(1) algorithm would refute the ETH.17

With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al.18

claimed an FPT branching algorithm with complexity 10knO(1). We point out that this algorithm is19

incorrect and present a branching algorithm of complexity 9.34knO(1).20

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact21

algorithms22

Keywords and phrases ETH, Feedback vertex set, Parameterized algorithms, Treewidth23

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2324

Related Version Full Version: https://arxiv.org/abs/2302.0960425

Funding Michael Lampis: Partially supported by the ANR project ANR-21-CE48-0022 (S-EX-AP-26

PE-AL).27

Nikolaos Melissinos: Supported by the CTU Global postdoc fellowship program.28

Acknowledgements Work primarily conducted while Nikolaos Melissinos was affiliated with Univer-29

sité Paris-Dauphine.30

1 Introduction31

We consider a MaxMin version of the well-studied feedback vertex set problem where, given32

a graph G = (V, E) and a target size k, we are asked to find a set of vertices S with the33

following properties: (i) every cycle of G contains a vertex of S, that is, S is a feedback34

vertex set (ii) no proper subset of S is a feedback vertex set, that is, S is minimal (iii)35

|S| ≥ k. Although much less studied than its minimization cousin, Max Min FVS has36

recently attracted attention in the literature as part of a broader study of MaxMin versions37

of standard problems, such as Max Min Vertex Cover and Upper Dominating Set.38

The main motivation of this line of research is the search for a deeper understanding of the39

performance of simple greedy algorithms: given an input, we would like to compute what is40

the worst possible solution that would still not be improvable by a simple heuristic, such as41

removing redundant vertices. Nevertheless, over recent years MaxMin problems have been42

© Michael Lampis, Nikolaos Melissinos and Manolis Vasilakis;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michail.lampis@dauphine.fr
https://orcid.org/0000-0002-5791-0887
mailto:nik.melissinos@gmail.com
https://orcid.org/0000-0002-0864-9803
mailto:emmanouil.vasilakis@dauphine.eu
https://orcid.org/0000-0001-6505-2977
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://arxiv.org/abs/2302.09604
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Parameterized Max Min Feedback Vertex Set

found to possess an interesting combinatorial structure of their own and have now become43

an object of more widespread study (we survey some such results below).44

It is not surprising that Max Min FVS is known to be NP-complete and is in fact45

significantly harder than Minimum FVS in most respects, such as its approximability or its46

amenability to algorithms solving special cases. Given the problem’s hardness, in this paper47

we focus on the parameterized complexity of Max Min FVS, since parameterized complexity48

is one of the main tools for dealing with computational intractability1. We consider two49

types of parameterizations: the natural parameter k; and the parameterization by structural50

width measures, such as treewidth. In order to place our results into perspective, we first51

recall the current state of the art.52

Previous work. Max Min FVS was first shown to be NP-complete even on graphs of53

maximum degree 9 by Mishra and Sikdar [32]. This was subsequently improved to NP-54

completeness for graphs of maximum degree 6 by Dublois et al. [20], who also present an55

approximation algorithm with ratio n2/3 and proved that this is optimal unless P=NP. A56

consequence of the polynomial time approximation algorithm of [20] was the existence of57

a kernel of order O(k3), which implied that the problem is fixed-parameter tractable with58

respect to the natural parameter k. Some evidence that this kernel size may be optimal was59

later given by [2]. We note also that the problem can easily be seen to be FPT parameterized60

by treewidth (indeed even by clique-width) as the property that a set is a minimal feedback61

vertex set is MSO1-expressible, so standard algorithmic meta-theorems apply.62

Given the above, the state of the art until recently was that this problem was known63

to be FPT for the two most well-studied parameterizations (by k and by treewidth), but64

concrete FPT algorithms were missing. An attempt to advance this state of the art and65

systematically study the parameterized complexity of the problem was recently undertaken66

by Gaikwad et al. [23], who presented exact algorithms for this problem running in time67

10knO(1) and vcO(vc)nO(1), where vc is the input graph’s vertex cover, which is known to be68

a (much) more restrictive parameter than treewidth. Leveraging the latter algorithm, [23]69

also present an FPT approximation scheme which can (1 − ε)-approximate the problem in70

time 2O(vc/ε)nO(1), that is, single-exponential time with respect to vc.71

Our contribution. We begin our work by considering Max Min FVS parameterized by72

the most standard structural parameter, treewidth. We observe that, using standard DP73

techniques, we can obtain an algorithm running in time twO(tw)nO(1), that is, slightly super-74

exponential with respect to treewidth. Note that this slightly super-exponential running75

time is already present in the vcO(vc)nO(1) algorithm of [23], despite the fact that vertex76

cover is a much more severely restricted parameter. Hence, our algorithm generalizes the77

algorithm of [23] without a significant sacrifice in the running time.78

Despite the above, our main contribution with respect to structural parameters is not79

our algorithm for parameter treewidth, but an answer to a question that is naturally posed80

given the above: can the super-exponential dependence present in both our algorithm and81

the algorithm of [23] be avoided, that is, can we obtain a 2O(tw)nO(1) algorithm? We show82

that this is likely impossible, as the existence of an algorithm running in time vco(vc)nO(1) is83

ruled out by the ETH (and hence also the existence of a two(tw)nO(1) algorithm). This result84

is likely to be of wider interest to the parameterized complexity community, where one of85

1 Throughout the paper we assume that the reader is familiar with the basics of parameterized complexity,
as given in standard textbooks [16].

M. Lampis, N. Melissinos and M. Vasilakis 23:3

the most exciting developments of the last fifteen years has arguably been the development86

of the Cut&Count technique (and its variations). One of the crowning achievements of this87

technique is the design of single-exponential algorithms for connectivity problems – indeed an88

algorithm running in time 3twn for Minimum FVS is given in [17]. It has therefore been of89

much interest to understand which connectivity problems admit single-exponential algorithms90

using such techniques (see e.g. [7] and the references within). Curiously, even though several91

cousins of Minimum Feedback Vertex Set have been considered in this context (such as92

Subset Feedback Vertex Set and Restricted Edge-Subset Feedback Edge Set),93

for Max Min FVS, which is arguably a very natural variant, it was not known whether a94

single-exponential algorithm for parameter treewidth is possible. Our work thus adds to the95

literature a natural connectivity problem where Cut&Count can provably not be applied96

(under standard assumptions). Interestingly, our lower bound even applies to the case of97

vertex cover, which is rare, as most problems tend to become rather easy under this very98

restrictive parameter.99

We then move on to consider the parameterization of the problem by k, the size of the100

sought solution. Observe that a kO(k)nO(1) algorithm can easily be obtained by the results101

sketched above and a simple win/win argument: start with any minimal feedback vertex102

set S of the given graph G: if |S| ≥ k we are done; if not, then tw(G) ≤ k and we can solve103

the problem using the algorithm for treewidth. It is therefore only interesting to consider104

algorithms with a single-exponential dependence on k. Such an algorithm, with complexity105

10knO(1), was claimed by [23]. Unfortunately, as we explain in detail in Section 5, this106

algorithm contains a significant flaw2.107

Our contribution is to present a corrected version of the algorithm of [23], which also108

achieves a slightly better running time of 9.34knO(1), compared to the 10knO(1) of the (flawed)109

algorithm of [23]. Our algorithm follows the same general strategy of [23], branching and110

placing vertices in the forest or the feedback vertex set. However, we have to rely on a more111

sophisticated measure of progress, because simply counting the size of the selected set is not112

sufficient. We therefore measure our progress towards a restricted special case we identify,113

namely the case where the undecided part of the graph induces a linear forest. Though114

this special case sounds tantalizingly simple, we show that the problem is still NP-complete115

under this restriction, but obtaining an FPT algorithm is much easier. We then plug in our116

algorithm to a more involved branching procedure which aims to either reduce instances into117

this special case, or output a certifiable minimal feedback vertex set of the desired size.118

Finally, motivated by the above we note that a blocking point in the design of algorithms119

for Max Min FVS seems to be the difficulty of the extension problem: given a set S0,120

decide if a minimal fvs S that extends S0 exists. As mentioned, Casel et al. [13] showed121

that this problem is W[1]-hard parameterized by |S0|. Intriguingly, however, it is not even122

known if this problem is in XP, that is, whether it is solvable in polynomial time for fixed123

k. We show that this is perhaps not surprising, as obtaining a polynomial time algorithm124

in this case would imply the existence of a polynomial time algorithm for the notorious125

k-in-a-Tree problem: given k terminals in a graph, find an induced tree that contains them.126

Since this problem was solved for k = 3 in a breakthrough by Chudnovsky and Seymour [15],127

the complexity for fixed k ≥ 4 has remained a big open problem (for example [29] states128

that “Solving it in polynomial time for constant k would be a huge result”). It is therefore129

perhaps not surprising that obtaining an XP algorithm for the extension problem for minimal130

feedback vertex sets of fixed size is challenging, since such an algorithm would settle another131

2 Saket Saurabh, one of the authors of [23], confirmed so via private communication with Michael Lampis.

CVIT 2016

23:4 Parameterized Max Min Feedback Vertex Set

long-standing problem.132

Other relevant work. As mentioned, Max Min FVS is an example of a wider class of133

MaxMin problems which have recently attracted much attention in the literature, among134

the most well-studied of which are Maximum Minimal Vertex Cover [2, 11, 12, 34] and135

Upper Dominating Set (which is the standard name for Maximum Minimal Dominating136

Set) [1, 3, 5, 21]. Besides these problems, MaxMin or MinMax versions of cut and separations137

problems [19, 26, 30], knapsack problems [22, 24], matching problems [14], and coloring138

problems [6] have also been studied.139

The question of which connectivity problems admit single-exponential algorithms param-140

eterized by treewidth has been well-studied over the last decade. As mentioned, the main141

breakthrough was the discovery of the Cut&Count technique [16], which gave randomized142

2O(tw)nO(1) algorithms for many such problems, such as Steiner Tree, Hamiltonicity,143

Connected Dominating Set and others. Follow-up work also provided deterministic144

algorithms with complexity 2O(tw)nO(1) [8]. It is important to note that the discovery of145

these techniques was considered a surprise at the time, as the conventional wisdom was that146

connectivity problems probably require twO(tw) time to be solved [31]. Naturally, the topic147

was taken up with much excitement, in an attempt to discover the limits of such techniques,148

including problems for which they cannot work. In this vein, [33] gave a meta-theorem149

capturing many tractable problems, and also an example problem that cannot be solved in150

time 2o(tw2)nO(1) under the ETH. Several other examples of connectivity problems which151

require slightly super-exponential time parameterized by treewidth are now known [4, 27],152

with the most relevant to our work being the feedback vertex set variants studied in [7, 10],153

as well as the digraph version of the minimum feedback vertex set problem (parameterized154

by the treewidth of the underlying graph) [9]. The results of our paper seem to confirm the155

intuition that the Cut&Count technique is rather fragile when applied to feedback vertex set156

problems, since in many variations or generalizations of this problem, a super-exponential157

dependence on treewidth is inevitable (assuming the ETH).158

2 Preliminaries159

Throughout the paper, we use standard graph notation [18]. Moreover, for vertex u ∈ V (G),160

let degX(u) denote its degree in G[X ∪ {u}], where X ⊆ V (G). A multigraph G is a graph161

which is permitted to have multiple edges with the same end nodes, thus, two vertices may162

be connected by more than one edge. Given a (multi)graph G, where e = {u, v} ∈ E(G) is a163

not necessarily unique edge connecting distinct vertices u and v, the contraction of e results164

in a new graph G′ such that V (G′) = (V (G) \ {u, v}) ∪ {w}, while for each edge {u, x} or165

{v, x} in E(G), there exists an edge {w, x} in E(G′). Any edge e ∈ E(G) not incident to166

u, v also belongs to E(G′). If u and v were additionally connected by an edge apart from e,167

then w has a self loop.168

For i ∈ N, [i] denotes the set {1, . . . , i}. A feedback vertex set S of G is minimal if and169

only if ∀s ∈ S, G[(V (G) \ S) ∪ {s}] contains a cycle, namely a private cycle of s [21]. Lastly,170

we make use of a weaker version of ETH, which states that 3-SAT cannot be determined in171

time 2o(n), where n denotes the number of the variables [28].172

Finally, note that the proofs of all lemmas and theorems marked with (⋆) are in the173

appendix.174

M. Lampis, N. Melissinos and M. Vasilakis 23:5

3 Treewidth Algorithm175

Here we will present an algorithm for Max Min FVS parameterized by the treewidth of176

the input graph, arguably the most well studied structural parameter. As a corollary of the177

lower bound established in Section 4, it follows that the running time of the algorithm is178

essentially optimal under the ETH.179

▶ Theorem 1. (⋆) Given an instance I = (G, k) of Max Min FVS, as well as a nice tree180

decomposition of G of width tw, there exists an algorithm that decides I in time twO(tw)nO(1).181

Proof sketch. The main idea lies on performing standard dynamic programming on the182

nodes of the nice tree decomposition. To this end, for each node, we will consider all the183

partial solutions, corresponding to (not necessarily minimal) feedback vertex sets of the184

subgraph induced by the vertices of the nodes of the corresponding subtree of the tree185

decomposition. We will try to extend such a feedback vertex set to a minimal feedback186

vertex set of G, that respects the partial solution. For each partial solution, it is imperative187

to identify, apart from the vertices of the bag that belong to the feedback vertex set, the188

connectivity of the rest of the vertices in the potential final forest. In order to do so, we189

consider a coloring indicating that, same colored vertices of the forest of the partial solution,190

should be in the same connected component of the potential final forest. Moreover, we keep191

track of which vertices of the forest of the partial solution are connected via paths containing192

forgotten vertices. Finally, for each vertex of the feedback vertex set of the partial solution,193

we need to identify one of its private cycles. To do so, we first guess the connected component194

of the potential final forest that “includes” such a private cycle, while additionally keeping195

track of the number of edges between the vertex and said component. ◀196

4 ETH Lower Bound197

In this section we present a lower bound on the complexity of solving Max Min FVS198

parameterized by vertex cover. Starting from a 3-SAT instance on n variables, we produce199

an equivalent Max Min FVS instance on a graph of vertex cover O(n/ log n), hence200

any algorithm solving the latter problem in time vco(vc)nO(1) would refute the ETH. As201

already mentioned, vertex cover is a very restrictive structural parameter, and due to known202

relationships of vertex cover with more general parameters, such as treedepth and treewidth,203

analogous lower bounds follow for these parameters. We first state the main theorem.204

▶ Theorem 2. There is no vco(vc)nO(1) time algorithm for Max Min FVS, where vc denotes205

the size of the minimum vertex cover of the input graph, unless the ETH fails.206

Before we present the details of our construction, let us give some high-level intuition.207

Our goal is to “compress” an n-variable instance of 3-SAT, into an Max Min FVS instance208

with vertex cover roughly n/ log n. To this end, we will construct log n choice gadgets, each209

of which is supposed to represent n/ log n variables, while contributing only n/ log2 n to the210

vertex cover. Hence, each vertex of each such gadget must be capable of representing roughly211

log n variables.212

Our choice gadget may be thought of as a variation of a bipartite graph with sets L, R, of213

size roughly n/ log2 n and
√

n respectively. If one naively tries to encode information in such214

a gadget by selecting which vertices of L ∪ R belong in an optimal solution, this would only215

give 2 choices per vertex, which is not efficient enough. Instead, we engineer things in a way216

that all vertices of L ∪ R must belong in the forest in an optimal solution, and the interesting217

CVIT 2016

23:6 Parameterized Max Min Feedback Vertex Set

choice for a vertex ℓ of L is with which vertex r of R we will place ℓ in the same component.218

In this sense, a vertex ℓ of L has |R| choices, which is sufficient to encode the assignment for219

Ω(log n) variables. What remains, then, is to add machinery that enforces this basic setup,220

and then clause checking vertices which for each clause verify that the clause is satisfied by221

testing if an ℓ vertex that represents one of its literals is in the same component as an r222

vertex that represents a satisfying assignment for the clause.223

4.1 Preliminary Tools224

Before we present the construction that proves Theorem 2, we give a variant of 3-SAT from225

which it will be more convenient to start our reduction, as well as a basic force gadget that226

we will use in our construction to ensure that some vertices must be placed in the forest in227

order to achieve an optimal solution.228

3P3SAT. We first define a constrained version of 3-SAT, called 3-Partitioned-3-SAT229

(3P3SAT for short), and establish its hardness under the ETH.230

3-Partitioned-3-SAT
Input: A formula ϕ in 3-CNF form, together with a partition of the set of its variables V

into three disjoint sets V1, V2, V3, with |Vi| = n, such that no clause contains more than
one variable from each Vi.
Task: Determine whether ϕ is satisfiable.

231

232

▶ Theorem 3. (⋆) 3-Partitioned-3-SAT cannot be decided in time 2o(n), unless the ETH233

fails.234

Force gadgets. We now present a gadget that will ensure that a vertex u must be placed235

in the forest in any solution that finds a large minimal feedback vertex set. In the remainder,236

suppose that A is a sufficiently large value (we give a concrete value to A in the next section).237

When we say that we attach a force gadget to a vertex u, we introduce A + 1 new vertices238

ū, u1, . . . , uA to the graph such that the vertices ui form an independent set, while there239

exist edges {u, ui}, {ū, ui} for all i ∈ [A], as well as the edge {u, ū}. We refer to vertex ū as240

the gadget twin of u, while the rest of the vertices will be referred to as the gadget leaves of241

u. Intuitively, the idea here is that if u (or ū) is contained in a minimal feedback vertex set,242

then none of the A leaves of the gadget can be taken, because these vertices cannot have243

private cycles. Hence, setting A to be sufficiently large will allow us to force u to be in the244

forest.245

4.2 Construction246

Let ϕ be a 3P3SAT instance of m clauses, where |Vp| = n for p ∈ [3] and, without loss of247

generality, assume that n is a power of 4 (this can be achieved by adding dummy variables248

to the instance if needed). Partition each variable set Vp to log n subsets V q
p of size at most249

⌈ n
log n ⌉, where p ∈ [3] and q ∈ [log n]. Let L = ⌈ n

log2 n
⌉. Moreover, partition each variable250

subset V q
p into 2L subsets Vp,q

α of size as equal as possible, where α ∈ [2L]. In the following251

we will omit p and q and instead use the notation Vα, whenever p, q are clear from the252

context. Define R =
√

n, A = n2 + m and k = (4AL + AR + 2LR) · 3 log n + m. We will253

proceed with the construction of a graph G such that G has a minimal feedback vertex set254

of size at least k if and only if ϕ is satisfiable.255

M. Lampis, N. Melissinos and M. Vasilakis 23:7

For each variable subset V q
p , we define the choice gadget graph Gq

p as follows:256

V (Gq
p) = {ℓi, ℓ′

i, κi, λi | i ∈ [2L]} ∪ {rj | j ∈ [R]} ∪ {mi
j | i ∈ [2L], j ∈ [R]},257

all the vertices ℓi, ℓ′
i and rj have an attached force gadget,258

for i ∈ [2L], N(κi) = Mi ∪ {λi} and N(λi) = Mi ∪ {κi}, where Mi = {mi
j | j ∈ [R]},259

for i ∈ [2L] and j ∈ [R], mi
j has an edge with ℓi, ℓ′

i and rj .260

We will refer to the set Xi = Mi ∪ {κi, λi} as the choice set i.261

Intuitively, one can think of this gadget as having been constructed as follows: we start262

with a complete bipartite graph that has on one side the vertices ℓi and on the other the263

vertices rj ; we subdivide each edge of this graph, giving the vertices mi
j ; for each i ∈ [2L] we264

add ℓ′
i, κi, λi, connect them to the same mi

j vertices that ℓi is connected to and connect κi to265

λi; we attach force gadgets to all ℓi, ℓ′
i, rj . Hence, as sketched before, the idea of this gadget266

is that the choice of a vertex ℓi is to pick an rj with which it will be in the same component267

in the forest, and this will be expressed by picking one mi
j that will be placed in the forest.268

ℓi

ℓ′
i

mi
1

mi
2

...

mi
R

r1

r2

...

rR

κi λi

(a) Part of the construction concerning Xi.

ℓ2L

ℓ′
2L

...

ℓ1

ℓ′
1

m2L
1

...

m2L
R

m1
1

...
m1

R

κ2L λ2L

κ1 λ1

r1

...

rR

(b) The whole choice gadget graph Gq
p.

Figure 1 Black vertices have a force gadget attached.

Each vertex ℓα of Gq
p is used to represent a variable subset Vp,q

α ⊆ V q
p containing at most269

|Vp,q
α | ≤

⌈
|V p,q|

2L

⌉
≤

⌈
⌈ n

log n ⌉
2L

⌉
=

⌈
n

2L log n

⌉
≤

⌈
n

2 n
log2 n

log n

⌉
=

⌈
log n

2

⌉
= log n

2270

variables of ϕ, where we used Theorem 3.10 of [25], for f(x) = x/2L. We fix an arbitrary271

one-to-one mapping so that every vertex mα
β , where β ∈ [R], corresponds to a different272

assignment for this subset, which is dictated by which element of Mα was not included in the273

final feedback vertex set. Since R = 2log n/2 =
√

n, the size of Mα is sufficient to uniquely274

encode all the different assignments of Vα.275

Finally, introduce vertices ci, where i ∈ [m], each of which corresponds to a clause of ϕ,276

and define graph G as the union of these vertices as well as all graphs Gq
p, where p ∈ [3]277

and q ∈ [log n]. For a clause vertex c, add an edge to ℓα when Vα contains a variable278

appearing in c, as well as to the vertices rβ for each such ℓα, such that mα
β /∈ S corresponds279

to an assignment of Vα satisfying c, where S denotes a minimal feedback vertex set. Notice280

that since no clause contains multiple variables from the same variable set Vi, due to the281

refinement of the partition of the variables, it holds that all the variables of a clause will be282

represented by vertices appearing in distinct Gq
p.283

CVIT 2016

23:8 Parameterized Max Min Feedback Vertex Set

4.3 Correctness284

Having constructed the previously described instance (G, k) of Max Min FVS, it remains285

to prove its equivalence with the initial 3-Partitioned-3-SAT instance.286

▶ Lemma 1. (⋆) Any minimal feedback vertex set S of G of size at least k has the following287

properties:288

(i) S does not contain any vertex attached with a force gadget or its gadget twin,289

(ii) |Mi \ S| ≤ 1, for every Gq
p and i ∈ [2L],290

(iii) |S ∩ V (Gq
p)| = 4AL + AR + 2LR,291

where p ∈ [3] and q ∈ [log n].292

▶ Lemma 2. (⋆) If ϕ has a satisfying assignment, then G has a minimal feedback vertex set293

of size at least k.294

▶ Lemma 3. (⋆) If G has a minimal feedback vertex set of size at least k, then ϕ has a295

satisfying assignment.296

▶ Lemma 4. (⋆) vc(G) = O(n/ log n).297

Using the previous lemmas, we can prove Theorem 2.298

Proof of Theorem 2. Let ϕ be a 3-Partitioned-3-SAT formula. In polynomial time, we299

can construct a graph G such that, due to Lemmas 2 and 3, deciding if G has a minimal300

feedback vertex set of size at least k is equivalent to deciding if ϕ has a satisfying assignment.301

In that case, assuming there exists a vco(vc) algorithm for Max Min FVS, one could decide302

3-Partitioned-3-SAT in time303

vco(vc) =
(

n

log n

)o(n/ log n)
= 2(log n−log log n)o(n/ log n) = 2o(n),304

which contradicts the ETH due to Theorem 3. ◀305

Since for any graph G it holds that tw(G) ≤ vc(G), the following corollary holds.306

▶ Corollary 4. There is no two(tw)nO(1) time algorithm for Max Min FVS, where tw denotes307

the treewidth of the input graph, unless the ETH fails.308

5 Natural Parameter Algorithm309

In this section we will present an FPT algorithm for Max Min FVS parameterized by the310

natural parameter, i.e. the size of the maximum minimal feedback vertex set k. The main311

theorem of this section is the following.312

▶ Theorem 5. Max Min FVS can be solved in time 9.34knO(1).313

Structure of the Section. In Section 5.1 we define the closely related Annotated MMFVS314

problem, and prove that it remains NP-hard, even on some instances of specific form, called315

path restricted instances. Subsequently, we present an algorithm dealing with this kind of316

instances, which either returns a minimal feedback vertex set of size at least k or concludes317

that this is a No instance of Annotated MMFVS. Afterwards, in Section 5.2, we solve318

Max Min FVS by producing a number of instances of Annotated MMFVS and utilizing319

the previous algorithm, therefore proving Theorem 5.320

M. Lampis, N. Melissinos and M. Vasilakis 23:9

Oversight of [23]. The algorithm of [23] performs a branching procedure which marks321

vertices as either belonging in the feedback vertex set or the remaining forest. The flaw is322

that the algorithm ceases the branching once k vertices have been identified as vertices of323

the feedback vertex set. However, this is not correct, since deciding if a given set S0 can be324

extended into a minimal feedback vertex set S ⊇ S0 is NP-complete and even W[1]-hard325

parameterized by |S0| [13]. Hence, identifying k vertices of the solution is not, in general,326

sufficient to produce a feasible solution and the algorithm of [23] is incomplete, because it327

does not explain how the guessed part of the feedback vertex set can be extended into a328

feasible minimal solution.329

5.1 Annotated MMFVS and Path Restricted Instances330

First, we define the following closely related problem, denoted by Annotated MMFVS for331

short.332

Annotated Maximum Minimal Feedback Vertex Set
Input: A graph G = (V, E), disjoint sets S, F ⊆ V where S ∪ F is a feedback vertex set
of G, as well as an integer k.
Task: Determine whether there exists a minimal feedback vertex set S′ of G of size
|S′| ≥ k such that S ⊆ S′ and S′ ∩ F = ∅.

333

334

Remarks. Notice that if F is not a forest, then the corresponding instance always has335

a negative answer. For the rest of this section, let U = V (G) \ (S ∪ F). Moreover, let336

H = {s ∈ S | degF (s) ≥ 2 and degU (s) ≤ 1} denote the set of good vertices of S. An337

interesting path of G[U] is a connected component of G[U] such that for every vertex u338

belonging to said component, it holds that degF ∪U (u) = 2. If every connected component339

of G[U] is an interesting path, then this is a path restricted instance. Furthermore, given340

instance I, let ammfvs(I) be equal to 1 if it is a Yes instance and 0 otherwise.341

Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS. We will342

present an algorithm that either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of343

size at least k or concludes that this is a No instance of Annotated MMFVS. Notice that344

Annotated MMFVS remains NP-hard even on such instances, as dictated by Theorem 6.345

Therefore, we should not expect to solve path restricted instances of Annotated MMFVS346

in polynomial time.347

▶ Theorem 6. (⋆) Annotated MMFVS is NP-hard on path restricted instances, even if348

all the paths are of length 2.349

We proceed by presenting the main algorithm of this subsection, which will be essential350

in proving Theorem 5.351

▶ Theorem 7. (⋆) Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS,352

and let g denote the number of its good vertices. There is an algorithm running in time353

O(3k−gnO(1)) which either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of size at354

least k or concludes that I is a No instance of Annotated MMFVS.355

Proof sketch. The main idea of the algorithm lies on the fact that we can efficiently handle356

instances where either k = 0 or S = ∅. Towards this, we will employ a branching strategy357

that, as long as S remains non empty, new instances with reduced k are produced. Prior to358

performing branching, we first observe that we can efficiently deal with the good vertices.359

CVIT 2016

23:10 Parameterized Max Min Feedback Vertex Set

Afterwards, by employing said branching strategy, in every step we decide which vertex will360

be counted towards the k required, thereby reducing parameter k on each iteration. If at361

some point k = 0 or S = ∅, it remains to decide whether this comprises a viable solution S′.362

Notice that S′ may not be a solution for the annotated instance, since even if |S′| ≥ k, it363

does not necessarily hold that S′ ⊇ S. ◀364

5.2 Algorithm for Max Min FVS365

We start by presenting a high level sketch of the algorithm for Max Min FVS. The starting366

point is a minimal feedback vertex set S0 of G. Note that such a set can be obtained367

in polynomial time, while if it is of size at least k, we are done. Therefore, assume that368

|S0| < k. Then, assuming there exists a minimal feedback vertex set S∗, where |S∗| ≥ k and369

F ∗ = V (G)\S∗, we will guess S0∩S∗, thereby producing instances I0 = (G, S0∩S∗, S0∩F ∗, k)370

of Annotated MMFVS. Subsequently, we will establish a number of safe reduction rules,371

which do not affect the answer of the instances. We will present a measure of progress µ,372

which guarantees that if an instance I = (G, S, F, k) of Annotated MMFVS has µ(I) ≤ 1,373

then G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k, and employ a374

branching strategy which, given Ii, will produce instances I1
i+1, I2

i+1 of lesser measure of375

progress, such that Ii is a Yes instance if and only if at least one of I1
i+1, I2

i+1 is also a Yes376

instance. If we can no further apply our branching strategy, and the measure of progress377

remains greater than 1, then it holds that I is a path restricted instance and Theorem 7378

applies.379

Measure of progress. Let I = (G, S, F, k) be an instance of Annotated MMFVS. We380

define as µ(I) = k + cc(F) − g − p its measure of progress, where381

cc(F) denotes the number of connected components of F ,382

g denotes the number of good vertices of S,383

p denotes the number of interesting paths of G[U].384

It holds that if µ(I) ≤ 1, then the underlying Max Min FVS instance has a positive answer,385

which does not necessarily respect the constraints dictated by the annotated version.386

▶ Lemma 5. (⋆) Let I = (G, S, F, k) be an instance of Annotated MMFVS, where387

µ(I) ≤ 1. Then, G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k.388

Reduction rules. In the following, we will describe some reduction rules which do not affect389

the answer of an instance of Annotated MMFVS, while not increasing its measure of390

progress.391

▶ Lemma 6. (⋆) Let G = (V, E) be a (multi)graph and uv ∈ E(G). Then, G is acyclic if392

and only if G/uv is acyclic.393

Rule 1. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u, v ∈ F and uv ∈ E.394

Then, replace I with I ′ = (G′, S, F ′, k), where G′ = G/uv occurs from the contraction of u395

and v into w, while F ′ = (F ∪ {w}) \ {u, v}.396

Rule 2. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and397

degF ∪U (u) = 0. Then, replace I with I ′ = (G − u, S, F, k).398

M. Lampis, N. Melissinos and M. Vasilakis 23:11

Rule 3. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and399

degF ∪U (u) = 1, while v ∈ N(u) ∩ (F ∪ U). Then, replace I with I ′ = (G′, S, F ′, k),400

where G′ = G/uv occurs from the contraction of u and v into w, while F ′ = (F ∪ {w}) \ {v}401

if v ∈ F , and F ′ = F otherwise.402

▶ Lemma 7. (⋆)Applying rules 1, 2 and 3 does not change the outcome of the algorithm and403

does not increase the measure of progress.404

After exhaustively applying the aforementioned rules, it holds that ∀u ∈ U , degF ∪U (u) ≥405

2, i.e. G[U] is a forest containing trees, all the leaves of which have at least one edge to F .406

Moreover, G[F] comprises an independent set. We proceed with a branching strategy that407

produces instances of Annotated MMFVS of reduced measure of progress. If at some408

point µ ≤ 1, then Lemma 5 can be applied.409

Branching strategy. Let I = (G, S, F, k) be an instance of Annotated MMFVS, on410

which all of the reduction rules have been applied exhaustively, thus, it holds that a) ∀u ∈ U ,411

degF ∪U (u) ≥ 2 and b) F is an independent set.412

Define u ∈ U to be an interesting vertex if degF ∪U (u) ≥ 3. As already noted, G[U] is a413

forest, the leaves of which all have an edge towards F , otherwise Rule 3 could still be applied.414

Consider a root for each tree of G[U]. For some tree T , let v be an interesting vertex at415

maximum distance from the corresponding root, i.e. v is an interesting vertex of maximum416

height. Notice that such a tree cannot be an interesting path. We branch depending on417

whether u is in the feedback vertex set or not. Towards this end, let S′ = S ∪ {v} and418

F ′ = F ∪{v}, while I1 = (G, S′, F, k) and I2 = (G, S, F ′, k). It holds that I is a Yes instance419

if and only if at least one of I1, I2 is a Yes instance, while if G[F ′] contains a cycle, I2 is a420

No instance and we discard it. We replace I with the instances I1 and I2.421

▶ Lemma 8. (⋆)The branching strategy produces instances of reduced measure of progress,422

without reducing the number of good vertices.423

Complexity. Starting from an instance (G, k) of Max Min FVS, we produce a minimal424

feedback vertex set S0 of G in polynomial time. If |S0| ≥ k, we are done. Alternatively, we425

produce instances of Annotated MMFVS by guessing the intersection of S0 with some426

minimal feedback vertex set of G of size at least k. Let I = (G, S, F, k) be one such instance.427

It holds that µ(I) ≤ k + c, where c = cc(F), therefore the branching will perform at most428

k + c steps. Notice that, at any step of the branching procedure, the number of good vertices429

never decreases. Now, consider a path restricted instance I ′ = (G′, S′, F ′, k) resulting from430

branching starting on I, on which branching, exactly ℓ times a vertex was placed in the431

feedback vertex set, therefore |S′| − |S| = ℓ. There are at most
(

k+c
ℓ

)
different such instances,432

each of which has at least ℓ good vertices, thus Theorem 7 requires time at most 3k−ℓnO(1).433

Since 0 ≤ ℓ ≤ k + c, and there are at most
(

k
c

)
different instances I, the algorithm runs in434

time 9.34knO(1), since435

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3k−ℓ = 3k

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3−ℓ = 3k

k∑
c=0

(
k

c

)(
4
3

)k+c

436

= 4k
k∑

c=0

(
k

c

)(
4
3

)c

= 4k

(
7
3

)k

≤ 9.34k.437

438

CVIT 2016

23:12 Parameterized Max Min Feedback Vertex Set

6 The Extension Problem439

In this section we consider the following extension problem:440

Minimal FVS Extension
Input: A graph G = (V, E) and a set S ⊆ V .
Task: Determine whether there exists S∗ ⊇ S such that S∗ is a minimal feedback vertex
set of G.

441

442

Observe that this is a special case of Annotated MMFVS, since we essentially set443

F = ∅ and do not care about the size of the produced solution, albeit with the difference that444

now we will not focus on the case where V \ S is already acyclic. This extension problem445

was already shown to be W[1]-hard parameterized by |S| by Casel et al. [13]. One question446

that was left open, however, was whether it is solvable in polynomial time for fixed |S|, that447

is, whether it belongs in the class XP.448

Though we do not settle the complexity of the extension problem for fixed k, we provide449

evidence that obtaining a polynomial time algorithm would be a challenging task, because it450

would imply a similar algorithm for the k-in-a-Tree problem. In the latter, we are given a451

graph G and a set T of k terminals and are asked to find a set T ∗ such that T ⊆ T ∗ and452

G[T ∗] is a tree [15, 29].453

▶ Theorem 8. k-in-a-Tree parameterized by k is fpt-reducible to Minimal FVS Extension454

parameterized by the size of the given set.455

Proof. Consider an instance G = (V, E) of k-in-a-Tree, with terminal set T . Let T =456

{t1, . . . , tk}. We add to the graph k − 1 new vertices, s1, . . . , sk−1 and connect each si to457

ti and to ti+1, for i ∈ [k − 1]. We set S = {s1, . . . , sk−1}. This completes the construction.458

Clearly, this reduction preserves the value of the parameter.459

To see correctness, suppose first that a tree T ∗ ⊇ T exists in G. We set S1 = S ∪ (V \ T ∗)460

in the new graph. S1 is a feedback vertex set, because removing it from the graph leaves T ∗,461

which is a tree. S1 contains S. Furthermore, if S1 is not minimal, we greedily remove from it462

arbitrary vertices until we obtain a minimal feedback vertex set S2. We claim that S2 must463

still contain S. Indeed, each vertex si, for i ∈ [k − 1] has a private cycle, since its neighbors464

ti, ti+1 ∈ T ∗. For the converse direction, if there exists in the new graph a minimal feedback465

vertex set S∗ that contains S, then the remaining forest F ∗ = V \ S∗ must contain T , since466

each vertex of S must have a private cycle in the forest, and vertices of S have degree 2.467

Furthermore, all vertices of T must be in the same component of F ∗, because to obtain a468

private cycle for si, we must have a path from ti to ti+1 in F ∗, for all i ∈ [k − 1]. Therefore,469

in this case we have found an induced tree in G that contains all terminals. ◀470

7 Conclusions and Open Problems471

We have precisely determined the complexity of Max Min FVS with respect to structural472

parameters from vertex cover to treewidth as being slightly super-exponential. One natural473

question to consider would then be to examine if the same complexity can be achieved when474

the problem is parameterized by clique-width. Regarding the complexity of the extension475

problem for sets of fixed size k, we have shown that this is at least as hard as the well-known476

(and wide open) k-in-a-Tree problem. Barring a full resolution of this question, it would477

also be interesting to ask if the converse reduction also holds, which would prove that the478

two problems are actually equivalent.479

M. Lampis, N. Melissinos and M. Vasilakis 23:13

References480

1 Hassan AbouEisha, Shahid Hussain, Vadim V. Lozin, Jérôme Monnot, Bernard Ries, and481

Viktor Zamaraev. Upper domination: Towards a dichotomy through boundary properties.482

Algorithmica, 80(10):2799–2817, 2018. doi:10.1007/s00453-017-0346-9.483

2 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Introducing lop-kernels:484

A framework for kernelization lower bounds. Algorithmica, 84(11):3365–3406, 2022. doi:485

10.1007/s00453-022-00979-z.486

3 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Parameterized complexity487

of computing maximum minimal blocking and hitting sets. Algorithmica, 85(2):444–491, 2023.488

doi:10.1007/s00453-022-01036-5.489

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting490

connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.491

In SODA, pages 951–970. SIAM, 2020. doi:10.1137/1.9781611975994.57.492

5 Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel493

Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos. The494

many facets of upper domination. Theor. Comput. Sci., 717:2–25, 2018. doi:10.1016/j.tcs.495

2017.05.042.496

6 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy497

distinguishes treewidth from pathwidth. SIAM Journal on Discrete Mathematics, 36(3):1761–498

1787, 2022. doi:10.1137/20M1385779.499

7 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close relatives500

of feedback vertex set without single-exponential algorithms parameterized by treewidth. In501

IPEC, volume 180 of LIPIcs, pages 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,502

2020. doi:10.4230/LIPIcs.IPEC.2020.3.503

8 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic504

single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.505

Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.506

9 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,507

and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In508

WG, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer, 2018.509

doi:10.1007/978-3-030-00256-5_6.510

10 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex511

set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parame-512

terized algorithms. Algorithmica, 81(10):3890–3935, 2019. doi:10.1007/s00453-019-00579-4.513

11 Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs514

for inapproximable problems. J. Comput. Syst. Sci., 92:171–180, 2018. doi:10.1016/j.jcss.515

2017.09.009.516

12 Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex cover517

problem. Discret. Appl. Math., 196:62–71, 2015. doi:10.1016/j.dam.2014.06.001.518

13 Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian519

Sikora. On the complexity of solution extension of optimization problems. Theor. Comput.520

Sci., 904:48–65, 2022. doi:10.1016/j.tcs.2021.10.017.521

14 Juhi Chaudhary, Sounaka Mishra, and B. S. Panda. Minimum maximal acyclic matching in522

proper interval graphs. In CALDAM, volume 13947 of Lecture Notes in Computer Science,523

pages 377–388. Springer, 2023. doi:10.1007/978-3-031-25211-2_29.524

15 Maria Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Comb., 30(4):387–417,525

2010. doi:10.1007/s00493-010-2334-4.526

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin527

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.528

17 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and529

Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single530

exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.531

CVIT 2016

https://doi.org/10.1007/s00453-017-0346-9
https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-01036-5
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1137/20M1385779
https://doi.org/10.4230/LIPIcs.IPEC.2020.3
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1007/978-3-030-00256-5_6
https://doi.org/10.1007/s00453-019-00579-4
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.dam.2014.06.001
https://doi.org/10.1016/j.tcs.2021.10.017
https://doi.org/10.1007/978-3-031-25211-2_29
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.1145/3506707

23:14 Parameterized Max Min Feedback Vertex Set

18 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,532

2017. doi:10.1007/978-3-662-53622-3.533

19 Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel534

Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing535

the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421–1458,536

2021. doi:10.1007/s00453-020-00789-1.537

20 Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos538

Melissinos. (in)approximability of maximum minimal FVS. J. Comput. Syst. Sci., 124:26–40,539

2022. doi:10.1016/j.jcss.2021.09.001.540

21 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight541

algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271–542

291, 2022. doi:10.1016/j.tcs.2022.05.013.543

22 Fabio Furini, Ivana Ljubic, and Markus Sinnl. An effective dynamic programming algorithm544

for the minimum-cost maximal knapsack packing problem. Eur. J. Oper. Res., 262(2):438–448,545

2017. doi:10.1016/j.ejor.2017.03.061.546

23 Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and Shuvam Kant Tripathi.547

Maximum minimal feedback vertex set: A parameterized perspective. CoRR, abs/2208.01953,548

2022. arXiv:2208.01953, doi:10.48550/arXiv.2208.01953.549

24 Laurent Gourvès, Jérôme Monnot, and Aris Pagourtzis. The lazy bureaucrat problem with550

common arrivals and deadlines: Approximation and mechanism design. In FCT, volume551

8070 of Lecture Notes in Computer Science, pages 171–182. Springer, 2013. doi:10.1007/552

978-3-642-40164-0_18.553

25 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A554

Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.555

26 Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, and Tsuyoshi Yagita. Finding a556

maximum minimal separator: Graph classes and fixed-parameter tractability. Theor. Comput.557

Sci., 865:131–140, 2021. doi:10.1016/j.tcs.2021.03.006.558

27 Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos. Digraph coloring and distance559

to acyclicity. In STACS, volume 187 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl - Leibniz-560

Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.41.561

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly562

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.563

1774.564

29 Kai-Yuan Lai, Hsueh-I Lu, and Mikkel Thorup. Three-in-a-tree in near linear time. In STOC,565

pages 1279–1292. ACM, 2020. doi:10.1145/3357713.3384235.566

30 Michael Lampis. Minimum stable cut and treewidth. In ICALP, volume 198 of LIPIcs, pages567

92:1–92:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.568

ICALP.2021.92.569

31 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized570

problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.571

32 Sounaka Mishra and Kripasindhu Sikdar. On the hardness of approximating some np-572

optimization problems related to minimum linear ordering problem. RAIRO Theor. Informatics573

Appl., 35(3):287–309, 2001. doi:10.1051/ita:2001121.574

33 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:575

A logical approach. In MFCS, volume 6907 of Lecture Notes in Computer Science, pages576

520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.577

34 Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM J.578

Discret. Math., 31(4):2440–2456, 2017. doi:10.1137/16M109017X.579

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s00453-020-00789-1
https://doi.org/10.1016/j.jcss.2021.09.001
https://doi.org/10.1016/j.tcs.2022.05.013
https://doi.org/10.1016/j.ejor.2017.03.061
http://arxiv.org/abs/2208.01953
https://doi.org/10.48550/arXiv.2208.01953
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1016/j.tcs.2021.03.006
https://doi.org/10.4230/LIPIcs.STACS.2021.41
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3357713.3384235
https://doi.org/10.4230/LIPIcs.ICALP.2021.92
https://doi.org/10.4230/LIPIcs.ICALP.2021.92
https://doi.org/10.4230/LIPIcs.ICALP.2021.92
https://doi.org/10.1137/16M1104834
https://doi.org/10.1051/ita:2001121
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1137/16M109017X

M. Lampis, N. Melissinos and M. Vasilakis 23:15

A Proofs for Section 3 (Treewidth Algorithm)580

▶ Theorem 1. Given an instance I = (G, k) of Max Min FVS, as well as a nice tree581

decomposition of G of width tw, there exists an algorithm that decides I in time twO(tw)nO(1).582

Proof. The main idea lies on performing standard dynamic programming on the nodes of583

the nice tree decomposition. For a node t, let Bt denote its bag, and B↓
t ⊇ Bt denote the584

union of the bags in the subtree rooted at t.585

Let S∗ ⊆ V be a minimal feedback vertex set of G, where F ∗ = V \ S∗ and G[F ∗] is a586

forest. For each u ∈ S∗, it holds that there exists a set of vertices Tu ⊆ F ∗ such that G[Tu]587

is a tree and G[{u} ∪ Tu] is not acyclic, as u has a private cycle containing at least two of its588

neighbors. Our goal is, for each node t, to build all partial solutions S, where S ⊆ B↓
t is a589

feedback vertex set of G[B↓
t] and for each u ∈ S \ Bt, its neighboring vertices in its private590

cycle belong to B↓
t . By considering all the partial solutions of the root node, and extending591

them appropriately, we can eventually determine the maximum minimal feedback vertex set592

of the input graph G.593

More precisely, for each partial solution S of a node t, let S∗ be a minimal feedback594

vertex set of G respecting S, in the sense of S∗ ⊇ S and (V \ S∗) ⊇ (B↓
t \ S) (note that such595

an S∗ does not necessarily exist). We keep the following information:596

the set S ∩ Bt as well as the size of S,597

which vertices of S have private cycle in G[B↓
t],598

information regarding the connectivity of the forest G[B↓
t]: a coloring of Bt \ S, such that599

if 2 vertices share the same color, then they belong to the same connected component of600

G[V \ S∗],601

information regarding the private cycle of the vertices of S∩Bt: a coloring of all u ∈ S∩Bt602

which matches the color of the connected component Tu of V \ S∗, where G[Tu ∪ {u}] is603

not acyclic.604

Note that we need at most tw + 1 different colors, as we cannot have more that tw + 1605

connected components appearing in a bag and we can reuse the colors. We will keep these606

colors in a table C.607

For the vertices of the partial solution, we also need to consider whether they have608

found both their neighbors in the private cycle or not. To do so, for a vertex u ∈ S colored609

c, we will distinguish between two cases. First, consider the case where there exist two610

vertices v1, v2 ∈ N(u) such that, v1, v2 ∈ B↓
t \ Bt belong to the same connected component611

of G[V \ S∗] and C[v1] = C[v2] = C[u] when we considered the bags of nodes t1, t2 where612

Bt1 ⊇ {u, v1} and Bt2 ⊇ {u, v2} respectively. For the second case, no such two vertices have613

been found yet. Consequently, we need to remember the number i ≤ 1 of same colored614

neighbors of u in B↓
t \ Bt that belong to a connected component T of the forest G[V \ S∗]615

that has vertices in Bt (i.e. T ∩ Bt ≠ ∅). We will store this information in a table D by616

setting D[u] = 2 in the first case and D[u] = i in the second case, for each u ∈ S ∩ Bt that617

belongs to the partial solution.618

Moreover, it is imperative that we keep information regarding the connectivity of the619

forest vertices that appear in Bt, since otherwise cycles might be formed when we consider620

Introduce or Join Nodes. In particular, when considering a node t, we want to remember the621

subsets of vertices T ⊆ Bt \ S such that, all u ∈ T have the same color, all u ∈ T are in the622

same connected component in G[B↓
t \ S], and G[T] is disconnected. We will call such subsets623

as interesting.624

In order to store this information, we employ a second coloring on the vertices, kept in625

a table F . In particular, let all vertices belonging to the same interesting subset share the626

CVIT 2016

23:16 Parameterized Max Min Feedback Vertex Set

same color, while vertices of different interesting subsets are distinguished by different colors.627

We are going to use colors fi, for i ∈ [tw + 1], for these components. Lastly, we will also use628

an extra color f0 to distinguish all the vertices of Bt that are not included in any interesting629

component (including the vertices of S ∩ Bt).630

All of the previously described information will be kept in a tuple, each one of which631

represents a (partial) solution, affiliated with a node t of the tree decomposition. In particular,632

each tuple is of the form s = {S ∩ Bt, |S|, C, D, F}, where C, F are tables defined on the633

vertices of Bt and D table defined on vertices of S ∩ Bt. Note that, if there exist two tuples634

s1 and s2, differing only on the cardinality of the partial solutions, it suffices to only keep635

the one of the largest size. Now we will explain how we deal with the different kind of nodes636

in the tree decomposition.637

Leaf Nodes. Since the bags of Leaf Nodes are empty, it follows that we keep an empty638

partial solution and all the tables C, D and F are also empty.639

Introduce Nodes. Let t be an Introduce Node, where t′ is its child node and u is the newly640

introduced vertex. We will build all the partial solutions of t by considering the partial641

solutions of t′ and all possibilities for vertex u. In particular, notice that, for any partial642

solution S of t, S′ = S \ {u} corresponds to a partial solution for t′. Assume that for the643

partial solution S′ we have stored the tuple s′ = {X ′, |S′|, C ′, D′, F ′}, where X ′ = S′ ∩ Bt′ ,644

for t′. We build the tuple for S by considering all cases for the vertex u.645

First we consider the case where u belongs to the partial solution, i.e. u ∈ S, and has a646

private cycle using vertices of color c. Note that the values of C ′, D′ and F ′ must remain the647

same for all vertices v ∈ Bt′ because u is included in the partial solution. So, for the tables648

C, D and F it suffices to extend them to C ′, D′ and F ′ by setting C[u] = c, D[u] = 0 and649

F [u] = f0 respectively. In particular, we create the tuple s = {X ′ ∪ {u}, |S′| + 1, C ′, D′, F ′}650

for t. Notice that D[u] = 0, since u has no neighbors in B↓
t \ Bt.651

Now we consider the case where u /∈ S and it is colored c. Note that, if there exists652

vertex v ∈ N(u) ∩ (Bt \ S) such that C[v] ̸= c, then we discard this solution, since it should653

hold that C[u] = C[v], otherwise we will use two colors for the same connected component654

of the final forest. Also, if u has at least two neighbors v1, v2 ∈ N(u) ∩ Bt such that v1, v2655

are in the same component of G[Bt′ \ S] or F ′[v1] = F ′[v2] ̸= f0, then G[B↓
t \ S] contains a656

cycle and we discard this solution. If none of the previous hold, then this is a valid partial657

solution. We build the tuple s = {X, |S|, C, D, F} for this solution as follows. For the tables658

C and D note that, for any vertex v ∈ Bt′ , since u /∈ S, D[v] = D′[v] and C[v] = C ′[v]. For659

u, we just set C[u] = c. We also need to modify the table F accordingly. Notice that, for660

the vertices v of Bt′ which do not belong to N(u), it suffices to set F [v] = F ′[v], since the661

introduction of u does not create any extra interesting components involving those vertices.662

Also, the vertices v of S always have F [v] = f0. It remains to determine the value of F for663

the vertices belonging to N(u) \ S, for which there are two cases.664

Case 1. For all v ∈ N(u) \ S, C ′[v] = c and F ′[v] = f0. In this case, there is no interesting665

component T ⊆ Bt′ \ S that includes any v ∈ N(u) \ S. Also the addition of u does not666

create such a component. Therefore we set F [u] = f0 and F [v] = F ′[v] for all v ∈ N(u) \ S.667

Case 2. There is at least one vertex v ∈ N(u) \ S such that F [v] ̸= f0. Note that, if there668

are more than one such vertices, then they must belong to different components of G[B↓
t \ S]669

as otherwise we have discarded this solution. In this case, the modification we need to make670

is to change the color of table F of all vertices that can be reached by u. In particular, let671

Lu = {fi | fi = F ′[v] ̸= f0, for a vertex v ∈ N(u)} be the list of colors different than f0672

M. Lampis, N. Melissinos and M. Vasilakis 23:17

that appear in the neighborhood of u when we consider the table F ′. Here, we select a color673

f ∈ Lu and we set F [v] = f for all vertices v ∈ Bt′ such that F ′[v] ∈ Lu and all vertices674

colored f0 that belong in the same component as u in G[Bt \ S].675

Join Nodes. Let t be a Join Node and t1 and t2 be its two children. Note that, for any partial676

solution S for t, S1 = S ∩ B↓
t1

and S2 = S ∩ B↓
t2

are partial solutions for t1 and t2 respectively.677

Also, in the tuples s1 = {S1 ∩ Bt1 , |S1|, C1, D1, F1} and s2 = {S2 ∩ Bt2 , |S2|, C2, D2, F2}678

that we have been stored for S1 and S2 in t1 and t2 respectively, we must have S1 ∩ Bt1 =679

S2 ∩ Bt2 = S ∩ Bt = X and C1[v] = C2[v], for all v ∈ Bt. Therefore, we can create all partial680

solutions of t by considering the partial solutions of t1 and t2 that respect those constraints.681

Now, assume that we have two tuples s1 = {X, |S1|, C, D1, F1} and s2 = {X, |S2|, C, D2, F2},682

for partial solutions S1 and S2 for t1 and t2 respectively. We want to create a partial683

solution S for t only if S1 and S2 do not result in a cycle in G[B↓
t \ (S1 ∪ S2)]. Since S1684

and S2 are partial solutions of t1 and t2 respectively, such a cycle must use vertices in both685

B↓
t1

\ (S1 ∪ Bt1) and B↓
t2

\ (S2 ∪ Bt2). Additionally, note that such a cycle may appear686

only if at least two vertices v1, v2 ∈ Bt, where C[v1] = C[v2], belong in different connected687

components in G[Bt \X] and in interesting components in both t1 and t2 (i.e. F1[v1] = F1[v2]688

and F2[v1] = F2[v2]). In that case, we discard such a solution. Alternatively, it is a valid one.689

If the solution is valid, we need to create the tables D and F . For any vertex v ∈ X,690

we set D[v] = min{2, D1[v] + D2[v]}. To see that this is a correct value for D[v] first recall691

that the maximum value of D[u] is 2. Also assume that the color we have set for v is c. If692

D1[v] = 2 or D2[v] = 2 then we have already found the two needed neighbors so obviously693

D[v] = min{2, D1[v] + D2[v]}. Otherwise, D1[v] ̸= 1 and D2[v] ̸= 1. Here, the correct value694

is D1[v] + D2[v] since these vertices must belong in the same connected component as colored695

c vertices that remain in Bt.696

Now, we need to create the table F . Since we have the tables F1 and F2, and also the697

colors for the vertices of G[Bt \ X] we can build the table F in twO(1).698

Finally, regarding the size of the partial solution, that is |S| = |S1| + |S2| − |X|, since the699

vertices of X are present in both S1 and S2.700

Forget Nodes. Let t be a Forget Node, where t′ denotes its child node and u the forgotten701

vertex. Note that any partial solution for t can be constructed by a partial solution of t′.702

Therefore, we construct the partial solutions for t as follows. Let s′ = {X ′, |S′|, C ′, D′, F ′}703

be a tuple representing a partial solution S′ for node t′. If u is included in X ′, then we need704

to verify whether it has found at least 2 of its neighbors which are included in its private705

cycle in the potential final solution. To do so, we first define the set U as follows. If C[u] = c,706

we set U = {v ∈ (N(u) ∩ Bt′) \ X ′ | C ′[v] = c}. Now, if D[u] + |U | ≥ 2, then we have707

a valid partial solution for t and we construct a tuple s = {X ′ \ {u}, |S′|, C, D, F} where708

C[v] = C ′[v] for all v ∈ Bt, D[v] = D′[v] for all v ∈ X ′ \ {u} and F [v] = F ′[v] for all v ∈ Bt.709

Otherwise, D[u] + |U | < 2 and we discard this tuple.710

In the case that u /∈ X ′, we need to consider the interesting components before and after711

its removal. As we have mentioned, we want all the vertices in Bt \ X ′ that share the same712

color in table C to belong in the same component in the potential final forest. Because of713

that we need to consider several cases. Let C ′[u] = c and Uc be the connected component of714

G[B′
t \ X ′] that u belongs in.715

Case 1. For all vertices v ∈ Bt′ \ (X ∪ {u}), it holds that C ′[v] ̸= C ′[u], i.e. u is the only c716

colored vertex of Bt′ \ X ′. In this case, there is no connected component of Bt \ X ′ colored717

c, and no interesting component is affected, thus F [v] = F ′[v], for all v ∈ Bt. However,718

CVIT 2016

23:18 Parameterized Max Min Feedback Vertex Set

we need to modify the table D′. For the vertices v ∈ X such that C ′[v] ̸= c, it holds that719

D[v] = D′[v] as their same colored forgotten neighbors remain the same. The same holds for720

the vertices v ∈ X such that C[v] = c and D′[v] = 2 as they already their neighbors in their721

private cycle. However, for any vertex v ∈ X colored c that has D′[v] < 2, we need to find a722

new component colored c for its private cycle. Therefore, for these vertices, we set D[v] = 0723

as we have no color c connected component at the moment.724

Case 2. There is at least one vertex v ∈ Bt′ \ (X ∪ {u}), such that C ′[v] = C ′[u], while725

Uc = {u}. Note that, if F ′[u] = f0 then u does not belong in any interesting component of726

Bt′ \ X. Therefore, we discard this tuple as u should be connected to the other c colored727

vertices of Bt′ \ (X ∪ {u}) in the final forest. Consequently, we can assume that F ′[u] ̸= f0.728

Now, let U ′
c ⊆ Bt′ be the set {v ∈ Bt′ | F ′[v] = F ′[u]}. We need to consider two cases, a)729

when all the vertices of U ′
c \ {u} are in the same connected component in G[Bt \ X ′] and b)730

when they are not. In case a), we set F [v] = f0 for all vertices v ∈ U ′
c \ {u} as they do not731

need any forgotten vertices in order to maintain connectivity between them. If U ′
c \ {u} is732

not a connected component, then we set F [v] = F ′[v] ̸= f0 for all G[Bt′ \ X] as removing u733

does not change the fact that U ′
c \ {u} is still an interesting component of Bt \ X.734

Case 3. There is at least one vertex v ∈ Bt′ \ (X ∪ {u}), such that C ′[v] = C ′[u], while735

Uc ⊃ {u}. Now we consider two cases, F ′[u] = f0 and F ′[u] ̸= f0.736

Case 3.a. F ′[u] ̸= f0. In this case, we know that all the vertices of v ∈ Uc have F ′[v] = F ′[u].737

Also, there are vertices v /∈ Uc such that F ′[v] = F ′[u]. Therefore, even if we remove u, the738

other vertices of Uc still belongs in the interesting component colored F ′[u]. Finally the739

removal of u does not change the other interesting components. Thus, F [v] = F ′[v] for all740

v ∈ Bt.741

Case 3.b. F ′[u] = f0. Here we need to consider the connectivity of G[Uc \ {u}] in order to742

decide the values in F . If G[Uc \ {u}] is connected then we do not need to change the colors743

of F ′ for any vertex in Bt. On the other hand, if G[Uc \ {u}] is not connected then Uc \ {u}744

comprises a new interesting component in Bt. Therefore, for every vertex v of Uc \ {u} we745

set F [v] = f , where f is a color that does not appear in F ′. Also we keep the same values746

for all other vertices in Bt.747

Finally, for both cases 2 and 3, we need to create a new table D. For the same reasons as748

in case 1, for the vertices v ∈ S such that C[v] ̸= c or D[v] = 2, we set D[v] = D′[v]. Also,749

for vertices v ∈ S, such that C[v] = C[u] and D′[v] < 2, we need to check whether u ∈ N(v)750

or not. If u /∈ N(v) we set D[v] = D′[v] otherwise D[v] = D′[v] + 1.751

Now we consider the running time. First we calculate the number of different partial752

solutions for each node. Observe that for each vertex of a bag we have two cases, since it is753

either included in the (partial) solution or not. Also, we have tw + 1 different choices per754

vertex, for the tables C and F . Finally, for each vertex in the solution we have three choices755

for the table D. In total, we have O(tw) choices per vertex. Therefore, we keep at most756

twO(tw) tuples for each node of the tree decomposition. Now, notice that in the dynamic757

programming part of the algorithm, we can create all the tuples for Introduce and Forget758

Nodes in time T · |V |O(1) where T is the number of tuples we have stored for the child of the759

node we consider. Therefore, we can compute all tuples for these nodes in twO(tw)|V |O(1)
760

time. For the Join Nodes, in the worst case, we many need to consider all pairs s1, s2 of761

tuples where s1 and s2 are tuples corresponding to the first and second child of the Join762

Node respectively. However, as all the other calculations remain polynomial to the number763

of vertices, the time required to compute the tuples for this node is again twO(tw)|V |O(1).764

Therefore, the total running time is twO(tw). ◀765

M. Lampis, N. Melissinos and M. Vasilakis 23:19

B Proofs for Section 4 (ETH Lower Bound)766

▶ Theorem 3. 3-Partitioned-3-SAT cannot be decided in time 2o(n), unless the ETH767

fails.768

Proof. Let ϕ be a 3-SAT formula of m clauses, where V denotes the set of its variables and769

|V | = n. We will construct an equivalent instance ϕ′ of 3-Partitioned-3-SAT as follows:770

For every variable x ∈ V , introduce variables xi ∈ Vi, for i ∈ [3].771

For every clause x ∨ y ∨ z of ϕ, introduce a clause x1 ∨ y2 ∨ z3 in ϕ′. In an analogous way,772

for every clause x ∨ y of ϕ, introduce a clause x1 ∨ y2 in ϕ′.773

Introduce clauses ¬x1 ∨ x2, ¬x2 ∨ x3 and ¬x3 ∨ x1 in ϕ′. Note that these clauses are all774

satisfied if and only if variables x1, x2 and x3 share the same assignment, i.e. either all775

are true or false.776

Let V ′ = V1 ∪ V2 ∪ V3. Notice that this is a valid 3-Partitioned-3-SAT instance, since777

|Vi| = n and in none of the m + 3n clauses of ϕ′ variables belonging to the same Vi appear.778

It holds that ϕ is satisfiable if and only if ϕ′ is satisfiable:779

=⇒ If ϕ is satisfied by some assignment f : V → {T, F}, then consider the assignment780

f ′ : V ′ → {T, F}, where f ′(xi) = f(x), for i ∈ [3] and x ∈ V . This is a satisfying781

assignment for ϕ′.782

⇐= If ϕ′ is satisfied by some assignment f ′ : V ′ → {T, F}, then it holds that f ′(x1) =783

f ′(x2) = f ′(x3). Then, consider the assignment f : V → {T, F} where f(x) = f(xi), for784

x ∈ V . This is a satisfying assignment for ϕ.785

Lastly, assume there exists a 2o(|Vi|) algorithm deciding whether ϕ′ is satisfiable. Then,786

since |Vi| is equal to the number of variables of ϕ, 3-SAT could be decided in 2o(n), thus the787

ETH fails. Consequently, unless the ETH is false, there is no 2o(n) algorithm deciding if ϕ′ is788

satisfiable, where n = |Vi|. ◀789

▶ Lemma 1. Any minimal feedback vertex set S of G of size at least k has the following790

properties:791

(i) S does not contain any vertex attached with a force gadget or its gadget twin,792

(ii) |Mi \ S| ≤ 1, for every Gq
p and i ∈ [2L],793

(iii) |S ∩ V (Gq
p)| = 4AL + AR + 2LR,794

where p ∈ [3] and q ∈ [log n].795

Proof. Let S be a minimal feedback vertex set of size |S| ≥ k > (4L + R) · 3A log n. Let u796

be a vertex attached with a force gadget, and ū its gadget twin.797

For the first statement, suppose that u, ū ∈ S. In that case, S \ {ū} remains a feedback798

vertex set, thus S cannot be minimal. On the other hand, if one of u, ū belongs to S, then799

|S| ≤ |G| − (A + 1), since S cannot include the rest of the vertices of the corresponding force800

gadget, due to minimality. However, for the defined A and sufficiently large n, this leads to801

a contradiction, since802

(4L + R) · 3A log n ≤ |G| − A − 1 ⇐⇒803

(4L + R) · 3A log n ≤ m + (8L + 4AL + 2R + AR + 2L(2 + R))3 log n − A − 1 ⇐⇒804

n2 ≤ (12L + 2R + 2LR)3 log n − 1 = O

(
n

√
n

log n

)
.805

806

Consequently, u, ū /∈ S, for any vertex u attached with a force gadget.807

For the second statement, let Gq
p for some p ∈ [3] and q ∈ [log n], and Yi = S ∩ Xi, for808

choice set Xi, where i ∈ [2L]. Since S does not contain any vertices attached with a force809

CVIT 2016

23:20 Parameterized Max Min Feedback Vertex Set

gadget, it must contain at least R − 1 vertices of Mi. If not, there exists a ℓi, mi
j , ℓ′

i, mi
j′810

cycle. Therefore, |Mi \ S| ≤ 1.811

Lastly, S should contain an additional vertex per choice set, since a κi, λi, mi
j cycle812

remains otherwise. Hence, |Yi| ≥ R. Suppose that |Yi| > R. In that case, if Mi ⊆ Yi, then813

Yi contains at least one of κi and λi. However, S′ = S \ {κi, λi} remains a feedback vertex814

set, thus S is not minimal. Alternatively, Yi contains both κi, λi and all but one element of815

Mi. However, S′ = S \ {λi} remains a feedback vertex set, thus S is not minimal.816

Since S includes A vertices per force gadget and exactly R vertices per choice set, property817

(iii) follows. ◀818

▶ Lemma 2. If ϕ has a satisfying assignment, then G has a minimal feedback vertex set of819

size at least k.820

Proof. Assume that ϕ has a satisfying assignment f : V → {T, F}. For each set of variables821

V q
p , consider the corresponding Gq

p. For each vertex ℓα in Gq
p, which represents a subset822

Vα ⊆ V q
p , there exists a β such that mα

β corresponds to the restriction of f to Vα. Moreover,823

each variable x ∈ V q
p is uniquely represented by some vertex ℓα in Gq

p. Let S be a set of size824

k containing:825

all the A gadget leaves per force gadget,826

all the 2L · 3 log n vertices κi,827

mα
β′ , with β′ ̸= β, for each Gq

p and each subset Vα ⊆ V q
p , where mα

β corresponds to the828

restriction of f to Vα,829

all clause vertices c1, . . . , cm.830

Claim. S is a feedback vertex set: Since S contains all the clause vertices ci, the only possible831

remaining cycles concern vertices in the same Gq
p. Since S contains all the gadget leaves per832

force gadget, all the vertices attached with a force gadget do not belong to S. All λ vertices833

have a single neighbor, hence cannot be part of any cycle. Moreover, vertices ℓ and ℓ′ cannot834

be part of a cycle, since they are of degree 2 and one of their neighbors (their gadget twin) is835

a leaf. Therefore, any possible cycle contains vertices r and m. However, vertices m form an836

independent set, and each of them has a single vertex r as neighbor. Finally, vertices r also837

form an independent set. Consequently, G − S cannot have any cycles.838

Claim. S is a minimal feedback vertex set: Assume there exists u ∈ S such that S \ {u} is a839

feedback vertex set. In that case, u cannot be a vertex leaf introduced by a force gadget,840

since both the vertex it is attached to as well as the latter’s gadget twin do not belong to S.841

On the other hand, if u were a vertex mα
β′ , then a ℓα − mα

β − ℓ′
α − mα

β′ cycle would remain.842

Furthermore, if it were a κα vertex, then a κα − λα − mα
β cycle would remain. Lastly, u843

cannot be any clause vertex c. Indeed, for any c, there exists a variable x due to which c is844

satisfied. Consequently, there exists ℓα representing Vα ∋ x, as well as mα
β /∈ S encoding said845

satisfying assignment. Therefore, ℓα − mα
β − rβ − c comprises a cycle, because we connect c846

to all vertices rj that encode a satisfying assignment for c. ◀847

▶ Lemma 3. If G has a minimal feedback vertex set of size at least k, then ϕ has a satisfying848

assignment.849

Proof. Let S denote said minimal feedback vertex set. Due to Lemma 1, it follows that850

ci ∈ S, for all i ∈ [m], otherwise S cannot reach the stated size.851

Since S is minimal, it holds that, for all clause vertices c, S \ {c} is not a feedback852

vertex set. Consequently, G − (S \ {c}) contains at least one cycle involving vertex c. Notice853

that each such cycle can only involve vertices belonging to a specific Gq
p, since vertices not854

M. Lampis, N. Melissinos and M. Vasilakis 23:21

belonging to the same Gq
p can only be connected via paths containing vertices ci, but only a855

single such vertex remains in G − (S \ {c}). Let Gc = G[(V (Gq
p) \ S) ∪ {c}] be a subgraph of856

G containing one such cycle.857

We will show that the aforementioned cycle must be of the form ℓi − mi
j − rj − c, for858

some i and j. In order to do so, first notice that there is no path in Gc − {c} between any859

two r vertices. Suppose there exists such a path, connecting rα and rβ , for α, β ∈ [R] and860

α ̸= β. This path cannot involve only r vertices, since they constitute an independent set.861

Additionally, it cannot involve only r and m vertices, since each m vertex has a single r862

vertex in its neighborhood, while m vertices also induce an independent set. Therefore, any863

path from rα to rβ must include a vertex ℓγ or ℓ′
γ for some γ, denoted by wγ . In that case,864

the shortest such path must be of the form rα − mγ
α − wγ − mγ

β − rβ . However, this cannot865

be the case, since Gc contains at most one vertex belonging to Mγ , due to Lemma 1.866

Consequently, any cycle that contains c in Gc must include the unique vertex ℓi that is a867

neighbor of c. Moreover, as the only other vertices that are adjacent to c are r vertices, and868

there are no paths between any two r vertices, the cycle must be of the form ℓi − mi
j − rj − c869

for some j.870

Now, consider the following assignment for the variables of ϕ: for a set of variables871

Vα ⊆ V q
p represented by ℓα in Gq

p, if there exists a vertex mα
β /∈ S for some β, then let these872

variables have the assignment encoded by this choice. Alternatively, if there is no such vertex873

m, let all of these variables have a truthful assignment. This is valid assignment, since every874

variable of ϕ appears in a single variable set Vα ⊆ V q
p , for some p ∈ [3] and q ∈ [log n], which875

is uniquely represented by a single vertex ℓα in Gq
p, while |Mα \ S| ≤ 1. Lastly, this is a876

satisfying assignment, since for every clause vertex c, there exist neighboring vertices ℓα and877

rβ , such that mα
β /∈ S, i.e. for every clause, there exists at least one variable in Vα encoded878

by ℓα such that its assignment satisfies the clause. ◀879

▶ Lemma 4. vc(G) = O(n/ log n).880

Proof. Notice that the deletion of all vertices ℓi, ℓ′
i, ri, κi and λi, as well as their gadget881

twins, induces an independent set. Therefore,882

vc(G) ≤ (8L + 2R + 4L) · 3 log n = O(n/ log n).883

◀884

C Proofs for Section 5 (Natural Parameter Algorithm)885

▶ Theorem 6. Annotated MMFVS is NP-hard on path restricted instances, even if all886

the paths are of length 2.887

Proof. Let graph G = (V, E), where |V | = n and |E| = m, be an instance of 3-Coloring.888

We will construct an equivalent (G′, S, F, k) instance of Annotated MMFVS. Construct889

graph G′ = (V ′, E′), such that890

introduce w ∈ V ′,891

for every vertex ui ∈ V , introduce ui
j ∈ V ′, where j ∈ [3],892

for every edge ei ∈ E, introduce ei
j ∈ V ′ and {ei

j , w} ∈ E′, where j ∈ [3],893

introduce edges {w, ui
1}, {ui

1, ui
2}, {ui

2, ui
3} and {ui

3, w} in E′, for all i ∈ [n],894

for every edge ei = {uk, uℓ} ∈ E, introduce edges {ei
j , uk

j }, {ei
j , uℓ

j} ∈ E′, where j ∈ [3].895

Set F = {w}, S = {ei
j ∈ V ′ | i ∈ [m], j ∈ [3]} and k = n+3m. Moreover, let Ui = {ui

1, ui
2, ui

3},896

for all i ∈ [n]. Notice that this is a valid instance of Annotated MMFVS. In Figure 2 part897

CVIT 2016

23:22 Parameterized Max Min Feedback Vertex Set

w

e1
1 e1

2 e1
3

ui
1

ui
2

ui
3 uj

1

uj
2

uj
3

Figure 2 Part of the graph depicting vertices associated with e1 = {ui, uj} ∈ E. Black vertex w

belongs to F .

of the construction is shown, assuming there exists an edge e1 = {ui, uj} ∈ E. It remains to898

show that the two problems are equivalent.899

Assume that G has a valid 3-coloring, e.g. f : V → [3]. Let S′ = {ui
j ∈ V ′ | f(ui) = j}∪S900

be a set of size n + 3m. S′ is a feedback vertex set of G′. Indeed, since it contains all901

vertices ei
j , the only remaining cycles are due to the vertices of Ui and w, for every i ∈ [n],902

but |S′ ∩ Ui| = 1, for every i. It remains to show that S′ is minimal. S1 = S′ \ {ui
j} is903

not a feedback vertex set, for any ui
j ∈ S′, since then w, ui

j /∈ S1, for j ∈ [3]. Additionally,904

S2 = S′ \ {ei
j} is not a feedback vertex set, for any ei

j ∈ S′. Assume that ei = {up, uq}. Then,905

since f(up) ̸= f(uq), it holds that at least one of up
j , uq

j does not belong to S′. Name this906

vertex vj , and notice that since |S′ ∩ Uj | = 1, there exists a path from vj to w containing907

only vertices of Uj . In that case, since ei
j has an edge with w and vj is a neighbor of ei

j , it908

follows that S2 is not a feedback vertex set.909

Assume that G′ has a minimal feedback vertex set S′ ⊇ S, where S′ ∩ F = ∅ and910

|S′| ≥ n + 3m. Then, if ui
k, ui

ℓ ∈ S′ for some i and some k ̸= ℓ ∈ [3], S′ is not minimal, since911

S′ \ {ui
k} remains a feedback vertex set. Consequently, S′ contains a single element from912

each Ui. Now consider the coloring f : V → [3] where f(ui) = j if ui
j ∈ S′. In that case,913

for f to be a valid coloring, it suffices to prove that if {ui, uj} ∈ E, then ui
k, uj

ℓ ∈ S′ for914

k ̸= ℓ. Assume that this is not the case, i.e. there exist ui
k, uj

k ∈ S′ and e = {ui, uj} ∈ E. In915

that case, S′ \ {ek} remains a feedback vertex set, since ek only has a single neighbor not916

belonging to S′, contradiction. ◀917

▶ Theorem 7. Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS,918

and let g denote the number of its good vertices. There is an algorithm running in time919

O(3k−gnO(1)) which either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of size at920

least k or concludes that I is a No instance of Annotated MMFVS.921

Proof. The main idea of the algorithm lies on the fact that we can efficiently handle instances922

where either k = 0 or S = ∅. Towards this, we will employ a branching strategy that, as long923

as S remains non empty, new instances with reduced k are produced. Prior to performing924

branching, we first observe that we can efficiently deal with the good vertices. Afterwards,925

by employing said branching strategy, in every step we decide which vertex will be counted926

towards the k required, thereby reducing parameter k on each iteration. If at some point927

k = 0 or S = ∅, it remains to decide whether this comprises a viable solution S′. Notice928

that S′ may not be a solution for the annotated instance, since even if |S′| ≥ k, it does not929

necessarily hold that S′ ⊇ S.930

We first show that indeed, the case where either k = 0 or S = ∅ can be efficiently decided.931

Afterwards, we present the algorithm and finally we argue about its correctness.932

M. Lampis, N. Melissinos and M. Vasilakis 23:23

▶ Lemma 9. Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS933

and S∗ ⊆ S ∪ U a minimal feedback vertex set of G, where F ∗ = V (G) \ S∗ denotes the934

corresponding forest.935

(i) From every path of G[U], at most one vertex belongs to S∗.936

(ii) Let u, v ∈ F ∗. Then, u and v are in the same connected component of G[F ∪ U] if and937

only if they are in the same connected component of G[F ∗].938

Proof. For the first statement, suppose there exist u1, u2 ∈ S∗ ∩ U belonging to the same939

connected component of G[U], and let Pu ⊆ U denote the set of the vertices belonging to940

said component. In that case, G[F ∗ ∪ {u1}] must contain a cycle involving u1. Since I is a941

path restricted instance, it holds that ∀v ∈ Pu, degF ∪U (v) = 2, and since F ∗ ∪ {u1} ⊆ F ∪ U ,942

degF ∗∪{u1}(v) ≤ 2 follows. Therefore, for G[F ∗ ∪ {u1}] to contain a cycle it holds that943

F ∗ ⊇ Pu \ {u1}, contradiction.944

For the second statement, first consider the case when u, v ∈ F , both belonging to the945

same connected component of G[F ∪U]. If u, v are connected in G[F ∗], we are done. Suppose946

that this is not the case. Assume there exists a path of U the endpoints of which have an947

edge towards both u and v. Then, either this path belongs entirely to F ∗, or one of its948

vertices, say w, is in S∗. In the first case, u and v are in the same connected component of949

F ∗ due to said path. In the latter case, the private cycle of w in G[F ∗ ∪ {w}] contains both u950

and v, thus they are in the same connected component of F ∗. Therefore, the statement holds.951

If no such path connecting u and v exists in U , let P be the path of G[F ∪ U] connecting u952

and v, where f1, . . . , fj are the vertices of P belonging to F in the order that they appear in953

P . Then, due to the previous arguments, any consecutive vertices fi, fi+1 are in the same954

connected component of F ∗. Lastly, due to transitivity of connectivity, the statement follows.955

In case at least one of u, v belongs to U , let F ′ = F ∪ {u, v} and consider the instance956

I ′ = (G, S, F ′, k). Obviously, u, v are in the same connected component of G[F ∪ U] if and957

only if they are in the same connected component of G[F ′ ∪ U ′], where U ′ = U \ {u, v}.958

Moreover, any S∗ ̸∋ u, v is a solution of instance I if and only if it is a solution of I ′. Thus,959

the statement follows.960

Since F ∗ ⊆ F ∪ U , the converse direction also holds. Consequently, if u, v ∈ F ∗, then961

u, v are in the same connected component of G[F ∪ U] if and only if u, v are in the same962

connected component of G[F ∗]. ◀963

Due to Lemma 9, we can therefore infer the connected components of any forest F ∗
964

corresponding to a minimal feedback vertex set S∗ ⊆ S ∪ U of G. Based on this property, we965

will establish the following reduction rules.966

Rule (i). Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS, and967

u ∈ U such that the connected components of G[(F ∪ U) \ {u}] are more than the connected968

components of G[F ∪ U]. Then, replace I with I ′ = (G, S, F ∪ {u}, k).969

▶ Lemma 10. Applying rule (i) does not change the outcome of the algorithm.970

Proof. Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS and971

I ′ = (G, S, F ∪ {u}, k) be the path restricted instance of Annotated MMFVS resulting972

from applying Rule (i) to I, where u ∈ U . In that case, the connected components of973

G[(F ∪ U) \ {u}] are more than the connected components of G[F ∪ U]. We will show that if974

S′ ⊆ S ∪ U is a minimal feedback vertex set of G, then u /∈ S′. Let F ′ = V (G) \ S′ be the975

corresponding forest. Suppose that u ∈ S′. Then u must have a private cycle in G[F ′ ∪ {u}].976

However, both neighbors of u are in different connected components of G[(F ∪ U) \ {u}],977

CVIT 2016

23:24 Parameterized Max Min Feedback Vertex Set

and since F ′ ⊆ (F ∪ U) \ {u}, its neighbors are in different connected components of G[F ′],978

hence contradiction. ◀979

Rule (ii). Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS,980

and u ∈ S such that it has two edges towards F such that they are in the same connected981

component of G[F ∪ U]. Then, replace I with I ′ = (G − u, S \ {u}, F, k − 1).982

▶ Lemma 11. Applying rule (ii) does not change the outcome of the algorithm.983

Proof. Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS and984

I ′ = (G′, S \ {u}, F, k − 1) be the path restricted instance of Annotated MMFVS resulting985

from applying Rule (ii) to I, where u ∈ S and G′ = G − u. In that case, u has two edges986

towards F such that they are in the same connected component of G[F ∪ U].987

Let S1 ⊇ S be a minimal feedback vertex set of G of size at least k, where S1 ∩ F = ∅.988

Then, S1 \ {u} is a minimal feedback vertex set of G − u, since the private cycles of the989

vertices of S1 remain unaffected by the deletion of u, and ammfvs(I) ≤ ammfvs(I ′) follows.990

Let S′ ⊆ (S ∪U)\{u} be a minimal feedback vertex set of G−u, where F ′ = V (G−u)\S′.991

Since the neighbors of u in F are in the same connected component of G[F ∪ U], they are992

in the same connected component of G′[F ∪ U]. Consequently, due to Lemma 9, u has two993

edges towards F such that they are in the same connected component of G′[F ′], therefore,994

S′ ∪ {u} is a minimal feedback vertex set of G, since u has a private cycle in G[F ′ ∪ {u}].995

Notice that this also implies that ammfvs(I ′) ≤ ammfvs(I). ◀996

Note that, if applying rule (ii) to I = (G, S, F, k) results in I ′ = (G − u, S \ {u}, F, k),997

and the algorithm returns a minimal feedback vertex set S′ of G − u, where S′ ∩ F = ∅, then998

this can be extended to a minimal feedback vertex set S′ ∪ {u} of G, although S′ might not999

be a solution to the annotated instance I ′, since S′ ⊇ S does not necessarily hold.1000

Utilizing Lemma 9, we now prove that any instance where either S = ∅ or k = 0 can be1001

solved in polynomial time.1002

▶ Lemma 12. Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS. If1003

k = 0 or S = ∅, we can determine whether G has a minimal feedback vertex set S′ ⊆ S ∪ U1004

of size at least k in time nO(1).1005

Proof. Due to Lemma 9, it holds that for any minimal feedback vertex set S′ ⊆ S ∪ U , if1006

u, v ∈ F ′, where F ′ = V (G) \ S′, then u and v are in the same connected component if and1007

only if that is the case in G[F ∪ U]. We will say that a path of U belongs to F ′ when all of1008

its vertices belong to F ′.1009

Notice that the vertices of F can be partitioned into equivalence classes, depending on1010

their connectivity in G[F ∪ U]. For u, v ∈ F , let them belong to the same equivalence class1011

Ci if they are in the same connected component of G[F ∪ U]. Let p denote the number1012

of equivalence classes, where p ≤ |F |. Now, for each Ci, let ci be equal to the number of1013

connected components G[Ci]. Since every path of U has exactly 2 edges towards F , it holds1014

that the number of paths belonging to F ′ will be exactly ci − 1 per equivalence class Ci.1015

Intuitively, since all components of G[Ci] must be connected in the final forest, the number1016

of paths required is ci − 1, per equivalence class Ci. Therefore, it suffices to greedily add each1017

path to the final forest F ′, as long as no cycle is formed. If that is not the case, it suffices to1018

add one of its vertices to S′, since it has two edges towards the same connected component1019

of F ′. In the end, G[F ′] has the connectivity dictated by G[F ∪ U], while S′ ⊆ S ∪ U is1020

a minimal feedback vertex set, since all of its elements have a private cycle. If k = 0, we1021

are done. Alternatively, if S = ∅, notice that, due to Lemma 9, S′ is a maximum minimal1022

M. Lampis, N. Melissinos and M. Vasilakis 23:25

feedback vertex set of G such that S′ ∩ F = ∅. In that case, we can determine whether I is1023

a Yes or No instance, depending on whether |S′| ≥ k holds. ◀1024

Armed with the previous lemmas, we are now ready to describe our algorithm. Let1025

I = (G, S, F, k) be a path restricted instance of Annotated MMFVS. Notice that if at1026

any point of execution of our algorithm there exists some vertex s ∈ S which does not have1027

two edges towards the same connected component of G[F ∪ U], then this is a No instance of1028

Annotated MMFVS and we discard it. Moreover, we exhaustively apply rules (i) and (ii)1029

in every produced instance. Note that this induces a polynomial time overhead.1030

Regarding our branching strategy, we consider the different cases for vertices of U . When1031

these vertices are moved from U to S, it is imperative that the connectivity of the vertices1032

belonging to the forest remains the same in any final forest. Since we have assumed that1033

rule (i) has been exhaustively applied, that is indeed the case. We will firstly do some1034

preprocessing and afterwards describe a branching strategy which, as long as S remains non1035

empty, produces instances with reduced k.1036

Preprocessing. Assume that rule (ii) has already been applied exhaustively. Suppose there1037

still exists some good vertex h ∈ H. Recall that h has at most one neighbor in U . In that1038

case, for h to have a private cycle, it is necessary that its neighbor u ∈ N(h) ∩ U belongs to1039

the forest. Also, u must be in the same connected component of G[F ∪ U] as one of the other1040

neighbors of h in F . Therefore, we consider the instance I ′ = (G, S, F ∪ {u}, k) in which rule1041

(ii) can be applied due to h. Therefore, we replace the current instance with the instance1042

I ′′ = (G − h, S \ {h}, F ∪ {u}, k − 1). Note that the preprocessing can be done in polynomial1043

time while for the resulting instance I∗ = (G∗, S∗, F ∗, k∗) it holds that k∗ ≤ k − g.1044

Branching. Let s ∈ S, where I = (G, S, F, k) is the instance after the preprocessing. For1045

u ∈ U , let Tu ⊆ U \ {u} denote the vertices in the same connected component as u in G[U].1046

Consider the following cases: either there exists u ∈ N(s) ∩ U such that u is in the same1047

connected component of G[F ∪ U] as some f ∈ N(s) ∩ F or not.1048

In the first case, we branch depending on whether u is in the feedback vertex set or not.1049

Notice that if u is in the feedback vertex, then all vertices of Tu must be in the forest1050

due to Lemma 9. Therefore, we replace our current instance with the following two:1051

I1 = (G, S ∪ {u}, F ∪ Tu, k), and1052

I2 = (G, S, F ∪ {u}, k)1053

In both instances we can apply Rule (ii). In particular, in I1, u has two neighbors1054

in F ∪ Tu which are in the same component of G[F ∪ U], therefore applying rule Rule1055

(ii) gives I ′
1 = (G − u, S, F ∪ Tu, k − 1). Also, in I2, s has two neighbors in F ∪ {u}1056

which are in the same component of G[F ∪ U], therefore, applying Rule (ii) gives1057

I ′
2 = (G − s, S \ {s}, F ∪ {u}, k − 1).1058

In the latter case, two vertices a, b ∈ N(s) ∩ U that belong to the same connected1059

component of G[F ∪ U] must exist. For these vertices we branch on the following 3 cases:1060

a, b ∈ F , or a ∈ S, or b ∈ S. Therefore, we replace the current instance with the following1061

three:1062

I1 = (G, S, F ∪ {a, b}, k),1063

I2 = (G, S ∪ {a}, F ∪ Ta, k),1064

I3 = (G, S ∪ {b}, F ∪ Tb, k).1065

Now, in each one of these instances we can apply Rule (ii). Indeed, vertices s, a and b1066

can be used to apply rule (ii) and obtain instances1067

I ′
1 = (G − s, S \ {s}, F ∪ {a, b}, k − 1),1068

CVIT 2016

23:26 Parameterized Max Min Feedback Vertex Set

I ′
2 = (G − a, S, F ∪ Ta, k − 1),1069

I ′
3 = (G − b, S, F ∪ Tb, k − 1)1070

respectively.1071

Complexity. The preprocessing part of the algorithm, as well as the application of the rules1072

requires polynomial time. The branching strategy previously described results in at most1073

3k−g instances, since on every step at most 3 instances may be produced, each with reduced1074

k. Lastly, due to Lemma 12, the case when S = ∅ or k = 0 is solvable in polynomial time.1075

Therefore, the final running time is 3k−gnO(1). ◀1076

▶ Lemma 5. Let I = (G, S, F, k) be an instance of Annotated MMFVS, where µ(I) ≤ 1.1077

Then, G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k.1078

Proof. Since F is a forest, S ∪ U comprises a valid feedback vertex set of G. Let S′ be a1079

minimal feedback vertex set obtained in polynomial time from S ∪ U , while F ′ = V \ S′
1080

denotes the forest resulting from the vertices belonging to F plus the vertices of (S ∪ U) \ S′.1081

Let a loss be when either a good vertex of S, or the entirety of an interesting path belongs1082

to F ′ = V \ S′. Notice that both good vertices and interesting paths have at least 2 edges1083

to some vertices of F . Consequently, for every loss, the connected components of F reduce1084

by at least 1: in order to move a good vertex or an interesting path to the forest, no cycles1085

should be formed, i.e. all of their neighbors are in distinct connected components of F , thus1086

the connected components of the forest will be reduced. Therefore, it follows that at most1087

cc(F) − 1 losses may happen, which means that S′ contains at least g + p − (cc(F) − 1)1088

vertices; each of those corresponds to either a good vertex or belongs to an interesting path1089

which has not moved entirely to F . In that case however, |S′| ≥ g + p − (cc(F) − 1) ≥ k,1090

since µ(I) ≤ 1. ◀1091

▶ Lemma 6. Let G = (V, E) be a (multi)graph and uv ∈ E(G). Then, G is acyclic if and1092

only if G/uv is acyclic.1093

Proof. First we consider the case that there more that one edges between u and v. In this1094

case, G has a cycle that uses these edges. Therefore, contracting one of these edges results in1095

a self loop in G′ and the statement holds. So, we only need to consider the case where there1096

is only one edge between u and v and w does not have a self loop in G/uv.1097

Suppose that uv is part of a cycle in G. Since G does not include any edges parallel to1098

uv, this cycle has at least three vertices. This means that there exists a path from u to v1099

which does not include the edge uv. Then, in G/uv, this path is a cycle as we have replaced1100

u and v with a single vertex. Moreover, any cycles not including edge uv are not affected by1101

its contraction.1102

For the other direction, assume that G/uv has a cycle C and let w be the vertex that1103

has replaced u and v in G/uv. There are two cases, either w /∈ C or w ∈ C. In the first1104

case notice that C is also a cycle in G therefore the statement holds. In the latter, since we1105

know that w does not have a self loop, there is a path P of size at least 1 such that, the1106

starting and the ending vertices of this path are adjacent to w. Let vs and vt be these (not1107

necessarily distinguished) vertices. If there is v′ ∈ {u, v} such that v′ ∈ N(vs) ∩ N(vt) then1108

the path P together with v′ comprises a cycle in G. Otherwise, one of vs, vt is adjacent to u1109

and the other to v. W.l.o.g. let vsu, vtv ∈ E(G). Notice that there is a path in G that starts1110

with u, ends with v, and uses the vertices in P . Consequently, this path does not include the1111

edge uv. Adding the edge uv to this path results in a cycle in G. ◀1112

M. Lampis, N. Melissinos and M. Vasilakis 23:27

▶ Lemma 7. Applying rules 1, 2 and 3 does not change the outcome of the algorithm and1113

does not increase the measure of progress.1114

Proof. We will prove each rule in a distinct paragraph.1115

Rule 1. Let I = (G, S, F, k) be an instance of Annotated MMFVS and I ′ = (G′, S, F ′, k)1116

be the instance of Annotated MMFVS resulting from applying Rule 1 to I, where1117

G′ = (V ′, E′) occurs from the contraction of u and v into w (i.e. G′ = G/uv), while1118

F ′ = (F ∪ {w}) \ {u, v}.1119

We will show that ammfvs(I ′) = ammfvs(I) and µ(I ′) ≤ µ(I).1120

Let S1 ⊇ S be a minimal feedback vertex set of G, such that S1 ∩ F = ∅. We claim that1121

S1 is a minimal feedback vertex set of G′. Indeed, G′[V ′ \ S1] is obtained from G[V \ S1]1122

by contracting uv, so both are acyclic due to Lemma 6. Furthermore, for all z ∈ S1,1123

G′[(V ′ \ S1) ∪ {z}] is obtained from G[(V \ S1) ∪ {z}] by contracting uv, therefore both1124

have a cycle due to Lemma 6, hence no vertex of S1 is redundant in G′. Consequently,1125

ammfvs(I) ≤ ammfvs(I ′).1126

For the other direction, let S2 ⊇ S be a minimal feedback vertex set of G′, such that1127

S2 ∩ F ′ = ∅, which implies that w /∈ S2. We claim that S2 is a minimal feedback vertex set1128

of G. Let F1 = V \ S2 and F2 = V ′ \ S2. By definition, G′[F2] is acyclic. G[F1] is also a1129

forest due to Lemma 6 and the fact that G′[F2] is obtained from G[F1] by contracting uv.1130

To see that S2 is minimal, let z ∈ S2 and consider the graphs G1 = G[(V \ S2) ∪ {z}] and1131

G2 = G′[(V ′ \ S2) ∪ {z}]. We see that G2 can be obtained from G1 by contracting uv. But1132

G2 must have a cycle, by the minimality of S2, so, by Lemma 6, G1 also has a cycle. Thus,1133

S2 is minimal in G, and ammfvs(I) ≥ ammfvs(I ′) follows.1134

Moreover, it holds that µ(I ′) = µ(I), since cc(F) = cc(F ′), while p and g are not affected.1135

Rule 2. Let I = (G, S, F, k) be an instance of Annotated MMFVS and I ′ = (G′, S, F, k)1136

be the instance of Annotated MMFVS we take by applying Rule 2 to I, where G′ = (V ′, E′)1137

occurs from the deletion of some u ∈ U such that degF ∪U (u) = 0 (i.e. G′ = G − u). We will1138

show that ammfvs(I ′) = ammfvs(I) and µ(I ′) ≤ µ(I).1139

Let S1 ⊇ S be a minimal feedback vertex set of G, such that S1 ∩ F = ∅. Since1140

N(u) ⊆ S ⊆ S1, it follows that u /∈ S1, since S1 \ {u} remains a feedback vertex set. Then,1141

S1 is a feedback vertex set of G − u. To see that S1 is also minimal in G − u, note that1142

any private cycle of G also exists in G − u, since no private cycle contains u. Therefore,1143

ammfvs(I) ≤ ammfvs(I ′).1144

For the other direction, let S2 ⊇ S be a minimal feedback vertex set of G − u, such that1145

S2 ∩ F = ∅. We observe that S2 ∪ {u} is a feedback vertex set of G. If S2 ∪ {u} is minimal,1146

we are done. Alternatively, we delete vertices from it until it becomes minimal. We now note1147

that the only vertex which may be deleted in this process is u, since all vertices of S2 have a1148

private cycle in G − u. Therefore, ammfvs(I) ≥ ammfvs(I ′).1149

Lastly, µ(I ′) ≤ µ(I), since the deletion of u does not affect cc(F) and p, while g could1150

potentially increase.1151

Rule 3. Let I = (G, S, F, k) be an instance of Annotated MMFVS and I ′ = (G′, S, F ′, k)1152

be the instance of Annotated MMFVS we take by applying Rule 3 to I, where G′ = (V ′, E′)1153

occurs from the contraction of u and v into w (i.e. G′ = G/uv), for some u ∈ U such that1154

degF ∪U (u) = 1, and v ∈ N(u)∩(F ∪U). Moreover, it holds that F ′ = (F ∪{w})\{v} if v ∈ F ,1155

and F ′ = F otherwise. We will show that ammfvs(I ′) = ammfvs(I) and µ(I ′) ≤ µ(I).1156

CVIT 2016

23:28 Parameterized Max Min Feedback Vertex Set

Notice that, since degF ∪U (u) = 1, u /∈ S1 for any minimal feedback vertex set S1 ⊇ S of1157

G such that S1 ∩ F = ∅. We will continue by considering the two cases separately.1158

First, assume that v ∈ F . Since u /∈ S1, we have that I is a Yes instance of Annotated1159

MMFVS if and only if J = (G, S, F ∪ {u}, k) is a Yes instance of Annotated MMFVS.1160

Notice that, by applying Rule 1 on J , the resulting instance is I ′. Therefore the statement1161

holds in this case.1162

It remains to prove the statement when both u, v ∈ U . Assume that this is the case. Let1163

S1 ⊇ S be a minimal feedback vertex set of G, such that S1 ∩ F = ∅. We consider two cases:1164

either v /∈ S1 or v ∈ S1.1165

If v /∈ S1, then we claim that S1 is also a minimal feedback vertex set of G′. Indeed,1166

G′[V ′ \ S1] is obtained from G[V \ S1] by contracting uv, so, by Lemma 6, both are acyclic.1167

Furthermore, for all z ∈ S1, G′[(V ′ \ S1) ∪ {z}] is obtained from G[(V \ S1) ∪ {z}] by1168

contracting uv, therefore, by Lemma 6, both have a cycle. So, S1 is minimal feedback vertex1169

set of G′.1170

If v ∈ S1, then we claim that S∗ = (S1 \ {v}) ∪ {w} is a minimal feedback vertex set1171

of G′. It is not hard to see that S∗ is a feedback vertex set of G′, since it corresponds to1172

deleting S1 ∪ {u} from G. To see that it is minimal, for all z ∈ S∗ \ {w} we observe that1173

G′[(V ′ \ S∗) ∪ {z}] is obtained from G[(V \ S1) ∪ {z}] by deleting u, which has degree at1174

most 1 due to z. Therefore, this deletion strongly preserves acyclicity. Finally, to see that w1175

is not redundant for S∗, we observe that G[(V \ S1) ∪ {v}] has a cycle, and a corresponding1176

cycle must be present in G′[(V ′ \ S∗) ∪ {w}], which is obtained from the former graph by1177

contracting uv.1178

Consequently, ammfvs(I) ≤ ammfvs(I ′) follows. For the other direction, let S1 ⊇ S be a1179

minimal feedback vertex set of G′, such that S1 ∩ F ′ = ∅. Recall that we consider the case1180

where u, v ∈ U , so F ′ = F . We consider two cases, either w ∈ S1 or w /∈ S1.1181

If w ∈ S1, we claim that S2 = (S1 ∪ {v}) \ {w} is a minimal feedback vertex set of1182

G. Let F1 = V ′ \ S1 and F2 = V \ S2. Notice that in G[F2], u is an isolated vertex since1183

degF ∪U (u) = 1 and v ∈ S2. Also, G[F2 \ {v}] is acyclic since it is the same as G′[F1].1184

Therefore S2 is a feedback vertex set of G. We need to show that S2 is minimal. Let1185

x ∈ S1 \ {w}. Notice that in G[F2 ∪ {x}], u has degree at most 1 due to x, therefore, it1186

cannot be included in any cycle of G[F2 ∪ {x}]. This means that G[F2 ∪ {x}] has a cycle if1187

and only if G[(F2 \ {u}) ∪ {x}] has a cycle. However, G[(F2 \ {u}) ∪ {x}] has a cycle because1188

it is the same as G′[F1 ∪ {x}] and x ∈ S1. It remains to show that G[F2 ∪ {v}] has a cycle.1189

Notice that G′[F1 ∪ {w}] can be obtained from G[F2 ∪ {v}] by contracting uv. Therefore1190

G[F2 ∪ {v}] has a cycle and S2 is minimal.1191

If w /∈ S1 we claim that S1 is a minimal feedback vertex set of G. Notice that we can1192

obtain G′[V ′ \ S1] by contracting uv in G[V \ S1], therefore G[V \ S1] is acyclic and S1 a1193

feedback vertex set of G. We also need to show minimality. Assume that x ∈ S1. Since1194

we can obtain G′[(V ′ \ S1) ∪ {x}] by contracting uv in G[(V \ S1) ∪ {x}], we have that1195

G[(V \ S1) ∪ {x}] has a cycle. Therefore, S1 is a minimal feedback vertex set of G.1196

Consequently, ammfvs(I ′) = ammfvs(I) follows. Lastly, we need to show that µ(I ′) ≤1197

µ(I) in the case where u, v ∈ U . Indeed, if both of them are in U the contraction does not1198

change the number of components in F , or the number of interesting paths or the number of1199

good vertices in S. ◀1200

▶ Lemma 8. The branching strategy produces instances of reduced measure of progress,1201

without reducing the number of good vertices.1202

Proof. Let I = (G, S, F, k) be an instance of Annotated MMFVS and I1 = (G, S′, F, k),1203

M. Lampis, N. Melissinos and M. Vasilakis 23:29

I2 = (G, S, F ′, k) the instances produced by the branching strategy, where S′ = S ∪ {v} and1204

F ′ = F ∪ {v} for v ∈ U . Moreover, let g, g1 and g2 denote the number of good vertices of1205

each instance respectively. Notice that g ≤ g1 and g ≤ g2. We assume that none of I1, I21206

has been discarded, i.e. G[F ′] is a forest. Notice that then, if degF (v) ≥ 2, it follows that v1207

has at least two neighbors in distinct connected components of G[F]. We will prove that1208

µ(I1) < µ(I) and µ(I2) < µ(I).1209

We will distinguish between three different cases.1210

Case 1. degU (v) = 0 and degF (v) ≥ 3, i.e. v is an isolated vertex of G[U] with multiple edges1211

to F . On I1, it holds that µ(I1) ≤ µ(I) − 1, since g1 ≥ g + 1. On the other hand, on I2, it1212

holds that µ(I2) ≤ µ(I) − 2, since cc(F ′) ≤ cc(F) − 2, otherwise G[F ′] contains a cycle.1213

Case 2. degU (v) = 1 and degF (v) ≥ 2. On I1, it holds that µ(I1) ≤ µ(I)−1, since g1 ≥ g+1.1214

On the other hand, on I2, it holds that µ(I2) ≤ µ(I) − 1, since cc(F ′) ≤ cc(F) − 1, otherwise1215

G[F ′] contains a cycle. As a matter of fact, the number of interesting paths might also1216

increase.1217

Case 3. Lastly, either (i) degU (v) = 2 and degF (v) ≥ 1, or (ii) degU (v) ≥ 3. Since v is an1218

interesting vertex of maximum height, for all of its descendants w in its corresponding tree in1219

G[U], it holds that degF ∪U (w) = 2. On I1, for any child u of v, it holds that degV \S′(u) = 1.1220

In that case, by exhaustively applying Rule 3 and producing an instance I∗
1 = (G′, S′, F ∗, k),1221

it follows that v has an additional edge to F ∗ for each such child. In total, v has at least1222

2 edges towards F ∗ in both (i) and (ii), either due to the children or preexisting edges.1223

Consequently, g1 ≥ g + 1 and µ(I1) ≤ µ(I) − 1. Note that the number of interesting paths1224

might also increase in the new instance.1225

For I2, we consider (i) and (ii) separately.1226

In (i), cc(F ′) ≤ cc(F) since v has at least 1 neighbor in F , while p is increased by at1227

least 1. Indeed, since v has at least one child u in U , all of the descendants of which have1228

degree 2 in G[V \ S], this means that we have increased the interesting paths by at least1229

1.1230

In (ii), since v does not necessarily have a neighbor in F , it holds that cc(F ′) ≤ cc(F) + 1.1231

However, v has at least 2 children in U , all of the descendants of which have degree 2 in1232

G[V \ S], therefore the number of interesting paths p increase by at least 2.1233

Consequently, µ(I2) ≤ µ(I) − 1. ◀1234

CVIT 2016

	1 Introduction
	2 Preliminaries
	3 Treewidth Algorithm
	4 ETH Lower Bound
	4.1 Preliminary Tools
	4.2 Construction
	4.3 Correctness

	5 Natural Parameter Algorithm
	5.1 Annotated MMFVS and Path Restricted Instances
	5.2 Algorithm for Max Min FVS

	6 The Extension Problem
	7 Conclusions and Open Problems
	A Proofs for Section 3 (Treewidth Algorithm)
	B Proofs for Section 4 (ETH Lower Bound)
	C Proofs for Section 5 (Natural Parameter Algorithm)

