
QBF as an Alternative to Courcelle’s Theorem

Michael Lampis, Stefan Mengel, and Valia Mitsou

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
2 CNRS, CRIL UMR 8188

3 Université Paris-Diderot, IRIF, CNRS, UMR 8243

Abstract. We propose reductions to quantified Boolean formulas (QBF)
as a new approach to showing fixed-parameter linear algorithms for prob-
lems parameterized by treewidth. We demonstrate the feasibility of this
approach by giving new algorithms for several well-known problems from
artificial intelligence that are in general complete in the second level of
the polynomial hierarchy. By reduction from QBF we show that all re-
sulting algorithms are essentially optimal in their dependence on the
treewidth. Most of the problems that we consider were already known
to be fixed-parameter linear by using Courcelle’s theorem or dynamic
programming, but we argue that our approach has clear advantages over
these techniques: on the one hand, in contrast to Courcelle’s theorem,
we get concrete and tight guarantees for the runtime dependence on the
treewidth. On the other hand, we avoid tedious dynamic programming
and, after showing some normalization results for CNF-formulas, our
upper bounds often boil down to a few lines.

1 Introduction

Courcelle’s seminal theorem [7] states that every graph property definable in
monadic second order logic can be decided in linear time on graphs of con-
stant treewidth. Here treewidth is the famous width measure used to measure
intuitively how similar a graph is to a tree. While the statement of Courcelle’s
theorem might sound abstract to the unsuspecting reader, the consequences are
tremendous. Since a huge number of computational problems can be encoded
in monadic second order logic, this gives automatic linear time algorithms for a
wealth of problems in such diverse fields as combinatorial algorithms, artificial
intelligence and databases; out of the plethora of such papers let us only cite [19,
10] that treat problems that will reappear in this paper. This makes Courcelle’s
theorem one of the cornerstones of the field of parameterized algorithms.

Unfortunately, its strength comes with a price: while the runtime dependence
on the size of the problem instance is linear, the dependence on the treewidth
is unclear when using this approach. Moreover, despite recent progress, see e.g.
the survey [26], Courcelle’s theorem is largely considered impractical due to the
gigantic constants involved in the construction. Since generally these constants
are unavoidable [18], showing linear time algorithms with Courcelle’s theorem
can hardly be considered as a satisfying solution.

As a consequence, linear time algorithms conceived with the help of Cour-
celle’s theorem are sometimes followed up with more concrete algorithms with
more explicit runtime guarantees often by dynamic programming or applications
of a datalog approach [12, 19, 21]. Unfortunately, these hand-written algorithms
tend to be very technical, in particular for decision problems outside of NP.
Furthermore, even this meticulous analysis usually gives algorithms with a de-
pendance on treewidth that is a tower of exponentials.

The purpose of this paper is two-fold. On the one hand we propose reductions
to QBF combined with the use of a known QBF-algorithm by Chen [6] as a
simple approach to constructing linear-time algorithms for problems beyond NP
parameterized by treewidth. The advantage of this approach over Courcelle’s
metatheorem or tedious dynamic programming is that the algorithms we provide,
while being almost straightforward to produce, give bounds on the treewidth
that match asymptotically those of careful dynamic programming. On the other
hand, we show that our algorithms are best possible, giving matching complexity
lower bounds. Our problem pool will be the area of artificial intelligence that
contains a variety of problems complete for classes in the second level of the
polynomial hierarchy: abduction, circumscription, abstract argumentation and
the computation of minimal unsatisfiable sets in unsatisfiable formulas.

Our algorithmic approach might at first sight seem surprising: since the QBF
with a fixed number of alternations is complete for the different levels of the
polynomial hierarchy, there are trivially reductions from all problems in that hi-
erarchy to the corresponding QBF problem. So what is new about this approach?
The crucial observation here is that in general reductions to QBF guaranteed
by completeness do not maintain the treewidth of the problem. So we might
start with an instance of small treewidth and then reduce to a QBF-instance
with high treewidth such that Chen’s algorithm does not give us any meaningful
runtime guarantees. Moreover, while Chen’s algorithm runs in linear time, there
is no reason for the reduction to QBF to run in linear time which would result
in an algorithm with overall non-linear runtime.

The runtime bounds that we give are mostly of the form 22
O(k)

n where k is
the treewidth and n the size of the input. Furthermore, starting from recent lower
bounds for QBF [25], we also show that these runtime bounds are essentially tight

as there are no algorithms with runtime 22
o(k)

2o(n) for the considered problems.
Our lower bounds are based on the exponential time hypothesis (ETH) which
posits that there is no algorithm for 3SAT with runtime 2o(n) where n is the
number of variables in the input. ETH is by now widely accepted as a standard
assumption in the fields of exact and parameterized algorithms for showing tight
lower bounds, see e.g. the survey [29]. We remark that our bounds confirm the
observation already made in [30] that problems complete in the second level
of the polynomial hierarchy parameterized by treewidth tend to have runtime
double-exponential in the treewidth.

As a consequence, the main contribution of this paper is to show that re-
ductions to QBF can be used as a simple technique to show algorithms with
essentially optimal runtime for a wide range of problems.

2 Preliminaries

In this section, we only introduce notation that we will use in all parts of the
paper. The background for the problems on which we demonstrate our approach
will be given in the individual sections in which these problems are treated.

2.1 Treewidth

Throughout this paper, all graphs will be undirected and simple unless explic-
itly stated otherwise. A tree decomposition (T, (Bt)t∈T) of a graph G = (V,E)
consists of a tree T and a subset Bt ⊆ V for every node t of T with the following
properties:

– every vertex v ∈ V is contained in at least one set Bt,
– for every edge uv ∈ E, there is a set Bt that contains both u and v, and
– for every v ∈ V , the set {t | v ∈ Bt} induces a subtree of T .

The last condition is often called the connectivity condition. The sets Bt are
called bags. The width of a tree decomposition is maxt∈T (|Bt|)−1. The treewidth
of G is the minimum width of a tree decomposition of G. We will sometimes
tacitly use the fact that any tree decomposition can always be assumed to be
of size linear in |V | by standard simplifications. Computing the treewidth of
a graph is NP-hard [1], but for every fixed k there is a linear time algorithm
that decides if a given graph has treewidth at most k and if so computes a tree
decomposition witnessing this [3].

A tree decomposition is called nice if every node t of T is of one of the
following types:

– leaf node: t is a leaf of T .
– introduce node: t has a single child node t′ and Bt = Bt′ ∪{v} for a vertex
v ∈ V \Bt′ .

– forget node: t has a single child node t′ and Bt = Bt′ \ {v} for a vertex
v ∈ Bt′ .

– join node: t has exactly two children t1 and t2 with Bt = Bt1 = Bt2 .

Nice tree decompositions were introduced in [22] where it was also shown that
given a tree decomposition of a graph G, one can in linear time compute a nice
tree decomposition of G with the same width.

2.2 CNF formulas

A literal is a propositional variable or the negation of a propositional variable. A
clause is a disjunction of literals and a CNF-formula is a conjunction of clauses.
For technical reasons we assume that there is an injective mapping from the
variables in a CNF formula φ to {0, . . . , cn} for an arbitrary but fixed constant c
where n is the number of variables in φ and that we can evaluate this mapping in
constant time. This assumption allows us to easily create in linear time in n lists

which store data assigned to the variables that we can then look up in constant
time. Note that formulas in the DIMACS format [8], the standard encoding for
CNF formulas, generally have this assumed property. Alternatively, we could use
perfect hashing to assign the variables to integers, but this would make some of
the algorithms randomized.

Let φ and φ′ be two CNF formulas. We say that φ is a projection of φ′ if and
only if var(φ) ⊆ var(φ′) and a : var(φ) → {0, 1} is a model of φ if and only if a
can be extended to a model of φ′.

(a) Primal graph (b) Incidence graph

Fig. 1: Primal and incidence graphs for φ = (¬x ∨ z) ∧ (x ∨ y ∨ ¬w) ∧ (¬z ∨ w).

To every CNF formula φ we assign a graph called primal graph whose vertex
set is the set of variables of φ. Two vertices are connected by an edge if and only
if they appear together in a clause of φ (See Figure 1a). The primal treewidth of
a CNF formula is the treewidth of its primal graph. We will also be concerned
with the following generalization of primal treewidth: the incidence graph of a
CNF formula has as vertices the variables and the clauses of the formula. Two
vertices are connected by an edge if and only if one vertex is a variable and the
other is a clause such that the variable appears in the clause (See Figure 1b).
The incidence treewidth of a formula is then the treewidth of its incidence graph.

It is well-know that the incidence treewidth of a CNF-formula can be arbi-
trarily higher than the primal treewidth (for example consider a single clause of
size n). The other way round, formulas of primal treewidth k can easily be seen
to be of incidence treewidth at most k + 1 [17].

3 Preprocessing CNF

In this section, we will show several linear time transformations of CNF-formulas
that will be useful in the remainder of the paper. Some of these transformations
are somewhat tedious but none of them are particularly hard.

Later on, it will be convenient to assume that the CNF formulas we encounter
have bounded arity (clause size). There are of course well-known standard re-
ductions for this. Proposition 1 suggests that we can apply them in linear time
while roughly maintaining the treewidth.

Proposition 1. There is an algorithm that, given a CNF formula φ of incidence
treewidth k, computes in time 2O(k)|φ| a 3CNF formula φ′ of incidence treewidth
O(k) with var(φ) ⊆ var(φ′) such that φ is a projection of φ′.

Proof.(Sketch) We use the classic reduction from SAT to 3SAT that cuts big
clauses into smaller clauses by introducing new variables. During this reduction
we have to take care that the runtime is in fact linear and that we can bound
the treewidth appropriately. For the complete proof see Appendix A. ut

It is well-known that if the clauses in a formula φ of incidence treewidth k
have at most size d, then the primal treewidth of φ is at most (k + 1)d, see
e.g. [17] so the following result follows directly.

Corollary 1. There is an algorithm that, given a CNF-formula φ of incidence
treewidth k, computes in time O(2k|φ|) a 3CNF-formula φ′ of primal treewidth
O(k) such that φ is a projection of φ′.

We will in several places in this paper consider Boolean combinations of func-
tions expressed by CNF formulas of bounded treewidth. The following technical
lemma states that we can under certain conditions construct CNF formulas of
bounded treewidth for the these Boolean combinations.

Lemma 1. a) There is an algorithm that, given a 3CNF-formula φ and a tree
decomposition (T, (Bt)t∈T) of its incidence graph of width O(k), computes
in time poly(k)n a CNF-formula φ′ and a tree decomposition (T ′, (B′t)t∈T)
of the incidence graph of φ′ such that ¬φ is a projection of φ′, for all t ∈ T
we have B′t ∩ var(φ) = Bt and the width of (T ′, (B′t)t∈T) is O(k).

b) There is an algorithm that, given two 3CNF-formulas φ1, φ2 and two tree
decompositions (T, (Bit)t∈T) for i = 1, 2 of the incidence graphs of φi of
width O(k) such that for every bag either B1

t ∩ B2
t = ∅ or B1

t ∩ var(φ1) =
B2
t ∩ var(φ2), computes in time poly(k)n a tree decomposition (T ′, (B′t)t∈T)

of the incidence graph of φ1 ∧ φ2 such that φ′ ≡ φ1 ∧ φ2, for all t ∈ T we
have B1

t ∪B2
t = B′t and the width of (T, (B′t)t∈T) is O(k).

Proof. a) Because every clause has at most 3 literals, we assume w.l.o.g. that
every bag B that contains a clause C contains also all variables of C.

In a first step, we add for every clause C = `1 ∨ `2 ∨ `3 a variable xC and
substitute C by clauses with at most 3-variables encoding the constraint C =
xC ↔ l1∨ l2∨ l3 introducing some new variables. The result is a CNF-formula φ1
in which every assignment a to var(φ) can be extended uniquely to a satisfying
assignment a1 and in a1 the variable xC is true if and only if C is satisfied by
a. Note that, since every clause has at most 3 variables, the clauses for C can be
constructed in constant time. Moreover, we can construct a tree decomposition
of width O(k) for φ1 from that of φ by adding all new clauses for C and xC to
every bag containing C.

In a next step, we introduce a variable xt for every t ∈ T and a constraint T
defining xt ↔ (xt1 ∧ xt2 ∧

∧
C∈Bt

xC) where t1, t2 are the children of t and the
variables are omitted in case they do not appear. The resulting CNF formula φ2

is such that every assignment a to var(φ) can be uniquely extended to a satisfying
assignment a2 of φ2 and xt is true in a2 if and only if all clauses that appear
in the subtree of T rooted in t are satisfied by a. Since every constraint T has
at most k variables, we can construct the 3CNF-formula simulating it in time
O(k), e.g. by Tseitin transformation. We again bound the treewidth as before.

The only thing that remains is to add a clause ¬xr where r is the root of T .
This completes the proof of a).

b) We simply set B′t = B1
t ∪ B2

t . It is readily checked that this satisfies all
conditions. ut

Lemma 2. There is an algorithm that, given a 3CNF formula φ with a tree
decomposition (T, (Bt)t∈T) of width k of the incidence graph of φ and sequences
of variables X := (x1, . . . , x`), Y = (y1, . . . , y`) ⊆ var(φ)` such that for every
i ∈ [`] there is a bag Bt with {xi, yi} ∈ Bt, computes in time poly(k)|φ| a formula

ψ that is a projection of X ⊆ Y =
∧`
i=1(xi ≤ yi) and a tree decomposition

(T, (Bt)t∈T) of ψ of width O(1). The same is true for ⊂ instead of ⊆.

Proof. For the case ⊆, ψ is simply
∧`
i=1(xi ≤ yi) =

∧`
i=1 ¬xi ∨ yi. ψ satisfies all

properties even without projection and with the same tree decomposition.
The case ⊂ is slightly more complex. We first construct

∧`
i=1(xi = yi) =∧`

i=1(¬xi ∨ yi) ∧ (xi ∨ ¬yi). Then we apply Lemma 1 a) to get a CNF formula
that has X 6= Y as a projection. Finally, we use Lemma 1 to get a formula for
X ⊂ Y = (X ⊆ Y)∧ (X 6= Y). It is easy to check that this formula has the right
properties for the tree decomposition. ut

4 2-QBF

Our main tool in this paper will be QBF, the quantified version of CNF. In
particular, we will be concerned with the version of QBF which only has two
quantifier blocks which is often called 2-QBF. Let us recall some standard defi-
nitions. A ∀∃-QBF is a formula of the form ∀X∃Y φ(X,Y) where X and Y are
disjoint vectors of variables and φ(X,Y) is a CNF-formula called the matrix. We
assume the usual semantics for ∀∃-QBF.

It is well-known that deciding if a given ∀∃-QBF is true is complete in the sec-
ond level of the polynomial hierarchy, and thus generally considered intractable.
Treewidth has been used as an approach for finding tractable fragments of ∀∃-
QBF and more general bounded alternation QBF. Let us define the primal (resp.
insidence) treewidth of a ∀∃-QBF to be the primal (resp. incidence) treewidth
of the underlying CNF formula. Chen [6] showed the following result.

Theorem 1. [6] There is an algorithm that given a ∀∃-QBF of primal treewidth

k decides in time 22
O(k) |φ| if φ is true.

We note that the result of [6] is in fact more general than what we state here. In
particular, the paper gives a more general algorithm for QBF-i with running time

22
··
·O(k)

|φ|, where the height of the tower of exponentials is i. For readability we

will restrict ourselves to the case i = 2 that is general enough for our needs. We
also remark that Chen does not state that his algorithm in fact works in linear
time. We sketch in Appendix B why there is indeed a linear runtime bound.

In the later parts of this paper, we require a version of Theorem 1 for incidence
treewidth which fortunately follows directly from Theorem 1 and Corollary 1.

Corollary 2. There is an algorithm that given a ∀∃-QBF of incidence treewidth

k decides in time 22
O(k) |φ| if φ is true.

We remark that general QBF of bounded treewidth without any restriction
on the quantifier prefix is PSPACE-complete [2], and finding tractable fragments
by taking into account the structure of the prefix and notions similar to treewidth
is quite an active area of research, see e.g. [14, 13].

To show tightness of our upper bounds, we use the following theorem from [25].

Theorem 2. There is no algorithm that, given a ∀∃-QBF φ with n variables

and treewidth k, decides if φ is true in time 22
o(k)

2o(n), unless ETH is false.

5 Abstract Argumentation

Abstract argumentation is an area of artificial intelligence which tries to assess
the acceptability of arguments within a set of possible arguments based only
the relation between them, i.e., which arguments defeat which. Since its cre-
ation in [9], abstract argumentation has developed into a major and very active
subfield. In this section, we consider the most studied setting introduced in [9].

An argumentation framework is a pair F = (A,R) where A is a finite set
and R ⊆ A×A. The elements of A are called arguments. The elements of R are
called the attacks between the arguments and we say for a, b ∈ A that a attacks
b if and only if ab ∈ R. A set S ⊆ A is called conflict-free if and only if there
are no a, b ∈ S such that ab ∈ R. We say that a vertex a is defended by S if for
every b that attacks a, i.e. ba ∈ R, there is an argument c ∈ S that attacks b.
The set S is called admissible if and only if it is conflict-free and all elements of
S are defended by S. An admissible set S is called preferred if and only if it is
subset-maximal in the set of all admissible sets.

There are two main notions of acceptance: A set S of arguments is accepted
credulously if and only if there is a preferred admissible set such that S ⊆ S′.
The set S is accepted skeptically if and only if for all preferred admissible sets
S′ we have S ⊆ S′. Both notions of acceptance have been studied extensively
in particular with the following complexity results: it is NP hard to decide,
given an argumentation framework F = (A,R) and a set S ⊆ A, if S is cred-
ulously accepted. For skeptical acceptance, the analogous decision problem is
Π2
p -complete [11]. Credulous acceptance is easier to decide, because when S is

contained in any admissible set S′ then it is also contained in a preferred admis-
sible set S′′: a simple greedy algorithm that adds arguments to S′ that are not
in any conflicts constructs such an S′′.

Concerning treewidth, after some results using Courcelle’s theorem [10], it
was shown in [12] by dynamic programming that credulous acceptance can be

decided in time 2O(k)n while skeptical acceptance can be decided in time 22
O(k)

n
for argument frameworks of size n and treewidth k. Here an argument framework
is seen as a directed graph and the treewidth is that of the underlying undirected
graph. We reprove these results in our setting. To this end, we first encode conflict
free sets in CNF. Given an argumentation framework F = (A,R), construct a
CNF formula φcf that has an indicator variable xa for every a ∈ A as

φcf :=
∧
ab∈R

¬xa ∨ ¬xb.

It is easy to see that the satisfying assignments of φcf encode the conflict-free
sets for F . To encode the admissible sets, we add an additional variable Pa for
every a ∈ A and define:

φd := φcf ∧
∧
a∈A

((¬Pa ∨
∨

b:ba∈R

xb) ∧
∧

b:ba∈R

(Pa ∨ ¬xb))

The clauses for each Pa are equivalent to Pa ↔
∨
b:ba∈R xb, i.e., Pa is true in a

model if and only if a is attacked by the encoded set. Thus by setting

φadm := φd ∧
∧
ba∈R

¬Pb ∨ ¬xa

we get a CNF formula whose models restricted to the xa variables are exactly the
admissible sets. We remark that in [24] the authors give a similar SAT-encoding
for argumentation problems with slightly different semantics.

Claim. If F has treewidth k, then φadm has incidence treewidth k.

Proof. We start from a tree decomposition (T, (Bt)t∈T) of width k of F and
construct a tree decomposition of φadm. First note that (T, (Bt)t∈T) is also a
tree decomposition of the primal graph of φcf up to renaming each a to xa. For
every ba ∈ R there is thus a bag B that contains both b and a. We connect a new
leaf to B containing where {Ca,b, a, b} is a clause node for the clause ¬xa ∨ ¬xb
to construct a tree decomposition of the primal graph of φd.

Now we add Pa to all bags containing xa, so that for every clause Pa ∨
¬xb we have a bag containing both variables, and we add new leaves for the
corresponding clause nodes as before. Then we add for every clause Ca := ¬Pa∨∨
b:ba∈R xb the node Ca to every bag containing a. This covers all edges incident

to Ca in the incidence graph of φd and since for every a we only have one such
edge, this only increases the width of the decomposition by a constant factor.
We obtain a tree decomposition of width O(k) for the incidence graph of φd.

The additional edges for φadm are treated similarly to above and we get a
tree decomposition of width O(k) of φadm of φ as desired. ut

Combining Claim 5 with the fact that satisfiability of CNF-formulas of inci-
dence treewidth k can solved in time 2O(k), see e.g. [33], we directly get the first
result of [12].

Theorem 3. There is an algorithm that, given an argumentation framework
F = (A,R) of treewidth k and a set S ⊆ A, decides in time 2O(k)|A| if S is
credulously accepted.

We also give a short reproof of the second result of [12].

Theorem 4. There is an algorithm that, given an argumentation framework

F = (A,R) of treewidth k and a set S ⊆ A, decides in time 22
O(k) |A| if S is

skeptically accepted.

Proof. Note that the preferred admissible sets of F = (A,R) are exactly the
subset maximal assignments to the xa that can be extended to a satisfying
assignment of φadm. Let X := {xa | a ∈ A}, then we can express the fact that
an assignment is a preferred admissible set by

φ′(X) = ∃P∀X ′∀P ′ (φadm(X,P) ∧ (¬φ(X ′, P ′) ∨ ¬(X ⊂ X ′)))

where the sets P ,X ′ and P ′ are defined analogously to X. Then S does not
appear in all preferred admissible sets if and only if

∃X(φ′(X) ∧
∨
a∈S
¬xa).

Negating and using Lemma 1 yields a ∀∃-QBF of incidence treewidth O(k) that
is true if and only if S appears in all preferred admissible sets. This gives the
result with Corollary 2. ut

We now show that Theorem 4 is essentially tight.

Theorem 5. There is no algorithm that, given an argumentation framework
F = (A,R) of size n and treewidth k and a set S ⊆ A, decides if S is in every

preferred admissible set of F in time 22
o(k)

2o(n), unless ETH is false.

Proof. We use a construction from [11, 12]: for a given ∀∃-QBF ∀Y ∃Zφ in vari-
ables Y ∪ Z = {x1, . . . , xn} and clauses C1, . . . , Cm, define Fφ = (A,R) with

A ={φ,C1, . . . , Cm} ∨ {xi, x̄i | i = 1 ≤ i ≤ n} ∪ {b1, b2, b3}
R ={(Cj , φ) | 1 ≤ j ≤ m} ∪ {(xi, x̄i), (x̄i, xi) | 1 ≤ i ≤ n}

∪ {(xi, Cj) | xi in Cj , 1 ≤ j ≤ m} ∪ {(x̄i, Cj) | ¬xi in Cj , 1 ≤ j ≤ m}
∪ {(φ, b1), (φ, b2), (φ, b3), (b1, b2), (b2, b3), (b3, b1)} ∪ {(b1, z), (b1, z̄) | z ∈ Z}

One can show that φ is in every preferred admissible set of Fφ if and only if
φ is true. Moreover, from a tree decomposition of the primal graph of φ we get
a tree decomposition of F as follows: we add every x̄i to every bag that contains
xi and we add b1, b2, b3 to all bags. This increases the treewidth from k to 2k+3
and thus we get the claim with Theorem 2. ut

6 Abduction

In this section, we consider (propositional) abduction, a form of non-monotone
reasoning that aims to find explanations for observations that are consistent with
an underlying theory. A propositional abduction problem (short PAP) consists
of a tuple P = (V,H,M, T) where T is a propositional formula called the theory
in variables V , the set M ⊆ V is called the set of manifestations and H ⊆ V
the set of hypotheses. We assume that T is always in CNF. In abduction, one
identifies a set S ⊆ V with the formula

∧
x∈S x. Similarly, given a set S ⊆ H, we

define T ∪S := T ∧
∧
x∈S x. A set S ⊆ H is a solution of the PAP, if T ∪S |= M ,

i.e., all models of T ∪ S are models of M .
There are three main problems on PAPs that have been previously studied:

– Solvability: Given a PAP P , does it have a solution?
– Relevance: Given a PAP P and h ∈ H, is h contained in at least one solution?
– Necessity: Given a PAP P and h ∈ H, is h contained in all solutions?

The first two problems are Σ2
p-complete while necessity is Π2

p -complete [16].
In [19], it is shown with Courcelle’s theorem that if the theory T of an instance
P is of bounded treewidth, then all three above problems can be solved in linear
time. Moreover, [19] gives an algorithm based on a Datalog-encoding that solves

the solvability and relevance problems in time 22
O(k) |T | on instances of treewidth

k. Our first result gives a simple reproof of the latter results and gives a similar
runtime for necessity.

Theorem 6. There is a linear time algorithm that, given a PAP P = (V,H,M, T)

such that the incidence treewidth of T is k and h ∈ H, decides in time 22
O(k) |T |

the solvability, relevance and necessity problems.

Proof. We first consider solvability. We identify the subsets S ⊆ H with assign-
ments to H in the obvious way. Then, for a given choice S, we have that T ∪ S
is consistent if and only if

ψ1(S) := ∃XT (X) ∧
∧
si∈H

(si → xi),

is true where X has a variable xi for every variable vi ∈ V . Moreover, T ∪S |= M
if and only if

ψ2 := ∀X ′
(∧
si∈H

(si → x′i)→

(
T (X ′)→

∧
vi∈M

x′i

))
,

where X ′ similarly to X has a variables xi for every variable vi ∈ V . To get a
∀∃-formula, we observe that the PAP has no solution if and only if

∀S¬(ψ1(S)∧ψ2(S)) = ∀S∀X ′∃X ′¬(T (X)∧S ⊆ X|H)∨(S ⊆ X ′|H∧T (X ′)∧¬
∧
vi∈M

x′i)

is true, where X|H denotes the restriction of X to the variables of H. Now ap-
plying Lemmata 1 and 2 in combination with de Morgan laws to express ∨ yields
a ∀∃-QBF of incidence treewidth O(k) and the result follows with Corollary 2.

For relevance, we simply add the hypothesis h to T and test for solvability.
For necessity, observe that h is in all solutions if and only if

∀S(ψ1(S) ∧ ψ2(S))→ h,

which can easily be brought into ∀∃-QBF slightly extending the construction for
the solvability case. ut

Using the Σ2
p-hardness reduction from [16], it is not hard to show that the

above runtime bounds are tight.

Theorem 7. There is no algorithm that, given a PAP P whose theory has pri-

mal treewidth k, decides decides solvability of P in time 22
o(k)

2o(n), unless ETH
is false. The same is true for relevance and necessity of a variable h.

Proof. Let φ′ = ∀X∃Y φ be a ∀∃-QBF withX = {x1, . . . , xm} and Y = {y1, . . . , y`}.
Define a PAP P = (V,H,M, T) as follows

V = X ∪ Y ∪X ′ ∪ {x}
H = X ∪X ′

M = Y ∪ {s}

T =

m∧
i=1

(xi ↔ ¬x′i) ∧ (φ→ s ∧
∧̀
j=1

yj)︸ ︷︷ ︸
ψ

∧
∧̀
j=1

(s→ yj)

where X ′ = {x′1, . . . , x′m} and s are fresh variables. It is shown in [16] that φ′

is true if and only if P has a solution. We show that T can be rewritten into
CNF-formula T ′ with the help of Lemma 1. The only non-obvious part is the
rewriting of ψ. We solve this part by first negating into (φ ∧ (¬s ∨

∨`
j=1 ¬yj)

and observing that the second conjunct is just a clause, adding it to φ only
increases the treewidth by 2. Finally, we negate the resulting formula to get a
CNF-formula for ψ with the desired properties. The rest of the construction of
T ′ is straightforward. The claim then follows with Theorem 2.

The result is a PAP with theory T ′ of treewidth O(k) and O(n) variables and
the result for solvability follows with Theorem 2. The result for relevance and
necessity we point the reader to the proof of Theorem 4.3 in [16]. There for a
PAP P a new PAP P ′ with three additional variables and 5 additional clauses is
constructed such that solvability of P reduces to the necessity (resp. relevance)
of a variable in P ′. Since adding a fixed number of variables and clauses only
increases the primal treewidth at most by a constant, the claim follows. ut

6.1 Adding ⊆-Preferences

In abduction there are often preferences for the solution that one wants to con-
sider for a given PAP. One particular interesting case is ⊆-preference where

one tries to find (subset-)minimal solutions, i.e. solutions S such that no strict
subset S′ ⊆ S is a solution. This is a very natural concept as it corresponds
to finding minimal explanations for the observed manifestations. We consider
two variations of the problems considered above, ⊆-relevance and ⊆-necessity.
Surprisingly, complexity-wise, both remain in the second level of the polynomial
hierarchy [15]. Below we give a linear-time algorithm for these problems.

Theorem 8. There is a linear time algorithm that, given a PAP P = (V,H,M, T)

such that the incidence treewidth of T is k and h ∈ H, decides in time 22
2O(k)

|T |
the ⊆-relevance and ⊆-necessity problems.

Proof.(Sketch) We have seen how to express the property of a set S being a
solution as a formula ψ(S) in the proof of Theorem 6. Then expressing that S
is a minimal model can written by

ψ′(S) := ψ(S) ∧ (∀S′(S′ ⊆ S → ¬ψ(S′))).

This directly yields QBFs for encoding the ⊆-necessity and ⊆-relevance problems
as before which can again be turned into treewidth O(k). The only difference
is that we now have three quantifier alternations leading to a triple-exponential
dependence on k when applying the algorithm from [6] (see Appendix B). ut
We remark that [19] already gives a linear time algorithm for ⊆-relevance and ⊆-
necessity based on Courcelle’s algorithm and thus without any guarantees for the
dependence on the runtime. Note that somewhat disturbingly the dependence
on the treewidth in Theorem 8 is triple-exponential. We remark that the lower
bounds we could get with the techniques from the other sections are only double-
exponential. Certainly, having a double-exponential dependency as in our other
upper bounds would be preferable and thus we leave this as an open question.

7 Circumscription

In this section, we consider the problem of circumscription. To this end, consider
a CNF-formula T encoding a propositional function called the theory. Let the
variable set X of T be partitioned into three variable sets P,Q,Z. Then a model
a of T is called (P,Q,Z)-minimal if and only if there is no model a′ such that
a′|P ⊂ a|P and a′|Q = a|Q. In words, a is minimal on P for the models that coin-
cide with it on Q. Note that a and a′ can take arbitrary values on Z. We denote
the (P,Q,Z)-minimal models of T by MM(T, P,Q,Z). Given a CNF-formula F ,
we say that MM(T, P,Q,Z) entails F , in symbols MM(T, P,Q,Z) |= F , if all
assignments in MM(T, P,Q,Z) are models of F . The problem of circumscription
is, given T, P,Q,Z and F as before, to decide if MM(T, P,Q,Z) |= F .

Circumscription has been studied extensively and is used in many fields, see
e.g. [28, 31]. We remark that circumscription can also be seen as a form of closed
world reasoning which is equivalent to reasoning under the so-called extended
closed world assumption, see e.g. [5] for more context. On general instances cir-
cumscription is Π2

p -complete [15] and for bounded treewidth instances, i.e. if the

treewidth of T ∧ F is bounded, there is a linear time algorithm shown by Cour-
celle’s theorem [19]. There is also a linear time algorithm for the corresponding
counting problem based on datalog [21]. We here give a version of the result
from [19] more concrete runtime bounds.

Theorem 9. There is an algorithm that, given an instance T, P,Q,Z and F of

incidence treewidth k, decides if MM(T, P,Q,Z) |= F in time 22
O(k)

(|T |+ |F |).

Proof. Note that MM(T, P,Q,Z) |= F if and only if for every assignment (aP , aQ, aZ)
to P, Y, Z, we have that (aP , aQ, aZ) is not a model of T , or (aP , aQ, aZ) is a
model of F or there is a model (a′P , a

′
Q, a

′
Z) of T such that a′P ⊂ aP and a′Q = aQ.

This can be written as a ∀∃-formula as follows:

ψ := ∀P∀Q∀Z∃P ′∃Z ′(¬T (P,Q,Z) ∨ F (P,Q,Z) ∨ (T (P ′, Q, Z ′) ∧ P ′ ⊂ P)).

We first compute a tree decomposition of T ∧F of width O(k) in time 2O(k)(|T |+
|F |). We can use Lemma 1, Lemma 2 and Proposition 1 to compute in time
poly(k)(|T |+ |F |) a CNF-formula φ such that the matrix of ψ is a projection of
φ and φ has incidence treewidth O(k). Applying Corollary 2, yields the result.

ut
We now show that Theorem 9 is essentially optimal by analyzing the proof

in [15].

Theorem 10. There is no algorithm that, given an instance T, P,Q,Z and F

of size n and treewidth k, decides if MM(T, P,Q,Z) |= F in time 22
o(k)

2o(n),
unless ETH is false.

Proof. Let ψ = ∀X∃Y φ be a QBF with X = {x1, . . . , xm} and Y = {y1, . . . , y`}.
We define the theory T as follows:

T =

(
m∧
i=1

(xi 6= zi)

)
∧ ((u ∧ y1 ∧ . . . y`) ∨ φ) ,

where z1, . . . , zm and u are fresh variables. Set P = var(T) and Q = ∅ and Z the
rest of the variables. In [15], it is shown that all MM(T, P,Q,Z) |= ¬u if and
only if φ is true. Now using Lemma 1 we turn ψ into a 2-QBF ψ′ with the same
properties. Note that ψ′ has treewidth O(k) and O(m + `) variables and thus
the claim follows directly with Theorem 2. ut

8 Minimal Unsatisfiable Subsets

Faced with unsatisfiable CNF-formula, it is in many practical setting highly
interesting to find the sources of unsatisfiability. One standard way of describing
them if by so-called minimal unsatisfiable sets. A minimal unsatisfiable set (short
MUS) is an unsatisfiable set C of clauses of a CNF-formula such that every
proper subset of C is satisfiable. The computation of MUS has attracted a lot of
attention, see e.g. [23, 20, 35] and the references therein.

In this section, we study the following question: given a CNF-formula φ and
a clause C, is C contained in a MUS of φ? Clauses for which this is the case can
in a certain sense be considered as not problematic for the satisfiability of φ. As
for the other problems studied in this paper, it turns out that the above problem
is complete for the second level of the polynomial hierarchy, more specifically for
Σ2
p [27]. Treewidth reductions seem to not have been considered before, but we

show that our approach gives a linear time algorithm in a simple way.

Theorem 11. There is an algorithm that, given a CNF-formula φ incidence

treewidth k and a clause C of φ, decides C is in a MUS of φ in time 22
O(k) |φ|.

Proof. Note that C is in a MUS of φ if and only if there is an unsatisfiable clause
set C such that C ∈ C and C \ {C} is satisfiable. We will encode this in ∀∃-QBF.
In a first step, similarly to the proof of Lemma 1, we add a new variable xC for
every clause C of φ and substitute φ by clauses expressing C ↔ xc. Call the
resulting formula ψ. It is easy to see that the incidence treewidth of ψ is at most
double that of φ. Moreover, for every assignment a to var(φ), there is exactly one
extension to a satisfying assignment a′ of ψ. Moreover, in a′ a clause variable xC
is true if and only if a satisfies the clause C. Let C be a set of clauses, then C is
unsatisfiable if and only if for every assignment a to var(φ), C is not contained
in the set of satisfied clauses. Interpreting sets by assignments as before, we can
write this as a formula by

ψ′(C) := ∀X∀C′ : ψC(X, C′)→ ¬(C ⊆ C′).

Let now C range over the sets of clauses not containing C. Then we have by the
considerations above that C appears in a MUS if and only if

ψ∗ = ∃Cψ′(C ∪ {C}) ∧ ¬ψ′(C)
= ∃C∃X ′∃C′∀X ′′∀C′′(φC(X ′, C′)→ ¬(C ∪ {C} ⊆ C′)) ∧ φC(X ′, C′′) ∧ C ⊆ C′′

Negating and rewriting the matrix of the resulting QBF with Lemma 1, we get
in linear time a ∀∃-QBF of treewidth O(k) that is true if and only if C does not
appear in a MUS of φ. Using Theorem 2 completes the proof. ut

We now show that Theorem 11 is essentially tight.

Theorem 12. There is no algorithm that, given a CNF-formula φ with n vari-
ables and primal treewidth k and a clause C of φ, decides if C is in a MUS of φ

in time 22
o(k)

2o(n), unless ETH is false.

Proof. Given a ∀∃-QBF ψ = ∀X∃Y φ of incidence treewidth k where C1, . . . , Cm
are the clauses of φ, we construct the CNF-formula

φ′ =
∧
x∈X

(x ∧ ¬x) ∧ w ∧
m∧
i=1

¬w ∨ Ci.

In [27] it is shown that ψ is true if and only if the clause w appears in a MUS
of φ′. Note that φ′ has primal treewidth k + 1: in a tree decomposition of the

primal graph of φ, we can simply add the variable w into all bags to get a
tree decomposition of the primal graph of φ′. Since clearly |φ′| = O(|φ|), any

algorithm to check if w is in a MUS of φ′ in time 22
o(k)

2o(n) contradicts ETH
with Theorem 2. ut

9 Conclusion

In this paper, we took an alternate approach in the design of optimal algo-
rithms mainly for the second level of the polynomial hierarchy parameterized by
treewidth: we used reductions to QBF-2.We stress that, apart from some tech-
nical transformations on CNF-formulas which we reused throughout the paper,
our algorithms are straightforward and all complexity proofs very simple. We
consider this as a strength of what we propose and not as a lack of depth, since
our initial goal was to provide a black-box technique for designing optimal linear-
time algorithms with an asymptotically optimal guarantee on the treewidth. We
further supplement the vast majority of our algorithms by tight lower-bounds,
using ETH reductions again from QBF-2.

We concentrated on areas of artificial intelligence, investigating a collection
of well-studied and diverse problems that are complete for Σ2

p and Π2
p . However

we conjecture that we could apply our approach to several problems with similar
complexity status. Natural candidates are problems complete for classes in the
polynomial hierarchy, starting from the second level, see e.g. [34] for an overview
(mere NP-complete problems can often be tackled by other successful techiques).

Of course, our approach is no silver bullet that magically makes all other
techniques obsolete. On the one hand, for problems whose formulation is more
complex than what we consider here, Courcelle’s theorem might offer a richer
language to model problems than QBF. This is similar in spirit to some problems
being easier to model in declarative languages like ASP than in CNF. On the
other hand, handwritten algorithms probably offer better constants than what
we get by our approach. For example, the constants in [12] are more concrete
and smaller than what we give in Section 5. However, one could argue that for
double-exponential dependencies, the exact constants probably do not matter
too much simply because already for small parameter values the algorithms
become infeasible4. Despite these issues, in our opinion, QBF encodings offer a
great trade-off between expressivity and tightness for the runtime bounds and
consider it as a valuable alternative.

Acknowledgments

Most of the research in this paper was performed during a stay of the first and
third authors at CRIL that was financed by the project PEPS INS2I 2017 CODA.
The second author is thankful for many valuable discussions with members of
CRIL, in particular Jean-Marie Lagniez, Emmanuel Lonca and Pierre Marquis,
on the topic of this article.

4 To give the reader an impression: 225 ≈ 4.2 × 109 and already 226 ≈ 1.8 × 1019.

References

1. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard
problems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24,
1989.

2. Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. J.
Comput. Syst. Sci., 80(7):1415–1429, 2014.

3. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

4. Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Michal Pilipczuk. An o(cˆk n) 5-approximation algorithm for
treewidth. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, pages 499–508, 2013.

5. Marco Cadoli and Maurizio Lenzerini. The complexity of propositional closed
world reasoning and circumscription. J. Comput. Syst. Sci., 48(2):255–310, 1994.

6. Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In Ra-
mon López de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eu-
reopean Conference on Artificial Intelligence, ECAI’2004, pages 161–165, 2004.

7. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12–75, 1990.

8. DIMACS. Satisfiability: Suggested Format. DIMACS Challenge. DIMACS, 1993.

9. Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

10. Paul E. Dunne. Computational properties of argument systems satisfying graph-
theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

11. Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument
systems. Artif. Intell., 141(1/2):187–203, 2002.

12. Wolfgang Dvorák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artif. Intell., 186:1–37, 2012.

13. Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Using decomposition-
parameters for QBF: mind the prefix! In Dale Schuurmans and Michael P. Wellman,
editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pages 964–970, 2016.

14. Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Small resolution proofs
for QBF using dependency treewidth. CoRR, abs/1711.02120, 2017.

15. Thomas Eiter and Georg Gottlob. Propositional circumscription and extended
closed-world reasoning are πp

2 -complete. Theor. Comput. Sci., 114(2):231–245,
1993.

16. Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J.
ACM, 42(1):3–42, 1995.

17. Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth as-
signments of formulas of bounded tree-width or clique-width. Discrete Applied
Mathematics, 156(4):511–529, 2008.

18. Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

19. Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to
tractability of knowledge representation and reasoning. Artif. Intell., 174(1):105–
132, 2010.

20. Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and Joao Marques-Silva.
Smallest MUS extraction with minimal hitting set dualization. In Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015,
volume 9255, pages 173–182, 2015.

21. Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Fast count-
ing with bounded treewidth. In Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2008, volume 5330, pages 436–450, 2008.

22. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer, 1994.

23. Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to speed up
MUS extraction. In Matti Järvisalo and Allen Van Gelder, editors, Theory and
Applications of Satisfiability Testing - SAT 2013 - 16th International Conference,
Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in
Computer Science, pages 276–292. Springer, 2013.

24. Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly. Coquiaas: A
constraint-based quick abstract argumentation solver. In 27th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2015, pages 928–935, 2015.

25. Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation revis-
ited. In 12th International Symposium on Parameterized and Exact Computation,
IPEC 2017, September 6-8, 2017, Vienna, Austria, 2017.

26. Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practi-
cal algorithms for MSO model-checking on tree-decomposable graphs. Computer
Science Review, 13-14:39–74, 2014.

27. Paolo Liberatore. Redundancy in logic I: CNF propositional formulae. Artif. Intell.,
163(2):203–232, 2005.

28. Vladimir Lifschitz. Circumscription. In Dov M. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Program-
ming (Vol. 3), pages 297–352. Oxford University Press, Inc., New York, NY, USA,
1994.

29. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

30. Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds
for choosability problems parameterized by treewidth. In 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, pages 28:1–28:15,
2016.

31. John McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artif. Intell., 28(1):89–116, 1986.

32. Guoqiang Pan and Moshe Y. Vardi. Fixed-parameter hierarchies inside PSPACE.
In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), pages 27–36,
2006.

33. Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J.
Discrete Algorithms, 8(1):50–64, 2010.

34. Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time
hierarchy: A compendium. SIGACT news, 33(3):32–49, 2002.

35. João P. Marques Silva and Inês Lynce. On improving MUS extraction algorithms.
In Theory and Applications of Satisfiability Testing - SAT 2011, pages 159–173,
2011.

A Proof of Proposition 1

In this section we prove that given a CNF formula with bounded incidence
treewidth and unbounded arity we can compute in linear time a 3CNF formula
which has essentially the same treewidth (give or take a constant).

Proposition 2. There is an algorithm that, given a CNF formula φ of incidence
treewidth k, computes in time 2O(k)|φ| a 3CNF formula φ′ of incidence treewidth
O(k) with var(φ) ⊆ var(φ′) such that φ is a projection of φ′.

Proof. We use the classic reduction from SAT to 3SAT that cuts big clauses
into smaller clauses by introducing new variables. During this reduction we have
to take care that the runtime is in fact linear and that we can bound the treewidth
appropriately.

In a first step, we compute a tree decomposition (T, (Bt)t∈T) of width k for
the incidence graph of φ in time 2O(k)|φ| with the algorithm from [4].

We store φ in the following format: for every clause C we have a doubly
linked list LC storing pointers to all variables in C and their polarity, i.e., if
they appear positively or negatively. Moreover, for every variable x we have a
doubly linked list Lx storing pointers to the clauses that x appears in. So far,
this is essentially an adjacency list representation of the incidence graph of φ. As
additional information, we add for every entry in LC that points to a variable x
also a pointer to the cell in Lx that points to C. Symmetrically, we add in the cell
pointing to C in Lx a pointer to the cell in Lc pointing towards x. The purpose
of this data structure is that it allows us efficient deletions: if we are in a cell
in Lx that points towards C, we can delete the edge xC from the adjacency list
in constant time without having to search for the right entry in LC . Similarly,
if we have the entry in LC representing the edge xC, we can delete this edge in
constant time. Note that this data structure can be computed easily in linear
time in a single pass over φ.

We now construct the formula φ′ along a postfix DFS order on T (that can
easily be computed in linear time). For each clause node C appearing in a bag,
we store a variable FB,C that will be put in the next clause we print out for C.
FB,C will always be a variable that does not appear outside the subtree below
B in T and FB,C might be empty.

We now describe the construction in the different types of nodes B in T :

– if B introduces a new variable, we copy the values FB,C from its child and
do nothing else.

– if B introduces a new clause C, we initialize FB,C as empty and copy all
other values FB,C′ from the child node.

– if B is forget node for a variable x, we first copy all FB,C as before. Then,
for every clause C in B such that C contains x, we do the following: if FB,C
is empty, we set FB,C to x with the polarity as in C. If FB,C contains a
literal `, we write out a clause ` ∨ `x ∨ z where `x is the variable x with the
same polarity as in C and z is a fresh variable we have not used before. Then
we set FB,C to ¬z. Finally, in any case, we delete the edge xC in our data
structure.

– if B is a forget node for a clause C, we again first copy all FB,C . Then define
the set SC that consists of FB,C and all literals whose variables are in B
that appear in C . We arbitrarily split S into a 3CNF by adding some more
fresh variables and print it out. Afterwards, we delete all edges containing x
in our data structure.

– if B is a join node with two children B1 and B2, we compute the FB,C as
follows: if FB1,C and FB2,C are empty, we set FB,C empty as well. If exactly
one of the FB1,C and FB2,C contains a literal, we set FB,C to that literal. If
FB1,C contains `1 and FB2,C contains `2, we print out a clause `1 ∨ `2 ∨ z for
a fresh variable z and set FB,C to ¬z.

This completes the algorithm. The clauses we have printed out in the various
steps form the formula φ′. We have to check that the algorithm indeed runs in
linear time in |φ| and that φ′ has the desired properties.

Obviously, φ′ is in 3CNF, because all clauses we print out only contain at
most 3 variables.

We next argue that the treewidth of φ′ is O(k). To this end, we construct
a tree decomposition (T, (B′t)t∈T . For every bag Bt the corresponding bag B′t
contains all variables in B and all variables in the FBt,C . Moreover, for every Bt
for which the algorithm prints out a clause C ′, we put C ′ and the variables of
C ′ into B′t. Since in every bag we print out at most k clauses and all of them
have size at most 3, the resulting B′t has size O(k). By construction, the bags B′t
cover all edges in the incidence graph of φ′. Finally, the connectivity condition
is easy to verify. It follows that the treewidth of φ′ is O(k).

We next claim that the construction of φ′ from φ and (T, (Bt)t∈T) can be
done in time O(poly(k)|φ|) with the help of our data structure. To see this,
first observe when a variable is forgotten in a bag B, it contains only at most
k neighbors in our data structure and those all lie in B. This is because for all
neighbors that have been forgotten before, the corresponding edges have been
deleted in the adjacency lists. The same is true when forgetting clauses. Thus,
we can find the clauses that a variable is in in time O(k). Since we can delete
edges in constant time, it is easy to see that every bag can be treated in time
polynomial in k. Since T can be assumed to be of size linear in |φ|, the desired
runtime bound follows.

Finally, it is easy to see that φ is a projection of φ′. This follows exactly
as in the usual reduction from SAT to 3SAT. The only slight difference is that
instead of cutting of pieces of the formula from the left to the right side, we
decompose clauses potentially in a treelike fashion which results in clauses that
contain only fresh variables. However, this does changes neither the correctness
of the reduction not the argument. ut

B Bounded Treewidth k-QBF in Linear Time

We sketch a proof for linear runtime in Theorem 1 and refer the reader to [6]
for the technical details. In fact, since this will not be much more work, we treat
the case of r-QBF, the generalization of 2-QBF to r quantifier blocks.

To give the runtime bound, define g(r, k) recursively by g(0, k) = k and
g(r + 1, k) = 2g(k,r). We now state the linear time version of the main result
in [6].

Theorem 13. There is an algorithm that given a r-QBF of primal treewidth k
decides in time g(r,O(k))|φ| if φ is true.

We remark that Theorem 13 was already observed in [32] but that paper gives
no justification of that claim, we decided to give some more details.

The crucial data structure in [6] are choice constraints which consist of a
variable scope and a rooted tree with unbounded fanout in which all leaves are
at depth r and for every leaf a relation R ⊆ {0, 1}s.

Chen then defines choice quantified formulas which are consist of a variable
prefix and a conjunction of choice constraints in the variables of the prefix. We
omit the semantics of choice quantified formulas here since they are not impor-
tant for our sketch and refer the reader to [6] for details. We remark however
that any given QBF φ where all clauses have at most k variables can be turned
in time O(2kn) into a choice quantified formula ψ such that φ is true if and only
if ψ is.

We define a notion of equivalence for nodes in choice constraints: leaves are
equivalent if and only if they have the same relation. Equivalence of two nodes
t, t′ of depth ` < r is defined recursively: let t1 . . . , ts be the children of t and
t′1, . . . , t

′
s be children of t′. Then t and t′ are equivalent if and only if for every

ti there is an equivalent t′j and for every t′j there is an equivalent ti
5. A choice

constraint is in normal form if and only if no node has any equivalent children.

Chen shows that one can normalize a choice constraint by deleting iteratively
for all equivalent pairs of nodes one of them and its subtree. Crucially, applying
this operation for a constraint in a choice quantified formula yields an equivalent
formula.

Observation 14 There are g(r+1, k) non-equivalent normal choice constraints
with scope of size k whose leaves are at depth r and all of these constrains have
size g(r, 2k)2k.

Proof. Choice constraints of depth 0 are just relations of arity k over {0, 1}, so
there are g(1, k) = 2k of those. Moreover, each of those relations can be decribed
in size 2O(k), e.g. by a value table.

For r > 0, by definition of equivalence, the root can have as children any
subset of normal choice constraints of depth r − 1 and the same scope. Since
there are by induction g(r, k) of those, the first claim follows by definition of g.
The description size is at most g(r, k) · g(r − 1, 2k)2k ≤ g(r, 2k)2k ut

5 We remark that the notion of equivalence in [6] is slightly different. We chose to mod-
ify the definition since our notion gives slightly smaller size bounds for normalized
choice constraints and have the same properties concerining truth of the resulting
formulas.

Note that we can check the equivalence of two children in time polynomial
in the size of a given choice constraint and thus normalization can also be done
in time poly(g(r, 2k)2k) = g(r,O(k)).

Chen also introduces a polynomial time computable join operation on choice
constraints with the property that substituting two choice constraints by their
join in a choice quantified formula one gets a new formula that is equivalent to the
old. A naive solution to solve choice quantified formulas would thus be to simply
join all its choice constraints and then check the single resulting constraint. The
problem with this is that it would grow the variables scope of the resulting
constraint (the variables of a join are the unions those of the joined constraints)
such that the size bound in Observation 14 would become meaningless and the
runtime bound would explode.

The solution to this is working along a tree decomposition: in every forget
node, one joins all choice constraints having the forgotten variable in their scope.
Note that these choice constraints and thus also the resulting join only have at
most the k+ 1 variables of the current bag in the scope, so by normalizing after
every join, the resulting choice constraint will have size at most g(r,O(k)). Now
the variable to forget only appears in a single choice constraint and Chen shows
how to forget it in that case in an operation that may grow the choice constraint
but by applying normalization during this forget operation one maintains the
size bound of Observation 14. Applying this on all forget nodes iteratively, one
gets a trivial choice constraint formula that can be decided in constant time.

Let us explain why this algorithm runs within the claimed time bounds: by
similar preprocessing than that in Proposition 1, we can make sure that for every
node that is forgotten, we can look up all constraints it appears in time linear
in the number of those constraints, so at most O(2k). Now we compute at most
2k pairwise joins followed by normalization which run each in time g(r,O(k)).
Thus the overall time for joining and normalizing is 2kg(r,O(k)) = g(r,O(k)).
Observing that the forgetting can also be done in polynomial time and thus
in g(r,O(k)) leads to an overall cost per forgotten variables of g(r,O(k)). Now
noting that the computation of the tree decomposition and a traversal to find
the order in which the variables are forgotten can be done in time 2O(k)n where
n is the number of variables, completes the proof.

