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Abstract.4
Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic5

of study in parameterized complexity. A main aim of research in this area is to understand the6
“price of generality” of these widths: as we transition from more restrictive to more general notions,7
which are the problems that see their complexity status deteriorate from fixed-parameter tractable8
to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the9
algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth,10
is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT11
for the other. Indeed, a surprising development of the last few years has been the observation that12
for many of the most paradigmatic problems, their complexities for the two parameters actually13
coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus14
appear that the extra generality of treewidth over pathwidth often comes “for free”.15

Our main contribution in this paper is to uncover the first natural example where this generality16
comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks17
to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit18
algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it19
becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show20
that Grundy Coloring makes a second complexity jump for more general widths, as it becomes21
paraNP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs22
between the three most well-studied parameters. Completing the picture, we show that Grundy23
Coloring is FPT parameterized by modular-width.24
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1. Introduction. The study of the algorithmic properties of structural graph26

parameters has been one of the most vibrant research areas of parameterized com-27

plexity in the last few years. In this area we consider graph complexity measures28

(“graph width parameters”), such as treewidth, and attempt to characterize the class29

of problems which become tractable for each notion of width. The most important30

graph widths are often comparable to each other in terms of their generality. Hence,31

one of the main goals of this area is to understand which problems separate two com-32

parable parameters, that is, which problems transition from being FPT for a more33

restrictive parameter to W-hard for a more general one1. This endeavor is sometimes34

referred to as determining the “price of generality” of the more general parameter.35

Treewidth and pathwidth, which have an obvious containment relationship to each36

other, are possibly the two most well-studied graph width parameters. Despite this,37

to the best of our knowledge, no natural problem is currently known to delineate their38
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complexity border in the sense we just described. Our main contribution is exactly to39

uncover a natural, well-known problem which fills this gap. Specifically, we show that40

Grundy Coloring, the problem of ordering the vertices of a graph to maximize the41

number of colors used by the First-Fit coloring algorithm, is FPT parameterized by42

pathwidth, but W[1]-hard parameterized by treewidth. We then show that Grundy43

Coloring makes a further complexity jump if one considers clique-width, as in this44

case the problem is paraNP-complete. Hence, Grundy Coloring turns out to be an45

interesting specimen, nicely demonstrating the algorithmic trade-offs involved among46

the three most central graph widths.47

Graph widths and the price of generality. Much of modern parameterized com-48

plexity theory is centered around studying graph widths, especially treewidth and49

its variants. In this paper we focus on the parameters summarized in Figure 1, and50

especially the parameters that form a linear hierarchy, from vertex cover, to tree-51

depth, pathwidth, treewidth, and clique-width. Each of these parameters is a strict52

generalization of the previous ones in this list. On the algorithmic level we would53

expect this relation to manifest itself by the appearance of more and more problems54

which become intractable as we move towards the more general parameters. Indeed,55

a search through the literature reveals that for each step in this list of parameters,56

several natural problems have been discovered which distinguish the two consecutive57

parameters (we give more details below). The one glaring exception to this rule seems58

to be the relation between treewidth and pathwidth.59

Treewidth is a parameter of central importance to parameterized algorithmics, in60

part because wide classes of problems (notably all MSO2-expressible problems [20])61

are FPT for this parameter. Treewidth is usually defined in terms of tree decomposi-62

tions of graphs, which naturally leads to the equally well-known notion of pathwidth,63

defined by forcing the decomposition to be a path. On a graph-theoretic level, the64

difference between the two notions is well-understood and treewidth is known to de-65

scribe a much richer class of graphs. In particular, while all graphs of pathwidth k have66

treewidth at most k, there exist graphs of constant treewidth (in fact, even trees) of67

unbounded pathwidth. Naturally, one would expect this added richness of treewidth68

to come with some negative algorithmic consequences in the form of problems which69

are FPT for pathwidth but W-hard for treewidth. Furthermore, since treewidth and70

pathwidth are probably the most studied parameters in our list, one might expect the71

problems that distinguish the two to be the first ones to be discovered.72

Nevertheless, so far this (surprisingly) does not seem to have been the case: on73

the one hand, FPT algorithms for pathwidth are DPs which also extend to treewidth;74

on the other hand, we give (in Section 1.1) a semi-exhaustive list of dozens of natural75

problems which are W[1]-hard for treewidth and turn out without exception to also76

be hard for pathwidth. In fact, even when this is sometimes not explicitly stated in77

the literature, the same reduction that establishes W-hardness by treewidth also does78

so for pathwidth. Intuitively, an explanation for this phenomenon is that the basic79

structure of such reductions typically resembles a k × n (or smaller) grid, which has80

both treewidth and pathwidth bounded by k.81

Our main motivation in this paper is to take a closer look at the algorithmic barrier82

between pathwidth and treewidth and try to locate a natural (that is, not artificially83

contrived) problem whose complexity transitions from FPT to W-hard at this barrier.84

Our main result is the proof that Grundy Coloring is such a problem. This puts85

in the picture the last missing piece of the puzzle, as we now have natural problems86

that distinguish the parameterized complexity of any two consecutive parameters in87

our main hierarchy.88
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Parameter Result Ref
Clique-width paraNP-hard Thm 5.5
Treewidth W[1]-hard Thm 3.14
Pathwidth FPT Thm 4.3
Modular-width FPT Thm 6.7

In the figure, clique-width, treewidth, pathwidth,
tree-depth, vertex cover, feedback vertex set,
neighborhood diversity, and modular-width are in-
dicated as cw, tw, pw, td, vc, fvs, nd, and mw
respectively. Arrows indicate more general param-
eters. Dotted arrows indicate that the parameter
may increase exponentially, (e.g. graphs of vc k
have nd at most 2k + k).

Fig. 1: Summary of considered graph parameters and results.

Grundy Coloring. In the Grundy Coloring problem we are given a graph89

G = (V,E) and are asked to order V in a way that maximizes the number of colors90

used by the greedy (First-Fit) coloring algorithm. The notion of Grundy coloring was91

first introduced by Grundy in the 1930s, and later formalized in [19]. Since then, the92

complexity of Grundy Coloring has been very well-studied (see [1, 3, 16, 33, 48,93

50, 57, 61, 82, 84, 86, 87, 88] and the references therein). For the natural parameter,94

namely the number of colors to be used, Grundy coloring was recently proved to95

be W[1]-hard in [1]. An XP algorithm for Grundy Coloring parameterized by96

treewidth was given in [84], using the fact that the Grundy number of any graph97

is at most log n times its treewidth. In [15] Bonnet et al. explicitly asked whether98

this can be improved to an FPT algorithm. They also observed that the problem99

is FPT parameterized by vertex cover. It appears that the complexity of Grundy100

Coloring parameterized by pathwidth was never explicitly posed as a question and101

it was not suspected that it may differ from that for treewidth. We note that, since102

the problem can be seen to be MSO1-expressible for a fixed Grundy number (indeed in103

Definition 2.1 we reformulate it as a coloring problem where each color class dominates104

later classes, which is an MSO1-expressible property), it is FPT for all considered105

parameters if the Grundy number is also a parameter [21], so we intuitively want to106

concentrate on cases where the Grundy number is large.107

Our results. Our results illuminate the complexity of Grundy Coloring pa-108

rameterized by pathwidth and treewidth, as well as clique-width and modular-width.109

More specifically:110

1. We show that Grundy Coloring is W[1]-hard parameterized by treewidth111

via a reduction from k-Multi-Colored Clique. The main building block112

of our reduction is the structure of binomial trees, which have treewidth one113

but unbounded pathwidth, which explains the complexity jump between the114

two parameters. As mentioned, an XP algorithm is known in this case [84],115

so this result is in a sense tight.116

2. We observe that Grundy Coloring is FPT parameterized by pathwidth.117

Our main tool here is a combinatorial lemma stating that on any graph the118

Grundy number is at most a linear function of the pathwidth, which was119

first shown in [27], using previous results on the First-Fit coloring of interval120
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graphs [58, 74]. To obtain an FPT algorithm we simply combine this lemma121

with the algorithm of [84].122

3. We show that Grundy Coloring is paraNP-complete parameterized by123

clique-width, that is, NP-complete for graphs of constant clique-width (specif-124

ically, clique-width 8).125

4. We show that Grundy Coloring is FPT parameterized by neighborhood126

diversity (which is defined in [62]) and leverage this result to obtain an FPT127

algorithm parameterized by modular-width (which is defined in [42]).128

Our main interest is concentrated in the first two results, which achieve our goal129

of finding a natural problem distinguishing pathwidth from treewidth. The result for130

clique-width nicely fills out the picture by giving an intuitive view of the evolution of131

the complexity of the problem and showing that in a case where no non-trivial bound132

can be shown on the optimal value, the problem becomes hopelessly hard from the133

parameterized point of view.134

Other related work. Let us now give a brief survey of “price of generality” results135

involving our considered parameters, that is, results showing that a problem is efficient136

for one parameter but hard for a more general one. In this area, the results of Fomin137

et al. [38], introducing the term “price of generality”, have been particularly impact-138

ful. This work and its follow-ups [39, 40], were the first to show that four natural139

graph problems (Coloring, Edge Dominating Set, Max Cut, Hamiltonicity)140

which are FPT for treewidth, become W[1]-hard for clique-width. In this sense, these141

problems, as well as problems discovered later such as counting perfect matchings142

[22], SAT [77, 25], ∃∀-SAT [66], Orientable Deletion [49], and d-Regular In-143

duced Subgraph [18], form part of the “price” we have to pay for considering a more144

general parameter. This line of research has thus helped to illuminate the complex-145

ity border between the two most important sparse and dense parameters (treewidth146

and clique-width), by giving a list of natural problems distinguishing the two. (An147

artificial MSO2-expressible such problem was already known much earlier [21, 64]).148

Let us now focus in the area below treewidth in Figure 1 by considering problems149

which are in XP but W[1]-hard parameterized by treewidth. By now, there is a150

small number of problems in this category which are known to be W[1]-hard even151

for vertex cover: List Coloring [34] was the first such problem, followed by CSP152

(for the vertex cover of the dual graph) [79], and more recently by (k, r)-Center, d-153

Scattered Set, and Min Power Steiner Tree [54, 53, 55] on weighted graphs.154

Intuitively, it is not surprising that problems W[1]-hard parameterized by vertex cover155

are few and far between, since this is a very restricted parameter. Indeed, for most156

problems in the literature which are W[1]-hard by treewidth, vertex cover is the only157

parameter (among the ones considered here) for which the problem becomes FPT.158

A second interesting category are problems which are FPT for tree-depth ([75])159

but W[1]-hard for pathwidth. Mixed Chinese Postman Problem was the first160

discovered problem of this type [47], followed by Min Bounded-Length Cut [28,161

11], ILP [44], Geodetic Set [56] and unweighted (k, r)-Center and d-Scattered162

Set [54, 53]. More recently, (A, `)-Path Packing was also shown to belong in this163

category [6].164

To the best of our knowledge, for all remaining problems which are known to165

be W[1]-hard by treewidth, the reductions that exist in the literature also establish166

W[1]-hardness for pathwidth. Below we give a (semi-exhaustive) list of problems167

which are known to be W[1]-hard by treewidth. After reviewing the relevant works168

we have verified that all of the following problems are in fact shown to be W[1]-hard169
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GRUNDY DISTINGUISHES TREEWIDTH FROM PATHWIDTH 5

parameterized by pathwidth (and in many case by feedback vertex set and tree-depth),170

even if this is not explicitly claimed.171

1.1. Known problems which are W-hard for treewidth and for path-172

width.173

• Precoloring Extension and Equitable Coloring are shown to be W[1]-174

hard for both tree-depth and feedback vertex set in [34] (though the result175

is claimed only for treewidth). This is important, because Equitable Col-176

oring often serves as a starting point for reductions to other problems. A177

second hardness proof for this problem was recently given in [24]. These two178

problems are FPT by vertex cover [36].179

• Capacitated Dominating Set and Capacitated Vertex Cover are180

W[1]-hard for both tree-depth and feedback vertex set [26] (though again the181

result is claimed for treewidth).182

• Min Maximum Out-degree on weighted graphs is W[1]-hard by tree-depth183

and feedback vertex set [81].184

• General Factors is W[1]-hard by tree-depth and feedback vertex set [80].185

• Target Set Selection is W[1]-hard by tree-depth and feedback vertex set186

[10] but FPT for vertex cover [76].187

• Bounded Degree Deletion is W[1]-hard by tree-depth and feedback ver-188

tex set, but FPT for vertex cover [12, 43].189

• Fair Vertex Cover is W[1]-hard by tree-depth and feedback vertex set190

[60].191

• Fixing Corrupted Colorings is W[1]-hard by tree-depth and feedback192

vertex set [13] (reduction from Precoloring Extension).193

• Max Node Disjoint Paths is W[1]-hard by tree-depth and feedback vertex194

set [32, 37].195

• Defective Coloring is W[1]-hard by tree-depth and feedback vertex set196

[9].197

• Power Vertex Cover is W[1]-hard by tree-depth but open for feedback198

vertex set [2].199

• Majority CSP is W[1]-hard parameterized by the tree-depth of the inci-200

dence graph [25].201

• List Hamiltonian Path is W[1]-hard for pathwidth [71].202

• L(1,1)-Coloring is W[1]-hard for pathwidth, FPT for vertex cover [36].203

• Counting Linear Extensions of a poset is W[1]-hard (under Turing re-204

ductions) for pathwidth [29].205

• Equitable Connected Partition is W[1]-hard by pathwidth and feedback206

vertex set, FPT by vertex cover [31].207

• Safe Set is W[1]-hard parameterized by pathwidth, FPT by vertex cover208

[8].209

• Matching with Lower Quotas is W[1]-hard parameterized by pathwidth210

[4].211

• Subgraph Isomorphism is W[1]-hard parameterized by the pathwidth of212

G, even when G,H are connected planar graphs of maximum degree 3 and213

H is a tree [70].214

• Metric Dimension is W[1]-hard by pathwidth [17]. This was recently215

strengthened to paraNP-hardness [68], again for pathwidth.216

• Simple Comprehensive Activity Selection is W[1]-hard by pathwidth217

[30].218
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• Defensive Stackelberg Game for IGL is W[1]-hard by pathwidth (re-219

duction from Equitable Coloring) [5].220

• Directed (p, q)-Edge Dominating Set is W[1]-hard parameterized by221

pathwidth [7].222

• Maximum Path Coloring is W[1]-hard for pathwidth [63].223

• Unweighted k-Sparsest Cut is W[1]-hard parameterized by the three com-224

bined parameters tree-depth, feedback vertex set, and k [51].225

• Graph Modularity is W[1]-hard parameterized by pathwidth plus feed-226

back vertex set [72].227

• Minimum Stable Cut is W[1]-hard parameterized by pathwidth [65].228

Let us also mention in passing that the algorithmic differences of pathwidth and229

treewidth may also be studied in the context of problems which are hard for constant230

treewidth. Such problems also generally remain hard for constant pathwidth (exam-231

ples are Steiner Forest [46], Bandwidth [73], Minimum mcut [45]). One could232

also potentially try to distinguish between pathwidth and treewidth by considering233

the parameter dependence of a problem that is FPT for both. Indeed, for a long time234

the best-known algorithm for Dominating Set had complexity 3k for pathwidth,235

but 4k for treewidth. Nevertheless, the advent of fast subset convolution techniques236

[85], together with tight SETH-based lower bounds [69] has, for most problems, shown237

that the complexities on the two parameters coincide exactly.238

Finally, let us mention a case where pathwidth and treewidth have been shown239

to be quite different in a sense similar to our framework. In [78] Razgon showed that240

a CNF can be compiled into an OBDD (Ordered Binary Decision Diagram) of size241

FPT in the pathwidth of its incidence graphs, but there exist formulas that always242

need OBDDs of size XP in the treewidth. Although this result does separate the243

two parameters, it is somewhat adjacent to what we are looking for, as it does not244

speak about the complexity of a decision problem, but rather shows that an OBDD-245

producing algorithm parameterized by treewidth would need XP time simply because246

it would have to produce a huge output in some cases.247

2. Definitions and Preliminaries. For non-negative integers i, j, we use [i, j]248

to denote the set {k | i ≤ k ≤ j}. Note that if j < i, then the set [i, j] is empty. We249

will also write simply [i] to denote the set [1, i].250

We give two equivalent definitions of our main problem.251

Definition 2.1. A k-Grundy Coloring of a graph G = (V,E) is a partition of V252

into k non-empty sets V1, . . . , Vk such that: (i) for each i ∈ [k] the set Vi induces an253

independent set; (ii) for each i ∈ [k − 1] the set Vi dominates the set
⋃

i<j≤k Vj.254

Definition 2.2. A k-Grundy Coloring of a graph G = (V,E) is a proper k-255

coloring c : V → [k] that results by applying the First-Fit algorithm on an ordering256

of V ; the First-Fit algorithm colors one by one the vertices in the given ordering,257

assigning to a vertex the minimum color that is not already assigned to one of its258

preceding neighbors.259

The Grundy number of a graph G, denoted by Γ(G), is the maximum k such260

that G admits a k-Grundy Coloring. In a given Grundy Coloring, if u ∈ Vi (equiv. if261

c(u) = i) we will say that u was given color i. The Grundy Coloring problem is262

the problem of determining the maximum k for which a graph G admits a k-Grundy263

Coloring. It is not hard to see that a proper coloring is a Grundy coloring if and only264

if every vertex assigned color i has at least one neighbor assigned color j, for each265

j < i.266
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3. W[1]-Hardness for Treewidth. In this section we prove that Grundy267

Coloring parameterized by treewidth is W[1]-hard (Theorem 3.14). Our proof re-268

lies on a reduction from k-Multi-Colored Clique and initially establishes W[1]-269

hardness for a more general problem where we are given a target color for a set of270

vertices (Lemma 3.6); we then reduce this to Grundy Coloring.271

An interesting aspect of our reduction is that up until a rather advanced point,272

the instance we construct has not only bounded treewidth (which is necessary for the273

construction to work), but also bounded pathwidth (see Lemma 3.10). This would274

seem to indicate that we are headed towards a W[1]-hardness result for Grundy275

Coloring parameterized by pathwidth, which would contradict the FPT algorithm276

of Section 4! This is of course not the case, so it is instructive to ponder why the277

reduction fails to work for pathwidth. The reason this happens is that the final step,278

which reduces our instance to the plain version of Grundy Coloring needs to rely279

on a support operation that “pre-colors” some of the vertices and the gadgets we280

use to achieve this are trees of unbounded Grundy number. The results of Section 4281

indicate that if these gadgets have unbounded Grundy number, thay must also have282

unbounded pathwidth, hence there is a good combinatorial reason why our reduction283

only works for treewidth.284

Let us now present the different parts of our construction. We will make use of285

the structure of binomial trees Ti.286

Definition 3.1. The binomial tree Ti with root ri is a rooted tree defined recur-287

sively in the following way: T1 consists simply of its root r1; in order to construct Ti288

for i > 1, we construct one copy of Tj for all j < i and a special vertex ri, then we289

connect rj with ri. An alternative equivalent definition of the binomial tree Ti, i ≥ 2290

is that we construct two trees Ti−1 , T ′i−1, we connect their roots ri−1, r′i−1 and select291

one of them as the new root ri.292

Proposition 3.2. Let i ≥ 2, Ti be a binomial tree and 1 ≤ t < i. There exist293

2i−t−1 binomial trees Tt which are vertex-disjoint and non-adjacent subtrees in Ti,294

where no Tt contains the root ri of Ti.295

Proof. By induction in i− t. For i− t = 1, Ti indeed contains one Ti−1 that does296

not contain the root ri. Let it be true that Ti−1 contains 2i−t−2 subtrees Tt. Then297

Ti contains two trees Ti−1 each of which contains 2i−t−2 Tj , thus 2i−t−1 in total.298

Proposition 3.3. Γ(Ti) ≤ i. Furthermore, for all j ≤ i there exists a Grundy299

coloring which assigns color j to the root of Ti.300

Proof. The first part is trivial since in any graph G with maximum degree ∆ we301

have Γ(G) ≤ ∆ + 1. In this case Γ(Ti) ≤ (i − 1) + 1 = i. For the second part, we302

first prove that there is a Grundy coloring which assigns color i to the root. This303

can be proven by strong induction: if for all k < i, there is a Grundy coloring which304

assigns color k to rk for all 1 ≤ k ≤ i− 1, then under this coloring, ri has at least one305

neighbor receiving color k for all 1 ≤ k ≤ i− 1, so it has to receive color i. To assign306

to the root a color j < i we observe that if j = 1 this is trivial; if j > 1, we use the307

fact that (by inductive hypothesis) there is a coloring that assigns color j − 1 to rj ,308

so in this coloring the root ri will take color j.309

A Grundy coloring of Ti that assigns color i to ri is called optimal. If ri is assigned310

color j < i then we call the Grundy coloring sub-optimal.311

We now define a generalization of the Grundy coloring problem with target colors312

and show that it is W[1]-hard parameterized by treewidth. We later describe how to313

reduce this problem to Grundy Coloring such that the treewidth does not increase314
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by a lot.315

Definition 3.4 (Grundy Coloring with Targets). We are given a graph316

G(V,E), an integer t ∈ IN called the target and a subset S ⊂ V . (For simplicity317

we will say that vertices of S have target t.) If G admits a Grundy Coloring which318

assigns color t to some vertex s ∈ S we say that, for this coloring, vertex s achieves319

its target. If there exists a Grundy Coloring of G which assigns to all vertices of S320

color t, then we say that G admits a Target-achieving Grundy Coloring. Grundy321

Coloring with Targets is the decision problem associated to the question “given322

G,S, t as defined above, does G admit a Target-achieving Grundy Coloring ?”.323

We will also make use of the following operation:324

Definition 3.5 (Tree-support). Given a graph G = (V,E), a vertex u ∈ V and a325

set N of positive integers, we define the tree-support operation as follows: (a) for all326

i ∈ N we add a copy of Ti in the graph; (b) we connect u to the root ri of each of the327

Ti. We say that we add supports N on u. The trees Ti will be called the supporting328

trees or supports of u. Slightly abusing notation, we also call supports the numbers329

i ∈ N .330

Intuitively, the tree-support operation ensures that vertex u may have at least331

one neighbor of color i for each i ∈ N in a Grundy coloring, and thus increase the332

color u can take. Observe that adding supporting trees to a vertex does not increase333

the treewidth, but does increase the pathwidth (binomial trees have unbounded path-334

width).335

Our reduction is from k-Multi-Colored Clique, proven to be W[1]-hard in [35]:336

given a k-multipartite graph G = (V1, V2, . . . , Vk, E), decide if for every i ∈ [k] we337

can pick ui ∈ Vi forming a clique, where k is the parameter. We can also assume338

that ∀i ∈ [k], |Vi| = n, that n is a power of 2, and that Vi = {vi,0, vi,1, . . . , vi,n−1}.339

Furthermore, let |E| = m. We construct an instance of Grundy Coloring with340

Targets G′ = (V ′, E′) and t = 2 log n+ 4 (where all logarithms are base two) using341

the following gadgets:342

Vertex selection Si,j. See Figure 2a. This gadget consists of 2 log n vertices S1
i,j ∪343

S2
i,j =

⋃
l∈[log n]{s

2l−1
i,j }∪

⋃
l∈[log n]{s2l

i,j}, where for each l ∈ [log n] we connect344

vertex s2l−1
i,j to s2l

i,j thus forming a matching. Furthermore, for each l ∈345

[2, log n], we add supports [2l− 2] to vertices s2l−1
i,j and s2l

i,j . Observe that the346

vertices s2l−1
i,j and s2l

i,j together with their supports form a binomial tree T2l347

with either of these vertices as the root. We construct k(m+ 2) gadgets Si,j ,348

one for each i ∈ [k], j ∈ [0,m+ 1].349

The vertex selection gadget Si,1 encodes in binary the vertex that is selected350

in the clique from Vi. In particular, for each pair s2l−1
i,1 , s2l

i,1, l ∈ [log n] either351

of these vertices can take the maximum color in an optimal Grundy coloring352

of the binomial tree T2l (that is, a coloring that gives the root of the binomial353

tree T2l color 2l). A selection corresponds to bit 0 or 1 for the lth binary354

position. In order to ensure that for each j ∈ [m] all (middle) Si,j encode the355

same vertex, we use propagators.356

Propagators pi,j. See Figure 2b. For i ∈ [k] and j ∈ [0,m], a propagator pi,j is a357

single vertex connected to all vertices of S2
i,j ∪ S1

i,j+1. To each pi,j , we also358

add supports {2 log n+1, 2 log n+2, 2 log n+3}. The propagators have target359

t = 2 log n+ 4.360

Edge selection Wj. See Figure 2b. Let j = (vi,x, vi′,y) ∈ E, where vi,x ∈ Vi and361
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(a) Vertex Selection gadget Si,j .

(b) Propagators pi,j and Edge Selection gadget Wj .
The edge selection checkers and the supports of the
pi,j and sli,j are not depicted. In the example Bx =
010 and By = 100.

Fig. 2: The gadgets. Figure 2a is an enlargement of Figure 2b between pi,j−1 and
pi,j .

vi′,y ∈ Vi′ . The gadget Wj consists of four vertices wj,x, wj,y, w
′
j,x, w

′
j,y.362

We call w′j,x, w
′
j,y the edge selection checkers. We have the edges (wj,x,363

wj,y), (w′j,x, wj,x), (w′j,y, wj,y). Let us now describe the connections of these364

vertices with the rest of the graph. Let Bx = b1b2 . . . blog n be the binary365

representation of x. We connect wj,x to each vertex s2l−bl
ij , l ∈ [log n] (we366

do similarly for wj,y, Si′,j , and By). We add to each of wj,x, wj,y supports367 ⋃
l∈[log n+1]{2l − 1}. We add to each of w′j,x, w

′
j,y supports [2 log n + 3] \368

{2 log n + 1} and set the target t = 2 log n + 4 for these two vertices. We369

construct m such gadgets, one for each edge. We say that Wj is activated if370

at least one of wj,x, wj,y receives color 2 log n+ 3.371

Edge validators qi,i′ . We construct
(
k
2

)
of these gadgets, one for each pair (i, i′), i <372

i′ ∈ [k]. The edge validator is a single vertex that is connected to all vertices373

wj,x for which j is an edge between Vi and Vi′ . We add supports [2 log n+ 2]374

and a target of t = 2 log n+ 4.375

The edge validator plays the role of an “or” gadget: in order for it to achieve376

its target, at least one of its neighboring edge selection gadgets should be377

activated.378

Lemma 3.6. G has a clique of size k if and only if G′ has a target-achieving379

Grundy coloring.380

Proof. ⇒) Suppose that G has a clique and we want to produce a coloring of G′.381

In the remainder, when we say that we color a support tree “optimally”, we mean382

that we color its internal vertices in a way that gives the root the maximum possible383

color.384

We color the vertices of G′ in the following order: First, we color the vertex385

selection gadget Si,j . We start from the supports which we color optimally. We386

then color the matchings as follows: let vi,x be the vertex that was selected in the387

clique from Vi and b1b2 . . . blog n be the binary representation of x; we color vertices388

s
2l−(1−bl)
i,j , l ∈ [log n] with color 2l − 1 and vertices s2l−bl

i,j , l ∈ [log n] will receive389
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color 2l. For the propagators, we color their supports optimally. Propagators have390

2 log n + 3 neighbors each, all with different colors, so they receive color 2 log n + 4,391

thus achieving the targets.392

Then, we color the edge validators qi,i′ and the edge selection gadgets Wj that393

correspond to edges of the clique (that is, j = (vi,x, vi′,y) ∈ E and vi,x ∈ Vi, vi′,y ∈ Vi′394

are selected in the clique). We first color the supports of qi,i′ , wj,x, wj,y optimally.395

From the construction, vertex wj,x is connected with vertices s2l−bl
i,j which have already396

been colored 2l, l ∈ [log n] and with supports
⋃

l∈[log n+1]{2l−1}, thus wj,x will receive397

color 2 log n+2. Similarly wj,y already has neighbors which are colored [2 log n+1], but398

also wj,x, thus it will receive color 2 log n+ 3. These Wj will be activated. Since both399

wj,x, wj,y connect to qi,i′ , the latter will be assigned color 2 log n + 4, thus achieving400

its target. As for w′j,x and w′j,y, these vertices have one neighbor colored c, where401

c = 2 log n+ 2 or c = 2 log n+ 3. We color their support Tc sub-optimally so that the402

root receives color 2 log n+ 1; we color their remaining supports optimally. This way,403

vertices w′j,x, w
′
j,y can be assigned color t = 2 log n+ 4, achieving the target.404

Finally, for the remaining Wj , we claim that we can assign to both wj,x, wj,y a405

color that is at least as high as 2 log n + 1. Indeed, we assign to each supporting406

tree Tr of wj,x a coloring that gives its root the maximum color that is ≤ r and does407

not appear in any neighbor of wj,x in the vertex selection gadget. We claim that in408

this case wj,x will have neighbors with all colors in [2 log n], because in every interval409

[2l−1, 2l] for l ∈ [log n], wj,x has a neighbor with a color in that interval and a support410

tree T2l+1. If wj,x has color 2 log n + 1 then we color the supports of w′j,x optimally411

and achieve its target, while if wj,x has color higher than 2 log n + 1, we achieve the412

target of w′j,x as in the previous paragraph.413

⇐) Suppose that G′ admits a coloring that achieves the target for all propagators,414

edge selection checkers, and edge validators. We will prove the following three claims,415

which together imply the remaining direction of the lemma:416

Claim 3.7. The coloring of the vertex selection gadgets is consistent throughout,417

that is, for each i ∈ [k] and for each j1, j2, l, we have that sli,j1 , s
l
i,j2

received the same418

color. This coloring corresponds to a selection of k vertices of G.419

Claim 3.8.
(
k
2

)
edge selection gadgets have been activated. They correspond to420 (

k
2

)
edges of G being selected.421

Claim 3.9. If an edge selection gadget Wj = {wj,x, wj,y} with j = (vi,x, vi′,y) has422

been activated then the coloring of the vertex selection gadgets Si,j and Si′,j corre-423

sponds to the selection of vertices vi,x and vi′,y. In other words, selected vertices and424

edges form a clique of size k in G.425

Proof of Claim 3.7. Suppose that an edge selection checker w′j,x achieved its tar-426

get. We claim that this implies that wj,x has color at least 2 log n + 1. Indeed, w′j,x427

has degree 2 log n+3, so its neighbors must have all distinct colors in [2 log n+3], but428

among the supports there are only 2 neighbors which may have colors in [2 log n +429

1, 2 log n + 3]. Therefore, the missing color must come from wj,x. We now observe430

that vertices from the vertex selection gadgets have color at most 2 log n, because if431

we exclude from their neighbors the vertices wj,x (which we argued have color at least432

2 log n + 1) and the propagators (which have target 2 log n + 4), these vertices have433

degree at most 2 log n− 1.434

Suppose that a propagator pi,j achieves its target of 2 log n+ 4. Since this vertex435

has a degree of 2 log n+ 3, that means that all of its neighbors should receive all the436

colors in [2 log n + 3]. As argued, colors [2 log n + 1, 2 log n + 3] must come from the437
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supports. Therefore, the colors [2 logn] come from the neighbors of pi,j in the vertex438

selection gadgets.439

We now note that, because of the degrees of vertices in vertex selection gadgets,440

only vertices s2 log n
i,j , s2 log n−1

i,j+1 can receive colors 2 log n, 2 log n− 1; from the rest, only441

s2 log n−2
i,j , s2 log n−3

i,j+1 can receive colors 2 log n − 2, 2 log n − 3 etc. Thus, for each l ∈442

[log n], if s2l
i,j receives color 2l − 1 then s2l−1

i,j+1 should receive color 2l and vice versa.443

With similar reasoning, in all vertex selection gadgets we have that s2l−1
i,j , s2l

i,j received444

the two colors {2l − 1, 2l} since they are neighbors. As a result, the colors of s2l−1
i,j+1,445

s2l−1
i,j (and thus the colors of s2l

i,j+1, s2l
i,j) are the same, therefore, the coloring is446

consistent, for all values of j ∈ [m].447

Proof of Claim 3.8. If an edge validator achieves its target of 2 log n+ 4, then at448

least one of its neighbors from an edge selection gadget has received color 2 log n+ 3.449

We know that each edge selection gadget only connects to a unique edge validator, so450

there should be
(
k
2

)
edge selection gadgets which have been activated in order for all451

edge validators to achieve the target.452

Proof of Claim 3.9. Suppose that an edge validator qi,i′ achieves its target. That453

means that there exists an edge selection gadget Wj = {wj,x, wj,y, w
′
j,x, w

′
j,y} for which454

at least one of its vertices {wj,x, wj,y}, say vertex wj,x, has received color 2 log n+ 3.455

Let j be an edge connecting vi,x ∈ Vi to vi′,y ∈ Vi′ . Since the degree of wj,x is456

2 log n + 4 and we have already assumed that two of its neighbors (qi,i′ and w′j,x)457

have color 2 log n+ 4, in order for it to receive color 2 log n+ 3 all its other neighbors458

should receive all colors in [2 log n+ 2]. The only possible assignment is to give colors459

2l, l ∈ [log n] to its neighbors from Si,j and color 2 log n+ 2 to wj,y. The latter is, in460

turn, only possible if the neighbors of wj,y from Si′,j receive all colors 2l, l ∈ [log n].461

The above corresponds to selecting vertex vi,x from Vi and vi′,y from Vi′ .462

Lemma 3.10. Let G′′ be the graph that results from G′ if we remove all the tree-463

supports. Then G′′ has pathwidth at most
(
k
2

)
+ 2k + 3.464

Proof. We will use the equivalent definition of pathwidth as a node-searching465

game, where the robber is eager and invisible and the cops are placed on nodes [14].466

We will use
(
k
2

)
+ 2k + 4 cops to clean G′′ as follows: We place

(
k
2

)
cops on the edge467

validators. Then, starting from j = 0, we place 2k cops on the propagators pi,0, pi,1468

for i = 1, . . . , k, plus 2 cops on the edge selection vertices wj,x, wj,y that correspond469

to edge j. We use the two additional cops to clean line by line the gadgets Si,j . We470

then use one of these cops to clear w′j,x, w
′
j,y. We continue then to the next column471

j = 2 by removing the k cops from the propagators pi,1 and placing them to pi,3. We472

continue for j = 3, . . .m− 1 until the whole graph has been cleaned.473

We will now show how to implement the targets using the tree-filling operation474

defined below.475

Definition 3.11 (Tree-filling). Let G = (V,E) be a graph. Suppose that S =476

{s1, s2, . . . , sj} ⊂ V is a set of vertices with target t. The tree-filling operation is the477

following. First, we add in G a binomial tree Ti, where i = dlog je + t + 1. Observe478

that, by Proposition 3.2, there exist 2i−t−1 > j vertex-disjoint and non-adjacent sub-479

trees Tt in Ti. For each s ∈ S, we find such a copy of Tt in Ti, identify s with its root480

rt, and delete all other vertices of the sub-tree Tt.481

The tree-filling operation might in general increase treewidth, but we will do it482

in a way such that treewidth only increases by a constant factor compared to the483

This manuscript is for review purposes only.



12 R. BELMONTE, E.J. KIM, M. LAMPIS, V. MITSOU, Y. OTACHI

pathwidth of G.484

Lemma 3.12. Let G = (V,E) be a graph of pathwidth w and S = {s1, . . . , sj} ⊂ V485

a subset of vertices having target t. Then there is a way to apply the tree-filling486

operation such that the resulting graph H has tw(H) ≤ 4w + 5.487

Proof. Construction of H. Let (P,B) be a path-decomposition of G whose488

largest bag has size w + 1 and B1, B2, . . . , Bj ∈ B distinct bags where ∀a, sa ∈ Ba489

(assigning a distinct bag to each sa is always possible, as we can duplicate bags if490

necessary). We call those bags important. We define an ordering o : S → IN of the491

vertices of S that follows the order of the important bags from left to right, that492

is o(sa) < o(sb) if Ba is on the left of Bb in P. For simplicity, let us assume that493

o(sa) = a and that Ba is to the left of Bb if a < b.494

We describe a recursive way to do the substitution of the trees in the tree-filling495

operation. Crucially, when j > 2 we will have to select an appropriate mapping496

between the vertices of S and the disjoint subtrees Tt in the added binomial tree Ti,497

so that we will be able to keep the treewidth of the new graph bounded.498

• If j = 1 then i = t + 1. We add to the graph a copy of Ti, arbitrarily select499

the root of a copy of Tt contained in Ti, and perform the tree-filling operation500

as described.501

• Suppose that we know how to perform the substitution for sets of size at most502

dj/2e, we will describe the substitution process for a set of size j. We have503

i = dlog je + t + 1 and for all j we have dlogdj/2ee = dlog je − 1. Split the504

set S into two (almost) equal disjoint sets SL and SR of size at most dj/2e,505

where for all sa ∈ SL and for all sb ∈ SR, a < b. We perform the tree-filling506

on each of these sets by constructing two binomial trees TL
i−1, T

R
i−1 and doing507

the substitution; then, we connect their roots and set the root of the left tree508

as the root ri of Ti, thus creating the substitution of a tree Ti.509

Small treewidth. We now prove that the new graph H that results from apply-510

ing the tree-filling operation on G and S as described above has a tree decomposition511

(T ,B′) of width 4w + 5; in fact we prove by induction on j a stronger statement:512

if A,Z ∈ B are the left-most and right-most bags of P, then there exists a tree de-513

composition (T ,B′) of H of width 4w + 5 with the added property that there exists514

R ∈ B′ such that A ∪ Z ∪ {ri} ⊂ R, where ri is the root of the tree Ti.515

For the base case, if j = 1 we have added to our graph a Ti of which we have516

selected an arbitrary sub-tree Tt, and identified the root rt of Tt with the unique517

vertex of S that has a target. Take the path decomposition (P,B) of the initial graph518

and add all vertices of A (its first bag) and the vertex ri (the root of Ti) to all bags.519

Take an optimal tree decomposition of Ti of width 1 and add ri to each bag, obtaining520

a decomposition of width 2. We add an edge between the bag of P that contains the521

unique vertex of S, and a bag of the decomposition of Ti that contains the selected522

rt. We now have a tree decomposition of the new graph of width 2w + 2 < 4w + 5.523

Observe that the last bag of P now contains all of A,Z and ri.524

For the inductive step, suppose we applied the tree-filling operation for a set S525

of size j > 1. Furthermore, suppose we know how to construct a tree decomposition526

with the desired properties (width 4w+ 5, one bag contains the first and last bags of527

the path decomposition P and ri), if we apply the tree-filling operation on a target528

set of size at most j−1. We show how to obtain a tree decomposition with the desired529

properties if the target set has size j.530

By construction, we have split the set S into two sets SL, SR and have applied531

the tree-filling operation to each set separately. Then, we connected the roots of the532
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two added trees to obtain a larger binomial tree. Observe that for |S| = j > 1 we533

have |SL|, |SR| < j.534

Let us first cut P in two parts, in such a way that the important bags of SL535

are on the left and the important bags of SR are on the right. We call AL = A and536

ZL the leftmost and rightmost bags of the left part and AR, ZR = Z the leftmost537

and rightmost bags of the right part. We define as GL (respectively GR) the graph538

that contains all the vertices of the left (respectively right) part. Let ri be the root539

of Ti and ri−1 the root of its subtree Ti−1. From the inductive hypothesis, we can540

construct tree decompositions (T L,BL), (T R,BR) of width 4w+5 for the graphs HL,541

HR that occur after applying tree-filling on GL, SL and GR, SR; furthermore, there542

exist RL ∈ BL, RR ∈ BR such that RL ⊇ A ∪ ZL ∪ {ri} and RR ⊇ AR ∪ Z ∪ {ri−1}.543

We construct a new bag R′ = A ∪ AR ∪ ZL ∪ Z ∪ {ri−1, ri}, and we connect R′544

to both RL and RR, thus combining the two tree-decompositions into one. Last we545

create a bag R = A ∪ Z ∪ {ri} and attach it to R′. This completes the construction546

of (T ,B′).547

Observe that (T ,B′) is a valid tree-decomposition for H:548

• V (H) = V (HL) ∪ V (HR), thus ∀v ∈ V (H), v ∈ BL ∪ BR ⊂ B.549

• E(H) = E(HL) ∪ E(HR) ∪ {(ri−1, ri)}. We have that ri−1, ri ∈ R′ ∈ B. All550

other edges were dealt with in T L, T R.551

• Each vertex v ∈ V (H) that belongs in exactly one ofHL, HR trivially satisfied552

the connectivity requirement: bags that contain v are either fully contained553

in T L or T R. A vertex v that is in both HL and HR is also in ZL∩AR due to554

the properties of path-decompositions, hence in R′. Therefore, the sub-trees555

of bags that contain v in T L, T R, form a connected sub-tree in T .556

The width of T is max{tw(HL), tw(HR), |R′| − 1} = 4w + 5.557

The last thing that remains to do in order to complete the proof is to show the558

equivalence between achieving the targets and finding a Grundy coloring.559

Lemma 3.13. Let G and G′ be two graphs as described in Lemma 3.6 and let H560

be constructed from G′ by using the tree-filling operation. Then G has a clique of561

size k if and only if Γ(H) ≥ dlog(k(m+ 1) +
(
k
2

)
+ 2m)e+ 2 log n+ 5. Furthermore,562

tw(H) ≤ 4
(
k
2

)
+ 8k + 17.563

Proof. We note that the number of vertices with targets in our construction is564

m′ = k(m+1)+
(
k
2

)
+2m (the propagators, edge selection checkers, and edge-checkers).565

From Lemma 3.6, it only suffices to show that Γ(H) ≥ dlogm′e + 2 log n + 5 if and566

only if the vertices with targets achieve color t = 2 log n+ 4.567

For the forward direction, once vertices with targets get the desirable colors, the568

rest of the binomial tree of the tree-filling operation can be colored optimally, starting569

from its leaves all the way up to its roots, which will get color i = dlogm′e+2 logn+5.570

For the converse direction, observe that the only vertices having degree higher571

than 2 log n + 4 are the edge-checkers and the vertices of the binomial tree H \ G′.572

However, the edge-checkers connect to only one vertex of degree higher than 2 log n+4,573

that in the binomial tree. Thus no vertex of G′ can ever get a color higher than574

2 log n + 6 and the only way that Γ(H) ≥ dlogm′e + 2 log n + 5 is if the root of the575

binomial tree of the tree-filling operation (the only vertex of high enough degree)576

receives color dlogm′e+ 2 log n+ 5. For that to happen, all the support-trees of this577

tree should be colored optimally, which proves that the vertices with targets 2 log n+4578

having substituted support trees T2 log n+4 should achieve their targets.579

In terms of the treewidth of H we have the following: Lemma 3.10 says that580
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G′ once we remove all the supporting trees has pathwidth at most
(
k
2

)
+ 2k + 3.581

Applying Lemma 3.12 we get that H where we have ignored the tree-supports from582

G′ has treewidth at most 4
((

k
2

)
+ 2k + 3

)
+ 5. Adding back the tree-supports does583

not increase its treewidth.584

The main theorem of this section now immediately follows.585

Theorem 3.14. Grundy Coloring parameterized by treewidth is W[1]-hard.586

4. FPT for pathwidth. In this section, we show that, in contrast to treewidth,587

Grundy Coloring is FPT parameterized by pathwidth. This is achieved by a588

combination of an algorithm for Grundy Coloring given by Telle and Proskurowski589

and a combinatorial bound due to Dujmovic, Joret, and Wood. We first recall these590

results below.591

Lemma 4.1 ([27]). For every graph G, Γ(G) ≤ 8 · (pw(G) + 1).592

Lemma 4.2 ([84]). There is an algorithm which solves Grundy Coloring in593

time O∗(2O(tw(G)·Γ(G))).594

We thus get the following result.595

Theorem 4.3. Grundy Coloring can be solved in time O∗(2O(pw(G)2)).596

Proof. Since in all graphs tw(G) ≤ pw(G) and by Lemma 4.1 Γ(G) ≤ 8(pw(G) +597

1), we have tw(G) · Γ(G) = O(pw(G)2) and the algorithm of [84] runs in at most the598

stated time.599

5. NP-hardness for Constant Clique-width. In this section we prove that600

Grundy Coloring is NP-hard even for constant clique-width via a reduction from601

3-SAT. We use a similar idea of adding supports as in Section 3, but supports now602

will be cliques instead of binomial trees. The support operation is defined as:603

Definition 5.1. Given a graph G = (V,E), a vertex u ∈ V and a set of positive604

integers S, we define the support operation as follows: for each i ∈ S, we add to G a605

clique of size i (using new vertices) and we connect one arbitrary vertex of each such606

clique to u.607

When applying the support operation we will say that we support vertex u with608

set S and we will call the vertices introduced supporting vertices. Intuitively, the609

support operation ensures that the vertex u may have at least one neighbor with610

color i for each i ∈ S.611

We are now ready to describe our construction. Suppose we are given a 3CNF612

formula φ with n variables x1, . . . , xn and m clauses c1, . . . , cm. We assume without613

loss of generality that each clause contains exactly three variables. We construct a614

graph G(φ) as follows:615

1. For each i ∈ [n] we construct two vertices xPi , x
N
i and the edge (xPi , x

N
i ).616

2. For each i ∈ [n] we support the vertices xPi , x
N
i with the set [2i − 2]. (Note617

that xP1 , x
N
1 have empty support).618

3. For each i ∈ [n], j ∈ [m], if variable xi appears in clause cj then we construct619

a vertex xi,j . Furthermore, if xi appears positive in cj , we connect xi,j to xPi′620

for all i′ ∈ [n]; otherwise we connect xi,j to xNi′ for all i′ ∈ [n].621

4. For each i ∈ [n], j ∈ [m] for which we constructed a vertex xi,j in the previous622

step, we support that vertex with the set ({2k | k ∈ [n]}∪{2i−1, 2n+1, 2n+623

2}) \ {2i}.624
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5. For each j ∈ [m] we construct a vertex cj and connect to all (three) vertices625

xi,j already constructed. We support the vertex cj with the set [2n].626

6. For each j ∈ [m] we construct a vertex dj and connect it to cj . We support627

dj with the set [2n+ 3] ∪ [2n+ 5, 2n+ 3 + j].628

7. We construct a vertex u and connect it to dj for all j ∈ [m]. We support u629

with the set [2n+ 4] ∪ [2n+ 5 +m, 10n+ 10m].630

This completes the construction. Before we proceed, let us give some intuition.631

Observe that we have constructed two vertices xPi , x
N
i for each variable. The support632

of these vertices and the fact that they are adjacent, allow us to give them colors633

{2i − 1, 2i}. The choice of which gets the higher color encodes an assignment to634

variable xi. The vertices xi,j are now supported in such a way that they can “ignore”635

the values of all variables except xi; for xi, however, xi,j “prefers” to be connected636

to a vertex with color 2i (since 2i − 1 appears in the support of xi,j , but 2i does637

not). Now, the idea is that cj will be able to get color 2n + 4 if and only if one of638

its literal vertices xi,j was “satisfied” (has a neighbor with color 2i). The rest of the639

construction checks if all clause vertices are satisfied in this way.640

We now state the lemmata that certify the correctness of our reduction.641

Lemma 5.2. If φ is satisfiable then G(φ) has a Grundy coloring with 10n+10m+1642

colors.643

Proof. Consider a satisfying assignment of φ. We first produce a coloring of the644

vertices xPi , x
N
i as follows: if xi is set to True, then xPi is colored 2i and xNi is colored645

2i − 1; otherwise xPi is colored 2i − 1 and xNi is colored 2i. Before proceeding, let646

us also color the supporting vertices of xPi , x
N
i : each such vertex belongs to a clique647

which contains only one vertex with a neighbor outside the clique. For each such648

clique of size `, we color all vertices of the clique which have no outside neighbors649

with colors from [` − 1] and use color ` for the remaining vertex. Note that the650

coloring we have produced so far is a valid Grundy coloring, since each vertex xPi , x
N
i651

has for each c ∈ [2i−2] a neighbor with color c among its supporting vertices, allowing652

us to use colors {2i − 1, 2i} for xPi , x
N
i . In the remainder, we will use similar such653

colorings for all supporting cliques. We will only stress the color given to the vertex654

of the clique that has an outside neighbor, respecting the condition that this color655

is not larger than the size of the clique. Note that it is not a problem if this color656

is strictly smaller than the size of the clique, as we are free to give higher colors to657

internal vertices.658

Consider now a clause cj for some j ∈ [m]. Suppose that this clause contains the659

three variables xi1 , xi2 , xi3 . Because we started with a satisfying assignment, at least660

one of these variables has a value that satisfies the clause, without loss of generality661

xi3 . We therefore color xi1 , xi2 , xi3 with colors 2n+ 1, 2n+ 2, 2n+ 3 respectively and662

we color cj with color 2n+ 4. We now need to show that we can appropriately color663

the supporting vertices to make this a valid Grundy coloring.664

Recall that the vertex xi3 has support {2, 4, . . . , 2n}\{2i3}∪{2i3−1, 2n+1, 2n+2}.665

For each i′ 6= i3 we observe that xi3 is connected to a vertex (either xPi3 or xNi3 ) which666

has a color in {2i′ − 1, 2i′}, we are therefore missing the other color from this set.667

We consider the clique of size 2i′ supporting xi3,j : we assign this missing color to the668

vertex of this clique that is adjacent to xi3,j . Note that the clique is large enough to669

color its remaining vertices with lower colors in order to make this a valid Grundy670

coloring. For i3, we observe that, since xi3 satisfies the clause, the vertex xi3,j has a671

neighbor (either xPi3 or xNi3 ) which has received color 2i3; we use color 2i3 − 1 in the672

support clique of the same size. Similarly, we use colors 2n+ 1, 2n+ 2 in the support673
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cliques of the same sizes, and xi3 has neighbors with colors covering all of [2n+ 2].674

For the vertex xi2,j we proceed in a similar way. For i′ < i2 we give the support675

vertex from the clique of size 2i′ the color from {2i′ − 1, 2i′} which does not already676

appear in the neighborhood of xi2,j . For i′ ∈ [i2, n − 1] we take the vertex from the677

clique of size 2i′+ 2 and give it the color of {2i′− 1, 2i′} which does not yet appear in678

the neighborhood of xi2,j . In this way we cover all colors in [2n− 2]. We now observe679

that xi2,j has a neighbor with color in {2n− 1, 2n} (either xPn or xNn ); together with680

the support vertices from the cliques of sizes 2n + 1, 2n + 2 this allows us to cover681

the colors [2n − 1, 2n + 1]. We use a similar procedure to cover the colors [2n] in682

the neighborhood of xi1,j . Now, the 2n support vertices in the neighborhood of cj ,683

together with xi1,j , xi2,j , xi3,j allow us to give that vertex color 2n+ 4.684

We now give each vertex dj , for j ∈ [m] color 2n+ j+ 4. This can be extended to685

a valid coloring, because dj is adjacent to cj , which has color 2n+ 4, and the support686

of dj is [2n+ j + 3] \ {2n+ 4}.687

Finally, we give u color 10n+10m+1. Its support is [10n+10m]\[2n+5, 2n+m+4].688

However, u is adjacent to all vertices dj , whose colors cover the set {2n+ 4 + j | j ∈689

[m]}.690

Lemma 5.3. If G(φ) has a Grundy coloring with 10n+ 10m+ 1 colors, then φ is691

satisfiable.692

Proof. Consider a Grundy coloring of G(φ). We first assume without loss of693

generality that we consider a minimal induced subgraph of G for which the coloring694

remains valid, that is, deleting any vertex will either reduce the number of colors or695

invalidate the coloring. In particular, this means there is a unique vertex with color696

10n+ 10m+ 1. This vertex must have degree at least 10n+ 10m. However, there are697

only two such vertices in our graph: u and its support neighbor vertex in the clique of698

size 10n+ 10m. If the latter vertex has color 10n+ 10m+ 1, we can infer that u has699

color 10n+10m: this color cannot appear in the clique because all its internal vertices700

have degree 10n+ 10m− 1, and one of their neighbors has a higher color. We observe701

now that exchanging the colors of u and its neighbor produces another valid coloring.702

We therefore assume without loss of generality that u has color 10n+ 10m+ 1.703

We now observe that in each supporting clique of u of size i the maximum color704

used is i (since u has the largest color in the graph). Similarly, the largest color that705

can be assigned to dj is 2n + j + 4, because dj has degree 2n + j + 4, but one of its706

neighbors (u) has a higher color. We conclude that the only way for the 10n + 10m707

neighbors of u to cover all colors in [10n+ 10m] is for each support clique of size i to708

use color i and for each dj to be given color 2n+ j + 4.709

Suppose now that dj was given color 2n + j + 4. This implies that the largest710

color that cj may have received is 2n+ 4, since its degree is 2n+ 4, but dj received a711

higher color. We conclude again that for the neighbors of dj to cover [2n + j + 3] it712

must be the case that each supporting clique used its maximum possible color and cj713

received color 2n+ 4.714

Suppose now that a vertex cj received color 2n + 4. Since dj received a higher715

color, the remaining 2n + 3 neighbors of this vertex must cover [2n + 3]. In particu-716

lar, since the support vertices have colors in [2n], its three remaining neighbors, say717

xi1,j , xi2,j , xi3,j must have colors covering [2n+ 1, 2n+ 3]. Therefore, all vertices xi,j718

have colors in [2n+ 1, 2n+ 3].719

Consider now two vertices xPi , x
N
i , for some i ∈ [n]. We claim that the vertex720

which among these two has the lower color, has color at most 2i − 1. To see this721

observe that this vertex may have at most 2i− 2 neighbors from the support vertices722
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that have lower colors and these must use colors in [2i− 2] because of their degrees.723

Its neighbors of the form xi,j have color at least 2n + 1 > 2i − 1, and its neighbor724

in {xPi , xNi } has a higher color. Therefore, the smaller of the two colors used for725

{xPi , xNi } is at most 2i− 1 and by similar reasoning the higher of the two colors used726

for this set is at most 2i. We now obtain an assignment for φ by setting xi to True if727

xPi has a higher color than xNi and False otherwise (this is well-defined, since xPi , x
N
i728

are adjacent).729

Let us argue why this is a satisfying assignment. Take a clause vertex cj . As730

argued, one of its neighbors, say xi3,j has color 2n+ 3. The degree of xi3,j , excluding731

cj which has a higher color, is 2n+ 2, meaning that its neighbors must exactly cover732

[2n + 2] with their colors. Since vertices xPi , x
N
i have color at most 2i, the colors733

[2n+ 1, 2n+ 2] must come from the support cliques of the same sizes. Now, for each734

i ∈ [n] the vertex xi3,j has exactly two neighbors which may have received colors in735

{2i− 1, 2i}. This can be seen by induction on i: first, for i = n this is true, since we736

only have the support clique of size 2n and the neighbor in {xPn , xNn }. Proceeding in737

the same way we conclude the claim for smaller values of i. The key observation is738

now that the clique of size 2i3 − 1 cannot give us color 2i3, therefore this color must739

come from {xNi3 , x
P
i3
}. If the neighbor of xi3,j in this set uses 2i3, this must be the740

higher color in this set, meaning that xi3 has a value that satisfies cj .741

Lemma 5.4. The graph G(φ) has clique-width at most 8.742

Lemma 5.4. Let us first observe that the support operation does not significantly743

affect a graph’s clique-width. Indeed, if we have a clique-width expression for G(φ)744

without the support vertices, we can add these vertices as follows: each time we745

introduce a vertex that must be supported we instead construct the graph induced746

by this vertex and its support and then rename all supporting vertices to a junk label747

that is never connected to anything else. It is clear that this can be done by adding748

at most three new labels: two labels for constructing the clique (that will form the749

support gadget) and the junk label. In fact, below we give a clique-width expression750

for the rest of the graph that already uses a junk label (say, label 0), that is, a label on751

which we never apply a Join operation. Hence, it suffices to compute the clique-width752

of G(φ) without the support gadgets and then add 2.753

Let us then argue why the rest of the graph has constant clique-width. First, the754

graph induced by xNi , x
P
i , for i ∈ [n] is a matching. We construct this graph using 4755

labels, say 1, 2, 3, 4 as follows: for each i ∈ [n] we introduce xNi with label 3, xPi with756

label 4, perform a Join between labels 3 and 4, then Rename label 3 to 1 and label 4757

to 2. This constructs the matching induced by these 2n vertices and also ensures that758

all vertices xNi have label 1 in the end and all vertices xPi have label 2 in the end.759

We then introduce to the graph the clauses one by one. Specifically, for each760

j ∈ [m] we do the following: we introduce cj with label 3, dj with label 4, Join labels761

3 and 4, Rename label 4 to label 5; then for each i ∈ [n] such that we have a vertex762

xi,j we introduce that vertex with label 4, Join label 4 with label 3, and Join label763

4 with label 1 or 2, depending on whether xi,j is connected to vertices xNi or xPi ,764

then Rename label 4 to the junk label 0. Once all xi,j vertices for a fixed j have been765

introduced we Rename label 3 to the junk label 0 and move to the next clause. Finally,766

we introduce u with label 3 and Join label 3 to label 5 (which is the label shared by767

all dj vertices). In the end we have used 6 labels, namely the labels {0, 1, 2, 3, 4, 5}768

for G(φ) without the support vertices, so the whole graph can be constructed with 8769

labels.770

Theorem 5.5. Given graph G = (V,E), k-Grundy Coloring is NP-hard even771

This manuscript is for review purposes only.



18 R. BELMONTE, E.J. KIM, M. LAMPIS, V. MITSOU, Y. OTACHI

when the clique-width of the graph cw(G) is a fixed constant.772

6. FPT for modular-width. In this section we show that Grundy Coloring773

is FPT parameterized by modular-width. Recall that G = (V,E) has modular-width774

w if V can be partitioned into at most w modules, such that each module is a singleton775

or induces a graph of modular-width w. Neighborhood diversity is the restricted776

version of this measure where modules are required to be cliques or independent sets.777

The first step is to show that Grundy Coloring is FPT parameterized by neigh-778

borhood diversity. Similarly to the standard Coloring algorithm for this parameter779

[62], we observe that, without loss of generality, all modules can be assumed to be780

cliques, and hence any color class has one of 2w possible types, depending on the781

modules it intersects. We would like to use this to reduce the problem to an ILP with782

2w variables, but unlike Coloring, the ordering of color classes matters. We thus783

prove that the optimal solution can be assumed to have a “canonical” structure where784

each color type only appears in consecutive colors. We then extend the neighborhood785

diversity algorithm to modular-width using the idea that we can calculate the Grundy786

number of each module separately, and then replace it with an appropriately-sized787

clique.788

6.1. Neighborhood diversity. Recall that two vertices u, v ∈ V of a graph789

G = (V,E) are twins if N(u)\{v} = N(v)\{u}, and they are called true (respectively,790

false) twins if they are adjacent (respectively, non-adjacent). A twin class is a maximal791

set of vertices that are pairwise twins. It is easy to see that any twin class is either792

a clique or an independent set. We say that a graph G = (V,E) has neighborhood793

diversity w if V can be partitioned into at most w twin classes.794

Let G = (V,E) be a graph of neighborhood diversity w with a vertex partition795

V = W1∪̇ . . . ∪̇Ww into twin classes. It is obvious that in any Grundy Coloring of796

G, the vertices of a true twin class must have all distinct colors because they form a797

clique. Furthermore, it is not difficult to see that the vertices of a false twin class must798

be colored by the same color because all of their vertices have the same neighbors.799

In fact, we can show that we can remove vertices from a false twin class without800

affecting the Grundy number of the graph:801

Lemma 6.1. Let G = (V,E) be a graph of neighborhood diversity w with a vertex802

partition V = W1∪̇ . . . ∪̇Ww into twin classes. Let Wi be a false twin class having at803

least two distinct vertices u, v ∈ Wi. Then G − v has k-Grundy coloring if and only804

if G has.805

Proof. The forward implication is trivial. To see the opposite direction, consider806

an arbitrary k-Grundy coloring of G. The vertices u, v must have the same color,807

since they have the same neighbors. Any vertex whose color is higher than v and is808

adjacent with v must be to u as well. Since u and v have the same color, this implies809

that the same coloring restricted to G− v is a k-Grundy coloring.810

Using Lemma 6.1, we can reduce every false twin class into a singleton vertex, thus811

from now on we may assume that every twin class is a clique (possibly a singleton).812

An immediate consequence is that that any color class of a Grundy coloring can take813

at most one vertex from each twin class. Furthermore, the colors of any two vertices814

from the same twin class are interchangeable. Therefore, a color class Vi of a Grundy815

coloring is precisely characterized by the set of twin classes Wj that Vi intersects. For816

a color class Vi, we call the set {j ∈ [w] : Wj ∩ Vi 6= ∅} as the intersection pattern of817

Vi.818

Let I be the collection of all sets I ⊆ [w] of indices such that Wi and Wj are non-819
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adjacent for every distinct pairs i, j ∈ [w]. It is clear that the intersection pattern of820

any color class is a member of I. It turns out that if I ∈ I appears as an intersection821

pattern for more than one color classes, then it can be assumed to appear on a822

consecutive set of colors.823

Lemma 6.2. Let G = (V,E) be a graph of neighborhood diversity w with a vertex824

partition V = W1∪̇ . . . ∪̇Ww into true twin classes. Let V1∪̇ . . . ∪̇Vk be a k-Grundy825

coloring of G and let Ii ∈ I be the set of indices j such that Vi ∩Wj 6= ∅ for each826

i ∈ [k]. If Ii = Ii′ for some i′ ≥ i+ 2, then the coloring V ′1 ∪̇ . . . ∪̇V ′k where827

V ′` =


Vi′ if ` = i+ 1,

V`−1 if i+ 1 < ` ≤ i′,
V` otherwise

828

(i.e. the coloring obtained by ‘inserting’ Vi′ in between Vi and Vi+1) is a Grundy829

coloring as well.830

Proof. First observe that the new coloring remains a proper coloring, so we only831

need to argue that it’s a valid Grundy coloring. Consider a vertex v which took color832

j ≤ i in the original coloring. All its neighbors with color strictly smaller than j have833

retained their colors, so v is still properly colored. Suppose then that v had color j > i′834

in the original coloring. Then, v has a neighbor in each of the classes V1, . . . , Vj−1,835

which means that it has at least one neighbor in each of the sets V ′1 , . . . , V
′
j−1, so it is836

still validly colored.837

Suppose that v had received a color j ∈ [i+ 1, i′ − 1] in the original coloring and838

receives color j + 1 in the new coloring. We claim that for each j′ < j + 1, v has a839

neighbor with color j′. Indeed, this is easy to see for j′ ≤ i, as these vertices retain840

their colors; for j′ = i+1 we observe that v has a neighbor with color i in the original841

coloring, and each such vertex has a true twin with color i + 1 in the new coloring;842

and for j′ > i+ 1, the neighbor of v which had color j′−1 originally now has color j′.843

Finally, suppose that v had received color i′ in the original coloring and receives844

color i+ 1 in the new coloring. We now observe that such a vertex v must have a true845

twin which received color i in both colorings, therefore coloring v with i+ 1 is valid.846

The following is a consequence of Lemma 6.2.847

Corollary 6.3. Let G = (V,E) be a graph of neighborhood diversity w with a848

vertex partition V = W1∪̇ . . . ∪̇Ww into true twin classes. If G admits a k-Grundy849

coloring, then there is a k-Grundy coloring V1∪̇ . . . ∪̇Vk with the following property:850

for each j1, j2 ∈ [k] such that Vj1 has a non-empty intersection with the same twin851

classes as Vj2 , we have that for all j3 ∈ [k] with j1 ≤ j3 ≤ j2, Vj3 also has non-empty852

intersection with the same twin classes as Vj1 .853

For a sub-collection I ′ of I, we say that I ′ is eligible if there is an ordering � on854

I ′ such that for every I, I ′ ∈ I ′ with I � I ′, and for every i ∈ I, there exists i′ ∈ I ′855

such that the twin classes Wi and Wi′ are adjacent, or i = i′. Clearly, a sub-collection856

of an eligible sub-collection of I is again eligible. Intuitively, the ordering that shows857

that a sub-collection is eligible corresponds to a Grundy coloring where color classes858

have the corresponding intersection patterns.859

Now we are ready to present an FPT algorithm, parameterized by the neighbor-860

hood diversity w, to compute the Grundy number. The algorithm consists of two861

steps: (i) guess a sub-collection I ′ of I which are used as intersection patterns by a862

Grundy coloring, and (ii) given I ′, we solve an integer linear program.863
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Let I ′ be a sub-collection of I. For each I ∈ I ′, let xI be an integer variable864

which is interpreted as the number of colors for which I appears as an intersection865

pattern. Now, the linear integer program ILP(I ′) for a sub-collection I ′ is given as866

the following:867

max
∑
I∈I′

xI(6.1)868

s.t.869 ∑
I∈I′:i∈I

xI = |Wi| ∀i ∈ [w],(6.2)870

where each xI takes a positive integer value.871

Lemma 6.4. Let G = (V,E) be a graph of neighborhood diversity w with a vertex872

partition V = W1∪̇ . . . ∪̇Ww into true twin classes. The maximum value of ILP(I ′)873

over all eligible I ′ ⊆ I equals the Grundy number of G.874

Proof. We first prove that the maximum value over all considered ILPs is at least875

the Grundy number of G. Fix a Grundy coloring V1∪̇ · · · ∪̇Vk achieving the Grundy876

number while satisfying the condition of Corollary 6.3. Consider the sub-collection I ′877

of I used as intersection patterns in the fixed Grundy coloring. It is clear that I ′ is878

eligible, using the natural ordering of the color classes. Let x̄I be the number of colors879

for which I is an intersection pattern for each I ∈ I ′. It is straightforward to check880

that setting the variable xI at value x̄I satisfies the constraints of ILP(I ′), because881

all vertices of each twin class are colored exactly once. Therefore, the objective value882

of ILP(I ′) is at least the Grundy number.883

To establish the opposite direction of inequality, let I ′ be an eligible sub-collection884

of I achieving the maximum ILP objective value. Notice that ILP(I ′) is feasible, and885

let x∗I be the value taken by the variable xI for each I ∈ I ′. Since I ′ is eligible, there886

exists an ordering � on I ′ such that for every I, I ′ ∈ I ′ with I � I ′, and for every887

i ∈ I, there exists i′ ∈ I ′ such that the twin classes Wi and Wi′ are adjacent. Now,888

we can define the coloring V1∪̇ · · · ∪̇V` by taking the first (i.e. minimum element in �)889

element I1 of I ′ x∗I times. That is, each of V1 up to Vx∗I1
contains precisely one vertex of890

Wi for each i ∈ I. The succeeding element I2 similarly yields the next x∗I2 colors, and891

so on. From the constraint of ILP(I ′), we know that the constructed coloring indeed892

partitions V . The eligibility of I ′ ensure that this is a Grundy coloring. Finally,893

observe that the number of colors in the constructed coloring equals the objective894

value of ILP(I ′). This proves that the latter value is the lower bound for the Grundy895

number.896

Theorem 6.5. Let G = (V,E) be a graph of neighborhood diversity w. The897

Grundy number of G can be computed in time 2O(w2w)nO(1).898

Proof. We first compute the partition V = W1∪̇ . . . ∪̇Ww of G into twin classes899

in polynomial time. By Lemma 6.1, we may assume that each Wi is a true twin class900

by discarding some vertices of G, if necessary. Next, we compute I and notice that I901

contains at most 2w elements. For each I ′ ⊆ I we verify if I ′ is eligible (this can be902

done in by trying all w! orderings of the elements of I ′).903

For each eligible sub-collection of I ′ of I, we solve ILP(I ′) using Lenstra’s algo-904

rithm which runs in time O(n2.5n+o(n)), where n denotes the number of variables in905

a given linear integer program [67, 52, 41]. As ILP(I ′) contains as many as |I ′| ≤ 2w906

variables, this lead to an ILP solver running in time 2O(w2w). Due to Lemma 6.4, we907
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can correctly compute the Grundy number by solving ILP(I ′) for each eligible I ′ and908

taking the maximum.909

6.2. Modular-width. Let G = (V,E) be a graph. A module is a set X ⊆ V of910

vertices such that N(u)\X = N(v)\X for every u, v ∈ X, that is, their neighborhoods911

coincide outside of X. Equivalently, X is a module if all vertices of V \X are either912

connected to all vertices of X or to none. The modular width of a graph G = (V,E)913

is defined recursively as follows: (i) the modular width of a singleton vertex is 1 (ii) G914

has modular width at most k if and only if there exists a partition V = V1∪̇ . . . ∪̇Vk,915

such that for all i ∈ [k], Vi is a module and G[Vi] has modular width at most k.916

Our main tool in this section will be the following lemma which will allow us to917

reduce Grundy Coloring parameterized by modular width to the same problem918

parameterized by neighborhood diversity. We will then be able to invoke Theorem 6.5.919

The idea of the lemma is that once we compute the Grundy number of a module of920

a graph G we can remove it and replace it with an appropriately sized clique without921

changing the Grundy number of G.922

Lemma 6.6. Let G = (V,E) be a graph and X ⊆ S be a module of G. Let G′923

be the graph obtained by deleting X from G and replacing it with a clique X ′ of size924

Γ(G[X]), such that in G′ we have that all vertices of X ′ are connected to all neighbors925

of X in G. Then Γ(G) = Γ(G′).926

Proof. Let k = Γ(G[X]) = |X ′|. First, let us show that Γ(G′) ≥ Γ(G). Take a927

Grundy coloring of G. Our main observation is that the vertices of X are using at928

most k distinct colors in the coloring of G. To see this, suppose for contradiction929

that the vertices of X are using at least k + 1 colors. We will show how to obtain a930

Grundy coloring of G[X] with at least k + 1 colors. As long as there is a color in the931

Grundy coloring of G which does not appear in X, let c be the highest such color. We932

delete from G all vertices which have color c, and decrease by 1 the color of all vertices933

that have color greater than c. This modification gives us a valid Grundy coloring934

of the remaining graph, without decreasing the number of distinct colors used in X.935

Repeating this exhaustively results in a graph where every color is used in X. Since936

X is a module, that means that the resulting graph is G[X], and we have obtained a937

Grundy coloring of G[X] with k + 1 or more colors, contradiction.938

Assume then that in the optimal Grundy coloring of G, the vertices of X use k′ ≤939

k distinct colors. Let G′′ be the induced subgraph of G′ obtained by deleting vertices940

of X ′ so that there are exactly k′ such vertices left in the graph. We claim Γ(G′) ≥941

Γ(G′′) ≥ Γ(G). The first inequality follows from the standard fact that Grundy942

coloring is closed under induced subgraphs (indeed, in the First-Fit formulation of943

the problem we can place the deleted vertices of G′ at the end of the ordering). To944

see that Γ(G′′) ≥ Γ(G) we take the optimal coloring of G and use the same coloring945

in V \X; furthermore, for each distinct color used in a vertex of X we color a vertex946

of X ′ with this color. Observe that this is a proper coloring of G′′. Furthermore, for947

each v ∈ V \X, the set of colors that appears in N(v) is unchanged; while for v ∈ X ′,948

v sees at least the same colors in its neighborhood as a vertex of X that received the949

same color.950

Let us also show that Γ(G) ≥ Γ(G′). Consider a k-Grundy coloring of G[X] and951

let X1, X2, . . . , Xk be the corresponding partition of X. Label the vertices of X ′ as952

x1, . . . , xk. We will now show how to transform a Grundy coloring of G′ to a Grundy953

coloring of G: we use the same colors as in G′ for all vertices in V \X; and we use for954

each vertex of Xi the same color that is used for xi in G′. This is a proper coloring,955
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as each Xi is an independent set, the vertices of X ′ use distinct colors in G′ (as they956

form a clique), and a vertex connected to X in G is also connected to all of X ′ in G′.957

Furthermore, each vertex v ∈ V \X sees the same set of colors in its neighborhood958

in G and in G′: if v is not connected to X its neighborhood is completely unchanged,959

while if it is v sees in X the same k colors that were used in X ′. Finally, for each960

i ∈ [k], each vertex of Xi sees the same colors in its neighborhood as xi does in G′.961

We can now prove the main result of this section.962

Theorem 6.7. Let G = (V,E) be a graph of modular-width w. The Grundy963

number of G can be computed in time 2O(w2w)nO(1).964

Proof. Given a graph G = (V,E) of modular width w it is known that we can965

compute a partition of V into at most w modules V1, . . . , Vw [83]. If one of these966

modules Vi is not a clique or an independent set, we call this algorithm recursively on967

G[Vi] (which also has modular width w) and compute Γ(G[Vi]). Then, by Lemma 6.6968

we can replace Vi in G with a clique of size Γ(G[Vi]). Repeating this produces a graph969

where each module is a clique or an independent set. But then G has neighborhood970

diversity w, so we can invoke Theorem 6.5.971

7. Conclusions. We have shown that Grundy Coloring is a natural problem972

that displays an interesting complexity profile with respect to some of the main graph973

widths. One question left open with respect to this problem is its complexity param-974

eterized by feedback vertex set. A further question is the tightness of our obtained975

results under the ETH. The algorithm we obtain for pathwidth has running time with976

parameter dependence 2O(pw2). Is this optimal or is it possible to do better? Simi-977

larly, our reduction for treewidth shows that it’s not possible to solve the problem is978

no(
√
tw), but the best known algorithm runs in nO(tw2). Can this gap be closed?979

A broader question is also whether we can find other examples of natural problems980

that separate the parameters treewidth and pathwidth. The reason that Grundy981

Coloring turns out to be tractable for pathwidth is purely combinatorial (the982

value of the optimal is bounded by a function of the parameter). In other words,983

the “reason” why this problem becomes easier for pathwidth is not that we are able984

to formulate a different algorithm, but that the same algorithm happens to become985

more efficient. It would be interesting to find some natural problem for which path-986

width offers algorithmic footholds in comparison to treewidth that cannot be so easily987

explained. One possible candidate for this may be Packing Coloring [59].988
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