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Abstract. Arc Kayles and Colored Arc Kayles, two-player games17

on a graph, are generalized versions of well-studied combinatorial games18

Cram and Domineering, respectively. InArc Kayles, players alternately19

choose an edge to remove with its adjacent edges, and the player who20

cannot move is the loser. Colored Arc Kayles is similarly played on a21

graph with edges colored in black, white, or gray, while the black (resp.,22

white) player can choose only a gray or black (resp., white) edge. For23

Arc Kayles, the vertex cover number (i.e., the minimum size of a vertex24

cover) is an essential invariant because it is known that twice the vertex25

cover number upper bounds the number of turns of Arc Kayles, and26

for the winner determination of (Colored) Arc Kayles, 2O(τ2)nO(1)-27

time algorithms are proposed, where τ is the vertex cover number and28

n is the number of vertices. In this paper, we first give a polynomial29

kernel for Colored Arc Kayles parameterized by τ , which leads to30

a faster 2O(τ log τ)nO(1)-time algorithm for Colored Arc Kayles. We31

then focus on Arc Kayles on trees, and propose a 2.2361τnO(1)-time32

algorithm. Furthermore, we show that the winner determination Arc33

Kayles on a tree can be solved in O(1.3831n) time, which improves the34

best-known running time O(1.4143n). Finally, we show that Colored35

Arc Kayles is NP-hard, the first hardness result in the family of the36

above games.37

Keywords: Arc Kayles, Combinatorial Game Theory, Exact Exponential-38

Time Algorithm, Vertex Cover39
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1 Introduction40

Arc Kayles is a combinatorial game played on a graph. In Arc Kayles, a41

player chooses an edge of an undirected graph G and then the selected edge42

and its neighboring edges are removed from G. In other words, a player chooses43

adjacent two vertices to occupy. The player who cannot choose adjacent two44

vertices loses the game.45

Node Kayles, a vertex version of Arc Kayles, and Arc Kayles were46

introduced in 1978 by Schaefer [12]. The complexity of Node Kayles is shown47

to be PSPACE-complete, whereas that of Arc Kayles is less known. An im-48

portant aspect of Arc Kayles is a graph generalization of Cram, which is49

a well-studied combinatorial game introduced in [6]. Cram is a simple board50

game: two people alternately put a domino on a checkerboard, and the player51

who cannot place a domino will lose the game. Cram is interpreted as Arc52

Kayles, when a graph is a two-dimensional grid graph. Though Cram is quite53

more restricted than Arc Kayles, the complexity remains open. Since an algo-54

rithm for Arc Kayles is available for Cram, a study for Arc Kayles would55

help the study for Cram.56

This paper presents new winner-determination algorithms together with elab-57

orate running time analyses. The running time of our algorithms is parameterized58

by the vertex cover number of a graph. Note that the vertex cover number of59

a graph is strongly related to the number of turns of Arc Kayles, which is60

the total number of actions taken by two players, as seen below. Intuitively,61

the number of turns tends to reflect the complexity of a game because it is62

the depth of the game tree, and it is reasonable to focus on it when we design63

winner-determination algorithms.64

The relation between the number of turns of Arc Kayles is observed as65

follows. During a game of Arc Kayles, edges chosen by the players form a66

matching, and the player who completes a maximal matching wins; the number67

of turns in a gameplay is the size of the corresponding maximal matching. Since68

the maximum matching size is at most twice the minimum maximal matching69

size, which is also at most twice the minimum vertex cover number, the number70

of turns of Arc Kayles is linearly upper and lower bounded by the vertex cover71

number.72

1.1 Partisan variants of Arc Kayles73

In this paper, we also study partisan variants of Arc Kayles: Colored Arc74

Kayles and BW-Arc Kayles. In combinatorial game theory, a game is said75

to be partisan if some actions are available to one player and not to the other.76

Colored Arc Kayles, intoroduced in [17], is played on an edge-colored graph77

G = (V,EB ∪ EW ∪ EG), where EB, EW, EG are disjoint. The subscripts B, W,78

and G of EB, EW, and EG respectively stand for black, white, and gray. For79

every edge e ∈ EB ∪EW ∪EG, let c(e) be the color of e, that is, B if e ∈ EB, W80

if e ∈ EW, and G if e ∈ EG. If {u, v} ̸∈ EB ∪ EW ∪ EG, we set c({u, v}) = ∅ for81

convenience. Since the first (black or B) player can choose black or gray edges,82
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and the second (white or W) player can choose white or gray edges, Colored83

Arc Kayles is a partisan game. Note that Colored Arc Kayles with empty84

EB and EW is actually Arc Kayles, which is no longer a partisan and is said to85

be impartial. We also name Colored Arc Kayles with empty EG BW-Arc86

Kayles, which is still partisan. This paper presents an fixed-parameter tractable87

(FPT) winner-determination algorithm also for Colored Arc Kayles, which88

is parameterized by vertex cover number.89

Here, we introduce another combinatorial game called Domineering. Dom-90

ineering is a partisan version of Cram; one player can place a domino only91

vertically, and the other player can place one only horizontally. As Arc Kayles92

is a graph generalization of Cram, BW-Arc Kayles is a graph generalization93

of Domineering. Note that Domineering is also a well-studied combinato-94

rial game. In fact, several books of combinatorial game theory (e.g., [1]) use95

Domineering as a sample of partisan games, though its time complexity is still96

unknown as well as Cram. Our algorithm mentioned above works for Domi-97

neering.98

1.2 Related work99

Node Kayles and Arc Kayles As mentioned above, Node Kayles and100

Arc Kayles were introduced in [12]. Node Kayles is the vertex version of101

Arc Kayles; the action of a player in Node Kayles is to select a vertex in-102

stead of an edge, and then the selected vertex and its neighboring vertices are103

removed. The winner determination of Node Kayles is known to be PSPACE-104

complete in general [12], though it can be solved in polynomial time by using105

Sprague-Grundy theory [2] for graphs of bounded asteroidal numbers, such as106

comparability graphs and cographs. For general graphs, Bodlaender et al. pro-107

pose an O(1.6031n)-time algorithm [3]. Furthermore, they show that the win-108

ner of Node Kayles can be determined in time O(1.4423n) on trees. In [9],109

Kobayashi sophisticates the analysis of the algorithm in [3] from the perspec-110

tive of the parameterized complexity and shows that it can be solved in time111

O∗(1.6031µ), where µ is the modular width of an input graph1. He also gives an112

O∗(3τ )-time algorithm, where τ is the vertex cover number, and a linear kernel113

when parameterized by neighborhood diversity.114

Different from Node Kayles, the complexity of Arc Kayles has remained115

open for more than 30 years. Even for subclasses of trees, not much is known.116

For example, Huggans and Stevens study Arc Kayles on subdivided stars with117

three paths [8]. To our best knowledge, until a few years ago no exponential-time118

algorithm for Arc Kayles is presented except for an O∗(4τ
2

)-time algorithm119

proposed in [11]. In [7,17], the authors show that the winner determination120

of Arc Kayles on trees can be solved in O∗(2n/2) = O(1.4143n) time, which121

improves O∗(3n/3)(= O(1.4423n)) by a direct adjustment of the analysis of Bod-122

laender et al.’s O∗(3n/3)-time algorithm for Node Kayles.123

1 The O∗(·) notation suppresses polynomial factors in the input size.
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BW-Arc Kayles and Colored Arc Kayles BW-Arc Kayles andColored124

Arc Kayles are introduced in [7,17]. The paper presents an O∗(1.4143τ
2+3.17τ )-125

time algorithm for Colored Arc Kayles, where τ is the vertex cover number.126

The algorithm runs in time O∗(1.3161τ
2+4τ ) and O∗(1.1893τ

2+6.34τ ) for BW-127

Arc Kayles, and Arc Kayles, respectively. This is faster than the previously128

known time complexity O∗(4τ
2

) in [11]. They also give a bad instance for the129

proposed algorithm, which implies the running time analysis is asymptotically130

tight. Furthermore, they show that the winner of Arc Kayles can be determined131

in time O∗((n/ν+1)ν), where ν is the neighborhood diversity of an input graph.132

This analysis is also asymptotically tight.133

Cram and Domineering Cram and Domineering are well-studied in the134

field of combinatorial game theory. In [6], Gardner gives winning strategies for135

some simple cases. For Cram on an a×b board, the second player can always win136

if both a and b are even, and the first player can always win if one of a and b is137

even and the other is odd. This can be easily shown by the so-called Tweedledum138

and Tweedledee strategy. For specific sizes of boards, computational studies have139

been conducted [15]. In [14], Cram’s endgame databases for all board sizes with140

at most 30 squares are constructed. As far as the authors know, the complexity141

to determine the winner for Cram on general boards still remains open.142

Finding the winning strategies of Domineering for specific sizes of boards143

by using computer programs is well studied. For example, the cases of 8 × 8144

and 10 × 10 are solved in 2000 [4] and 2002 [5], respectively. The first player145

wins in both cases. Currently, the status of boards up to 11× 11 is known [13].146

In [16], endgame databases for all single-component positions up to 15 squares147

for Domineering are constructed. The complexity of Domineering on general148

boards also remains open. Lachmann, Moore, and Rapaport show that the win-149

ner and a winning strategy of Domineering on m× n board can be computed150

in polynomial time for m ∈ {1, 2, 3, 4, 5, 7, 9, 11} and all n [10].151

1.3 Our contribution152

In this paper, we present FPT winner-determination algorithms with the min-153

imum vertex cover number τ as a parameter, which is much faster than the154

existing ones. To this end, we show that Colored Arc Kayles has a polyno-155

mial kernel parameterized by τ , which leads to a 2O(τ log τ)nO(1) time algorithm156

where n is the number of the vertices (Section 3); this improves the previous time157

complexity 2O(τ2)nO(1). For Arc Kayles on trees, we show that the winner de-158

termination can be done in time O∗(5τ/2)(= O(2.2361τ )) (Section 4), together159

with an elaborate analysis of time O∗(7n/6)(= O(1.3831n)), which improves the160

previous bound O∗(2n/2)(= O(1.4142n)) (Section 5). Finally, Section 6 shows161

that BW-Arc Kayles is NP-hard, and thus so is Colored Arc Kayles.162

Note that this might be the first hardness result on the family of the combina-163

torial games shown in Section 1.2 except for Node Kayles.164
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2 Preliminaries165

Let G = (V,E) be an undirected graph. We denote n = |V | and m = |E|,166

respectively. For an edge e = {u, v} ∈ E, we define Γ (e) = {e′ | e ∩ e′ ̸= ∅}.167

For a graph G = (V,E) and a vertex subset V ′ ⊆ V , we denote by G[V ′] the168

subgraph induced by V ′. For simplicity, we denote G− v instead of G[V \ {v}].169

For an edge subset E′, we also denote by G − E′ the subgraph obtained from170

G by removing all edges in E′ from G. A vertex set S is called a vertex cover if171

e∩S ̸= ∅ for every edge e ∈ E. Let τ denote the size of a minimum vertex cover172

of G, which is also called the vertex cover number of G.173

3 A Polynomial Kernel for Colored Arc Kayles174

Our main result in this section is that Colored Arc Kayles admits a poly-175

nomial kernel when parameterized by the size τ of a given vertex cover. Since176

Colored Arc Kayles generalizes standard Arc Kayles and our kerneliza-177

tion algorithm proceeds by deleting edges of the input graph, we obtain the same178

result for Arc Kayles.179

Before we proceed, let us give some intuition about the main idea. To make180

things simpler, let us first consider (standard) Arc Kayles parameterized by181

the size of a vertex cover τ . One way in which we could hope to obtain a kernel182

could be via the following observation: if a vertex x ∈ C, where C is the vertex183

cover, has high degree (say, degree at least k+1), then we can guarantee that this184

vertex can always be played, or more precisely, that it is impossible to eliminate185

this vertex by playing on edges incident on its neighbors, since the game cannot186

last more than τ rounds. One could then be tempted to argue that, therefore,187

when a vertex has sufficiently high degree, we can delete one of its incident edges.188

If we thus bound the maximum degree of vertices of C, we obtain a polynomial189

kernel.190

Unfortunately, there is a clear flaw in the above intuition: suppose that x is191

a high-degree vertex of C as before, xy an edge, and x′y another edge of the192

graph, for x′ ∈ C. If x′ is a low-degree vertex, then deciding whether to play193

xy or another edge incident on x is consequential, as the player needs to decide194

whether the strategy is to eliminate x′ by playing one of its incident edges, or195

by playing edges incident on its neighbors. We therefore need a property more196

subtle than simply a vertex that has high degree.197

To avoid the flaw described in the previous paragraph, we therefore look for198

a dense sub-structure: a set of vertices X ⊆ C such that there exists a set of199

vertices Y ⊆ V \ C where all vertices of X have many neighbors in Y and at200

the same time vertices of Y have no neighbors outside X. In such a structure201

the initial intuition does apply: playing an edge xy with x ∈ X and y ∈ Y is202

equivalent to playing any other edge xy′ with y′ ∈ Y , because other vertices of203

X “don’t care” which vertices of Y have been eliminated (since vertices of X204

have high degree), while vertices outside of X “don’t care” because they are not205

connected to Y . Our main technical tool is then to give a definition (Definition 1)206
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which captures and generalizes this intuition to the colored version of the game:207

we are looking for sets XW , XB ⊆ C and Y ⊆ V \ C, such that each vertex208

of XW and XB has many edges playable by White or Black respectively with209

the other endpoint in Y , while edges incident on Y have their other endpoint in210

some appropriate part of XW ∪XB (white edges in XW , black edges in XB , and211

gray edges in XW ∩XB). We show that if we can find such a structure, then we212

can safely remove an edge (Lemma 1) and then show how in polynomial time213

we can either find such a structure or guarantee that the size of the graph is214

bounded to obtain the main result (Theorem 1).215

Definition 1. Let G = (V,E) be an instance of Colored Arc Kayles, with216

E = EW ∪ EB ∪ EG, C ⊆ V be a vertex cover of G of size τ , and I = V \ C.217

Then, for three sets of vertices XW , XB , Y we say that (XW , XB , Y ) are a dense218

triple if we have the following: (i) XW , XB ⊆ C and Y ⊆ I (ii) for each x ∈ XW219

(respectively x ∈ XB) there exist at least τ +1 edges in EW ∪EG (respectively in220

EB ∪EG) incident on x with the other endpoint in Y (iii) for all y ∈ Y all edges221

of EG incident on y have their second endpoint in XW ∩XB (iv) for all y ∈ Y222

all edges of EW (respectively of EB) incident on y have their second endpoint in223

XW (respectively in XB).224

Lemma 1. Let G,C, I, τ be as in Definition 1 and (XW , XB , Y ) be a dense225

triple of G. Then, for any edge e ∈ E incident on a vertex of Y and any r > 0226

we have the following: a player (Black of White) has a strategy to win Arc Kayles227

in G in at most r moves if and only if the same player has a strategy to win Arc228

Kayles in G− e in at most r moves.229

Proof. We prove the lemma by induction on the size τ of C. For τ = 0 the lemma230

is vacuous, as there are no edges to delete. We therefore start with τ = 1, so C231

contains a single vertex, say C = {x}. Suppose without loss of generality that232

Black is playing first (the other case is symmetric). If XB = ∅ and XW = ∅, then233

Y may only contain isolated vertices, so again there is no edge e that satisfies234

the conditions of the lemma, so the claim is vacuous. If XB = ∅ and XW = {x},235

then any e that satisfies the conditions of the lemma must have e ∈ EW . Clearly,236

deleting such an edge does not affect the answer, as this edge cannot be played.237

If on the other hand, XB = {x}, then |EB |+ |EG| ≥ 2 (to satisfy condition (ii)),238

hence the current instance is a win for Black in one move, and removing any239

edge does not change this fact.240

For the inductive step, suppose the lemma is true for all graphs with vertex241

cover at most τ−1. We must prove that optimal strategies are preserved in both242

directions. To be more precise, the optimal strategy of a player is defined as the243

strategy which guarantees that the player will win in the minimum number of244

rounds, if the player has a winning strategy or guarantees that the game will245

last as long as possible if the player has no winning strategy.246

For the easy direction, suppose that the first player has an optimal strategy247

in G − e which starts by playing an edge f = ab. This edge also exists in G,248

so we formulate a strategy in G that is at least as good for the first player by249

again initially playing f in G. Now, let G1 = G− {a, b} be the resulting graph,250
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and G2 = G− e− {a, b} be the resulting graph when we play in G− e. If e has251

an endpoint in {a, b}, then G1, G2 are actually isomorphic, so clearly the first252

player’s strategy in G is at least as good as her strategy in G − e and we are253

done. Otherwise, G2 = G1 − e and we claim that we can apply the inductive254

hypothesis to G1 and G2, proving that the two graphs have the same winner255

in the same number of moves and hence our strategy is winning for G. Indeed,256

G1 has a vertex cover of size at most τ − 1. Furthermore, if (XW , XB , Y ) is a257

dense triple of G, then (XW \ {a, b}, XB \ {a, b}, Y \ {a, b}) is a dense triple of258

G1, because Y contains at most one vertex from {a, b}, hence each vertex of259

XW , XB has lost at most one edge connecting it to Y . Therefore, the inductive260

hypothesis applies, as G2 = G1 − e and e is an edge incident on Y \ {a, b}.261

For the more interesting direction, suppose that the first player has an opti-262

mal strategy in G for which we consider several cases:263

1. The optimal strategy in G initially plays an edge f that shares no endpoints264

with e.265

2. The optimal strategy in G initially plays an edge f that shares exactly one266

endpoint with e.267

3. The optimal strategy in G initially plays e.268

For the first case, let G1 be the graph resulting from playing f in G, and269

G2 be the graph resulting from playing f in G − e. Again, as in the previous270

direction, we observe that we can apply the inductive hypothesis on G1, G2, and271

therefore playing f is an equally good strategy in G− e.272

For the second case, it is even easier to see that playing f is an equally good273

strategy in G − e, as G1, G2 are now isomorphic (playing f in G removes the274

edge e that distinguishes G from G− e).275

Finally, for the most interesting case, suppose without loss of generality that276

Black is playing first in G and has an optimal strategy that begins by playing e,277

therefore e ∈ EB ∪EG. Let e = xy with x ∈ XB and y ∈ Y . We will attempt to278

find an equally good strategy for Black in G−e. By condition (ii) of Definition 1,279

x has τ > 1 other incident edges that Black can play, whose second endpoint280

is in Y . Let e′ = xy′ be such an edge, with y′ ∈ Y . Let G1 = G − {x, y} and281

G2 = G− {x, y′}. It is sufficient to prove that G1 and G2 have the same winner282

in the same number of moves, if White plays first on both graphs. For this, we283

will again apply the inductive hypothesis, though this time it will be slightly284

more complicated, since G1, G2 may differ in many edges. We will work around285

this difficulty by adding (rather than removing) edges to both graphs, so that286

we eventually arrive at isomorphic graphs, without changing the winner.287

Take G1 and observe that (XW \ {x}, XB \ {x}, Y \ {y}) is a dense triple, as288

the vertex cover of G1 has size at most τ − 1, and each vertex of XB ∪XW has289

lost at most one neighbor in Y . Add the vertex y to G1 as an isolated vertex290

(this clearly does not affect the winner). Furthermore, (XW \ {x}, XB \ {x}, Y )291

is a dense triple of the new graph. We now observe that adding a white edge292

from y to XW \ {x}, or a black edge from y to XB \ {x}, or a gray edge from293

y to (XW ∩XB) \ {x} does not affect the fact that (XW \ {x}, XB \ {x}, Y ) is294
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a dense triple. Hence, by inductive hypothesis, it does not affect the winner or295

the number of moves needed to win. Repeating this, we add to G1 all the edges296

incident on y in G2. We then take G2, add to it y′ as an isolated vertex, and297

then use the same argument to add to it all edges incident to y′ in G1 without298

changing the winner. We have thus arrived at two isomorphic graphs. ⊓⊔299

Theorem 1. There is a polynomial time algorithm which takes as input an300

instance G of Colored Arc Kayles and a vertex cover of G of size τ and301

outputs an instance G′, such that G′ has O(τ3) edges, and for all r > 0 a player302

(Black or White) has a strategy to win in r moves in G if and only if the the303

same player has a strategy to win in r moves in G′. Hence, Colored Arc304

Kayles admits a kernel with O(τ3) edges.305

Proof. We describe an algorithm that finds a dense triple, if one exists, in the306

input graph G = (V,E). If we find such a triple, we can invoke Lemma 1 to307

delete an edge from the graph, without changing the answer, and then repeat308

the process. Otherwise, we will argue that the G must already have the required309

number of edges. We assume that we are given a vertex cover C of G of size310

τ ≥ 1 and I = V \ C. If not, a 2-approximate vertex cover can be found in311

polynomial time using standard algorithms.312

The algorithm executes the following rules exhaustively, until no rule can be313

applied, always preferring to apply lower-numbered rules.314

1. If C contains an isolated vertex, delete it.315

2. If there exists x ∈ C such that x is incident on at most τ edges of EB ∪EG316

and at most τ edges of EW ∪ EG, then delete N(x) ∩ I from G.317

3. If there exists x ∈ C such that x is incident on at least 1 and at most τ edges318

of EB ∪ EG, then for each y ∈ I such that xy ∈ EB ∪ EG, delete y from G.319

4. If there exists x ∈ C such that x is incident on at least 1 and at most τ edges320

of EW ∪EG, then for each y ∈ I such that xy ∈ EW ∪EG, delete y from G.321

The rules above can clearly be executed in polynomial time. We now first322

prove that the rules are safe via the following two claims.323

Claim. If G contains a dense triple (XW , XB , Y ), then applying any of the rules324

will result in a graph where (XW , XB , Y ) is still a dense triple (in particular,325

the rules will not delete any vertex of XW ∪XB ∪ Y ).326

Proof. It is in fact sufficient to prove that the rules will never delete a vertex of327

XW ∪XB ∪Y , because if we only delete vertices outside a dense triple, the dense328

triple remains valid. Vertices removed by the first rule clearly cannot belong to329

XB ∪ XW . For the second rule, we observe that if x satisfies the conditions of330

the rule, then x ̸∈ XW ∪XB , as that would violate condition (ii) of Definition 1.331

Since x ̸∈ XW ∪XB , for any y ∈ I such that xy ∈ E, it must be the case that332

y ̸∈ Y , therefore it is safe to delete such vertices. For the third rule, we observe333

that x ̸∈ XB , because that would violate condition (ii) of Definition 1. Therefore,334

if y ∈ I such that xy ∈ EB ∪ EG, we have y ̸∈ Y by conditions (iii) and (iv) of335

Definition 1, and it is safe to delete such vertices. The last rule is similar. ⊓⊔336
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Claim. If after applying the rules exhaustively, the resulting graph is not edge-337

less, then we can construct a dense triple (XW , XB , Y ) as follows: place into XW338

(respectively into XB) all remaining vertices of C which are still incident on an339

edge of EW (respectively of EB), place all vertices of C still incident on an edge340

of EG into both XW and XB , and place all remaining vertices of I into Y . The341

dense triple thus constructed is also a dense triple in the original graph.342

Proof. We prove the claim by induction on the number of rule applications. Let343

G0 = G,G1, G2, . . . , Gℓ be the sequence of graphs we obtain by executing the344

algorithm, where Gi+1 is obtained from Gi by applying a rule. We first show345

that (XW , XB , Y ) is a dense triple in the final graph Gℓ. Consider a vertex346

x ∈ XW \ XB . By construction x is incident on an edge of EW in Gℓ but on347

no edge of EB ∪ EG. We can see that x satisfies condition (ii) of Definition 1348

because if it were incident on at most k edges of EW , the second rule would have349

applied. Similarly, vertices of XB \XW satisfy condition (ii). For x ∈ XW ∩XB ,350

by construction either x is incident on an edge of EG or it is incident on edges351

from both EW and EB . Therefore, x is incident on at least 1 edge of EW ∪ EG352

and at least 1 edge of EB ∪EG. As a result, if x violated condition (ii), the third353

or fourth rules would have applied. Condition (iii) is satisfied because we placed354

all vertices of C incident on an edge of EG into XW ∩ XB . Condition (iv) is355

satisfied because we placed all vertices of C incident on an edge of EW into XW356

(similarly for EB).357

Having established the base case, suppose we have some r < ℓ such that358

(XW , XB , Y ) is a dense triple in all ofGr+1, . . . , Gℓ. We will show that (XW , XB , Y )359

is also a dense triple in Gr. If Gr+1 is obtained from Gr by applying the first360

rule, this is easy to see, as adding an isolated vertex to Gr+1 does not affect the361

validity of the dense triple. If on the other hand, we obtained Gr+1 by applying362

one of the other rules, then we deleted from Gr some vertices of I. However,363

adding to Gr+1 some vertices to I does not affect the validity of the dense triple,364

as the vertices of Y do not obtain new neighbors (hence conditions (iii) and365

(iv) remain satisfied), while condition (ii) is unaffected. We conclude that the366

constructed triple is valid in G. ⊓⊔367

The last claim shows how to construct a dense triple in G if after applying368

the rules exhaustively the remaining graph is not edge-less. The kernelization369

algorithm is then the following: apply the rules exhaustively. When this is no370

longer possible, if the remaining graph is not edge-less, construct a dense triple371

and invoke Lemma 1 to remove an arbitrary edge of that triple. Run the ker-372

nelization algorithm on the remaining graph and return the result. Otherwise, if373

the graph obtained after applying all the rules is edge-less, we return the initial374

graph G.375

What remains is to prove that when the kernelization algorithm ceases to376

make progress (that is, when applying all rules produces an edge-less graph), this377

implies that the given graph must have O(τ3) edges. To see this, observe that to378

apply any rule, we need a vertex x ∈ C which satisfies certain conditions. Once we379

apply that rule to x, the same rule cannot be applied to x a second time, because380
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we delete an appropriate set of its neighbors. As a result, the algorithm will381

perform O(τ) rule applications. Each rule application deletes either an isolated382

vertex or at most O(τ) vertices of I. Each vertex of I is incident on O(τ) edges383

(since the other endpoint of each such edge must be in C). Therefore, each rule384

application removes O(τ2) edges from the graph and after O(τ) rule applications385

we arrived at an edge-less graph. We conclude that the given graph contained386

O(τ3) edges. ⊓⊔387

Corollary 1. Colored Arc Kayles can be solved in time τO(τ) + nO(1) on388

graphs on n vertices, where τ is the size of a minimum vertex cover of the input389

graph.390

Proof. Suppose that we have a vertex cover C of size τ (otherwise one can be391

found with standard FPT algorithms in the time allowed). We first apply the392

algorithm of Theorem 1 in polynomial time to reduce the graph to O(τ3) edges.393

Then, we apply the simple brute force algorithm which considers all possible394

edges to play for each move. Since the game cannot last for more than τ rounds395

(as each move decreases the vertex cover), this results in a decision tree of size396

τO(τ). ⊓⊔397

Finally, a corollary of the above results is that Arc Kayles also admits a398

polynomial kernel when parameterized by the number of rounds. This follows399

because the first player has a strategy to win in a small number of rounds400

only if the graph has a small vertex cover. Notice that this corollary cannot401

automatically apply to the colored version of the game, because if Black has a402

strategy to win in a small number of rounds, this only implies that the graph403

induced by the edge of EW ∪ EG (that is, the edges playable by White) has a404

small vertex cover.405

Corollary 2. Arc Kayles admits a kernel of O(r3) edges and can be solved406

in time rO(r) + nO(1), where the objective is to decide if the first player has a407

strategy to win in at most r rounds.408

Proof. Given an instance of Arc Kayles G we first compute a maximal match-409

ing of G. If the matching contains at least 2r + 1 edges, then we answer no, as410

the game will go on for at least r + 1 rounds, no matter which strategy the411

players follow. Otherwise, by taking both endpoints of all edges in the matching412

we obtain a vertex cover of size at most 4r, and we can apply Theorem 1 and413

Corollary 1. ⊓⊔414

4 Arc Kayles for Trees Parameterized by Vertex Cover415

Number416

In [3], Bodlaender et al. showed that the winner of Node Kayles on trees417

can be determined in time O∗(3n/3) = O(1.4423n). Based on the algorithm418

of Bodlaender et al., Hanaka et al. showed an O∗(2n/2) = O(1.4143n) time419
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algorithm to determine the winner of Arc Kayles and Node Kayles on trees420

in [7]. This improvement is achieved by not considering the ordering of subtrees.421

Now, we show that the improved algorithm in [7] also runs in time O∗(5τ/2) =422

O(2.2361τ ), where τ is the vertex cover number.423

We start with an introduction to the algorithm. The algorithm is based424

on the algorithm for Node Kayles of Bodlaender et al. [3], which uses the425

Sprague–Grundy theory. Any position of a game can be assigned a non-negative426

integer called nimber. 0 is assigned to a position P if and only if the second427

player wins in P in the game. Thus, in Arc Kayles nimber of a graph G is428

0 when G has no edge. When a graph has some edges, we calculate mex(S).429

mex(S) is the smallest non-negative integer which is not contained in S, where430

S is the set of non-negative integers. In a general game, for a position P where431

the winner is not trivial, S consists of nimbers of positions reachable from P432

in one move, and the nimber of P is mex(S). Thus, in Arc Kayles a nimber433

of a graph G with some edges is mex(S), where S is the set of the nimbers of434

graphs which are reachable from G in one move. In addition, when the graph435

G is unconnected, the nimber of G can be obtained by computing XOR of the436

nimbers for each connected component.437

The algorithm to determine the winner for Arc Kayles on trees using438

Sprague–Grundy theory is as follows: Like a DFS, we calculate the nimber of439

input graph by calculating the nimbers of graphs which are reachable from input440

graph in one move, and so on. Once the position has been examined, the calcu-441

lation result is held and is not calculated again. In memoization, each connected442

components of a tree is memorized and when for any vertex only the order of its443

children is different, it is regarded as the same tree.444

The exponential part of the running time of the algorithm depends on the445

number of connected components that can be played in the game. When we play446

Arc Kayles with a input graph T , which is a tree and the vertex cover number447

of T is τ , we claim that the number of connected components that can be played448

in the game is O∗(5τ/2) = O(2.2361τ ) (See appendix for details).449

Theorem 2. The winner of Arc Kayles on a tree whose vertex cover number450

is τ can be determined in time O∗(5τ/2)(= O(2.2361τ )).451

5 Arc Kayles for Trees452

Continued from section 4, we further analyze the winner determination algorithm453

in [7] for Arc Kayles on trees. In [7], Hanaka et al. showed an O∗(2n/2) =454

O(1.4143n)-time algorithm to determine the winner of Arc Kayles and Node455

Kayles on trees, and we gave another running time of the algorithm of [7] with456

respect to vertex cover number in section 4. Now, we improve the estimation of457

the running time of the algorithm and show that the winner of Arc Kayles458

and Node Kayles on trees can be determined in time O∗(7n/6)(= O(1.3831n)).459

Theorem 3. The winner of Arc Kayles on a tree with n vertices can be460

determined in time O∗(7n/6) = O(1.3831n).461
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Theorem 4. The winner of Node Kayles on a tree with n vertices can be462

determined in time O∗(7n/6)(= O(1.3831n)).463

6 NP-hardness of BW-Arc Kayles464

The complexity to determine the winner of combinatorial games is expected465

to be PSPACE-complete, though no hardness results are known for (Colored)466

Arc Kayles so far. In this section, we prove that Bw-Arc Kayles is NP-hard.467

Theorem 5. BW-Arc Kayles is NP-hard.468

Proof. We give a polynomial-time reduction from Vertex Cover, which is the469

problem to decide whether G has a vertex cover of size at most τ . Let G = (V,E)470

and τ be an instance of Vertex Cover. Now we construct an edge-colored471

graph G′ from G such that the first black player has a winning strategy on G′ if472

and only if G has a vertex cover of size at most τ .473

We construct G′ as follows. The graph G′ consists of three layers as shown in474

Figure 1. The bottom layer corresponds to G = (V,E); the vertex and edge sets475

are copies of V and E, which we call with the same name V and E. The edges in476

E are colored in white. The middle layer is a clique with size 2τ − 1, where the477

vertex set is U = {u1, . . . , u2τ−1} and all edges are colored in black. The top layer478

consists of two vertex sets B = {b1, . . . , b2τ−1} and W = {w1, . . . , w2τ−1}, where479

they are independent. The bottom and middle layers are completely connected480

by black edge set EV,U = {{v, u} | v ∈ V, u ∈ U}. The middle and top layers are481

connected by black edge set EU,B = {{ui, bi} | i = 1, . . . , 2τ − 1} and white edge482

set EU,W = {{ui, wi} | i = 1, . . . , 2τ − 1}.483

𝑏!

⋯

𝑤! 𝑏" 𝑤" 𝑏"#$! 𝑤"#$!

𝑢! 𝑢"#$!

Copy of 𝐺

Fig. 1. graph G′

Let S be a vertex cover of G of size τ . For S, we define ES,U = {{v, u} ∈484

EV,U | v ∈ S}. Note that the second (white) player can choose only edges in485

EU,W or E. The strategy of the first (black) player is as follows. In the first486

turn, the black player just chooses an edge in ES,U . After that, the black player487
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chooses an edge according to which edge the white player chooses right before488

the black turn. If the white player chooses an edge in EU,W , let the black player489

choose an edge in ES,U in the next black turn. Otherwise, i.e., the white player490

chooses an edge in E, let the black player choose an edge in the middle layer in491

the next black turn. This is the strategy of the black player.492

We now show that this is a winning strategy for the black player. If the493

black player following this strategy can choose an edge in every turn right after494

the white player’s action, the black player is the winner. In fact, this procedure495

continues at most 2τ − 1 turns because exactly two vertices in U and at least496

one vertex in S are removed in every two turns (a white turn and the next black497

turn) under this strategy; after 2τ − 1 turns, no white edge is left and the next498

player is the white player. Thus what we need to show here is that the black499

player following this strategy can choose an edge in every turn right after the500

white player’s action. Under this strategy, E can become empty before 2τ − 1501

turns. In this case, the black player chooses an edge in EU,B instead of an edge502

in ES,U if the white player chooses an edge EU,W . This makes that exactly two503

vertices in U are removed in every two turns. Then, the black player wins in the504

same way as above.505

Next, we show that the white player has a winning strategy if G does not506

have a vertex cover of size τ , i.e. |S| ≥ τ + 1. The white player can win the507

game by selecting an edge in EU,W in every turn. Under this strategy, exactly508

one vertex in U is removed in white player’s turn, and then the black player can509

move at most τ because the size of U is 2τ − 1. An edge which black player can510

choose in his turn is EU,B or EV,U , then the black player can remove vertices511

in S at most τ . Therefore, after 2τ − 1 turns there are some vertices and white512

edges in the bottom layer and there is no black edge because U is empty. The513

winner is the white player. ⊓⊔514

Now, we consider Colored Arc Kayles. Colored Arc Kayles is gen-515

eralized of Arc Kayles and BW-Arc Kayles; edges are colored black, white516

and gray, and the black (resp., white) edges are selected by only the black (resp.,517

white) player, while both the black and white players can select gray edges. Since518

Colored Arc Kayles includes BW-Arc Kayles, we also obtain the follow-519

ing corollary.520

Corollary 3. Colored Arc Kayles is NP-hard.521
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A Appendix565

A.1 Proof of Theorem 2566

The exponential part of the running time of the algorithm depends on the num-567

ber of connected components that can be played in the game. Now we estimate568

it. Let us consider a tree T = (V,E). By Sprague–Grundy theory, if all connected569

subtrees of T are enumerated, one can determine the winner of Arc Kayles.570

Furthermore, once a connected subtree T ′ is listed, we can ignore subtrees iso-571

morphic to T ′.572

Proposition 1. If edge-colored graphs G(1) and G(2) are isomorphic, G(1) and573

G(2) have the same outcome for Arc Kayles.574

Here we define an isomorphism of rooted trees.575

Definition 2. Let T (1) = (V (1), E(1), r(1)) and T (2) = (V (2), E(2), r(2)) be trees576

rooted at r(1) and r(2), respectively. Then, T (1) and T (2) are called isomorphic577

with respect to root if for any pair of u, v ∈ V (1) there is a bijection f : V (1) →578

V (2) such that {u, v} ∈ E(1) if and only if {f(u), f(v)} ∈ E(2) and f(r(1)) =579

f(r(2)).580

For a tree T rooted at r, two subtrees T ′ and T ′′ are simply said non-isomorphic581

if T ′ with root r and T ′′ with root r are not isomorphic with respect to root. Now,582

we estimate the number of non-isomorphic connected subgraphs of T based on583

the isomorphism of rooted trees. For T = (V,E) rooted at r, a connected subtree584

T ′ rooted at r is called an AK-rooted subtree of T , if there exists a matching585

M ⊆ E such that T [V \
⋃
M ] consists of T ′ and isolated vertices, where

⋃
M is586

a set of endpoints of e ∈ M . Note that M can be empty, AK-rooted subtree T ′
587

must contain root r of T , and the graph consisting of only vertex r can be an588

AK-rooted subtree.589

Lemma 2. Any tree rooted at r of vertex cover number τ has O∗(5τ/2)(= O(2.2361τ ))590

non-isomorphic AK-rooted subtrees rooted at r.591

Proof. Let f(τ) be the maximum number of non-isomorphic AK-rooted subtrees592

of any tree rooted at some r with vertex cover number τ and r is in a vertex cover,593

and let g(τ) be the maximum number of non-isomorphic AK-rooted subtrees of594

any tree rooted at some r with vertex cover number τ and r is NOT in a vertex595

cover. We claim that f(τ) ≤ 5τ/2 − 2 and g(τ) ≤ 5τ/2 − 1 for all τ ≥ 2, which596

proves the lemma. We will prove the claim by induction.597

For τ ≤ 2, the values of f(τ)’s and g(τ)’s are as follows: f(1) = 1, f(2) =598

3, g(0) = 1, g(1) = 2, and g(2) = 4. These can be shown by concretely enumer-599

ating trees. For τ = 1, the candidates of T are shown in Figure 2. For I-fa in600

Figure 2, an AK-rooted subtree is the tree itself even if r has any vertices as its601

children. Thus we have f(1) = 1. For I-ga, AK-rooted subtrees are the tree itself602

and isolated r, and for I-gb, an AK-rooted subtree is only the tree itself; thus we603

have g(1) = 2. Similarly, we can show f(2) = 3 and g(2) = 4. (g(0) is isolated604

r.)605
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	Ⅰ–𝑔!	Ⅰ– 𝑓!
𝑟𝑟 𝑟

	Ⅰ–𝑔"

(e.g.         ,                , … ) 
𝑟 𝑟

Fig. 2. Trees rooted at r and whose vertex cover number is 1

As the induction hypothesis, let us assume that both of the claims are true606

for all τ ′ < τ except 0 and 1, and consider a tree T rooted at r and whose vertex607

cover number is τ . Let u1, u2, . . . , up be the children of root r, and Ti be the608

subtree of T rooted at ui and whose vertex cover number is τi for i = 1, 2, . . . , p.609

Note that for an AK-rooted subtree T ′ of T , the intersection of T ′ and Ti610

for each i is either empty or an AK-rooted subtree of Ti rooted at ui. Based on611

this observation, we take a combination of the number of AK-rooted subtrees of612

Ti’s, which gives an upper bound on the number of AK-rooted subtrees of T .613

First, we will prove the claim f(τ) ≤ 5τ/2−2. In this case, from the definition614

of f(τ), r is in a vertex cover and ui’s are not necessary to be in a vertex cover.615

For τ ≥ 2, we estimate AK-rooted subtrees of any Ti. Here, we have that, by the616

induction hypothesis, f(τ) ≤ 5τ/2 − 2 and g(τ) ≤ 5τ/2 − 1 for τ ≥ 2. For τ = 1,617

we have three types of trees, I-fa, I-ga, and I-gb.618

As shown in above, the maximum number of AK-rooted subtrees in a I-fa tree619

is one, which does not satisfy f(τ) ≤ 5τ/2 − 2. Here we use another hypothesis620

g(τ) ≤ 5τ/2 − 1 because 1 ≤ 51/2 − 1. Similarly, we estimate other Ti for τ ≥ 2621

with g(τ) ≤ 5τ/2 − 1 from the point of view of simplifying the estimation.622

Next, suppose that T has q children of r forming I-ga. The maximum number623

of AK-rooted subtree of a I-ga tree is two and it does not meet the assumption.624

Since each I-ga tree can form in T ′ empty, a single vertex, or I-ga tree itself, the625

number of possible forms of subforests of all I-ga of T is626 ((q
3

))
=

(
q + 2

2

)
.627

On the other hand, the number of AK-rooted subtrees of a I-gb tree is one628

and we can apply the assumption. Then, the number of AK-rooted subtrees of629

T is at most630 (
q + 2

2

) ∏
i:τi ̸=0,1

(g(τi) + 1) ·
∏

i:Ti is I−gb

(g(τi) + 1) ≤ (q + 2)(q + 1)

2
· 5τ−q−1/2.631

632

Thus, to prove the claim, it is sufficient to show that 1
2 (q+2)(q+1)5(τ−q−1)/2 ≤633

5τ/2 − 2 for any pair of integers τ and q satisfying τ ≥ 3 and 1 ≤ q. This634

inequality is transformed to the following635

1
2 (q + 1)(q + 2)

5
q+1
2

≤ 1− 1

5
τ
2
.636
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Since the left hand and right hand of the inequality are monotonically decreasing637

with respect to q and monotonically increasing with respect to τ , respectively,638

the inequality always holds if it is true for τ = 3 and q = 1. In fact, we have639

1
2 (1 + 1)(1 + 2)

5
1+1
2

=
3

5
2
2

≤ 1− 1

5
3
2

.640

Next, we will prove the claim g(τ) ≤ 5τ/2 − 1. From the definition of g(τ),641

r is not in a vertex cover, and hence each of ui’s is necessary to be in a vertex642

cover. Since f(2) = 3 ≤ 5τ/2 − 2, f(2) is used as the base case of induction. For643

τ = 1, since each I-fa tree can form in T ′ empty or I-fa tree itself, T1, . . . , Ts of644

T , the number of possible forms of subforests of T1, . . . , Ts of T is645 ((s
2

))
=

(
s+ 1

1

)
.646

Since the number of subforests of Ti’s other than T1, . . . , Ts are similarly evalu-647

ated as above, we can bound the number of AK-rooted subtrees by648 (
s+ 1

1

) ∏
i:τi ̸=0,1

(f(τi) + 1) ≤ (s+ 1)5(τ−s)/2,649

650

Thus, to prove the claim, it is sufficient to show that (s+ 1)5(τ−s)/2 ≤ 5τ/2 − 1651

for any pair of integers τ and s satisfying n ≥ 3 and 1 ≤ s. This inequality is652

transformed to the following653

s+ 1

5
s
2

≤ 1− 1

5
τ
2
.654

Since the left hand and right hand of the inequality are monotonically decreasing655

with respect to s and monotonically increasing with respect to τ , respectively,656

the inequality always holds if it is true for τ = 3 and s = 1. In fact, we have657

1 + 1

5
1
2

≤ 1− 1

5
3
2

.658

⊓⊔659

We showed an estimate when the root is fixed. Here, a vertex v is the root660

means that v is left until the end in the game. Since any vertices can be left661

to the end in the game, the number of all connected components which can be662

played in the game is at most (5τ/2 − 1)× n.663

A.2 Proof of Theorem 3664

First, we discuss Arc Kayles on trees. In the Hanaka et al.’s algorithm, a only665

tree whose size was three was exceptionally estimated by considering isomor-666

phism. In addition, now we estimate two types of trees exceptionally and then667

we show that any tree rooted at r has O∗(7n/6)(= O(1.3831n)) non-isomorphic668

AK-rooted subtrees rooted at r.669
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Lemma 3. Any tree rooted at r has O∗(7n/6)(= O(1.3831n)) non-isomorphic670

AK-rooted subtrees rooted at r, where n is the number of the vertices.671

Proof. Let R(n) be the maximum number of non-isomorphic AK-rooted subtrees672

of any tree rooted at some r with n vertices. We claim that R(n) ≤ 7n/6 − 1 for673

all n ≥ 5, which proves the lemma.674

We will prove the claim by induction. For n ≤ 5, the values of R(n)’s are as675

follows: R(1) = 1, R(2) = 1, R(3) = 2, R(4) = 3, and R(5) = 4. These can be676

shown by concretely enumerating trees. For example, for n = 2, a tree T with677

2 vertices is unique, and an AK-rooted subtree of T containing r is also unique,678

which is T itself. For n = 3, the candidates of T are shown in Figure 3. For IIIa679

in Figure 3, AK-rooted subtrees are the tree itself and isolated r, and for IIIb, an680

AK-rooted subtree is only the tree itself; thus we have R(3) = 2. Similarly, we681

can show R(4) = 3 and R(5) = 4 as seen in Figure 3 and Figure 4, respectively.682

Note that R(1) = 1 > 71/6 − 1, R(2) = 1 > 72/6 − 1, R(3) = 2 > 73/6 − 1,683

R(4) = 3 > 74/6 − 1, and R(5) = 4 ≤ 75/6 − 1. This R(5) is used as the base684

case of induction.685

𝑟 𝑟

	Ⅲ! 	Ⅲ"

𝑟 𝑟𝑟

	Ⅳ! Ⅳ" Ⅳ# 	Ⅳ$

𝑟

	Ⅱ!

𝑟

Fig. 3. Trees with 2, 3 and 4 vertices rooted at r

𝑟 𝑟

	Ⅴ!

𝑟 𝑟 𝑟 𝑟 𝑟 𝑟 𝑟

	Ⅴ"	Ⅴ# 	Ⅴ$	Ⅴ% 	Ⅴ&	Ⅴ' 	Ⅴ(	Ⅴ)

Fig. 4. Trees with 5 vertices rooted at r

As the induction hypothesis, let us assume that the claim is true for all686

n′ < n except 1, 2, 3 and 4, and consider a tree T rooted at r with n vertices.687

Let u1, u2, . . . , up be the children of root r, and Ti be the subtree of T rooted688
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at ui with ni vertices for i = 1, 2, . . . , p. Note that for an AK-rooted subtree T ′
689

of T , the intersection of T ′ and Ti for each i is either empty or an AK-rooted690

subtree of Ti rooted at ui. Based on this observation, we take a combination691

of the number of AK-rooted subtrees of Ti’s, which gives an upper bound on692

the number of AK-rooted subtrees of T . We consider eight cases: (1) for any i,693

ni ̸= 2, 3, 4, (2) for any i, ni ̸= 3, 4 and for some i, ni = 2, (3) for any i, ni ̸= 2, 4694

and for some i, ni = 3, (4) for any i, ni ̸= 2, 3 and for any i, ni = 4, (5) for any695

i, ni ̸= 4 and for some i, j, ni = 2, nj = 3, (6) for any i, ni ̸= 3 and for some i, j,696

ni = 2, nj = 4, (7) for any i, ni ̸= 2 and for some i, j, ni = 3, nj = 4, (8) for any697

i, ni = 2, 3, 4. For case (1), the number of AK-rooted subtrees of T is at most698 ∏
i:ni>1

(R(ni) + 1) ·
∏

i:ni=1

1 ≤
∏

i:ni>1

7ni/6 = 7
∑

i:ni>1 ni/6 ≤ 7(n−1)/6 ≤ 7n/6 − 1.699

That is, the claim holds in this case. Here, in the left hand of the first inequality,700

R(ni)+1 represents the choice of AK-rooted subtree of Ti rooted at ui or empty,701

and “1” for i with ni = 1 represents that ui needs to be left as is because702

otherwise edge {r, ui} must be removed, which violates the condition “rooted703

at r”. The first inequality holds since any ni is not 2 or 3 or 4 and thus the704

induction hypothesis can be applied. The last inequality holds by n ≥ 6.705

For case (2), by the assumption, at least one Ti is IIa in Figure 3. Suppose706

that T has q children of r forming IIa, which are renamed T1, . . . , Tq as canoni-707

calization. Such renaming is allowed because we count non-isomorphic subtrees.708

Furthermore, we can sort AK-rooted subtrees of T1, . . . , Tq as canonicalization.709

Since each IIa tree can form in T ′ empty or IIa tree itself, T1, . . . , Tq of T , the710

number of possible forms of subforests of T1, . . . , Tq of T is711 ((q
2

))
=

(
q + 1

1

)
.712

Since the number of subforests of Ti’s other than T1, . . . , Tq are similar evaluated713

as above, we can bound the number of AK-rooted subtrees by714 (
q + 1

1

) ∏
i:i>q

7ni/6 ≤ (q + 1)7
∑

i:i>q ni/6 ≤ (q + 1)7(n−2q−1)/6.715

Thus, to prove the claim, it is sufficient to show that (q+1)7(n−2q−1)/6 ≤ 7n/6−1716

for any pair of integers n and q satisfying n ≥ 6 and 1 ≤ q ≤ (n − 1)/2. This717

inequality is transformed to the following718

q + 1

7
2q+1

6

≤ 1− 1

7
n
6
.719

Since the left hand and right hand of the inequality are monotonically decreasing720

with respect to q and monotonically increasing with respect to n, respectively,721

the inequality always holds if it is true for n = 6 and q = 1. In fact, we have722

1 + 1

7
2+1
6

=
2

7
1
2

≤ 1− 1

7
6
6

.723
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For case (3), we further divide into two cases: (3.i), for every i such that724

ni = 3, Ti is IIIb, and (3.ii) otherwise. For case (3.i), since an AK-rooted subgraph725

of Ti of IIIb in Figure 3 is only Ti itself, the number is 1 ≤ 73/6 − 1. Thus, the726

similar analysis of case (1) can be applied as follows:727 ∏
i:ni ̸=1,2,3,4

(R(ni) + 1) ·
∏

i:Ti is IIIb

(73/6 − 1 + 1) ≤
∏

i:ni>1

7ni/6 ≤ 7n/6 − 1,728

729

that is, the claim holds also in case (3.i).730

Next, we consider case (3.ii). By the assumption, at least one Ti is IIIa in731

Figure 3. Suppose that T has s children of r forming IIIa, which are renamed732

T1, . . . , Ts as canonicalization. Since each IIIa tree can form in T ′ empty, a sin-733

gle vertex, or IIIa tree itself, T1, . . . , Ts of T , the number of possible forms of734

subforests of T1, . . . , Ts of T is735 ((s
3

))
=

(
s+ 2

2

)
.736

Since the number of subforests of Ti’s other than T1, . . . , Ts are similarly evalu-737

ated as above, we can bound the number of AK-rooted subtrees by738 (
s+ 2

2

) ∏
i:i>s

7ni/6 ≤ (s+ 2)(s+ 1)

2
7
∑

i:i>s ni/6 ≤ (s+ 2)(s+ 1)

2
7(n−3s−1)/6.739

740

Thus, to prove the claim, it is sufficient to show that 1
2 (s+2)(s+1)7(n−3s−1)/6 ≤741

7n/6 − 1 for any pair of integers n and s satisfying n ≥ 6 and 1 ≤ s ≤ (n− 1)/3.742

This inequality is transformed as follows:743

1
2 (s+ 1)(s+ 2)

7
3s+1

6

≤ 1− 1

7
n
6
.744

745

Since the left hand and right hand of the inequality are monotonically de-746

creasing with respect to s and monotonically increasing with respect to n, re-747

spectively, the inequality always holds if it is true for n = 6 and s = 1. In fact,748

we have749
1
2 (1 + 1)(1 + 2)

7
3+1
6

=
3

7
4
6

≤ 1− 1

7
6
6

.750

For case (4), we further divide into two cases: (4.i), for every i such that751

ni = 4, Ti is IVb or IVc or IVd, and (4.ii) otherwise. For case (4.i), since the752

AK-rooted subgraphs of Ti of IVb in Figure 3 are itself and a single vertex, the753

number is 2 ≤ 74/6−1. Similarly, since the AK-rooted subgraphs of Ti of IVc are754

itself and a IIa, the number is 2 ≤ 74/6 − 1, and since the AK-rooted subgraphs755

of Ti of IVd is itself, the number is 1 ≤ 74/6 − 1. Thus, the similar analysis of756

Case (1) can be applied as follows:757 ∏
i:ni ̸=1,2,3,4

(R(ni) + 1) ·
∏

i:Ti is IVb, IVcand IVd

(74/6 − 1 + 1)758

≤
∏

i:ni>1

7ni/6 ≤ 7n/6 − 1,759

760
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that is, the claim also holds in case (4.i).761

Next, we consider the case (4.ii). By the assumption, at least one Ti is IVa762

in Figure 3. Suppose that T has t children of r forming IVc or IVa, which are763

renamed T1, . . . , Tt as canonicalization. Since each IVc or IVa tree can form in764

T ′ empty, a single vertex, two vertices, or IVa tree itself, T1, . . . , Tt of T , the765

number of possible forms of subforests of T1, . . . , Tt of T is766 ((
t

4

))
=

(
t+ 3

3

)
.767

Since the number of subforests of Ti’s other than T1, . . . , Tt are similarly evalu-768

ated as above, we can bound the number of AK-rooted subtrees by769 (
t+ 3

3

) ∏
i:i>t

7ni/6 ≤ (t+ 1)(t+ 2)(t+ 3)

6
7
∑

i:i>t ni/6
770

≤ (t+ 1)(t+ 2)(t+ 3)

6
7(n−4t−1)/6.771

772

Thus, to prove the claim, it is sufficient to show that 1
6 (t+1)(t+2)(t+3)7(n−4t−1)/6 ≤773

7n/6 − 1 for any pair of integers n and t satisfying n ≥ 6 and 1 ≤ t ≤ (n− 1)/4.774

This inequality is transformed to the following775

1
6 (t+ 1)(t+ 2)(t+ 3)

7
4t+1

6

≤ 1− 1

7
n
6
.776

Since the left hand and right hand of the inequality are monotonically decreasing777

with respect to t and monotonically increasing with respect to n, respectively,778

the inequality always holds if it is true for n = 6 and t = 1. In fact, we have779

1
6 (1 + 1)(1 + 2)(1 + 3)

7
4+1
6

=
4

7
5
6

≤ 1− 1

7
6
6

.780

By (2), (3), and (4), we get the observation that we have to treat IIa, IIIa and781

IVa specially. Suppose that T has q children of r forming IIa and has s children of782

r forming IIIa and has t children of r forming IVa. They are renamed T1, . . . , Tq,783

T1, . . . , Ts, and T1, . . . , Tt as canonicalization, respectively. For case (5), (6), (7),784

and (8), IIa, IIIa and IVa are treated in the same way as (2), (3), and (4) and785

combined to compute the whole. Note that other trees such that n = 2, 3, 4 can786

be applied to the assumptions.787

For case (5), we assume that at least one Ti is IIa and at least one Tj is788

IIIa in Figure 3. Since the number of subforests of Ti’s other than T1, . . . , Tq and789

T1, . . . , Ts are similar evaluated as above, we can bound the number of AK-rooted790

subtrees by791 (
q + 1

1

)(
s+ 2

2

) ∏
i:i>q

7ni/6 ≤ (q + 1)
(s+ 1)(s+ 2)

2
7
∑

i:i>q ni/6
792

≤ (q + 1)
(s+ 1)(s+ 2)

2
7(n−2q−3s−1)/6.793

794
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Thus, to prove the claim, it is sufficient to show that 1
2 (q + 1)(s + 1)(s +795

2)7(n−2q−3s−1)/6 ≤ 7n/6 − 1 for any pair of integers n, q, and s satisfying n ≥ 6,796

1 ≤ q, and 1 ≤ s. This inequality is transformed to the following797

1

2 · 7 1
6

q + 1

7
2q
6

(s+ 1)(s+ 2)

7
3s
6

≤ 1− 1

7
n
6
.798

Since the left hand and right hand of the inequality are monotonically decreasing799

with respect to q and s and monotonically increasing with respect to n, respec-800

tively, the inequality always holds if it is true for n = 6 and q = 1. In fact, we801

have802

1

2 · 7 1
6

1 + 1

7
2
6

(1 + 1)(1 + 2)

7
3
6

=
6

7
6
6

≤ 1− 1

7
6
6

.803

For case (6), we assume that at least one Ti is IIa and at least one Tj is I804

Va in Figure 3. Since the number of subforests of Ti’s other than T1, . . . , Tq and805

T1, . . . , Tt are similar evaluated as above, we can bound the number of AK-rooted806

subtrees by807 (
q + 1

1

)(
t+ 3

3

) ∏
i:i>q

7ni/6 ≤ (q + 1)
(t+ 1)(t+ 2)(t+ 3)

6
7
∑

i:i>q ni/6
808

≤ (q + 1)
(t+ 1)(t+ 2)(t+ 3)

6
7(n−2q−4t−1)/6.809

810

Thus, to prove the claim, it is sufficient to show that 1
6 (q+1)(t+1)(t+2)(t+811

3)7(n−2q−4t−1)/6 ≤ 7n/6 − 1 for any pair of integers n, q, and t satisfying n ≥ 7,812

1 ≤ q, and 1 ≤ t. The reason for n ≥ 7 is that this case can only happen at813

n ≥ 7. This inequality is transformed into as follows:814

1

6 · 7 1
6

q + 1

7
2q
6

(t+ 1)(t+ 2)(t+ 3)

7
4t
6

≤ 1− 1

7
n
6
.815

816

Since the left hand and right hand of the inequality are monotonically de-817

creasing with respect to q and t and monotonically increasing with respect to n,818

respectively, the inequality always holds if it is true for n = 7 and q = 1. In fact,819

we have:820

1

6 · 7 1
6

1 + 1

7
2
6

(1 + 1)(1 + 2)(1 + 3)

7
4
6

=
8

7
7
6

≤ 1− 1

7
7
6

.821

822

For case (7), we assume that at least one Ti is IIIa and at least one Tj is I823

Va in Figure 3. Since the number of subforests of Ti’s other than T1, . . . , Ts and824

T1, . . . , Tt are similar evaluated as above, we can bound the number of AK-rooted825

subtrees by826 (
s+ 2

2

)(
t+ 3

3

) ∏
i:i>q

7ni/6 ≤ (s+ 1)(s+ 2)

2

(t+ 1)(t+ 2)(t+ 3)

6
7
∑

i:i>q ni/6
827

≤ (s+ 1)(s+ 2)

2

(t+ 1)(t+ 2)(t+ 3)

6
7(n−3s−4t−1)/6.828

829
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Thus, to prove the claim, it is sufficient to show that 1
12 (s+ 1)(s+ 2)(t+ 1)(t+830

2)(t+ 3)7(n−3s−4t−1)/6 ≤ 7n/6 − 1 for any pair of integers n, q, and s satisfying831

n ≥ 8, 1 ≤ q, and 1 ≤ s. The reason of n ≥ 8 is that this case can only be832

happened at n ≥ 8. This inequality is transformed to the following833

1

12 · 7 1
6

(s+ 1)(s+ 2)

7
3s
6

(t+ 1)(t+ 2)(t+ 3)

7
4t
6

≤ 1− 1

7
n
6
.834

Since the left hand and right hand of the inequality are monotonically decreasing835

with respect to s and t and monotonically increasing with respect to n, respec-836

tively, the inequality always holds if it is true for n = 8, s = 1, and t = 1. In837

fact, we have838

1

12 · 7 1
6

(1 + 1)(1 + 2)

7
3
6

(1 + 1)(1 + 2)(1 + 3)

7
4
6

=
12

7
8
6

≤ 1− 1

7
8
6

.839

For case (8), we assume that at least one Ti is IIa and at least one Ti is II840

Ia and at least one Tj is IVa in Figure 3. Since the number of subforests of Ti’s841

other than T1, . . . , Ts and T1, . . . , Tt are similarly evaluated as above, we can842

bound the number of AK-rooted subtrees by843 (
q + 1

1

)(
s+ 2

2

)(
t+ 3

3

) ∏
i:i>q

7ni/6
844

≤ (q + 1)
(s+ 1)(s+ 2)

2

(t+ 1)(t+ 2)(t+ 3)

6
7
∑

i:i>q ni/6
845

≤ (q + 1)
(s+ 1)(s+ 2)

2

(t+ 1)(t+ 2)(t+ 3)

6
7(n−2q−3s−4t−1)/6.846

847

Thus, to prove the claim, it is sufficient to show that 1
12 (q+1)(s+1)(s+2)(t+848

1)(t+ 2)(t+ 3)7(n−2q−3s−4t−1)/6 ≤ 7n/6 − 1 for any pair of integers n, q, s, and849

t satisfying n ≥ 10, 1 ≤ q, 1 ≤ s, and 1 ≤ t. The reason of n ≥ 10 is that this850

case can only be happened at n ≥ 10. This inequality is transformed into the851

following852

1

12 · 7 1
6

q + 1

7
2q
6

(s+ 1)(s+ 2)

7
3s
6

(t+ 1)(t+ 2)(t+ 3)

7
4t
6

≤ 1− 1

7
n
6
.853

Since the left hand and right hand of the inequality are monotonically decreasing854

with respect to q, s, and t and monotonically increasing with respect to n,855

respectively, the inequality always holds if it is true for n = 10, q = 1, s = 1,856

and t = 1. In fact, we have857

1

12 · 7 1
6

1 + 1

7
2
6

(1 + 1)(1 + 2)

7
3
6

(1 + 1)(1 + 2)(1 + 3)

7
4
6

=
24

7
10
6

≤ 1− 1

7
10
6

,858

which completes the proof. ⊓⊔859

Same as Theorem 2, the number of all connected components that can be860

played in the game is at most (7n/6 − 1)× n.861
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A.3 Proof of Theorem 4862

We can determine the winner of Node Kayles for a tree in the same running863

time as Arc Kayles. The outline of the proof is almost the same as Theorem864

3. To prove it, We estimate the number of NK-rooted subtrees instead of AK-865

rooted subtrees for Arc Kayles. The definition of an NK-rooted subtree is as866

follows. For T = (V,E) rooted at r, a connected subtree T ′ rooted at r is called867

an NK-rooted subtree of T , if there exists an independent set U ⊆ V such that868

T [V \N [U ]] = T ′.869

Lemma 4. Any tree rooted at r has O∗(7n/6)(= O(1.3831n)) non-isomorphic870

NK-rooted subtrees rooted at r, where n is the number of the vertices.871

To execute the same induction as Lemma 3, we obtain Lemma 4. (The base872

cases are completely the same.)873
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