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Abstract22

We consider the complexity of the Independent Set Reconfiguration problem under the23

Token Sliding rule. In this problem we are given two independent sets of a graph and are asked24

if we can transform one to the other by repeatedly exchanging a vertex that is currently in the25

set with one of its neighbors, while maintaining the set independent. Our main result is to show26

that this problem is PSPACE-complete on split graphs (and hence also on chordal graphs), thus27

resolving an open problem in this area.28

We then go on to consider the c-Colorable Reconfiguration problem under the same29

rule, where the constraint is now to maintain the set c-colorable at all times. As one may expect, a30

simple modification of our reduction shows that this more general problem is PSPACE-complete31

for all fixed c ≥ 1 on chordal graphs. Somewhat surprisingly, we show that the same cannot32

be said for split graphs: we give a polynomial time (nO(c)) algorithm for all fixed values of33

c, except c = 1, for which the problem is PSPACE-complete. We complement our algorithm34

with a lower bound showing that c-Colorable Reconfiguration is W[2]-hard on split graphs35

parameterized by c and the length of the solution, as well as a tight ETH-based lower bound for36

both parameters.37
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23:2 Token Sliding on Split Graphs

1 Introduction42

A reconfiguration problem is a problem of the following type: we are given an instance of a43

decision problem, two feasible solutions S, T , and a local modification rule. The question is44

whether S can be transformed to T by repeated applications of the modification rule in a45

way that maintains the solution feasible at all times. Due to their numerous applications,46

reconfiguration problems have attracted much interest in the literature, and reconfiguration47

versions of standard problems (such as Satisfiability, Dominating Set, and Independent48

Set) have been widely studied (see the surveys [10, 19] and the references therein).49

Among reconfiguration problems on graphs, Independent Set Reconfiguration is50

certainly the most well-studied. The complexity of this problem depends heavily on the rule51

specifying the allowed reconfiguration moves. The main reconfiguration rules that have been52

studied for Independent Set Reconfiguration are Token Addition & Removal (TAR)53

[16, 18], Token Jumping (TJ) [2, 3, 12, 13, 14], and Token Sliding (TS) [1, 5, 6, 8, 11, 17].54

In all rules, we are required to keep the current set independent at all times. TAR allows55

us to add or remove any vertex in the current set, as long as the set’s size is always higher56

than a predetermined threshold. TJ allows to exchange any vertex in the set with any vertex57

outside it (thus keeping the size of the set constant at all times). Finally, under TS, we are58

allowed to exchange a vertex in the current independent set with one of its neighbors, that59

is, we are allowed to perform a TJ move only if the two involved vertices are adjacent.60

The Independent Set Reconfiguration problem has been intensively studied under61

all three rules. Because the problem is PSPACE-complete in general for all three rules62

[16], this has motivated the study of its complexity in restricted classes of graphs, with an63

emphasis on graphs where Independent Set is polynomial-time solvable, such as chordal64

graphs and bipartite graphs. By now, many results of this type have been discovered (see65

Table 1 for a summary).66

Our first, and main, focus of this paper is to concentrate on a case of this problem which67

has so far remained elusive, namely, the complexity of Independent Set Reconfiguration68

on chordal graphs under the TS rule. This case is of particular interest because it is one of69

the few cases where the problem is known to be tractable under both TAR and TJ. Indeed,70

Kamiński, Medvedev, and Milanič [16] showed that under these two rules Independent71

Set Reconfiguration is polynomial-time solvable on even-hole-free graphs, a class that72

contains chordal graphs. In the same paper they explicitly asked as an open question if the73

same problem is tractable on even-hole-free graphs under TS ([16, Question 2]).74

This question was then taken up by Bonamy and Bousquet [1] who made some progress by75

showing that Independent Set Reconfiguration under TS is polynomial-time solvable76

on interval graphs, an important subclass of chordal graphs. They also gave some first77

evidence that it may be hard to obtain a similarly positive result for chordal graphs by78

showing that a related problem, the problem of determining if all independent sets of the79

same size can be transformed to each other under TS, is coNP-hard on split graphs, another80

subclass of chordal graphs. Note, however, that this is a problem that is clearly distinct from81

the more common reconfiguration problem (which asks if two specific sets are reachable from82

each other), and that the coNP-hardness is not tight, since the best known upper bound for83

this problem is also PSPACE.84

The complexity of Independent Set Reconfiguration under TS on split and chordal85

graphs has thus remained as an open problem. Our first, and main, contribution in this86

paper is to settle this problem by showing that the problem is PSPACE-complete already on87

split graphs (Theorem 9), and therefore also on chordal and even-hole-free graphs.88
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Table 1 Complexity of Independent Set Reconfiguration on some graph classes.

Independent Set Reconfiguration
TS TJ/TAR

perfect PSPACE-complete [16]
even-hole-free PSPACE-complete (Theorem 9) P [16]

chordal PSPACE-complete (Theorem 9) P (even-hole-free)
split PSPACE-complete (Theorem 9) P (even-hole-free)

interval P [1] P (even-hole-free)
bipartite PSPACE-complete [17] NP-complete [17]

c-Colorable Reconfiguration A natural generalization of Independent Set Reconfigu-89

ration was recently introduced in [15]: in c-Colorable Reconfiguration we are given90

a graph G = (V,E) and two sets S, T ⊆ V , both of which induce a c-colorable graph. The91

question is whether S can be transformed to T (under any of the previously mentioned92

rules) in a way that maintains a c-colorable graph at all times. Clearly, c = 1 is the case of93

Independent Set Reconfiguration. It was shown in [15] that this problem is already94

PSPACE-complete on split graphs under all three rules, when c is part of the input. It was95

thus posed as an open question what is the complexity of the same problem when c is fixed.96

Some first results in this direction were given in the form of an nO(c) (XP) algorithm that97

works for split graphs under the TAR and TJ rules (but not TS). Motivated by this work,98

the second area of focus of this paper is to investigate how the hardness of 1-Colorable99

Reconfiguration for split graphs established in Theorem 9 extends to larger, but fixed c.100

Our first contribution in this direction is to show that, for chordal graphs, c-Colorable101

Reconfiguration under TS is PSPACE-complete for any fixed c ≥ 1. This is, of course,102

not surprising, as the problem is PSPACE-complete for c = 1; indeed, the reduction we103

present in Theorem 10 is a tweak of the construction of Theorem 9 that increases c.104

What is perhaps more surprising is that we show (under standard assumptions) that,105

even though Theorem 9 establishes hardness for c = 1 on split graphs, a similar tweak cannot106

establish hardness for higher c on the same class for TS. Indeed, we provide an algorithm107

which solves TS c-Colorable Reconfiguration in split graphs in time nO(c) for any108

c except c = 1. Thus, Independent Set Reconfiguration turns out to be the only109

hard case of c-Colorable Reconfiguration for split graphs under TS. Since the nO(c)
110

algorithm of [15] for TAR/TJ reconfiguration of split graphs works for all fixed c, it thus111

seems that this anomalous behavior is peculiar to the Token Sliding rule.112

Finally, we address the natural question of whether one can improve this nO(c) algorithm,113

by showing that the problem is W[2]-hard parameterized by c and the length of the solution `114

for all three rules. This is in a sense doubly tight, since in addition to our algorithm and the115

algorithm of [15] which run in nO(c), it also matches the trivial nO(`) algorithm which tries116

out all solutions of length `. More strongly, under the ETH our reduction implies that the117

problem cannot be solved in no(c+`) meaning that these algorithms are in a sense “optimal”.118

2 Definitions119

We use standard graph-theoretic terminology. For a graph G = (V,E) and a set S ⊆ V we120

use G[S] to denote the graph induced by S. A graph is chordal if it does not contain Ck121

as an induced subgraph for any k > 3. A graph is split if its vertex set can be partitioned122

into two sets K, I such that K induces a clique and I induces an independent set. It is a123

CVIT 2016



23:4 Token Sliding on Split Graphs

well-known fact that split graphs are chordal, and it is easy to see that both classes are124

closed under induced subgraphs. We use χ(G), ω(G) to denote the chromatic number and125

maximum clique size of a graph G respectively. It is known that, because chordal graphs126

are perfect, if G is chordal then χ(G) = ω(G) [21]. We also recall that a graph G is chordal127

if and only if every induced subgraph of G contains a simplicial vertex, where a vertex is128

simplicial if its neighborhood is a clique.129

Let G = (V,E) be a graph and c ≥ 1 an integer. Given two sets S, T ⊆ V such that130

χ(G[S]), χ(G[T ]) ≤ c, we say that S can be c-transformed into T by one token sliding (TS)131

move if |T | = |S| and there exist u, v ∈ V with (u, v) ∈ E such that {u} = T \S, {v} = S \T .132

One easy way to think of TS moves is by picturing the elements of the current set S as133

tokens placed on the vertices of the graph, and a single move as “sliding” a token along an134

edge (hence the name Token Sliding).135

We say that S is c-reachable from T , or that S can be c-transformed into T , by a sequence136

of TS moves if there exists a sequence of sets I0, I1, . . . , I`, with I0 = S, I` = T and for each137

i ∈ {0, . . . , `− 1}, χ(G[Ii]) ≤ c and Ii can be c-transformed into Ii+1 by one TS move. We138

will simply say that S can be transformed into T or that S is reachable from T , if S, T are139

independent sets and S can be 1-transformed into T . We focus on the following problems.140

I Definition 1. In c-Colorable Reconfiguration we are given a graph G = (V,E)141

and two sets S, T ⊆ V with |S| = |T | and χ(G[S]), χ(G[T ]) ≤ c. We are asked if S can142

be c-transformed into T . Independent Set Reconfiguration is the special case of143

c-Colorable Reconfiguration where c = 1.144

In addition to TS moves we will consider Token Jumping (TJ) and Token Addition &145

Removal (TAR) moves. A TJ move is the same as a TS move except that the two vertices146

u, v are not required to be adjacent. Two c-colorable sets S, T are reachable with one TAR147

move with threshold k if |S|, |T | ≥ k and |(S \ T ) ∪ (T \ S)| = 1. We note here that, because148

our main focus in this paper is the TS rule, whenever we refer to a transformation without149

explicitly specifying under which rule this transformation is performed the reader may assume150

that we are referring to the TS rule.151

We assume that the reader is familiar with basic compexity notions such as the class152

PSPACE [20], as well as basic notions in parameterized complexity, such as the class W[2]153

(see e.g. [4]). In Theorem 9 we will perform a reduction from the PSPACE-complete NCL154

(non-deterministic constraint logic) reconfiguration problem introduced by Demaine and155

Hearn in [8] (see also [7, 9]). Let us recall this problem. In the NCL reconfiguration problem156

we are given as input a graph G = (V,E), whose edge set is partitioned into two sets, R (red)157

and B (blue). We consider blue edges as edges of weight 2 and red edges as edges of weight 1.158

A valid configuration of G is an orientation of all the edges with the property that all vertices159

have weighted in-degree at least 2. In the NCL configuration-to-configuration problem we160

are given two valid orientations of G, D and D′, and are asked if there is a sequence of valid161

orientations D0, D1, . . . , Dt such that D = D0, D
′ = Dt and for all i ∈ {0, . . . , t− 1} we have162

that Di, Di+1 agree on all edges except one. We recall the following theorem:163

I Theorem 2 (Corollary 6 of [8]). The NCL configuration-to-configuration problem is164

PSPACE-complete even if all vertices of G have degree exactly three and, moreover, even if165

all vertices belong in one of the following two types: OR vertices, which are vertices incident166

on exactly three blue edges and no red edges; and AND vertices which are vertices incident167

on two red edges and one blue edge.168
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3 Token Sliding on Split Graphs is PSPACE-complete169

The main result of this section is that Independent Set Reconfiguration is PSPACE-170

complete under the TS rule when restricted to split graphs.171

Overview of the proof172

Our proof is a reduction from the NCL (non-deterministic constraint logic) reconfiguration173

problem of Theorem 2. The first step of our proof is a relatively straightforward reduction174

from the NCL reconfiguration problem to token sliding on split graphs. Its main idea is175

roughly as follows: for each edge e = (u, v) of the original graph we construct two selection176

vertices eu, ev in the independent set of our split graph. The idea is that at each point exactly177

one of the two will contain a token (i.e. will belong in the current independent set), hence178

our independent set will in a natural way represent an orientation of the original graph. In179

order to allow a single reconfiguration step to take place we add for each pair of selection180

vertices eu, ev one or two “gate” vertices (depending on the color of e), which are common181

neighbors of eu, ev and belong in the clique. The idea is that a single re-orientation step182

would, for example, take a token from eu, slide it to a gate vertex connected to the pair183

eu, ev, and then slide it to ev: this sequence would represent re-orienting e from u to v. In184

order to simulate the in-degree constraint we add edges between each selection vertex eu185

and gate vertices corresponding to edges incident on the other endpoint of e, since keeping a186

token on eu represents an orientation of e towards u, which makes it harder to re-orient the187

edges incident on the other endpoint of e.188

The above sketch captures the basic idea of our reduction, except for one significant189

obstacle. The correspondence between orientations and independent sets is only valid if we190

can guarantee that no intermediate independent set will “cheat” by, for example, placing191

tokens on both eu and ev. Since we have added edges from eu, ev to gate vertices that192

correspond to other edges (in order to simulate the interaction between edges in the NCL193

instance), nothing prevents a reconfiguration solution from using these edges to slide a token194

from one selection pair to another. The main problem thus becomes enforcing consistency,195

or in other words forcing the solution sequence to only use the appropriate gate vertices to196

slide tokens as intended. This is handled in the second step of our reduction which, given197

the split graph construction sketched above, makes a large number of copies and connects198

them appropriately in a way that the only feasible token sliding solutions are indeed those199

that correspond to valid orientations of the original graph.200

In the remainder of this section we use the following notation: G = (V,E), where201

E = R∪B, is the graph supplied with the initial NCL reconfiguration instance and D,D′ are202

the initial and target orientations; Gb = (Vb, Eb) is the “basic” split graph of our construction203

in the first step and S, T the independent sets of Gb for which we need to decide reachability;204

and Gf = (Vf , Ef ) is the split graph of our final token sliding instance with Sf , Tf being its205

corresponding independent sets.206

Before we proceed, let us first slightly edit our given NCL reconfiguration instance. We207

will now allow some vertices to have degree two and call these vertices COPY vertices. Using208

these we can force the OR vertices to become an independent set.209

I Lemma 3. NCL reconfiguration remains PSPACE-complete on graphs where (i) all vertices210

are either AND vertices (two incident red edges, one incident blue edge), OR vertices (three211

incident blue edges), or COPY vertices (two incident blue edges) (ii) every blue edge is212

incident on exactly one COPY vertex.213

CVIT 2016



23:6 Token Sliding on Split Graphs

Proof. For every blue edge e = (u, v) ∈ B in the original graph we delete this edge from the214

graph, introduce a new COPY vertex w, and connect w to u, v with blue edges. It is not215

hard to see that this transformation does not change the type of any original vertex or the216

answer to the reconfiguration problem. J217

First Step of the Construction218

We assume (Lemma 3) that in the given graph G we have three types of vertices (AND, OR,219

COPY) and that each blue edge is incident on one COPY vertex. Let us now describe the220

construction of Gb.221

1. For each e = (u, v) ∈ R we construct two selector vertices eu, ev and one gate vertex ge.222

2. For each e = (u, v) ∈ B we construct two selector vertices eu, ev and two gate vertices223

ge,1, ge,2.224

3. For each edge e = (u, v) ∈ R we connect ge to both eu, ev. For each edge e = (u, v) ∈ B225

we connect both ge,1, ge,2 to both eu, ev. We call the edges added in this step gate edges.226

4. For each AND vertex u, such that e = (u, v1) ∈ B and f = (u, v2) ∈ R, h = (u, v3) ∈ R227

we add the following edges: (ev1 , gf ), (ev1 , gh), (fv2 , ge,1), (fv2 , ge,2), (hv3 , ge,1), (hv3 , ge,2)228

(see Figure 1). In other words, for each edge involved in this part we connect the selector229

which represents its other endpoint (not u) to the gate vertices of edges that should be230

unmovable if this edge is not oriented towards u.231

5. For each OR vertex u such that e = (u, v1), f = (u, v2), h = (u, v3) ∈ B we add232

the following edges: (ev1 , gf,1), (ev1 , gh,1), (ev2 , ge,1), (ev2 , gh,2), (ev3 , ge,2), (ev3 , gf,2). In233

other words, we connect the selector vertex for each vi to a distinct gate of the edges234

(u, vj), (u, vk), for i, j, k distinct. Informally, this makes sure that if two of the edges are235

oriented away from u the third edge is stuck, but if at most one is oriented away from u236

the other edges have a free gate.237

6. For each COPY vertex u such that e = (u, v1), f = (u, v2) ∈ B we add the following238

edges: (ev1 , gf,1), (ev1 , gf,2), (fv2 , ge,1), (fv2 , ge2). In other words, we connect the selector239

vertex for v1 in a way that blocks the movement of the token from fu, and similarly for240

v2.241

7. We connect all gate vertices into a clique to obtain a split graph. Note that the remaining242

vertices (that is, the selector vertices ev) form an independent set.243

We now construct two independent sets S, T of Gb in the natural way: given an orientation244

D, for each e = (u, v) we place eu in S if and only if D orients e towards u; we construct T245

from D′ in the same way. This completes the basic construction.246

Before proceeding, let us make some basic observations regarding the neighborhoods of247

gate vertices of the graph Gb. We have the following:248

If e = (u, v) ∈ R, let u′, v′ be vertices of G such that f = (u, u′) ∈ B, h = (v, v′) ∈ B249

(that is, u′, v′ are the second endpoints of the blue edges incident on u, v). We have that250

N(ge) = {eu, ev, fu′ , hv′}.251

If e = (u, v) ∈ B, u is a COPY vertex and v is an AND vertex, let f = (u, u′) ∈ B be the252

other edge incident on u, and h = (v, v′), ` = (v, v′′) ∈ R be the other two edges incident253

on v. Then N(ge,1) = N(ge,2) = {eu, ev, fu′ , hv′ , `v′′}.254

If e = (u, v) ∈ B, u is a COPY vertex and v is an OR vertex, let f = (u, u′) ∈ B be the255

other edge incident on u, and h = (v, v′), ` = (v, v′′) ∈ B be the other two edges incident256

on v. Then one of the vertices ge,1, ge,2 has neighbors {eu, ev, fu′ , hv′} and the other has257

neighbors {eu, ev, fu′ , `v′′}.258
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e

f

h

`

uv1

v2

v3

v4

gf

fufv2

gh

huhv3

ge,1 ge,2

euev1

e

f

h

`

uv1

v2

v3

v4

gf,1 gf,2

fufv2

gh,1 gh,2

huhv3

ge,1 ge,2

euev1

Figure 1 Construction when u is an AND vertex (top) or an OR vertex (bottom). In both cases
v1 is a COPY vertex. The part of the construction corresponding to ` is not drawn: `v4 would be a
common neighbor of ge,1, ge,2 and eu would be a common neighbor of `e,1, `e,2. Edges connecting
selector vertices to their corresponding gates are drawn thinner for readability. On the right, black
(gate) vertices are connected in a clique.

We are now ready to show that if we only consider “consistent” configurations in Gb,259

then the new instance simulates the original NCL reconfiguration problem.260

I Lemma 4. There is a valid reconfiguration of the NCL instance given by G,D,D′ if and261

only if there exists a valid reconfiguration under the TS rule from S to T in Gb such that no262

independent set of the reconfiguration sequence contains both eu, ev for any e = (u, v) ∈ E.263

Proof. Since Gb is a split graph, any independent set contains at most one vertex from264

the clique made up of the gate vertices. We will call an independent set that contains no265

gate vertices a “main” configuration. Furthermore, for main configurations that also obey266

the restrictions of the lemma (i.e. do not contain both eu, ev for any e ∈ E), we observe267

that there is a natural one-to-one correspondence with the set of orientations of G: an edge268

e = (u, v) is oriented towards u if and only if eu is in the independent set. (We implicitly use269

the fact that the number of tokens is |E|, therefore for each pair eu, ev exactly one vertex270

has a token in such a main configuration).271

Suppose now that we have two consecutive valid orientations Di, Di+1 in the reconfigura-272

tion sequence of G such that Di, Di+1 differ only on the edge e = (u, v), which Di orients273

towards u. We want to show that the sets Ii, Ii+1 obtained using the correspondence above274

from Di, Di+1 can be obtained from each other with a pair of sliding token moves. Indeed,275

the sets Ii, Ii+1 are identical except that {eu} = Ii \ Ii+1 and {ev} = Ii+1 \ Ii. We would276

like to slide the token from eu to ev using a gate vertex adjacent to both vertices.277

First, assume that e ∈ R, so there exists a single gate vertex ge. Furthermore, u, v are278

both AND vertices. Since both Di, Di+1 are valid configurations, in both configurations the279

blue edges incident on u, v are oriented towards these two vertices. As a result ge has no280

neighbor in Ii.281

Second, suppose e = (u, v) ∈ B and one of u, v is a COPY vertex. If e is incident on an282

AND vertex, because both Di, Di+1 are valid and agree on all edges except e we have that283

both red edges incident on the AND vertex are oriented towards it in both configurations.284

Similarly, the second blue edge incident on the COPY endpoint of e is oriented towards it285
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23:8 Token Sliding on Split Graphs

in both configurations. We therefore observe that neither ge,1, nor ge,2 has a neighbor in Ii286

except eu, so we can safely slide eu → ge,1 → ev.287

Similarly, for the last case, suppose that e = (u, v) ∈ B and one of the endpoints of e is288

an OR vertex, while the other is a COPY vertex. Again, because Di, Di+1 are both valid and289

only disagree on e, at least one of the blue edges incident on the OR vertex (other than e) is290

oriented towards it in both configurations. As before, the second blue edge incident on the291

COPY vertex is oriented towards it in both configurations. Therefore, one of ge,1, ge,2 has292

no neighbor in Ii except eu, so we can safely slide the token from eu to ev with two moves.293

To complete the proof, we need to show that if we have a valid token sliding reconfiguration294

sequence, this gives a valid reorientation sequence for G. The main observation now is that295

in a shortest token sliding solution that obeys the properties of the lemma, a token that296

slides out of eu must necessarily in the next move slide into ev, where e = (u, v) ∈ E. To297

see this, observe that because of the requirement that the set does not contain both selector298

vertices of any edge, the tokens found on other selector vertices dominate all gate vertices299

except those corresponding to e. Since we can neither repeat configurations, nor add a second300

token to the clique made up of gate vertices, the next move must slide the token to the other301

selector vertex.302

To see that the orientation sequence obtained through the natural translation of main303

configurations is valid, consider two consecutive main configurations Ii, Ii+1 in the token304

sliding solution, such that the corresponding orientations are Di, Di+1, and Di is valid. We305

will show that Di+1 is also valid. Suppose that Di+1 differs from Di in the edge e = (u, v)306

which is oriented towards u in Di (it is not hard to see that Di, Di+1 cannot differ in more307

than one edge). Thus, Ii is transformable in two moves to Ii+1 by sliding eu to a gate308

corresponding to e and then to ev. If e is a red edge, this means that in Di both blue edges309

incident on u, v are directed towards u, v, so the reorientation is valid. If e is blue, we first310

assume that u is a COPY vertex. Since a gate corresponding to u is free, the other blue edge311

incident on u is oriented towards u in Di and we have a valid move. Finally, if e is blue and312

u is an OR vertex, we conclude that, since at least one gate from ge,1, ge,2 is available in Ii,313

at least one of the two other blue edges incident on u is directed towards u in Di and we314

have a valid move. J315

Second Step: Enforcing Consistency316

We will now construct a graph Gf that will function in a way similar to the graph we have317

already constructed but in a way that enforces consistency. Let Gb = (Vb, Eb) be the graph318

constructed in the first step of our reduction, and let Eg ⊆ Eb be the set of gate edges, that319

is, the set of edges that connect the selector vertices for an edge e to the corresponding320

gate(s).321

Let m := |E| and C := m+ 4. We first take C disjoint copies of Gb = (Vb, Eb) and for a322

vertex v ∈ Vb we will use the notation vi, where 1 ≤ i ≤ C to denote the vertex corresponding323

to v in the i-th copy. Then, for every edge (u, v) ∈ Eb \ Eg (every non-gate edge) and for all324

i, j ∈ {1, . . . , C} we add the edge (ui, vj). This completes the construction of Gf and it’s not325

hard to see that the graph is split, as the C copies of the clique of Gb form a larger clique.326

To complete our instance let us explain how to translate an independent set of Gb that327

contains no vertices of the clique to an independent set of Gf : we do this in the natural way328

by including in the new independent set all C copies of vertices of the original independent329

set. Since both the initial and final independent sets in our first construction use no vertices330

in the clique, we have in this way two independent sets of size mC in the new graph, and331

thus a valid Token Sliding instance. Let S, T be the two independent sets of Gb we are asked332
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to transform and Sf , Tf the corresponding independent sets of Gf .333

We first show that if we have a solution for reconfiguration in Gb then we have a solution334

for reconfiguring the sets in the new graph.335

I Lemma 5. Let I1, I2 be two independent sets of Gb of size m that use no vertices of the336

clique, respect the conditions of Lemma 4, and can be transformed to one another by two337

sliding moves. Then the independent sets I ′1, I ′2 which are obtained in Gf by including all338

copies of vertices of I1, I2 respectively can be transformed into one another by a sequence of339

2C TS moves.340

Proof. Each of I1, I2 uses exactly one of the vertices eu, ev, for each edge e = (u, v) ∈ E,341

because of their size, the fact that they contain no vertex of the clique, and the fact that342

neither contains both eu, ev for any edge e = (u, v) ∈ E (this is the condition of Lemma 4).343

If I1 can be transformed into I2 with two sliding moves, the first move takes a token from an344

independent set vertex, say eu and moves it to the clique and the second moves the same345

token to ev. Since I1 contains a token on each pair of selector vertices, the only vertex of the346

clique on which the token can be moved is a gate vertex corresponding to e, say ge (if e is347

red) or ge,1 (if e is blue). We now observe that if ge (or similarly ge,1) is available in I1 (that348

is, it has no neighbors in I1 besides eu), then the same is true for gi
e for all i ∈ {1, . . . , C}349

in I ′1. To see this, note that the neighbors of gi
e are, ei

u, e
i
v, and, for each v ∈ N(ge) all the350

vertices vj for j ∈ {1, . . . , C}. Since none of the neighbors of ge is in I1, gi
e is available. We351

therefore slide, one by one, a token from ei
u to gi

e and then to ei
v, for all i ∈ {1, . . . , C}. J352

Now, for the more involved direction of the reduction we first observe that it is impossible353

for a reconfiguration to arrive at a situation where the solution is highly irregular, in the354

sense that, for an edge e = (u, v) we have multiple tokens on copies of both eu and ev.355

I Lemma 6. Let Sf be the initial independent set constructed in our instance and S′ be an356

independent set which for some e = (u, v) ∈ E and for some i, j ∈ {1, . . . , C} with i 6= j has357

ei
u, e

i
v, e

j
u, e

j
v ∈ S′. Then S′ is not reachable with TS moves from Sf .358

Proof. Let S′ be an independent set that satisfies the conditions of the lemma but is359

reachable from Sf with the minimum number of token sliding moves. Consider a sequence360

that transforms Sf to S′, and let S′′ be the independent set immediately before S′ in this361

sequence. S′′ contains exactly three of the vertices ei
u, e

i
v, e

j
u, e

j
v. Without loss of generality362

say ej
v 6∈ S′′. Therefore, the move that transforms S′′ to S′ slides a token into ej

v from one of363

the neighbors of this vertex. We now observe that N(ej
v) contains C copies of each neighbor364

of ev in Gb, plus the gate vertices corresponding to e in the j-th copy of Gb. However, the C365

copies of the neighbors of ev are also neighbors of ei
v, hence a token cannot slide through366

these vertices. Furthermore, the gate vertices of e are also neighbors of ej
u. We therefore367

have a contradiction. J368

We now use Lemma 6 to show that for each original edge, the graph Gf contains some369

non-trivial number of tokens on the selector vertices of that edge.370

I Lemma 7. Let Sf be the initial independent set constructed in our instance and S′ be an371

independent set which for some e = (u, v) ∈ E has |S′ ∩ ({ei
u | 1 ≤ i ≤ C} ∪ {ei

v | 1 ≤ i ≤372

C})| < 4. Then S′ is unreachable from Sf .373

Proof. Suppose S′ is reachable. Then by Lemma 6, for each edge e = (u, v) ∈ E we have374

|S′ ∩ ({ei
u | 1 ≤ i ≤ C}∪ {ei

v | 1 ≤ i ≤ C})| ≤ C + 1, because otherwise there would exist (by375

pigeonhole principle) ei
u, e

i
v, e

j
u, e

j
v ∈ S′. We now use a simple counting argument. The total376
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number of tokens is mC, while for any edge f ∈ E we have
∑

e∈E\{f} |S′ ∩ ({ei
u | 1 ≤ i ≤377

C}∪{ei
v | 1 ≤ i ≤ C})| ≤ (m−1)(C+1). However, (m−1)(C+1) = mC+m−C−1 = mC−5,378

where we use the fact that C = m+ 4. As a result |S′ ∩ ({ei
u | 1 ≤ i ≤ C} ∪ {ei

v | 1 ≤ i ≤379

C})| ≥ 4 for any edge e ∈ E, as the independent set S′ uses at most one vertex from the380

clique. J381

We are now ready to establish the final lemma that gives a mapping from a sliding token382

reconfiguration in Gf to one in Gb.383

I Lemma 8. If there exists a reconfiguration from Sf to Tf in Gf under the TS rule then384

there exists a reconfiguration from S to T in Gb under the TS rule which for each edge385

e = (u, v) ∈ E contains at most one of the vertices eu, ev in every independent set in the386

sequence.387

Proof. Take a configuration I of Gf , that is an independent set in the supposed sequence from388

Sf to Tf . We map this independent set to an independent set I ′ of Gb as follows: for each edge389

e = (u, v) ∈ E, we set eu ∈ I ′ if and only if |I ∩ {ei
u | 1 ≤ i ≤ C}| ≥ |I ∩ {ei

v | 1 ≤ i ≤ C}|.390

Informally, this means that we take the majority setting from Gf . We note that this391

always gives an independent set I ′ that contains exactly one vertex from {eu, ev} for each392

e = (u, v) ∈ E.393

Our main argument now is to show that if I1, I2 are two consecutive independent sets394

of the solution for Gf , then the sets I ′1, I ′2 which are obtained in the way described above395

in Gb are either identical or can be obtained from one another with two sliding moves. If396

I ′1, I
′
2 are not identical, they may differ in at most two vertices corresponding to an edge397

e = (u, v) ∈ E, say {eu} = I ′1 \ I ′2 and {ev} = I ′2 \ I ′1. This is not hard to see, since I2 is398

obtained from I1 with one sliding move, and this move can only affect the majority opinion399

for at most one edge.400

Now we would like to argue that it is possible to slide eu to a gate vertex associated to e401

and then to ev in Gb. Consider the transition from I1 to I2. This move either slides a token402

from some ei
u to the clique, or slides a token from the clique to some ej

v (because the majority403

opinion changed from eu to ev). Because of Lemma 7, both I1 and I2 contain at least four404

vertices in some copies of eu, ev. Hence, since at least half of these vertices are in copies of eu405

in I1, there exists some ei
u ∈ I1 ∩ I2. Similarly, there exists some ej

v ∈ I1 ∩ I2. Consider now406

a gate vertex g in the clique of Gb such that g is not associated with e. If g has an edge to407

{eu, ev} in Gb, then all copies of g in Gf have an edge to I1 ∩ I2, therefore cannot belong in408

either set. As a result, the clique vertex that is used in the transition from I1 to I2 is a copy409

of a gate vertex associated with e (either ge, or one of ge,1, ge,2, depending on the color of e).410

This gate vertex copy therefore has no neighbor in I1 ∩ I2. From this we conclude that the411

same gate vertex in Gb also has no neighbor in I ′1 ∩ I ′2, as the majority opinion only changed412

for e. It is therefore legal to slide from eu to this gate vertex and then to ev. J413

I Theorem 9. Sliding Token Reconfiguration is PSPACE-complete for split graphs.414

Proof. We begin with an instance of the PSPACE-complete NCL reconfiguration problem,415

as given in Lemma 3. We construct the instance Gf , Sf , Tf of Sliding Token Reconfiguration416

on split graphs as described (it’s clear that this can be done in polynomial time). If the417

NCL reconfiguration instance is a YES instance, then by Lemma 4 there exists a sliding418

token reconfiguration of Gb, and by repeated applications of Lemma 5 to independent sets419

that do not contain clique vertices in the reconfiguration of Gb there exists a sliding token420

reconfiguration of Gf . If on the other hand there exists a sliding token reconfiguration on421
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Gf , then by Lemma 8 there exists a reconfiguration that satisfies the condition of Lemma 4422

on Gb, hence the original NCL instance is a YES instance. J423

4 PSPACE-completeness for Chordal Graphs for c ≥ 2424

In this section, we build upon the PSPACE-completeness result from Section 3 to show that425

c-Colorable Set Reconfiguration is PSPACE-complete, for every c ≥ 2, when the426

input graph is restricted to be chordal.427

I Theorem 10. For every c ≥ 2, the c-Colorable Set Reconfiguration problem under428

the TS rule is PSPACE-complete, even when the input graph is restricted to be chordal.429

5 XP-time Algorithm on Split Graphs for fixed c ≥ 2430

In this section we present an nO(c) algorithm for c-Colorable Reconfiguration under431

the TS rule, on split graphs, for c > 1. Recall that a split graph G = (V,E) is a graph whose432

vertex set V is partitioned into a clique K and an independent set I. An input instance433

consists of a split graph G, and two c-colorable sets S, T ⊆ V .434

Before proceeding, let us give some high-level ideas as well as some intuition why this435

problem, which is PSPACE-complete for c = 1 (Theorem 9), admits such an algorithm for436

larger c. Our algorithm consists of two parts: a rigid and a non-rigid reconfiguration part.437

In the rigid reconfiguration part the algorithm decides if two sets are reachable by using438

moves that never slide tokens into or out of I. Because of this restriction and the fact that439

the sets are c-colorable, the total number of possible configurations is nO(c), so this part can440

be solved with exhaustive search (this is similar to the algorithm of [15] for TJ/TAR). In the441

non-rigid part we assume we are given two sets S, T which, in addition to being c-colorable,442

have |S ∩K|, |T ∩K| ≤ c− 1. The main insight is now that any two such sets are reachable443

via TS moves (Lemma 11 below). Informally, the algorithm guesses a partition of the optimal444

reconfiguration into a rigid prefix, a rigid suffix, and a non-rigid middle, and uses the two445

parts to calculate each independently.446

The intuitive reason that our algorithm cannot work for c = 1 is the non-rigid part.447

The crucial Lemma 11 on which this part is based fails for c = 1: for instance, if G is a448

star with three leaves and S, T are two distinct sets each containing two leaves, then S, T449

satisfy all the conditions for c = 1, but are not reachable from each other with TS moves.450

Such counterexamples do not, however, exist for higher c, because for sets that satisfy the451

conditions of Lemma 11 we know we can always freely move tokens around inside the clique452

(and without loss of generality, such tokens exist). Note also, that this difficulty is specific to453

the TS rule: the algorithm of [15] implicitly uses the fact that any two sets with c− 1 tokens454

in the clique are always reachable, as this is an almost trivial fact if one is allowed to use TJ455

moves. Thus, Lemma 11 is the main new ingredient that makes our algorithm work.456

Let us now proceed with a detailed description of the algorithm. First, let us fix some457

notation. For a vertex set R ⊆ V , we write the subsets R ∩K and R ∩ I as RK and RI458

respectively. A few assumptions can be made on any input (G,S, T ) of c-Colorable Token459

Sliding Reconfiguration, which we will maintain throughout this section.460

1. G is connected; otherwise, we consider instances induced by each component separately.461

2. Every v ∈ I has a neighbor in K; if not, an input (G,S, T ) can be simplified. That is, if462

precisely one of S and T contains v, then the input is a trivial NO-instance. Otherwise, no463

TS move in a reconfiguration sequence from S to T involves v. Therefore, (G−v, S\v, T \v)464

is an equivalent instance.465
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I Lemma 11. Let G be a split graph, c ≥ 2, and S, T ⊆ V be two c-colorable sets such that466

|SK |, |TK | ≤ c− 1. Then T is c-reachable from S. Furthermore, a reconfiguration sequence467

from S to T can be produced in polynomial time.468

Proof. We first observe that if SI = TI , then there is an easy optimal c-transformation. By469

making one TS move from u ∈ SK \ TK to v ∈ TK \ SK , one can c-transform S to T with470

|S \ T | sliding moves (thus yielding an optimal reconfiguration sequence). It is clear that471

all the sets resulting from these TS moves are c-colorable because each of them has at most472

c− 1 vertices in K.473

Therefore, it suffices to show that there is always a c-transformation of T which decrease474

|SI \ TI | as long as S 6= T . Note that we can assume that there exists v ∈ SI \ TI (otherwise475

we exchange the roles of S and T ). In the case when TK = ∅, one can transform T to T ′ with476

TS moves from a vertex of TI \ SI to v. Trivially this is a c-transformation, and it holds that477

|T ′K | = ∅. (Note that this argument would not be valid if c = 1). If TK 6= ∅, then one can478

make at most two TS moves from a vertex of TK to v. Because T has at most c− 1 vertices479

and these TS moves maintain at most c− 1 vertices in K, c-colorability of T is preserved.480

Moreover, the new set has at most c− 1 vertices in K while its intersection with S in I is481

strictly larger. This completes the proof of the first statement. The proof is constructive and482

easily translates to a polynomial-time algorithm. J483

Let us now introduce a notion that will be useful in our algorithm. For two c-colorable484

sets S, T with SI = TI we say that S has a rigid c-transformation to T if there exists a485

valid c-transformation from S to T with TS moves which also has the property that every486

c-colorable set R of the transformation has RI = SI .487

I Lemma 12. Given a split graph G = (V,E), with V = K ∪ I, and two c-colorable488

sets S, T ⊆ V with SI = TI , there is an algorithm that decides if there exists a rigid489

c-transformation of S to T in time nO(c).490

Proof. The main observation is that since all intermediate sets must have RI = SI , we are491

only allowed to slide tokens inside K. However, SK contains at most c vertices (as it is492

c-colorable), therefore, there are at most nc potentially reachable sets: one for each collection493

of |SK | vertices of the clique.494

We now construct a secondary graph with a node for each subset of V that contains |SK |495

vertices of K and the vertices of SI , and connect two such nodes if their corresponding sets496

are reachable with a single TS move in G. In this graph we check if there is a path from the497

node that represents S to the one that represents T and if yes output the sets corresponding498

to the nodes of the path as our rigid reconfiguration sequence. J499

I Theorem 13. There is an algorithm that decides c-Colorable Reconfiguration on500

split graphs under the TS rule in time nO(c), for c ≥ 2.501

Proof. We distinguish the following cases: (i) |SK |, |TK | ≤ c−1, (ii) |SK | = c and |TK | = c−1,502

(iii) |SK | = |TK | = c. This covers all cases since S, T are c-colorable and we can assume503

without loss of generality that |SK | ≥ |TK |.504

For case (i) we invoke Lemma 11. The answer is always Yes, and the algorithm of the505

lemma produces a feasible reconfiguration sequence.506

For case (ii), suppose there exists a reconfiguration sequence from S to T , call it T0 =507

S, T1, . . . , T` = T . Let i be the smallest index such that |Ti ∩K| ≤ c− 1. Clearly such an508

index exists, since |TK | ≤ c− 1. We now guess the configuration Ti−1 and the configuration509

Ti (that is, we branch into all possibilities). Observe that there are at most nc choices for510
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Ti−1 as we have Ti−1 ∩ I = SI and |Ti−1 ∩K| = c. Furthermore, once we have selected a511

Ti−1, there are nO(1) possibilities for Ti, as Ti is reachable from Ti−1 with one TS move.512

We observe that if we guessed correctly, then there exists a rigid c-transformation from513

S to Ti−1 (by the minimality of i and the fact that |SK | = c); we use the algorithm of514

Lemma 12 to check this. Furthermore, the configuration Ti is always transformable to T515

by Lemma 11. Therefore, if the algorithm of Lemma 12 returns a solution, then we have a516

c-transformation from S to T . Conversely, if a c-transformation from S to T exists, since we517

tried all possibilities for Ti−1, one of the branches will find it.518

Finally, for case (iii), if SI = TI we first use Lemma 12 to check if there is a rigid519

c-transformation from S to T . If one is found, we are done. If not, or if SI 6= TI we observe520

that, similarly to case (ii), in any feasible transformation T0 = S, T1, . . . , T` = T , there exists521

an i such that |Ti ∩ K| ≤ c − 1 (otherwise the transformation would be rigid). Pick the522

minimum such i. We now guess the configurations Ti−1, Ti (as before, there are nc+O(1)
523

possibilities) and use Lemma 12 to verify that Ti−1 is reachable from S. If Ti−1 is reachable524

from S, we need to verify that T is reachable from Ti. However, we observe that this reduces525

to case (ii), because |Ti ∩K| ≤ c − 1, so we proceed as above. If the algorithm returns a526

valid sequence we accept, while we know that if a valid sequence exists, then there exists a527

correct guess for Ti−1, Ti that we consider. J528

6 W-hardness for Split Graphs529

In this section we show that c-Colorable Reconfiguration on split graphs is W[2]-530

hard parameterized by c and the length ` of the reconfiguration sequence under all three531

reconfiguration rules (TAR, TJ, and TS). In this sense, this section complements Section 5 by532

showing that the nO(c) algorithm that we presented for c-Colorable Reconfiguration533

on split graphs cannot be significantly improved under standard assumptions.534

We will rely on known results on the hardness of Dominating Set Reconfiguration.535

We recall that in this problem we are given a graph G = (V,E), two dominating sets S, T ⊆ V536

of size at most k and are asked if we can transform S into T by a series of TAR operations537

while keeping the size of the current set at most k at all times. More formally, we are asked if538

there exists a sequence T0 = S, T1, . . . , T` = T such that for each i ∈ {0, . . . , `− 1}, |Ti| ≤ k,539

Ti is a dominating set of G, and |(Ti \ Ti+1) ∪ (Ti+1 \ Ti)| = 1.540

I Theorem 14 ([18]). Dominating Set Reconfiguration is W[2]-hard parameterized by541

the maximum size of the allowed dominating sets k and the length ` of the reconfiguration542

sequence under the TAR rule.543

Before proceeding, let us make two remarks on Theorem 14: first, because the reduction544

of [18] is linear in the parameters, it is not hard to see that it also implies a tight ETH-based545

lower bound based on known results for Dominating Set; second, using an argument similar546

to that of Theorem 1 of [16], the same hardness can be obtained for the TJ rule.547

I Corollary 15. Dominating Set Reconfiguration is W[2]-hard parameterized by the548

maximum size of the allowed dominating sets k and the length ` of the reconfiguration sequence549

under the TAR, or TJ rule. Furthermore, the problem does not admit an algorithm running550

in no(c+`) under the ETH for any of the two rules.551

I Theorem 16. The c-Colorable Reconfiguration problem is W[2]-hard parameterized552

by c and the reconfiguration length ` when restricted to split graphs under any of the three553

reconfiguration rules (TAR, TJ, TS). Furthermore, under the ETH, the same problem does554

not admit an no(c+`) algorithm.555
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A Omitted Material614

A.1 Proof of Theorem 10615

Poof of Theorem 10. We provide a reduction from Independent Set Reconfiguration616

where the input graph G is restricted to be a split graph, which we proved to be PSPACE-617

complete in Theorem 9. Let G = (V,E) be an input split graph for Independent Set618

Reconfiguration. We construct a chordal graph G′ as follows, starting from a graph619

isomorphic to G and two non-empty independents set S, T of the same size. For every edge620

uv ∈ E(G), we add |V (G)| sets of c−1 new verticesW 1
uv, . . . ,W

|V (G)|
uv , such thatW i

uv induces621

a clique for every 1 ≤ i ≤ |V (G)|, and every vertex of W i
uv is made adjacent to both u and v,622

for every 1 ≤ i ≤ |V (G)|. In addition, we create a new set S′ = S ∪
⋃

uv∈E(G),1≤i≤|V (G)|W
i
uv623

and a set T ′ = T ∪
⋃

uv∈E(G),1≤i≤|V (G)|W
i
uv. In other words, we append |V (G)| disjoint624

cliques of size c− 1 to every edge of G, and add all those newly created vertices to S and to625

T . The chordality of G′ follows from the fact that the new vertices of the sets W i
uv are all626

simplicial in G′, hence G′ is chordal if and only if G is chordal as well (and G is split).627

We now claim the following: given in independent set T of G, the instance (G,S, T )628

of Independent Set Reconfiguration is a YES-instance if and only if the instance629

(G′, S′, T ′) of c-Colorable Set Reconfiguration is a YES-instance as well. Observe630

that, by the construction, S′ and T ′ are c-colorable because the maximum clique in G′[S′]631

contains at most one vertex of S and at most the c− 1 vertices of a clique W i
uv.632

The forward direction of the previous claim follows easily: performing the same moves as633

those of a reconfiguration sequence from S to T in G′, starting from S′, yields a reconfiguration634

sequence where every step preserves c-colorability, and produces the desired set T ′.635

For the backwards direction, we claim that, for any c-colorable set R′ reachable from636

S′, it holds that the vertices of R′ ∩ V (G) are pairwise non-adjacent. In other words, the637

tokens placed on original vertices of G form an independent set. Indeed, observe that the638

number of vertices of G′ that do not belong to R′ satisfies |V (G′) \ R′| = |V (G) \ S| <639

|V (G)|. This immediately implies that for any set R′ and edge uv ∈ E(G), we have640

|R′ ∩
⋃

1≤i≤|V (G)|W
i
uv| ≥ (c− 2)|V (G)|+ 1, and therefore G[R′ ∩

⋃
1≤i≤|V (G)|W

i
uv] contains641

a clique of size c− 1 as an induced subgraph, i.e., one of the sets W i
uv is completely contained642

in R′. This implies that, for every edge uv of G, we have |R′ ∩ {u, v}| ≤ 1, i.e., the vertices643

of R′ ∩ V (G) are pairwise non-adjacent, as desired. J644

A.2 Proof of Corollary 15645

Poof of Corollary 15. To obtain hardness under the TJ rule we use an argument similar646

to that of Theorem 1 of [16]. Suppose we are given an instance of k-Dominating Set647

Reconfiguration G = (V,E) and S, T ⊆ V where k is the maximum size of any dominating648

set allowed and we use the TAR rule, that is, an instance produced by the reduction649

establishing Theorem 14. We recall that in the instances produced for this reduction we have650

k = Θ(`) and that S can be transformed into T with ` TAR moves if and only if S can be651

transformed into T with some number of TAR moves (in other words, if ` moves are not652

sufficient, then S and T are in fact unreachable). This observation will be useful because653

it means that in the reduction that follows we do not have to preserve ` exactly but only654

guarantee that it increases by at most a constant factor.655

We can assume without loss of generality that |S| = |T | = k − 1: if |S| < k − 1 we656

can add to S arbitrary vertices to make its size k − 1, while if |S| = k then S cannot be a657

minimal dominating set (otherwise it would be impossible to transform it to any other set658
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and we would have an obvious NO instance) so there is a vertex that we can remove from S659

without affecting the answer. In both cases we appropriately increase ` by the number of660

modifications we made to S, T to preserve reachability. We want to show that the instance661

is now equivalent under the TJ rule. In particular, there exists a TAR reconfiguration with662

2` moves if there exists a TJ reconfiguration with ` moves.663

First, if there exists a TJ reconfiguration from S to T then there exists a TAR reconfigu-664

ration from S to T : for each move that exchanges u ∈ S with v 6∈ S we first add v to S and665

then remove u.666

For the converse direction, suppose that there is a TAR reconfiguration of S to T . If667

moves alternate in this reconfiguration, that is, if all intermediate sets have size between k−2668

and k, then it is not hard to see how to perform the same reconfiguration with TJ moves.669

Suppose then that the reconfiguration performs two consecutive vertex removal moves, so670

we have the dominating sets Ti, Ti+1, Ti+2 appearing consecutively in the reconfiguration671

sequence, with |Ti| = |Ti+1|+ 1 = |Ti+2|+ 2. Let j be the smallest index with j > i+ 2 such672

that |Tj | > |Tj−1| (i.e. j signifies the first time we added a vertex after the i-th move). Let673

Ti \ Ti+1 = {u} and Tj \ Tj−1 = {v}. Then, if u = v we can add u to all sets Ti+1, . . . , Tj−1674

and obtain a shorter reconfiguration sequence (since now Ti = Ti+1 and Tj = Tj−1). Similarly,675

if u 6= v and v ∈ Ti+1 we add v to all sets Ti+2, . . . , Tj−1 to which it doesn’t appear and we676

have a shorter reconfiguration sequence. Finally, if u 6= v and v 6∈ Ti+1, we insert after Ti+1677

the set Ti+1 ∪ {v} and then add v to all sets Ti+2, . . . , Tj−1. We now have Tj−1 = Tj , so we678

have a valid TAR reconfiguration of the same length but with one less pair of consecutive679

vertex removals. Repeating this argument produces a TAR reconfiguration which can be680

performed with TJ moves.681

For the ETH-based lower bound it suffices to recall that, under the ETH t-Dominating682

Set does not admit an no(t) algorithm [4], and that the reduction establishing Theorem 14683

in [18] is a reduction from t-Dominating Set that sets k, ` = O(t). J684

A.3 Proof of Theorem 16685

Poof of Theorem 16. We use a reduction from Dominating Set Reconfiguration simi-686

lar to the one used in [15] to prove that our problem is PSPACE-complete if c is part of the687

input. Let G = (V,E) be an input graph for Dominating Set Reconfiguration. We688

construct a split graph G′ as follows: we take two copies of V , call them V1, V2; we turn V1689

into a clique; for each u ∈ V1 and v ∈ V2 we add the edge (u, v) if and only if u 6∈ N [v] in G.690

In other words, we connect each vertex from V1 with all the vertices of V2 which it does not691

dominate in G.692

We assume now that we have started with k-Dominating Set Reconfiguration693

instance under the TJ rule, which is W[2]-hard according to Corollary 15 parameterized694

by k + `. We will first show hardness of c-Colorable Reconfiguration for TJ and TS695

parameterized by c+ `.696

We construct a one-to-one correspondence between size k dominating sets of G and697

k-colorable sets of vertices of G′ of size n+ k, where n = |V |: for each such set S ⊆ V we698

define its image φ(S) in G′ as {u ∈ V1 | u ∈ S}∪V2. In other words, we select all the vertices699

of S from V1 and all of V2. It is not hard to see that φ(S) is indeed k-colorable: if not, there700

exists a clique of size k + 1 in G′[S′] (since split graphs are perfect), which must consist of701

the k vertices of S from V1, plus a vertex v from V2. But v must be dominated by a vertex702

u ∈ S in G, which means that v and the copy of u in V1 are not connected.703

Let us also observe that for every k-colorable set S′ of size n + k in G′ we have that704

S′ = φ(S) for some dominating set S of size k in G. To see this, observe that S′ must contain705
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exactly k vertices of V1 (since it is k-colorable, V1 is a clique, and |V2| = n). These vertices706

must be a dominating set of G as otherwise there would exist a vertex v that is not in any707

of their closed neighborhoods, and the copy of v in V2 together with S′ ∩ V1 would form a708

clique of size k + 1, contradicting the k-colorability of S′.709

Given the above correspondence it is not hard to complete the reduction: if we are710

given two dominating sets S, T ⊆ V with the initial instance we set φ(S), φ(T ) as the two711

k-colorable graphs of the new instance. We observe that any valid TJ move that transforms a712

dominating set Ti to a dominating set Ti+1 in G, corresponds to a TJ move that transforms713

φ(Ti) to φ(Ti+1) in G′. Crucially, such a move is also a TS move, as the symmetric difference714

of Ti and Ti+1 is contained in the clique. Hence, there is also a one-to-one correspondence715

between TJ k-dominating set reconfigurations in G and TS k-colorable subgraph (of size716

n + k) reconfiguration in G′. We therefore set the length of the desired reconfiguration717

sequence in G′ to `.718

Finally, to obtain hardness of the new instance under the TAR rule we set the lower719

bound on the size of any intermediate set to n+ k − 1. Since |φ(S)| = |φ(T )| = n+ k this720

means that any TJ c-colorable reconfiguration can also be performed with at most 2` TAR721

moves. For the converse direction we observe that in any TAR reconfiguration we never have722

a set of size n+ k + 1 or more, since such a set would necessarily induce a graph that needs723

k + 1 colors. Hence, such a reconfiguration must consist of alternating vertex removal and724

addition moves, which can be performed with ` TJ moves.725

The ETH-based lower bounds follow from Corollary 15 and the fact that the reduction726

we performed is at most linear in all parameters. J727
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