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Abstract
In k-Digraph Coloring we are given a digraph and are asked to partition its vertices into at

most k sets, so that each set induces a DAG. This well-known problem is NP-hard, as it generalizes
(undirected) k-Coloring, but becomes trivial if the input digraph is acyclic. This poses the natural
parameterized complexity question what happens when the input is “almost” acyclic. In this paper
we study this question using parameters that measure the input’s distance to acyclicity in either the
directed or the undirected sense.

In the directed sense perhaps the most natural notion of distance to acyclicity is directed feedback
vertex set (DFVS). It is already known that, for all k ≥ 2, k-Digraph Coloring is NP-hard on
digraphs of DFVS at most k + 4. We strengthen this result to show that, for all k ≥ 2, k-Digraph
Coloring is already NP-hard for DFVS exactly k. This immediately provides a dichotomy, as
k-Digraph Coloring is trivial if DFVS is at most k − 1. Refining our reduction we obtain two
further consequences: (i) for all k ≥ 2, k-Digraph Coloring is NP-hard for graphs of feedback arc
set (FAS) at most k2; interestingly, this leads to a second dichotomy, as we show that the problem
is FPT by k if FAS is at most k2 − 1; (ii) k-Digraph Coloring is NP-hard for graphs of DFVS
k, even if the maximum degree ∆ is at most 4k − 1; we show that this is also almost tight, as the
problem becomes FPT for DFVS k and ∆ ≤ 4k − 3.

Since these results are mostly negative, we then consider parameters that measure the distance
from acyclicity of the underlying graph. On the positive side, we show that k-Digraph Coloring
admits an FPT algorithm parameterized by treewidth, whose parameter dependence is (tw!)ktw.
Since this is considerably worse than the ktw dependence of (undirected) k-Coloring, we pose the
question of whether the tw! factor can be eliminated. Our main contribution in this part is to settle
this question in the negative and show that our algorithm is essentially optimal, even for the much
more restricted parameter treedepth and for k = 2. Specifically, we show that an FPT algorithm
solving 2-Digraph Coloring with dependence tdo(td) would contradict the ETH.

2012 ACM Subject Classification Mathematics of computing→Graph algorithms; Theory of Com-
putation → Design and Analysis of Algorithms → Parameterized Complexity and Exact Algorithms

Keywords and phrases Digraph Coloring, Dichromatic number, NP-completeness, Parameterized
complexity, Feedback vertex and arc sets

1 Introduction

In Digraph Coloring, we are given a digraph D and are asked to calculate the smallest k
such that the vertices of D can be partitioned into k acyclic sets. In other words, the objective
of this problem is to color the vertices with the minimum number of colors so that no directed
cycle is monochromatic. The notion of dichromatic number was introduced by V. Neumann-
Lara [37]. More recently, digraph coloring has received much attention, in part because it turns
out that many results about the chromatic number of undirected graphs quite naturally carry
over to the dichromatic number of digraphs [1, 2, 4, 7, 11, 20, 21, 22, 23, 24, 32, 34, 35, 38].
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2 Digraph Coloring and Distance to Acyclicity

We note that Digraph Coloring generalizes Coloring (if we simply replace all edges of a
graph by pairs of anti-parallel arcs) and is therefore NP-complete.

In this paper we are interested in the computational complexity of Digraph Coloring
from the point of view of structural parameterized complexity1. Our main motivation
for studying this is that (undirected) Coloring is a problem of central importance in
this area whose complexity is well-understood, and it is natural to hope that some of the
known tractability results may carry over to digraphs – especially because, as we mentioned,
Digraph Coloring seems to behave as a very close counterpart to Coloring in many
respects. In particular, for undirected graphs, the complexity of Coloring for “almost-
acyclic” graphs is very precisely known: for all k ≥ 3 there is a O∗(ktw) algorithm, where
tw is the input graph’s treewidth, and this is optimal (under the SETH) even if we replace
treewidth by much more restrictive parameters [27, 33]. Can we achieve the same amount of
precision for Digraph Coloring?

Our results The main question motivating this paper is therefore the following: Does
Digraph Coloring also become tractable for “almost-acyclic” inputs? We attack this
question from two directions.

First, we consider the notion of acyclicity in the digraph sense and study cases where the
input digraph is close to being a DAG. Possibly the most natural such measure is directed
feedback vertex set (DFVS), which is the minimum number of vertices whose removal destroys
all directed cycles. The problem is paraNP-hard for this parameter, as for all fixed k ≥ 2,
k-Digraph Coloring is already known to be NP-hard, for inputs of DFVS at most k + 4
[34]. Our first contribution is to tighten this result by showing that actually k-Digraph
Coloring is already NP-hard for DFVS of size exactly k. This closes the gap left by the
reduction of [34] and provides a complete dichotomy, as the problem is trivially FPT by k
when the DFVS has size strictly smaller than k (the only non-trivial part of the problem in
this case is to find the DFVS [10]).

This negative result motivates us to either consider a more restricted notion of near-
acyclicity, or to impose further restrictions, such as bounding the maximum degree of the
graph. Unfortunately, we show that neither of these suffices to make the problem tractable.
In particular, by refining our reduction we obtain the following: First, we show that for all
k ≥ 2, k-Digraph Coloring is NP-hard for digraphs of feedback arc set (FAS) k2, that
is, digraphs where there exists a set of k2 arcs whose removal destroys all cycles (feedback
arc set is of course a more restrictive parameter than feedback vertex set). Interestingly,
this also leads us to a complete dichotomy, this time for the parameter FAS: we show that
k-coloring becomes FPT (by k) on graphs of FAS at most k2 − 1, by an argument that
reduces this problem to coloring a subdigraph with at most O(k2) vertices, and hence the
correct complexity threshold for this parameter is k2. Second, we show that k-coloring a
digraph with DFVS k remains NP-hard even if the maximum degree is at most 4k − 1. This
further strengthens the reduction of [34], which showed that the problem is NP-hard for
bounded degeneracy (rather than degree). Almost completing the picture, we show that
k-coloring a digraph with DFVS k and maximum degree at most 4k− 3 is FPT by k, leaving
open only the case where the DFVS is exactly k and the maximum degree exactly 4k − 2.

The results we obtain for DFVS and FAS are mostly negative, but one could argue
that this is because directed acyclicity allows a much richer class of inputs than undirected

1 In the remainder, we assume the reader is familiar with the basics of parameterized complexity theory,
such as the class FPT, as given in standard textbooks [12].
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acyclicity and hence it’s unreasonable to expect Digraph Coloring with these parameters
to be as tractable as Coloring for treewidth. Therefore, in the second part of the paper
we make a more “fair” comparison and parameterize the problem by the treewidth of the
underlying graph. It turns out that, finally, this suffices to lead to an FPT algorithm, obtained
with standard DP techniques. However, our algorithm has a somewhat disappointing running
time of (tw!)ktwnO(1), which is significantly worse than the ktwnO(1) complexity which is
known to be optimal for undirected Coloring, especially for small values of k. This raises
the question of whether the extra (tw!) factor can be removed. Our main contribution in
this part is to show that this is likely impossible, even for a more restricted case. Specifically,
we show that if the ETH is true, no algorithm can solve 2-Digraph Coloring in time
tdo(td)nO(1), where td is the input graph’s treedepth, a parameter more restrictive than
treewidth (and pathwidth). As a result, this paper makes a counterpoint to the line of
research that seeks to find ways in which dichromatic number replicates the behavior of
chromatic number in the realm of digraphs by pinpointing one important aspect where the
two notions are quite different, namely their complexity with respect to treewidth.

Other related work Structural parameterizations of Digraph Coloring have been studied
in [38], who showed that the problem is FPT by modular width generalizing the algorithms of
[18, 29]; and [20] who showed that the problem is in XP by clique-width (note that hardness
results for Coloring rule out an FPT algorithm in this case [16, 17, 30]). Our results
on the hardness of the problem for bounded DFVS and FAS build upon the work of [34].
The fact that the problem is hard for bounded DFVS implies that it is also hard for most
versions of directed treewidth, including DAG-width, Kelly-width, and directed pathwidth
[6, 19, 25, 28, 31]. Indeed, hardness for FAS implies also hardness for bounded elimination
width, a more recently introduced restriction of directed treewidth [15]. For undirected
treewidth, a problem with similar behavior is DFVS: (undirected) FVS is solvable in O∗(3tw)
[13] but DFVS cannot be solved in time two(tw)nO(1), and this is tight under the ETH [8].
For other natural problems whose complexity by treewidth is twΘ(tw) see [3, 5, 9]

With respect to maximum degree, it is not hard to see that k-Digraph Coloring is
NP-hard for graphs of maximum degree 2k + 2, because k-Coloring is NP-hard for graphs
of maximum degree k + 1, for all k ≥ 3 2. On the converse side, using a generalization of
Brooks’ theorem due to Mohar [36] one can see that k-Digraph Coloring digraphs of
maximum degree 2k is in P. This leaves as the only open case digraphs of degree 2k + 1,
which in a sense mirrors our results for digraphs of DFVS k and degree 4k − 2. We note
that the NP-hardness of 2-Digraph Coloring for bounded degree graphs is known even
for graphs of large girth, but the degree bound follows the imposed bound on the girth [14].

2 Definitions and Notation

We use standard graph-theoretic notation. All digraphs are loopless and have no parallel
arcs; two oppositely oriented arcs between the same pair of vertices, however, are allowed
and are called a digon. The in-degree (respectively, out-degree) of a vertex is the number of
arcs going out of (respectively coming into) a vertex. The degree of a vertex is the sum of its
in-degree and out-degree. For a set of arcs F , V (F ) denotes the set of their endpoints. For a

2 Note that this argument does not prove that 2-Digraph Coloring is NP-hard for maximum degree 6,
but this is not too hard to show. We give a proof in Theorem 11 for the sake of completeness.
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set of vertices S of a digraph D, D[S] denotes the digraph induced by S and N [S] denotes
the closed neighborhood of S, that is, S and all vertices that have an arc to or from S.

The chromatic number of a graph G is the minimum number of colors k needed to color
the vertices of G such that each color class is an independent set. We say that a digraph
D = (V,E) is k-colorable if we can color the vertices of D with k colors such that each
color class induces an acyclic subdigraph (such a coloring is called a proper k-coloring). The
dichromatic number, denoted by ~χ(D), is the minimum number k for which D is k-colorable.

A subset of vertices S ⊂ V of D is called a feedback vertex set if D − S is acyclic. A
subset of arcs A ⊂ E of D is called a feedback arc set if D−A is acyclic. For the definition of
treewidth and nice tree decompositions we refer the reader to [12]. A graph G has treedepth
at most k if one of the following holds: (i) G has at most k vertices (ii) G is disconnected
and all its components have treedepth at most k (iii) there exists u ∈ V (G) such that G− u
has treedepth at most k − 1. We use tw(G), td(G) to denote the treewidth and treedepth of
a graph. It is known that tw(G) ≤ td(G) for all graphs G.

The Exponential Time Hypothesis (ETH) [26] states that there is a constant c > 1 such
that no algorithm which decides if 3-SAT formulas with n variables and m clauses are
satisfiable can run in time cn+m. In this paper we will use the simpler (and slightly weaker)
version of the ETH which simply states that 3-SAT cannot be solved in time 2o(n+m).

Throughout the paper, when n is a positive integer we use [n] to denote the set {1, . . . , n}.
For a set V an ordering of V is an injective function σ : V → [|V |]. It is a well-known fact
that a digraph D is acyclic if and only if there exists an ordering σ of V (D) such that for all
arcs uv we have σ(u) < σ(v). This is called a topological ordering of D.

3 Bounded Feedback Vertex Set

In this section we study the complexity of the problem parameterized by the size of the
feedback vertex set of a digraph. Throughout we will assume that a feedback vertex set is
given to us; if not we can use known FPT algorithms to find the smallest such set [10].

Our main result in this section is that k-Digraph Coloring is NP-hard for graphs of
DFVS k. We begin with an easy observation showing that this result will be best possible.

I Remark 1. Every digraph D = (V,E) with feedback vertex set of size at most k − 1 is
k-colorable.

The remark holds because we can use distinct colors for the vertices of the feedback
vertex set and the remaining color for the rest of the graph. Building on this we can make a
further easy remark.

I Remark 2. Let D = (V,E) be a digraph with feedback vertex set F of size |F | = k. If F
does not induce a bi-directed clique, then D is k-colorable.

Indeed, if u, v ∈ F are not connected by a digon we can use one color for {u, v}, k − 2
distinct colors for the rest of F , and the remaining color for the rest of the graph. Remark 2
will also be useful later in designing an algorithm, but at this point it is interesting because
it tells us that, since the graphs we construct in our reduction have DFVS k and must in
some cases have ~χ(D) > k, our reduction needs to construct a bi-directed clique of size k.

Before we go on to our reduction let us also mention that we will reduce from a restricted
version of 3-SAT with the following properties: (i) all clauses are allowed to have either only
positive literals or only negative literals (ii) all variables appear at most 2 times positive and
1 time negative. We call this Restricted-3-SAT.
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I Lemma 3. Restricted-3-SAT is NP-hard and cannot be solved in 2o(n+m) time unless
the ETH is false.

Proof. Start with an arbitrary instance φ of 3-SAT with n variables and m clauses. We first
make sure that every variable appears at most 3 times as follows. Suppose that x appears
` ≥ 4 times in φ. We replace each appearance of x with a fresh variable xi, i ∈ [`] and add to
the formula the clauses (¬x1 ∨x2)∧ (¬x2 ∨x3) . . . (¬x` ∨x1). Repeating this for all variables
that appear at least 4 times produces an equivalent instance φ′ with O(n+m) variables and
clauses such that all literals appear at most 2 times. We now edit φ′ as follows: for each
variable x of φ′ we replace every occurence of ¬x with a fresh variable x′. We then add the
clause (¬x∨¬x′). This gives a new equivalent instance φ′′ which also has O(n+m) variables
and clauses and satisfies all properties of Restricted-3-SAT. J

I Theorem 4. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V,E) is k-colorable
even when the size of its feedback vertex set is k. Furthermore, this problem cannot be solved
in time 2o(n) unless the ETH is false.

Proof. We will prove the theorem for k = 2. To obtain the proof for larger values one can
add to the construction k − 2 vertices which are connected to everything with digons: this
increases both the dichromatic number and the feedback vertex set by k − 2. Note that this
does indeed construct a “palette” clique of size k, as indicated by Remark 2.

We make a reduction from Restricted-3-SAT, which is NP-hard by Lemma 3. Our
reduction will produce an instance of size linear in the input formula, which leads to the
ETH-based lower bound. Let φ be the given formula with variables x1, . . . , xn, and suppose
that clauses c1, . . . , c` contain only positive literals, while clauses c`+1, . . . , cm contain only
negative literals. We will assume without loss of generality that all variables appear in φ
both positive and negative (otherwise φ can be simplified).

We begin by constructing two “palette” vertices v1, v2 which are connected by a digon.
Then, for each clause ci, i ∈ [m] we do the following: if the clause has size three we construct
a directed path with vertices li,1, wi,1, li,2, wi,2, li,3, where the vertices li,1, li,2, li,3 represent
the literals of the clause; if the clause has size two we similarly construct a directed path
with vertices li,1, wi,1, li,2, where again li,1, li,2 represent the literals of the clause.

For each variable xj , j ∈ [n] we do the following: for each clause ci1 where xj appears
positive and clause ci2 where xj appears negative we construct a vertex w′j,i1,i2 and add an
incoming arc from the vertex that represents the literal xj in the directed path of ci1 to
w′j,i1,i2 ; and an outgoing arc from w′j,i1,i2 to the vertex that represents the literal ¬xj in the
directed path of ci2 .

Finally, to complete the construction we connect the palette vertices to the rest of the
graph as follows: v1 is connected with a digon to all existing vertices wi,j , i ∈ [m], j ∈ [2]; v2
is connected with a digon to all existing vertices w′j,i1,i2 ; v2 has an outgoing arc to the first
vertex of each directed path representing a clause and an incoming arc from the last vertex
of each such path; v1 has an outgoing arc to all vertices that represent positive literals and
an incoming arc from all vertices representing negative literals. (See Figure 1)

Let us now prove that this reduction implies the theorem. First, we claim that in the
digraph we constructed {v1, v2} is a feedback vertex set. Indeed, suppose we remove these
two vertices. Now every arc in the remaining graph either connects vertices that represent
the same clause, or is incident on a vertex w′j,i1,i2 . Observe that these vertices have only
one incoming and one outgoing arc and because of the ordering of the clauses i1 < i2 (since
clauses that contain negative literals come later in the numbering). We conclude that every
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(α)

v1 v2

li,1 wi,1 li,2 wi,2 li,3

v1 v2

l′ = xj w
′
j,i1,i2 l = ¬xj
(β) (γ)

x1 w1,1 x2 w1,2 x3

¬x1 w2,1 ¬x2

w′1,1,2 w′2,1,2

Figure 1 (α): The cycles created by {v1, v2} and clauses with three literals. (β): The cycles
created by {v1, v2} and each pair {x,¬x}. (γ): An example digraph for the formula φ = (x1 ∨ x2 ∨
x3) ∧ (¬x1 ∨ ¬x2), without showing v1, v2.

directed path must either stay inside the path representing the same clause or lead to a path
the represents a later clause. Hence, the digraph is acyclic.

Let us now argue that if φ is satisfiable then the digraph is 2-colorable. We give color 1
to v1 and 2 to v2. We give color 2 to each wi,j and color 1 to each w′j,i1,i2 . Fix a satisfying
assignment for φ. We give color 1 to all vertices li,j that represent literals set to True by
the assignment and color 2 to all remaining vertices. Let us see why this coloring is acyclic.
First, consider a vertex w′j,i1,i2 . This vertex has color 1 and one incoming and one outgoing
arc corresponding to opposite literals. Because the literals are opposite, one of them has
color 2, hence w′j,i1,i2 cannot be in any monochromatic cycle and can be removed. Now,
suppose there is a monochromatic cycle of color 1. As {v1, v2} is a feedback vertex set, this
cycle must include v1. Since v2 and all wi,j have color 2 the vertex after v1 in the cycle must
be some li,j representing a positive literal which was set to True by our assignment. The
only outgoing arc leaving from li,j and going to a vertex of color 1 must lead it to a vertex
w′j′,i,i′ , which as we said cannot be part of any cycle. Hence, no monochromatic cycle of
color 1 exists. Consider then a monochromatic cycle of color 2, which must begin from v2.
The next vertex on this cycle must be a li,1 and since we have eliminated vertices w′j,i1,i2 the
cycle must continue in the directed path of clause i. But, since we started with a satisfying
assignment, at least one of the literal vertices of this path has color 1, meaning the cycle
cannot be monochromatic.

Finally, let us argue that if the digraph is 2-colorable, then φ is satisfiable. Consider a
2-coloring which, without loss of generality, assigns 1 to v1 and 2 to v2. The coloring must give
color 2 to all wi,j and color 1 to all wj,i1,i2 , because of the digons connecting these vertices to
the palette. Now, we obtain an assignment for φ as follows: for each xj , we find the vertex in
our graph that represents the literal ¬xj (this is unique since each variable appears exactly
once negative): we assign xj to True if and only if this vertex has color 2. Let us argue that
this assignment satisfies all clauses. First, consider a clause with all negative literals. If this
clause is not satisfied, then all the vertices representing its literals have color 2. Because
vertices wi,j also all have color 2, this creates a monochromatic cycle with v2, contradiction.
Hence, all such clauses are satisfied. Second, consider a clause ci with all positive literals. In
the directed path representing ci at least one literal vertex must have color 1, otherwise we
would get a monochromatic cycle with v2. Suppose this vertex represents the literal xj and
has an out-neighbor w′j,i,i2 , which is colored 1. If the out-neighbor of w′j,i1,i2 is also colored
1, we get a monochromatic cycle with v1. Therefore, that vertex, which represents the literal
¬xj has color 2. But then, according to our assignment xj is True and ci is satisfied. J
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4 Bounded Feedback Arc Set and Bounded Degree

In this section we first present two algorithmic results: we show that k-Digraph Coloring
becomes FPT (by k) if either the input graph has feedback vertex set k and maximum
degree at most 4k − 3; or if it has feedback arc set at most k2 − 1 (and unbounded degree).
Interestingly, the latter of these results is exactly tight and the former is almost tight: in
the second part we refine the reduction of the previous section to show that k-Digraph
Coloring is NP-hard for digraphs which have simlutaneously a FAS of size k2, a feedback
vertex set of size k and maximum degree ∆ = 4k − 1.

4.1 Algorithmic Results
Our first result shows that for k-Digraph Coloring, if we are promised a feedback vertex
set of size k (which is the smallest value for which the problem is non-trivial), then the
problem remains tractable for degree up to 4k−3. Observe that in the case of general digraphs
(where we don’t bound the feedback vertex set) the problem is already hard for maximum
degree 2k + 2 (see Other Related Work section), so this seems encouraging. However, we
show in Theorem 8 that this tractability cannot be extended much further.

I Theorem 5. Let D = (V,E) be a digraph with feedback vertex set F of size |F | = k and
maximum degree ∆ ≤ 4k − 3. Then, D is k-colorable if and only if D[N [F ]] is k-colorable.
Furthermore, a k-coloring of D[N [F ]] can be extended to a k-coloring of D in polynomial
time.

Proof. Let D = (V,E) be such a digraph. If D[N [F ]] is not k-colorable, then D is not
k-colorable, so we need to prove that if D[N [F ]] is k-colorable then D is k-colorable and we
can extend this coloring to D. Assume that D[N [F ]] is k-colorable. By Remark 2 we can
assume that D[F ] is a bi-directed clique. Let c : N [F ]→ [k] be the assumed k-coloring and
without loss of generality say that F = {v1, . . . , vk} and c(vi) = i for all i ∈ [k].

Before we continue let us define the following sets of vertices: we will call Vi,in the set of
vertices v ∈ N [F ] \ F such that c(v) = i and there exists an arc vvi ∈ E. Similarly we will
call Vi,out the set of vertices v ∈ N [F ] \ F where c(v) = i and there exists an arc viv ∈ E.
The sets Vi,in and Vi,out are disjoint in any proper coloring (otherwise we would have a
monochromatic digon). Furthermore, Vi,in ∪ Vi,out is disjoint from Vj,in ∪ Vj,out for j 6= i

(because their vertices have different colors), so all these 2k sets are pair-wise disjoint. We
first show that if one of these 2k sets is empty, then we can color D.

B Claim 6. If for some i ∈ [k] one of the sets Vi,in, Vi,out is empty then we can extend c to
a k-coloring of D in polynomial time.

Proof. We keep c unchanged and color all of V (D) \ N [F ] with color i. This is a proper
k-coloring. Indeed, this cannot create a monochromatic cycle with color j 6= i. Furthermore,
if a monochromatic cycle of color i exists, since this cycle must intersect F , we conclude that
it must contain vi. However, in the current k-coloring vi either has in-degree or out-degree 0
in the vertices colored i, so no monochromatic cycle can go through it. J

In the remainder we assume that all sets Vi,in, Vi,out are non-empty. Our strategy will be
to edit the k-coloring of D[N [F ]] so that we retain a proper k-coloring, but one of these 2k
sets becomes empty. We will then invoke Claim 6 to complete the proof.

We now define, for each pair i, j ∈ [k] with i < j the set Ei,j which contains all arcs with
one endpoint in {vi, vj} and the other in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out and whose endpoints
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have distinct colors. We call Ei,j the set of cross arcs for the pair (i, j). We will now argue
that for some pair (i, j) we must have |Ei,j | ≤ 3. For the sake of contradiction, assume that
|Ei,j | ≥ 4 for all pairs. Then, by summing up the degrees of vertices of F we have:

∑
i∈[k]

d(vi) ≥ 2k + k(2k − 2) +
∑

i,j∈[k],i<j

|Ei,j | ≥ 2k2 + 4
(
k

2

)
= 4k2 − 2k

In the first inequality we used the fact that each vi ∈ F has at least two arcs connecting
it to Vi,in ∪ Vi,out (since these sets are non-empty); 2k− 2 arcs connecting it to other vertices
of F (since F is a clique); and each cross arc of a set Ei,j contributes one to the degree of one
vertex of F . From this calculation we infer that the average degree of G is at least 4k − 2,
which is a contradiction, since we assumed that the digraph has maximum degre 4k − 3.

Fix now i, j such that |Ei,j | ≤ 3. We will recolor Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out in a way
that allows us to invoke Claim 6. Since we do not change any other color, we will only
need to prove that our recoloring does not create monochromatic cycles of colors i or j in
D[N [F ]]. We can assume that |Ei,j | = 3, since if |Ei,j | < 3 we can add an arbitrary missing
cross arc and this can only make the recoloring process harder. Furthermore, without loss of
generality, we assume that vi has strictly more cross arcs of Ei,j incident to it than vj .

We now have to make a case analysis. First, suppose all three arcs of Ei,j are incident
on vi. Then, there exists a set among Vj,in, Vj,out that has at most one arc connecting it to
vi. We color this set i, and leave the other set colored j. We also color Vi,in ∪ Vi,out with j.
This creates no monochromatic cycle because: (i) vi now has at most one neighbor colored i
in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out, so no monochromatic cycle goes through vi; (ii) vj has either
no out-neighbors or no in-neighbors colored j in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out. With the new
coloring we can invoke Claim 6. In the remainder we therefore assume that two arcs of Ei,j
are incident on vi and one is incident on vj .

Second, suppose that one of Vj,in, Vj,out has no arcs connecting it to vi. We color this set i
and leave the other set colored j. Observe that one of Vi,in, Vi,out has no arc connecting it to
vj . We color that set j and leave the other set colored i. In the new coloring both vi, vj either
have no out-neighbor or no in-neighbor with the same color in Vi,in ∪ Vi,out ∪ Vj,in ∪ Vj,out,
so the coloring is proper and we can invoke Claim 6. In the remainder we assume that vi has
one arc connecting it to each of Vj,in, Vj,out.

Third, suppose that both arcs of Ei,j incident on vi have the same direction (into or out
of vi). We then color Vi,in ∪ Vi,out with j and Vj,in ∪ Vj,out with i. In the new coloring vj
has at most one neighbor with the same color and vi has either only in-neighbors or only
out-neighbors with color i, so the coloring is acyclic and we again invoke Claim 6.

Finally, we have the case where two arcs of Ei,j are incident on vi, they have different
directions, one has its other endpoint in Vj,in and the other in Vj,out. Observe that one of
Vi,in, Vi,out has no arc connecting it to vj and suppose without loss of generality that it is
Vi,in (the other case is symmetric). We color Vi,in with j and leave Vi,out with color i. One
of Vj,in, Vj,out has an incoming arc from vi; we color this set i and leave the other colored j.
Now, vi only has out-neighbors with color i, while vj has at either only in-neighbors or only
out-neighbors colored j, so we are done in this final case. J

Our second result concerns a parameter more restricted than feedback vertex set, namely
feedback arc set. Note that, in a sense, the class of graphs of bounded feedback arc set
contains the class of graphs that have bounded feedback vertex set and bounded degree
(selecting all incoming or outgoing arcs of each vertex of a feedback vertex set produces a
feedback arc set), so the following theorem may seem more general. However, a closer look
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reveals that the following result is incomparable to Theorem 5, because graphs of feedback
vertex set k and maximum degree 4k − 3 could have feedback arc set of size up to almost
2k2 (consider for example a bi-direction of the complete graph Kk,2k−2), while the following
theorem is able to handle graphs of unbounded degree but feedback arc set up to (only)
k2 − 1. As we show in Theorem 8, this is tight.

I Theorem 7. Let D be a digraph with a feedback arc set F of size at most k2 − 1. Then D

is k-colorable if and only if D[V (F )] is k-colorable, and such a coloring can be extended to D
in polynomial time.

Proof. It is obvious that if D[V (F )] is not k-colorable then D is not k-colorable. We will
prove the converse by induction. For k = 1 it is trivial to see that if |F | = 0 then D is acyclic
so is 1-colorable. Assume then that any digraph D with a feedback arc set F of size at most
(k − 1)2 − 1 is (k − 1)-colorable, if and only if D[V (F )] is (k − 1)-colorable.

Suppose now that we have D with a feedback arc set F with |F | ≤ k2 − 1 and we find
that D[V (F )] is k-colorable (this can be tested in 2O(k2) time). Let c : V (F ) → [k] be a
coloring of V (F ). We distinguish two cases:

Case 1. There exists a color class (say Vk) such that at least 2k− 1 arcs of F are incident
on Vk. Then D−Vk has a feedback arc set of size at most |F |− (2k−1) ≤ k2−1− (2k−1) ≤
(k − 1)2 − 1 and V1, . . . , Vk−1 remains a valid coloring of the remainder of V (F ). So by
inductive hypothesis D − Vk has a (k − 1)-coloring. By using the color k on Vk we have a
k-coloring for D.

Case 2. Each color class is incident on at most 2k− 2 arcs of F. We then claim that there
is a way to color V (F ) so that all arcs of F have distinct colors on their endpoints. If we
achieve this, we can trivially extend the coloring to the rest of the graph, as arcs of F become
irrelevant. Now, let us call v ∈ V (F ) as type one if v is incident on at least k arcs of F . We
will show that there is at most one type one vertex in each color class. Indeed, if u, v ∈ Vi are
both type one, then they are incident on at least 2k − 1 arcs of F (there is no digon between
u and v because they share a color), which we assumed is not the case, as Vi is incident on
at most 2k − 2 arcs of F . Therefore, we can use k distinct colors to color all the type one
vertices of V (F ). Each remaining vertex of V (F ) is incident on at most k − 1 arcs of F . We
consider these vertices in some arbitrary order, and give each a color that doesn’t already
appear on the other endpoints of its incident arcs from F . Such a color always exists, and
proceeding this way we color all arcs of F with distinct colors. This completes the proof. J

4.2 Hardness
In this section we improve upon our previous reduction by producing a graph which has
bounded degree and bounded feedback arc set. Our goal is to do this efficiently enough to
(almost) match the algorithmic bounds given in the previous section.

I Theorem 8. For all k ≥ 2, it is NP -hard to decide if a digraph D = (V,E) is k-colorable,
even if D has a feedback vertex set of size k, a feedback arc set of size k2, and maximum
degree ∆ = 4k − 1.

Proof. Recall that in the proof of Theorem 4 for k ≥ 2 we construct a graph that is made up
of two parts: the palette part, which is a bi-directed clique that contains v1, v2 and the k− 2
vertices we have possibly added to increase the chromatic number (call them v3, . . . , vk); and
the part that represents the formula. We perform the same reduction except that we will
now edit the graph to reduce its degree and its feedback arc set. In particular, we delete the
palette vertices and replace them with a gadget that we describe below.
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We construct a new palette that will be a bi-directed clique of size k, whose vertices
are now labeled vi, i ∈ [k]. Let M be the number of vertices of the graph we constructed
for Theorem 4. We construct M “rows” of 2k vertices each. More precisely, for each
` ∈ [M ], i ∈ [k] we construct the two vertices vi`,in, vi`,out. In the remainder, when we refer
to row `, we mean the set {vi`,in, vi`,out | i ∈ [k]}. For all i, j ∈ [k], i < j we connect the
vertices of row 1 to the vertices of the clique as shown in Figure 2. For all i, j ∈ [k], i < j

and ` ∈ [M − 1] we connect the vertices of rows `, `+ 1 as shown in Figure 3.
In more detail we have:

1. For each i ∈ [k] the vertex vi has an arc to all vj1,out for j ≥ i, an arc to vj1,in for all j 6= i,
and an arc from vj1,in for all j ≤ i.

2. For each ` ∈ [M ], for all i < j we have the following four arcs: vj`,outvi`,out, vi`,outv
j
`,in,

vj`,inv
i
`,in, and v

j
`,outv

i
`,in. As a result, inside a row arcs are oriented from out to in vertices;

and between vertices of the same type from larger to smaller indices i.
3. For each ` ∈ [M − 1], for all i ∈ [k] we have the arcs vi`,outvi`+1,out and vi`+1,inv

i
`,in. As a

result, the vi`,out vertices form a directed path going out of vi and the vi`,in vertices form
a directed path going into vi.

4. For each ` ∈ [M−1], for all i, j ∈ [k] with i < j we have the arcs vi`,outv
j
`+1,in, vi`,outv

j
`+1,out,

vi`+1,inv
j
`,in, v

j
`,outv

i
`+1,in. Again, arcs incident on an out and an in vertex are oriented

towards the in vertex.

row 1

FVSvi vj

vi
1,in

vj
1,in

vi
1,out

vj
1,out

Figure 2 Graph showing the connections between two vertices of the clique palette (vi, vj , where
i < j) and the corresponding vertices of row 1.

row `
(for ` ≥ 1)

row `+ 1

vi
`,in

vj
`,in

vi
`,out

vj
`,out

vj
`+1,out

vj
`+1,in

vi
`+1,in

vi
`+1,out

Figure 3 Here we present the way we are connecting the vertices of the rows i and i+ 1

Let P be the gadget we have constructed so far, consisting of the clique of size k and the
M rows of 2k vertices each. We will establish the following properties.
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1. Deleting all vertices vi, i ∈ [k] makes P acyclic and eliminates all directed paths from any
vertex vi`,in to any vertex vj`′,out, for all i, j ∈ [k], `, `′ ∈ [M ].

2. The maximum degree of any vertex of P is 4k − 2.
3. There is a k-coloring of P that gives all vertices of {vi`,in, vi`,out | ` ∈ [M ]} color i, for all

i ∈ [k].
4. In any k-coloring of P , for all i, all vertices of {vi`,in, vi`,out | ` ∈ [M ]} receive the same

color as vi.

Before we go on to prove these four properties of P , let us explain why they imply the
theorem. To complete the construction, we insert P in our graph in the place of the palette
clique we were previously using. To each vertex of the original graph, we associate a distinct
row of P (there are sufficiently many rows to do this). Now, if vertex u of the original graph,
which is associated to row `, had an arc from (respectively to) the vertex vi in the palette,
we add an arc from vi`,out (respectively to vi`,in).

Let us first establish that the new graph has the properties promised in the theorem.
The maximum degree of any vertex in the main (non-palette) part remains unchanged and is
2k + 2 ≤ 4k − 1 while the maximum degree of any vertex of P is now at most 4k − 1, as we
added at most one arc to each vertex. Deleting {vi | i ∈ [k]} eliminates all cycles in P , but
also all cycles going through P , because such a cycle would need to use a path from a vertex
vi`,in (since these are the only vertices with incoming arcs from outside P ) to a vertex vj`′,out.
Deleting all of P leaves the graph acyclic (recall that the palette clique was a feedback vertex
set in our previous construction), so there is a feedback vertex set of size k.

For the feedback arc set we remove the arcs {vjvi | j > i, i, j ∈ [k]} ∪ {vi1,invj | j >
i, i, j ∈ [k]} ∪ {vi1,invi | i ∈ [k]}. Note that these are indeed k2 arcs. To see that this is a
feedback arc set, suppose that the graph contains a directed cycle after its removal. This
cycle must contain some vertex vi, because we argued that {vi | i ∈ [k]} is a feedback vertex
set. Among these vertices, select the vi with minimum i. We now examine the arc of the
cycle going into vi. Its tail cannot be vj for j > i, as we have removed such arcs, nor vj for
j < i, as this contradicts the minimality of i. It cannot be vi1,in as we have also removed
these arcs. And it cannot be vj1,in for j < i, as these arcs are also removed. But no other
in-neighbor of vi remains, contradiction.

Let us also argue that using the gadget P instead of the palette clique does not affect the k-
colorability of the graph. This is not hard to see because, following Properties 3 and 4 we can
assume that any k-coloring of P will give color i to all vertices of {vi}∪{vi`,in, vi`,out | ` ∈ [M ]}.
The important observation is now that, for all ` ∈ [M ] there will always exist a monochromatic
path from vi to vi`,out and from vi`,in to vi. We now note that, if we fix a coloring of the
non-palette part of the graph, this coloring contains a monochromatic cycle involving vertex
vi of the original palette if and only if the same coloring gives a monochromatic cycle in the
new graph going through vi.

Finally, we need to prove the four Properties.
Property 1. Once we delete {vi | i ∈ [k]} we observe that for every vertex vi`,in its only
outgoing arcs are to vertices vj`,in for j < i or vertices vj`−1,in for j ≥ i. This shows that we
have eliminated all directed paths from vi`,in to vj`′,out. Furthermore, this shows that no cycle
can be formed using vi`,in vertices, since all their outgoing arcs either move to a previous row,
or stay in the same row but decrease i. In a similar way, no directed cycle can be formed
using only vi`,out vertices, as all their outgoing arcs either move to a later row, or stay in the
same row but decrease i.
Property 2. For a vertex vi we have 2k − 2 arcs incident on it from the clique; the two
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arcs connecting it to vi1,in, vi1,out; two arcs connecting it to vj1,in, v
j
1,out for j > i; two arcs

connecting it to vj1,in for j < i. This gives 2k − 2 + 2i+ 2(k − i) = 4k − 2.
For a vertex vi1,in we have one arc to vj for j ≤ i; two arcs to vj for j > i; arcs to all

vjin, v
j
out for j 6= i; arcs to vj2,in for j ≤ i. This gives i+ 2(k − i) + 2(k − 1) + i = 4k − 2.

For a vertex vi1,out we have arcs from vj for j ≤ i; arcs to vj1,in, v
j
1,out for j 6= i; arcs to vj2,in

and vj2,out for j ≥ i; arcs to v
j
2,in for all j < i. This gives i+ 2(k − 1) + 2(k − i) + i = 4k − 2.

For a vertex vi`,in, ` ≥ 2 we have arcs to vj`−1,in, for j ≥ i; to vj`−1,out for j 6= i; to
vj`,in, v

j
`,out for j 6= i; from vj`+1,in for j ≤ i. This gives (k−i+1)+(k−1)+2(k−2)+i = 4k−2.

Finally, for a vertex vi`,out, ` ≥ 2 we have arcs from vj`−1,out for j ≤ i; to v
j
`,in, v

j
`,out for

j 6= i; to all vj`+1,in, for j 6= i; to vj`+1,out for j ≥ i. This gives i+2(k−1)+(k−1)+(k−i+1) =
4k − 2.
Property 3. We assign color i to vi and to {vi`,in, vi`,out | ` ∈ [M ]}. We claim that there is
no monochromatic cycle in P with this coloring. Indeed, if such a cycle exists, it must use
vi, as {vi | i ∈ [k]} is a feedback vertex set. But observe that with the coloring we gave, for
each ` ∈ [M − 1] the only out-neighbor of vi`,out with color i is vi`+1,out and viM,out has no
out-neighbor of color i. Similar examination of {vi`,in | ` ∈ [M ]} shows that the part of P
colored i induces a directed path on 2M + 1 vertices with vi in the middle.
Property 4. Since the vertices vi induce a clique, we may assume without loss of generality
that we are given a coloring c where c(vi) = i. We prove the property by induction on `.
For ` = 1, we will first prove that c(vi1,in) = i by induction on i. For the base case we have
that v1

1,in is connected with a digon with vj for all j > 1, so c(v1
1,in) = 1. Now, fix a j and

suppose that for all i < j we have c(vi1,in) = i. Then vj1,in cannot receive any color i < j,
because this would make a cycle with vi1,in, vi. It can also not receive a color i > j because
it has a digon to all vi for i > j. Hence, c(vj1,in) = j. Continuing on ` = 1, we will prove by
reverse induction on i that c(vi1,out) = i. For c(vk1,out) if we give this vertex any color j < k

then we get a cycle with vj , vj1,in, so we must have c(vk1,out) = k. Now fix an i and suppose
that for all j > i we have c(vj1,out) = j. If we give vi1,out a color j > i this will make a cycle
with vj , vj1,out, vi1,out, v

j
1,in. But if we give vi1,out a smaller color j < i, this will also make a

cycle with vj , vj1,in. Therefore, c(vi1,out) = i for all i.
Suppose now that the property is true for row ` and we want to prove it for row `+ 1.

We will use similar reasoning as in the previous case. We will also use the observation that
for all i, there is a monochromatic path from vi to vi`,out and a monochromatic path from
vi`,in to vi. First, we show by induction on i that c(vi`+1,in) = i for all i. For v1

`+1,in we
observe that if we give this vertex color j > 1, then using the arcs from vj`,out and to vj`,in
we have a monochromatic cycle of color j. Hence, c(v1

`+1,in) = 1. Fix a j and suppose that
for all i < j we have c(vi`+1,in) = i. If we assign c(vj`+1,in) a color i < j, then we get a cycle
using vi`,out, v

j
`+1,in, v

i
`+1,in, v

i
`,in. If we assign it a color i > j, then we get the cycle using

vi`,out, v
j
`+1,in, v

i
`,in. So, for all i we have c(vi`+1,in) = i. To complete the proof, we do reverse

induction to show that c(vi`+1,out) = i. For c(vk`+1,out) we cannot give this vertex color j < k

because this will give a cycle using vj`,out, vk`+1,out, v
j
`+1,inv

j
ell,in. Now, fix an i and assume

that for j > i we have c(vj`+1,out) = j. We cannot assign vi`+1,out any color j > i because
this would give the cycle vj`,out, v

j
`+1,out, v

i
`+1,out, v

j
`+1,in, v

j
`,in. We can also not assign any

color j < i as this gives the cycle using vj`,out, vi`+1,out, v
j
`+1,in, v

j
`,in. We conclude that for all

i we have c(vi`+1,out) = i.
J
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5 Treewidth

In this section we consider the complexity of Digraph Coloring with respect to parameters
measuring the acyclicity of the underlying graph, namely, treewidth and treedepth. Before we
proceed let us recall that in all graphs G we have χ(G) ≤ tw(G) + 1 ≤ td(G) + 1. This means
that if our goal is simply to obtain an FPT algorithm then parameterizing by treewidth
implies that the graph’s chromatic number (and therefore also the digraph’s dichromatic
number) is bounded. We first present an algorithm with complexity ktw(tw!) which, using
the above argument, proves that Digraph Coloring is FPT parameterized by treewidth.

I Theorem 9. There is an algorithm which, given a digraph D on n vertices and a tree decom-
position of its underlying graph of width tw decides if D is k-colorable in time ktw(tw!)nO(1).

Proof. The proof uses standard techniques so we sketch some details. In particular we
assume that we are given a nice tree decomposition on which we will perform dynamic
programming. Before we proceed, let us slightly recast the problem. We will say that a
digraph D = (V,E) is k-colorable if there exist two functions c, σ such that (i) c : V → [k]
partitions V into k sets (ii) σ is an ordering of V (iii) for all arcs uv ∈ E we have either
c(u) 6= c(v) or σ(u) < σ(v). It is not hard to see that this reformulation is equivalent to the
original problem. Indeed, if we have a k-coloring, since each color class is acyclic, we can find
a topological ordering σi of the graph G[Vi] induced by each color class and then concatenate
them to obtain an ordering of V . For the converse direction, the existence of c, σ implies
that if we look at vertices of each color class, σ must induce a topological ordering, hence
each color class is acyclic.

Now, let D be a digraph and S be a subset of its vertices. Let (c, σ) be a pair of coloring
and ordering functions that prove that D is k-colorable. Then, we will say that the signature
of solution (c, σ) for set S is the pair (cS , σS) where cS : S → [k] is defined as cS(u) = c(u)
and σS : S → [|S|] is an ordering function such that for all u, v ∈ S we have σS(u) < σS(v)
if and only if σ(u) < σ(v). In other words, the signature of a solution is the restriction of the
solution to the set S.

Given a rooted nice tree decomposition of D, let Bt be a bag of the decomposition and
denote by B↓t the set of vertices of D which are contained in Bt and bags in the sub-tree
rooted at Bt. Our dynamic programming algorithm stores for each Bt a collection of all pairs
(c, σ) such that there exists a k-coloring of D[B↓t ] whose signature is (c, σ). If we manage to
construct such a table for each node, it will suffice to check if the collection of signatures of
the root is empty to decide if the graph is k-colorable.

The table is easy to initialize for Leaf nodes, as the only valid signature contains the
empty coloring and ordering function. For an Introduce node that adds u to a bag containing
Bt we consider all signatures (c, σ) of contained in the table of the child bag. For each such
signature we construct a signature (c′, σ′) which is consistent with (c, σ) but also colors u
and places it somewhere in the ordering (we consider all such possibilities). For each (c′, σ′)
we delete this signature if u has a neighbor in the bag who is assigned the same color by
c′ but such that their arc violates the topological ordering σ′. We keep all other produced
signatures. To see that this is correct observe that u has no neighbors in B↓t \Bt, because
all bags are separators, so if we produce an ordering of B↓t consistent with σ′ the only arcs
incident on u that could violate it are contained in the bag (and have been checked). For
Forget nodes the table is easily update by keeping only the restrictions of valid signatures to
the new bag. Finally, for Join nodes we keep a signature (c, σ) if and only if it is valid for
both sub-trees. Again this is correct because nodes of one sub-tree not contained in the bag
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do not have neighbors in the other sub-tree, so as long as we produce an ordering consistent
with σ we can concatenate we cannot violate the topological ordering condition.

For the running time observe that the size of the DP table is ktw(tw!), because we consider
all colorings and all ordering of each bag. In Introduce nodes we spend polynomial time for
each entry of the child node (checking all placements of the new vertex), while computation
in Join nodes can be performed in time linear in the size of the table. So the running time is
in the end ktw(tw!)nO(1). J

As we explained, even though Theorem 9 implies that Digraph Coloring is FPT
parameterized by treewidth, the complexity it gives is significantly worse than the complexity
of Coloring, which is essentially ktw. Our main result in this section is to show that this is
likely to be inevitable, even if we focus on the more restricted case of treedepth and 2 colors.

I Theorem 10. If there exists an algorithm which decides if a given digraph on n vertices
and (undirected) treedepth td is 2-colorable in time tdo(td)nO(1), then the ETH is false.

Proof. Suppose we are given a 3-SAT formula φ with n variables and m clauses. We will
produce a digraph G such that |V (G)| = 2O(n/ logn)m and td(G) = O(n/ logn) and G is
2-colorable if and only if φ is satisfiable. Before we proceed, observe that if we can construct
such a graph the theorem follows, as an algorithm with running time O∗(tdo(td)) for 2-coloring
G would decide the satisfiability of φ in time 2o(n).

To simplify presentation we assume without loss of generality that n is a power of 2
(otherwise adding dummy variables to φ can achieve this while increasing n be a factor of at
most 2). We begin the construction of G by creating logn independent sets V1, . . . , Vlogn,
each of size d 2en

log2 n
e. We add a vertex u and connect it with arcs in both directions to all

vertices of ∪i∈[logn]Vi. We also partition the variables of φ into logn sets X1, . . . , Xlogn of
size at most d n

logne.
The main idea of our construction is that the vertices of Vi will represent an assignment

to the variables of Xi. Observe that all vertices of Vi are forced to obtain the same color
(as all are forced to have a distinct color from u), therefore the way these vertices represent
an assignment is via their topological ordering in the DAG they induce together with other
vertices of the graph which obtain the same color.

To continue our construction, for each i ∈ [logn] we do the following: we enumerate all
the possible truth assignments of the variables of Xi and for each such truth assignment
σ : Xi → {0, 1}|Xi| we define (in an arbitrary way) a distinct ordering ρ(σ) of the vertices of
Vi. We will say that the ordering ρ(σ) is the translation of assignment σ. Note that there
are |Vi|! ≥ ( 2en

log2 n
)! ≥ ( 2n

log2 n
)

2en
log2 n = 2

2en
log2 n

(1+logn−2 log logn)
> 2d

n
log n e for n sufficiently large,

so it is possible to translate truth assignments to Xi to orderings of Vi injectively. Note that
enumerating all assignments for each group takes time 2O(n/ logn) = 2o(n).

Consider now a clause cj of φ and suppose some variable of the group Xi appears in cj .
For each truth assignment σ to Xi which satisfies cj we construct an independent set Sj,i,σ
of size |Xi| − 1, label its vertices s`j,i,σ, for ` ∈ [|Xi| − 1]. For each ` we add an arc from
ρ(σ)−1(`) to s`j,i,σ and an arc from s`j,i,σ to ρ(σ)−1(`+ 1). In other words, the `-th vertex of
Sj,i,σ has an incoming arc from the vertex of Vi which is `-th according to the ordering ρ(σ)
which is the translation of assignment σ and an outgoing arc to the vertex of Vi which is
in position (`+ 1) in the same ordering. Observe that this implies that if all vertices of Vi
and of Sj,i,σ are given the same color, then the topological ordering of the induced DAG will
agree with ρ(σ) on the vertices of Vi.

To complete the construction, for each clause cj we do the following: take all independent
sets Sj,i,σ which we have constructed for cj and order them in a cycle in some arbitrary way.
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For two sets Sj,i,σ, Sj,i′,σ′ which are consecutive in this cycle add a new “connector” vertex
pj,i,σ,i′,σ′ , all arcs from Sj,i,σ to this vertex, and all arcs from this vertex to Sj,i′,σ′ . Finally,
we connect each connector vertex pj,i,σ,i′,σ′ we have constructed to an arbitrary vertex of V1
with a digon. This completes the construction.

Let us argue that if φ is satisfiable, then G is 2-colorable. We color u with color 2, all
the vertices in Vi for i ∈ [logn] with 1 and all connector vertices pi,j,σ,i′,σ′ with 2. For
each clause cj there exists a group Xi that contains a variable of cj such that the supposed
satisfying assignment of φ, when restricted to Xi gives an assignment σ : Xi → {0, 1}|Xi|

which satisfies cj . Therefore, there exists a corresponding set Sj,i,σ. Color all vertices of this
set with 1. After doing this for all clauses, we color all other vertices with 2. We claim this
is a valid 2-coloring. Indeed, the graph induced by color 2 is acyclic, as it contains u (but
none of its neighbors) and for each cj , all but one of the sets Sj,i,σ and the vertices pj,i,σ,i′,σ′ .
Since these sets have been connected in a directed cycle throught connector vertices, and for
each cj we have colored one of these sets with 1, the remaining sets induce a DAG. For the
graph induced by color 1 consider for each Vi the ordering ρ(σ), where σ is the satisfying
assignment restricted to Vi. Every vertex outside Vi which received color 1 and has arcs to
Vi, has exactly one incoming and one outgoing arc to Vi. Furthermore, the directions of
these arcs agree with the ordering ρ(σ). Hence, since ∪i∈[logn]Vi touches all arcs with both
endpoints having color 1 and all such arcs respect the orderings of Vi, the graph induced by
color 1 is acyclic.

For the converse direction, suppose we have a 2-coloring of G. Without loss of generality,
u has color 2 and ∪i∈[logn]Vi has color 1. Furthermore, all connecteors pj,i,σ,i′,σ′ also have
color 2. Consider now a clause cj . We claim that there must be a group Sj,i,σ such that Sj,i,σ
does not use color 2. Indeed, if all such groups use color 2, since they are linked in a directed
cycle with all possible arcs between consecutive groups and connectors, color 2 would not
induce a DAG. So, for each cj we find a group Sj,i,σ that is fully colored 1 and infer from this
the truth assignment σ for the group Xi. Doing this for all clauses gives us an assignment
that satisfies every clause. However, we need to argue that the assignment we extract is
consistent, that is, there do not exist Sj,i,σ and Sj′,i,σ′ which are fully colored 1 with σ 6= σ′.
For the sake of contradiction, suppose that two such sets exist, and recall that ρ(σ) 6= ρ(σ′).
We now observe that if Sj,i,σ ∪ Vi only uses color 1, then any topological ordering of Vi in
the graph induced by color 1 must agree with ρ(σ), which is a total ordering of Vi. In a
similar way, the ordering of Vi must agree with ρ(σ′), so if σ 6= σ′ we get a contradiction.

Finally, let us argue about the parameters of G. For each clause cj of φ we construct an
independent set of size O(n/ log2 n) for each satisfying assignment of a group Xi containing
a variable of cj . There are at most 3 such groups, and each group has at most 2n/ logn

satisfying assignments for cj , so |V (G)| = 2O(n/ logn)m.

For the treedepth, recall that deleting a vertex decreases treedepth by at most 1. We
delete u and all of ∪i∈[logn]Vi which are O(n/ logn) vertices in total. It now suffices to
prove that in the remainder all components have treedepth O(n/ logn). In the remainder
every component is made up of the directed cycle formed by sets Sj,i,σ and connectors
pj,i,σ,i′,σ′ . We first delete a vertex pj,i,σ,i′,σ′ to turn the cycle into a directed “path” of length
L = 2O(n/ logn). We now use the standard argument which proves that paths of length L
have treedepth logL, namely, we delete the pj,i,σ,i′,σ′ vertex that is closest to the middle of
the path and then recursivle do the same in each component. This shows that the remaining
graph has treedepth logarithmic in the length of the path, therefore at most O(n/ logn). J
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6 Conclusions

In this paper we have strengthened known results about the complexity of Digraph Color-
ing on digraphs which are close to being DAGs, precisely mapping the threshold of tractability
for DFVS and FAS; and we precisely bounded the complexity of the problem parameterized
by treewidth, uncovering an important discrepancy with its undirected counterpart. One
question for further study is to settle the degree bound for which k-Digraph Coloring
is NP-hard for DFVS k, and more generally to map out how the tractability threshold for
the degree evolves for larger values of the DFVS from 4k − Θ(1) to 2k + Θ(1), which is
the correct threshold when the DFVS is unbounded. With regards to undirected structural
parameters, it would be interesting to investigate whether a vco(vc) algorithm exists for
2-Digraph Coloring, where vc is the input graph’s vertex cover, as it seems challenging
to extend our hardness result to this more restricted case.
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A Appendix

I Theorem 11. It is NP-hard to decide if a given digraph with maximum degree 6 is
2-colorable.

Proof. We perform a reduction from NAE-3-SAT, a variant of 3-SAT where we are asked
to find an assignment that sets at least one literal to True and one to False in each clause.
First we remark that this problem remains NP-hard if all literals appear at most twice. (To
see this, we may use the trick of Lemma 3 to decrease the number of appearances of each
variable). Suppose then that we have an instance φ with n variables x1, . . . , xn, and m

clauses, where each literal appears at most twice.
We construct a digraph as follows: for each variable xi we make a digon and label its

vertices xi,¬xi. We call this part of the digraph the assignment part. For each clause we
make a directed cycle of size equal to the clause and associate each vertex of the cycle with
a literal. We call this part the satisfaction part. Finally, for each vertex of the assignment
part we connect it with digons with each vertex of the satisfaction part that represents the
opposite literal.

The digraph we constructed has maximum degree 6 in the assignment part, because each
literal appears at most twice; and 4 in the satisfaction part. If there is a satisfying assignment
then we give color 1 to all True literals of both parts and color 2 to everything else. Observe
that all arcs connecting the two parts are bichromatic and if the assignment is satisfying all
directed cycles are also bichromatic. For the converse direction, if there is a 2-coloring we
can extract an assignment by setting to True all literals which have color 1 in the assignment
part. Note that this implies that in the satisfaction part all literals which have color 1 have
been set to True and all literals which have color 2 have been set to False, because of the
digons connecting the two parts. But this implies that our assignment is satisfying because
all cycles are bichromatic. J

http://www.sciencedirect.com/science/article/pii/S0024379509002869
http://www.sciencedirect.com/science/article/pii/S0024379509002869
http://dx.doi.org/https://doi.org/10.1016/j.laa.2009.05.027

	1 Introduction
	2 Definitions and Notation
	3 Bounded Feedback Vertex Set
	4 Bounded Feedback Arc Set and Bounded Degree
	4.1 Algorithmic Results
	4.2 Hardness

	5 Treewidth
	6 Conclusions
	A Appendix

