
Determining a Slater Winner is Complete for
Parallel Access to NP
Michael Lampis
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France
michail.lampis@lamsade.dauphine.fr

Abstract
We consider the complexity of deciding the winner of an election under the Slater rule. In this

setting we are given a tournament T = (V, A), where the vertices of V represent candidates and the
direction of each arc indicates which of the two endpoints is preferable for the majority of voters.
The Slater score of a vertex v ∈ V is defined as the minimum number of arcs that need to be reversed
so that T becomes acyclic and v becomes the winner. We say that v is a Slater winner in T if v has
minimum Slater score in T .

Deciding if a vertex is a Slater winner in a tournament has long been known to be NP-hard.
However, the best known complexity upper bound for this problem is the class Θp

2, which corresponds
to polynomial-time Turing machines with parallel access to an NP oracle. In this paper we close
this gap by showing that the problem is Θp

2-complete, and that this hardness applies to instances
constructible by aggregating the preferences of 7 voters.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography → Problems, reductions and completeness

Keywords and phrases Slater winner, Feedback Arc Set, Tournaments

Acknowledgements I am grateful to Jérôme Lang for letting me know about this problem and for
correctly conjecturing that it is complete for Θp

2.

https://orcid.org/0000-0002-5791-0887
mailto:michail.lampis@lamsade.dauphine.fr

2 Determining a Slater Winner is Complete for Parallel Access to NP

1 Introduction

Voting rules, which are a topic of central interest in computational social choice, are schemes
which allow us to aggregate the preferences of a set of voters among a set of candidates, in
order to select a single winner who is most compatible with the voters’ wishes. The main
challenge of this area is that, even if the preferences of each voter are internally consistent
(that is, each voter has a complete ranking of all candidates), it is easy to run into situations
such as the famous Condorcet paradox where collective preferences are cyclic and hence no
clear winner exists. Many rules have therefore been proposed to deal with this situation and
select a winner who is as acceptable as possible to as many voters as possible.

In this paper we investigate the computational complexity of a classical and very natural
such voting scheme that is often referred to as the Slater rule. Intuitively, the idea of the
Slater rule is the following: we consider every possible pair of candidates in our pool a, b and
check whether the majority of voters prefers a or b. This allows us to construct a tournament
T that depicts the results of each pariwise matchup between candidates. If T is transitive
(that is, acyclic), then picking a winner is easy. If not, the Slater rule is that we should
select as the winner a candidate who is the winner of a transitive tournament T ′ that is
at minimum edit distance from T . In other words, a candidate c is a Slater winner if the
number of pairwise matchups that we need to ignore to make c a clear winner is minimized.

More formally, the problem we consider is defined as follows. We are given a set V of n
candidates and the preferences of m voters, where each voter’s preferences are given as a
total ordering of V . We determine a pair-wise relation on V as follows: for a, b ∈ V we say
that a wins against b if the majority of voters prefers candidate a over candidate b. In this
way, assuming that there are no ties (which is guaranteed if the number of voters is odd), we
can construct a tournament T = (V,A), where we have the arc b→ a (that is (b, a) ∈ A) if a
wins against b. In this setting, the Slater score of a candidate c is the minimum number of
arcs of T that need to be reversed so that T becomes transitive (acyclic) with c being placed
last (that is, with c being a sink). The Slater winner of a tournament is a candidate with
minimum Slater score. Intuitively, a candidate c is a Slater winner if there exists a linear
ordering ≺ of the candidates that ranks c as the winner and is as compatible as possible with
the voters’ aggregated preferences, in the sense that the edit distance between ≺ and T is
minimum.

The notion of Slater winner is very well-studied and can be seen as a special case of
Kemeny voting. Indeed, in Kemeny voting we construct a weighted tournament where the
weight of the arc b→ a denotes the margin of victory of a over b. In this sense, the Slater
system corresponds to a version of Kemeny voting where we only retain as information
which of the two candidates would win a head-to-head match-up, but ignore the margin of
victory. In other words, Slater voting is the special case of Kemeny voting where the arcs are
unweighted. For more information about these and other related voting systems, we refer
the reader to [5].

The main question we are interested in in this paper is the computational complexity
of determining if a vertex v of a tournament is a Slater winner. It has long been known
that this question is at least NP-hard [15]. Indeed, it is not hard to see that if we had an
oracle for the Slater problem we would be able to produce in polynomial time an ordering of
any tournament in a way that minimizes the number of inversed arcs. This would solve the
Feedback Arc Set problem, which is known to be NP-complete on tournaments [1, 2, 7, 9].
On the other hand, membership of this problem in NP is not obvious. The best currently
known upper bound on its complexity is the class Θp

2, shown by Hudry [8, 15].

Michael Lampis 3

The class Θp
2 seems like a natural home for the Slater problem. As a reminder, this class

captures as a model of computation polynomial-time Turing machines which are allowed
to use an NP oracle either a polynomial number of times non-adaptively (that is, with
questions not being allowed to depend on previous answers), or a logarithmic number of
times adaptively. Hence, this class is often called “Parallel Access to NP” and written as PNP

|| .
Intuitively, solving the Slater problem requires us to calculate exactly a value that is NP-hard
to compute (the minimum feedback arc set of a tournament). This can be done either by
asking polynomially many non-adaptive NP queries to an oracle (for each k = 1, 2, . . . we ask
if the feedback arc set has size at most k), or a logarithmic number of adaptive queries (where
we essentially perform binary search). It has therefore been conjectured that determining if a
candidate is a Slater winner is not just NP-hard, but Θp

2-complete [4, 5, 15]. We recall that
Θp

2 is strongly suspected to be a much larger class than NP – indeed, because Θp
2 contains

all of the so-called Boolean hierarchy of classes, it is known that if it were the case that
Θp

2 = NP , then the polynomial hierarchy would collapse [6]. Hence, the difference between
the known upper and lower bounds on the complexity of determining a Slater winner is not
trivial.

The result we present in this paper settles this problem. We confirm the conjecture that
determining the Slater winner of a tournament is indeed Θp

2-complete. This places Slater
voting in the same class as related voting schemes, such as Kemeny [14], Dodgson [12], and
Young [16]. It also places it in the same class as the Slater rule used in [11] for a more general
judgment aggregation problem. We prove this result by modifying the reduction of Conitzer
[9], which showed that Feedback Arc Set on tournaments is NP-complete. The main
difference is that, rather than reducing from SAT, we need to reduce from a Θp

2-complete
variant, where we are looking for a maximum weight satisfying assignment that sets a certain
variable to True. This forces us to significantly complicate the reduction because we need to
encode in the objective function not only the number of satisfied clauses but also the weight
of the corresponding assignment.

Having settled the worst-case complexity of the problem in general, we go on to consider
a related question: what is the minimum number of voters for which determining a Slater
winner is Θp

2-complete? The motivation behind this question is that, even though any
tournament can be constructed by aggregating the preferences of a large enough number
of voters1, if the number of voters is limited, some tournaments can never arise. Hence
the problem may conceivably be easier if the number of voters is bounded. In the case of
the Slater rule, Bachmeier et al.[3] have shown that determining the Slater winner remains
NP-hard for 7 voters. By reusing and slightly adjusting their arguments we improve their
complexity lower bound to Θp

2-completeness for 7 voters.

2 Definitions and Preliminaries

A tournament is a directed graph G = (V,A) such that for all x, y ∈ V , exactly one of the
arcs (x, y), (y, x) appears in A. A feedback arc set (fas) of a digraph G = (V,A) is a set of
arcs A′ ⊆ A such that deleting A′ from G results in an acyclic digraph. If G is a tournament
and A′ is a fas of G, then the tournament obtained from G by reversing the direction of all
arcs of A′ is acyclic (or transitive). We will say that a total ordering ≺ of the vertices of a
digraph G = (V,A) implies the fas S = {(x, y) | (x, y) ∈ A, y ≺ x} (in the sense that S is

1 This is a classical result known in the literature as McGarvey’s theorem.

4 Determining a Slater Winner is Complete for Parallel Access to NP

the set of arcs that disagree with the ordering). We will say that an ordering of V is optimal
if the fas it implies has minimum size.

Given a digraph G = (V,A) and v ∈ V , we say that v is a Slater winner if for some k ≥ 0
the following hold: (i) there exists a fas S ⊆ A of G, such that v is a sink of G − S and
|S| = k (ii) every fas of G has size at least k. If v is a Slater winner in G = (V,A), then a
winning ordering for v is a linear ordering of V that places v last and implies a fas of G of
minimum size.

In a digraph G = (V,E), a set M ⊆ V is a module if the following holds: for all x, y ∈M
and z 6∈ M we have (x, z) ∈ A ↔ (y, z) ∈ A and (z, x) ∈ A ↔ (z, y) ∈ A. In other words,
every vertex outside M that has an arc to (respectively from) a vertex of M , has arcs to
(respectively from) all ofM . The following lemma, given by Conitzer [9] with slightly different
terminology, states that the vertices of a module can, without loss of generality, always be
ordered together. We say that the vertices of a set S are contiguous in an ordering ≺ if there
are no x, y ∈ S, z 6∈ S such that x ≺ z ≺ y.

I Lemma 1. Let G = (V,A) be a digraph, v ∈ V a vertex, and suppose we have a partition
of V into k non-empty modules V = M1]M2] . . .]Mk. If v is a Slater winner of G,
then there exists a winning ordering for v such that for all i ∈ [k], the vertices of Mi are
contiguous.

2.1 Complexity
We recall the class Θp

2 which is known to have several equivalent characterizations, including
PNP[log n] (P with the right to make O(logn) queries to an NP oracle), LNP (logarithmic-space
Turing machines with access to an NP oracle), and PNP

|| (P with parallel non-adaptive access
to an NP oracle). We refer the reader to [13] for more information on this class. In [17] it
was shown that the following problem is Θp

2-complete: given a graph G, is the maximum
clique size ω(G) odd? In [10] it is mentioned that the following problem, called Max Model,
is Θp

2-complete: given a satisfiable CNF formula φ containing a special variable x, is there a
satisfying assignment of φ that sets x to True and has maximum Hamming weight (among
all satisfying assignments), where the Hamming weight of an assignment is the number of
variables it sets to True.

We will use as a starting point for our reduction a variant of Max Model which we show
is Θp

2-complete below. The main difference between this variant and the standard version is
that we assume that the given formula is satisfied by the assignment that sets all variables
to False.

I Lemma 2. The following problem is Θp
2-complete. Given a 3-CNF formula φ containing a

distinguished variable x, such that φ is satisfied by the all-False assignment, decide if there
exists a satisfying assignment for φ that sets x to True and has maximum weight among all
satisfying assignments.

Proof. We start with a graph G = (V,E) for which the question is if the maximum
independent set has odd size (clearly this is equivalent to the question of deciding if the
maximum clique has odd size by taking the complement of G, so our starting problem is
Θp

2-complete [17]). Let |V | = n and suppose V = {v1, . . . , vn}. We construct a formula
φ as follows: for each i ∈ {1, . . . , n} we build (n + 1) variables x1

i , . . . , x
n+1
i and for each

j, k ∈ {1, . . . , n + 1} we add the clause (xj
i → xk

i); for each (vi1 , vi2) ∈ E, for each j, k ∈
{1, . . . , n+1} we add the clause (¬xj

i1
∨¬xk

i2
); we construct n variables y1, . . . , yn and clauses

that represent the constraints (y1 = x1
1), and for each i ∈ {2, . . . , n}, (yi = yi−1 ⊕ x1

i). We

Michael Lampis 5

set yn as the distinguished variable of φ. The formula construction can clearly be carried out
in polynomial time, and no clause has size more than three. Furthermore, setting everything
to False satisfies all clauses. Intuitively, for each vertex we have constructed n+ 1 variables
that will be set to True if we take this vertex in the independent set. The first set of clauses
ensures that we make a consistent choice among the copies; the second set that we indeed
select an independent set; and the third calculates the parity of its size.

We now observe that independent sets S of G naturally correspond to satisfying assign-
ments of φ. In particular, given an independent set S ⊆ V we can construct an assignment
by setting, for all i, j, xj

i to True if and only if vi ∈ S; we then complete the assignment by
giving appropriate values to the yi variables so that the parity constraints are satisfied. For
the converse direction, we can extract an independent set S from a satisfying assignment
by setting vi ∈ S if and only if the assignment sets x1

i to True. We observe the yn is set to
True in a satisfying assignment if and only if the corresponding independent set has odd size
(indeed, for each i, yi is set to True if the intersection of the independent set with the first i
vertices has odd size).

Suppose now that there exists an independent set S of maximum size k and that k is
odd. Then, there exists a satisfying assignment of maximum weight that sets yn to True.
Indeed, suppose for contradiction that the maximum satisfying assignment σ sets yn to
False. Then, the corresponding independent set S′ must have even size k′. Since k is
odd and S is a maximum independent set, k′ < k. But then, the weight of σ is at most
k′(n+ 1) + n < k(n+ 1). However, the assignment corresponding to S has weight at least
k(n+ 1), contradiction.

For the converse direction, suppose there exists a satisfying assignment σ of maximum
weight that sets yn to True. The corresponding independent set S has odd size, say |S| = k.
If there exists a maximum independent set S′ that has even size k′, then k′ > k. However,
the corresponding truth assignment σ′ would have weight at least k′(n+ 1) > k(n+ 1) + n.
Since σ has weight at most k(n+ 1) + n we get a contradiction to the optimality of σ.

We conclude that there is a satisfying assignment to φ of maximum weight that sets yn

to True if and only if the maximum independent set of G has odd size. J

3 Reduction to Slater

This section presents the main result of the paper, stated in Theorem 3. The theorem is
based on a reduction from the problem of Lemma 2 to the problem of deciding if a vertex of
a tournament is a Slater winner. Before we dive into the proof, let us give some high level
intuition (we also invite the reader to take a look at Figure 1).

We will build a tournament to represent a CNF formula φ with n variables and m clauses
by constructing n groups of “large” modules (Ai, Bi, Ci, Di, Ei, Fi, for i ∈ {1, . . . , n}) and m
“small” modules Tj for j ∈ {1, . . . ,m}. The internal structure of the modules will be irrelevant
and we only care about their ordering, which we may assume to be contiguous thanks to
Lemma 1. We will make sure to adjust the sizes of the modules and their connections so
that we have the following properties:

1. In any reasonable ordering, all six modules representing variable xi come before the six
modules representing xi+1. This will naturally order the large modules into n sections.

2. Inside a section, any reasonable ordering will place Ai, Bi, Ci first. Then, if the remaining
modules are ordered Di ≺ Ei ≺ Fi, this encodes that xi is set to True.

3. Connections between Tj and variable modules will be such that if Tj is placed completely
before or completely after the section of a variable xi, then the cost is the same. However,

6 Determining a Slater Winner is Complete for Parallel Access to NP

Ai

Bi

Ci

Di

Ei

Fi

Tj

(a) xi does not appear in cj

Ai

Bi

Ci

Di

Ei

Fi

Tj

(b) xi ∈ cj

Ai

Bi

Ci

Di

Ei

Fi

Tj

(c) ¬xi ∈ cj

Figure 1 Gadgets of the reduction of Theorem 3. On the left of each figure the six large modules
Ai, Bi, Ci, Di, Ei, Fi represent the variable xi. Missing (thick) arcs go downwards, so the ordering
is forced except for the last three modules. The depicted ordering Di ≺ Ei ≺ Fi encodes that xi

is True. In the three figures we depict the connections between the six modules and the small
module Tj representing clause cj depending on whether xi appears in cj . In the first case placing Tj

anywhere costs at least three arcs. In the second case, placing Tj after Ei costs two arcs, because
setting xi to True satisfies cj . In the last case, a similarly advantageous placement could be obtained
by using the ordering Ei ≺ Fi ≺ Di (which encodes that xi is False) and putting Tj before Di.

the cost may be lower if Tj is placed inside the section of xi. In that case, we must check
if xi appears in the clause cj in the original formula and the ordering of the section of xi

encodes an assignment to xi that satisfies cj .
4. Variable modules are so large that the ordering must always encode a satisfying assignment

to the formula (which exists by assumption). The ordering of Tj modules among themselves
is irrelevant.

5. In order to encode the weight of a satisfying assignment, we make Ei modules slightly
larger (we add 2 extra vertices). Then, the ordering Di ≺ Ei ≺ Fi, which encodes that
xi is True, is better than other orderings that encode satisfying assignments. Hence, the
optimal ordering will represent a satisfying assignment to φ with maximum weight.

6. Finally, in order to encode that there is a special variable xn which must be set to
True, we add one extra vertex to En. This makes sure that setting xn to True is more
advantageous than setting any other variable to True, but not more advantageous than
setting two other variables to True.

Armed with the intuition of the previous list, we are now ready to present all the details
of our reduction.

I Theorem 3. The following problem is Θp
2-complete: given a tournament T = (V,A) and a

vertex v ∈ V , decide if v is a Slater winner.

Proof. We perform a reduction heavily inspired by the reduction of [9] proving that computing
the minimum fas of a tournament is NP-complete, though we include a minor modification
proposed by Bachmeier et al. [3] which will later allow us to show that our instances are
realizable using seven voters. The main complication compared to the reductions of [9, 3] is
that we now need to encode the CNF formula in a way that satisfying assignments of larger
weight correspond to orderings with better objective value.

Michael Lampis 7

We start with a formula φ, as given in Lemma 2. Let x1, . . . , xn be the variables of φ
and suppose that the question is whether there exists a satisfying assignment of maximum
weight that sets xn to True. Recall that by assumption the all-False assignment satisfies φ.
Let m be the number of clauses of φ.

We define two numbers s1, s2 which satisfy the following properties:

s2
1 > (3n− 1)ms1s2 + 3ns1 +m2s2

2 + 9m(n− 1)s2 (1)
s1s2 > 3ns1 +m2s2

2 + 9m(n− 1)s2 (2)
s1 > m2s2

2 + 9m(n− 1)s2 (3)

For concreteness, set s2 = (n+m)5 and s1 = s5
2 = (n+m)25 and the above inequalities

are easily satisfied when n + m is sufficiently large. Importantly, s1, s2 are polynomially
bounded in n+m. Intuitively, the idea is that s1, s2 are two very large numbers, and s1 is
significantly larger. We will construct modules of size (roughly) s1 or s2, and the values are
chosen so that arcs between large modules will be very important, arcs between large and
small modules quite important, and arcs between small modules almost irrelevant.

We now construct our tournament as follows: for each i ∈ {1, . . . , n} we construct
6 modules, call them Ai, Bi, Ci, Di, Ei, Fi. Modules Ai, Bi, Ci, Di, Fi have size s1, while
modules Ei have size s1 + 2 if i < n, and the size of En is s1 + 3. Internally, each of these
modules induces a transitive tournament. For i < j we add all arcs from Ai ∪ Bi ∪ Ci ∪
Di ∪ Ei ∪ Fi to Aj ∪ Bj ∪ Cj ∪Dj ∪ Ej ∪ Fj . For each i ∈ {1, . . . , n} we add all possible
arcs (i) from Ai to Bi ∪ Ci ∪Di ∪ Ei ∪ Fi (ii) from Bi to Ci ∪Di ∪ Ei ∪ Fi (iii) from Ci to
Di ∪ Ei ∪ Fi (iv) from Di to Ei (v) from Ei to Fi (vi) from Fi to Di. The graph we have
constructed so far is a tournament with n sections, each made up of 6 modules. Each such
section represents a variable xi and the sections are linearly ordered. The structure inside
each section is essentially the transitive closure of Ai → Bi → Ci → Di → Ei → Fi with the
exception that arcs between Di and Fi are heading towards Di.

We now complete the construction by adding to the current tournament some vertices
that represent the clauses of φ. In particular, for each j ∈ {1, . . . ,m} we construct a module
Tj of size s2 to represent the j-th clause of φ. Internally, Tj is a transitive tournament.
For j, j′ ∈ {1, . . . ,m}, the arcs between Tj and Tj′ are set in an arbitrary direction. What
remains is to explain how the arcs between Tj and the modules representing the variables
are set so as to encode the incidence of variables with clauses. For each i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m} we do the following:

1. If xi does not appear in the j-th clause we add all arcs from Tj to Ai ∪Bi ∪ Ci and all
arcs from Di ∪ Ei ∪ Fi to Tj .

2. If xi appears positive in the j-th clause we add all arcs from Tj to Ai ∪Bi ∪ Fi and all
arcs from Ci ∪Di ∪ Ei.

3. If xi appears negative in the j-th clause we add all arcs from Tj to Ai ∪ Ci ∪Di and all
arcs from Bi ∪ Ei ∪ Fi.

This completes the construction and the question we want to answer is whether the last
vertex (that is, the sink) of the transitive tournament induced by Fn is a Slater winner of
the whole graph.

We need to prove that the designated vertex is a Slater winner if and only if there
is a satisfying assignment for φ with maximum weight that sets xn to True. We will do
this by establishing some properties regarding any optimal ordering of the constructed
tournament, showing that such an ordering must always have a structure which implies a

8 Determining a Slater Winner is Complete for Parallel Access to NP

satisfying assignment of φ with maximum weight. We will rely heavily on Lemma 1, since
the tournament we have constructed can be decomposed into 6n + m modules, namely,
Ai, Bi, Ci, Di, Ei, and Fi, for i ∈ {1, . . . , n}, and Tj , for j ∈ {1, . . . ,m}. We therefore assume
without loss of generality that these sets are placed contiguously in an optimal ordering.

Let us first argue that any optimal ordering must have some desirable structure which
necessarily encodes a satisfying assignment for φ. To do this it will be helpful to start
with a baseline ordering and calculate its implied fas, as then any ordering which implies
a larger fas will be necessarily suboptimal. Consider the ordering which is defined as
Ai ≺ Bi ≺ Ci ≺ Ei ≺ Fi ≺ Di for each i ∈ {1, . . . , n} and which sets Di ≺ Ai+1, where
each module is internally ordered in the optimal way. We insert into this ordering of the
modules that represent variables, the modules Tj as follows: for each j ∈ {1, . . . ,m}, we find
a variable xi that appears negative in the j-th clause (such a variable must exist, since φ is
satisfied by the all-False assignment), and place all of Tj between Fi and Di. If for some pair
Tj , Tj′ their relative ordering is not yet fully specified, we order them in some arbitrary way.

The arcs incompatible with the above ordering are (i) the at most ns1(s1 + 3) arcs going
from a module Di to a module Ei (ii) for each Tj that was placed between Fi and Di we
have 2s1s2 arcs (towards Ai ∪ Ci), as well as at most 3(s1 + 3)s2 arcs to each other group
Ai′ ∪Bi′ ∪ Ci′ ∪Di′ ∪ Ei′ ∪ Fi′ , for i′ 6= i (iii) the total number of arcs between modules Tj

is at most m2s2
2. Therefore, we have that the fas implied by this ordering has size at most

B ≤ ns1(s1 + 3) +m(2s1s2 + 3(n− 1)(s1 + 3)s2) +m2s2
2 =

= ns2
1 + (3n− 1)ms1s2 + 3ns1 +m2s2

2 + 9m(n− 1)s2

In the remainder we will therefore only consider orderings which imply a fas of size at most
B, as other orderings are suboptimal. This allows us to draw some conclusions regarding the
structure of an optimal ordering. First, observe that for each i ∈ {1, . . . , n}, any ordering of
Di ∪ Ei ∪ Fi will contribute at least s2

1 arcs to the fas. Using inequality (1), we have that
there are at most n pairs of “large” modules (that is, modules of size at least s1) which are
incorrectly ordered, that is, ordered so that all arcs between the modules are included in the
fas. Indeed, if there are n+ 1 such pairs, the fas will have size at least (n+ 1)s2

1 > B. We
conclude that regarding the 6n large modules we must have the following ordering:

1. For each i < j, we have that all vertices of Ai ∪Bi ∪ Ci ∪Di ∪ Ei ∪ Fi (the section that
represents the variable xi) are before all vertices of Aj ∪ Bj ∪ Cj ∪ Dj ∪ Ej ∪ Fj (the
section that represents the variable xj).

2. For each i ∈ {1, . . . , n}, we have Ai ≺ Bi ≺ Ci and all vertices of Ai ∪Bi ∪ Ci are before
Di ∪ Ei ∪ Fi.

3. For each i ∈ {1, . . . , n} we have Di ≺ Ei ≺ Fi, or Ei ≺ Fi ≺ Di, or Fi ≺ Di ≺ Ei.

We would now like to construct a correspondence between assignments to φ and orderings
of the tournament that respect the above conditions. On the one hand, if we are given an
assignment σ we construct an ordering of the variable sections as above and for each i, if σ
set xi to True we set Di ≺ Ei ≺ Fi, otherwise we set Ei ≺ Fi ≺ Di. In the converse direction,
given an ordering that respects the above conditions (which any optimal ordering must do),
we extract an assignment by setting, for each i, xi to True if and only if Di ≺ Ei ≺ Fi.

We now argue that the assignment corresponding to an optimal ordering must also be
satisfying for φ, as otherwise the fas will have size strictly larger than B, contradicting
the optimality of the ordering. For the sake of contradiction, suppose we have an optimal
ordering which corresponds to an assignment falsifying a clause. As argued above, there

Michael Lampis 9

are at least ns2
1 arcs in the fas contributed by the ordering of the large modules, so we

concentrate on the modules Tj representing clauses. A module Tj representing any clause
must be incident on at least (3n− 1)s1s2 arcs of the fas connecting it to large modules. To
see this, consider the following: we will say that Tj is in the interior of section i, if Ai ≺ Tj

and Tj is placed before one of Di, Ei, or Fi. Tj can be in the interior of at most one section
i, so for each i′ 6= i we observe that at least 3s1s2 arcs incident on Tj and modules of the
group i′ are in the fas. This gives 3(n− 1)s1s2 arcs. In addition, no matter where we place
Tj in the interior of section i, at least a further 2s1s2 arcs of the fas are obtained: if Tj is
after Ci, then we get the arcs to Ai ∪ Bi or the arcs to Ai ∪ Ci; if Tj is between Ai and
Ci, we get the arcs to Ai and at least 2s1s2 arcs from Di ∪ Ei ∪ Fi. Hence, we get at least
(3n− 1)s1s2 arcs in the fas for each Tj .

Furthermore, suppose that the assignment corresponding to the ordering does not satisfy
the j-th clause. Then, we claim that at least 3ns1s2 arcs connecting Tj to large modules
are included in the fas. Indeed, if Tj is in the interior of section i, it can either be before or
after Ci. If it is before Ci, as we observed in the previous paragraph, we always have at least
3s1s2 arcs in the fas between Tj and the large modules of section i. If Tj is placed after Ci,
we have the following cases: (i) if xi does not appear in the clause, then at least 3s1s2 arcs
between Tj and the large modules of section i are in the fas (ii) if xi appears positive in the
j-th clause, we know that Fi is not placed last in section i (otherwise the assignment would
satisfy the j-th clause), so wherever we place Tj , at least 3s1s2 arcs are included in the fas
(iii) similarly if xi appears negative, since the assignment does not satisfy the clause, Fi is
last, so again at least 3s1s2 arcs are included in the fas.

From the above calculations, if the assignment that corresponds to an ordering falsifies a
clause, the fas has size at least ns2

1+(m−1)(3n−1)s1s2+3ns1s2 = ns2
1+(3n−1)ms1s2+s1s2 >

B, where we used inequality (2). We conclude that an optimal ordering must correspond to
a satisfying assignment.

We now need to argue that the assignment corresponding to an optimal ordering of the
tournament must be a satisfying assignment of maximum weight. Suppose for contradiction
that the assignment corresponding to an optimal ordering, call it σ1, sets k variables to True,
but there exists another satisfying assignment, call it σ2, that sets at least k + 1 variables to
True. We will show that starting from σ2 we can obtain a better ordering of the tournament,
contradicting the optimality of the original ordering.

We claim that the ordering from which we extracted σ1 includes at least ns2
1 + (3n −

1)ms1s2 +2(n−k)s1 arcs in the fas. This is because in the section corresponding to the n−k
variables that σ1 sets to False, either the arcs from Ei to Fi, or the arcs from Di to Ei are in
the fas (since Fi is not placed last in the section), and these are at least s1(s1 + 2) = s2

1 + 2s1
arcs.

We construct an ordering from σ2 as follows: we order the variable section in the normal
way and inside each section, if σ2(xi) = True we use the ordering Di ≺ Ei ≺ Fi, otherwise
we use the ordering Ei ≺ Fi ≺ Di. For each Tj , we find a variable xi that satisfies the j-th
clause and place Tj in section i immediately before the last module of this section. If for j, j′
the order of Tj , Tj′ is not implied by the above, we set it arbitrarily. The fas implied by this
ordering has size at most

B′ ≤ ns2
1 + 2(n− k − 1)s1 + s1 +m(2s1s2 + 3(n− 1)(s1 + 3)s2) +m2s2

2 =
= ns2

1 + 2(n− k)s1 + (3n− 1)ms1s2 − s1 +m2s2
2 + 9m(n− 1)s2

Here, the calculations for the terms m(2s1s2 + 3(n− 1)(s1 + 3)s2) +m2s2
2 are the same

10 Determining a Slater Winner is Complete for Parallel Access to NP

as in the calculation of B; the term 2(n− k− 1)s1 takes into account that there are n− k− 1
sections that correspond to variables set to False; and the s1 term is due to the fact that xn

may be one of the variables set to False and En has size s1 +3 and not s1 +2. Using inequality
(3) we have that −s1 +m2s2

2 + 9m(n− 1)s2 < 0, so the ordering we have constructed from
σ2 is better than the one from which we extracted σ1, contradiction.

At this point we are almost done because we have argued that an optimal ordering of
the tournament corresponds to a satisfying assignment of maximum weight and furthermore,
since the correspondence sets xn to True if and only if Fn is the last module in the ordering,
the sink of Fn will be last in the ordering if and only if the assignment sets xn to True.
However, φ could have several satisfying assignments of the same weight, and since we
have set arcs between Tj modules arbitrarily, it could be the case that a maximum weight
assignment that sets xn to False results in a better ordering, making another vertex the
Slater winner. This is the reason why we have set En to be slightly larger than all other
modules Ei, so that setting xn to True is always slightly more advantageous than setting
any other variable to True.

Concretely, we argue the following: any optimal ordering of the tournament corresponds
to a satisfying assignment of φ with maximum weight; and furthermore if a satisfying
assignment of φ with maximum weight sets xn to True, then any optimal ordering places
Fn last. We need to argue the second claim, so suppose for contradiction that an optimal
ordering does not place Fn last and that the assignment that corresponds to this ordering is
σ1. Furthermore, suppose that there exists a satisfying assignment σ2 of maximum weight
that sets xn to True. Say that both σ1, σ2 set k variables to True.

We first observe that the ordering from which we extracted σ1 implies a fas of size at least
ns2

1 + 2(n− k)s1 + s1 + (3n− 1)ms1s2. This is because there are (n− k − 1) sections where
the fas contains s1(s1 + 2) arcs incident on a module Ei, k sections where the fas contains s2

1
arcs incident from Fi to Di, and in the section corresponding to xn the fas contains s1(s1 + 3)
arcs, incident on En.

On the other hand, if we construct an ordering from σ2 in the same way as we did
previously, the fas obtained will have size at most

B′′ ≤ ns2
1 + 2(n− k)s1 +m(2s1s2 + 3(n− 1)(s1 + 3)s2) +m2s2

2 =
= ns2

1 + 2(n− k)s1 + (3n− 1)ms1s2 +m2s2
2 + 9m(n− 1)s2

Again, using inequality (3) which states that s1 > m2s2
2 + 9m(n− 1)s2 we conclude that

the new ordering is better, contradicting the optimality of the original ordering.
We now summarize our arguments: we have shown that any optimal ordering of the

tournament always corresponds to a maximum weight satisfying assignmet of φ and further-
more, it corresponds to a maximum weight satisfying assignment that sets xn to True if
this is possible; furthermore, if an optimal ordering corresponds to an assignment that sets
xn to True then the last vertex of Fn is a Slater winner. We therefore have two cases: if
the last vertex of Fn is a Slater winner, then since optimal orderings give rise to satisfying
assignments of maximum weight, there is a maximum weight satisfying assignment of φ
setting xn to True; if the last vertex of Fn is not a Slater winner, then the maximum weight
satisfying assignment we extract from an optimal ordering sets xn to False, and there is no
satisfying assignment of the same weight setting xn to True. We conclude that determining
if a vertex is a Slater winner is equivalent to deciding if φ has a maximum weight satisfying
assignment setting xn to True, and is therefore Θp

2-complete. J

Michael Lampis 11

4 Hardness for 7 Voters

In this section we show that the tournaments constructed in Theorem 3 correspond to
instances that could result from the aggregation of the preferences of 7 voters and as a result
the problem of determining a Slater winner remains Θp

2-complete even for 7 voters. Our
approach follows along the lines of the arguments of Bachmeier et al. [3] who proved that
determining the Slater winner is NP-hard for 7 voters. Indeed, the proof of [3] consists of an
analysis (and tweak) of the construction of Conitzer [9] which establishes that the instances
of the reduction can be built by aggregating 7 voter profiles. Since our reduction is very
similar to Conitzer’s, we essentially only need to adjust the arguments of Bachmeier et al. to
obtain Θp

2-completeness.
Our first step is to slightly restrict the Θp

2-complete problem that is the starting point of
our reduction. We present the following strengthening of Lemma 2, which is similar to the
problem used as a starting point in the reduction of [3].

I Lemma 4. The problem given in Lemma 2 remains Θp
2-complete under the following

additional restrictions: (i) we are given a partition of the clauses of φ in two sets L,R and
each variable appears in at most one clause of L and in at most two clauses of R (ii) each
literal appears at most once in a clause of R.

We now obtain the result of this section by starting the reduction of Theorem 3 from the
problem of Lemma 4. In the statement of the theorem below, when we say that a tournament
T = (V,A) can be obtained from 7 voters, we mean that there exist 7 total orderings of V
such that for all (a, b) ∈ A we have that a ≺ b in at least 4 of the orderings.

I Theorem 5. Determining if a vertex of a tournament is a Slater winner remains Θp
2-

complete even for tournaments that can be obtained from 7 voters.

Proof. We perform the same reduction as in Theorem 3 except we start from the special
case given in Lemma 4. What remains is to show that the instance we construct can result
from aggregating 7 orderings. Recall that our tournament contains 6n modules representing
the variables, called Ai, Bi, Ci, Di, Ei, Fi, for i ∈ {1, . . . , n} and m modules representing the
clauses, called Tj , for j ∈ {1, . . . ,m}. Since modules are internally transitive, we will assume
that the 7 voters have preferences which agree with the directions of the arcs inside the
modules and hence we focus on the arcs between modules. Recall that in the reduction of
Theorem 3, arcs between modules Tj are set arbitrarily. To ease presentation, assume that
when j < j′ we have the arcs Tj → Tj′ .

The first voter has preferences A1 ≺ B1 ≺ C1 ≺ D1 ≺ E1 ≺ F1 ≺ A2 . . . ≺ Fn ≺ T1 ≺
T2 ≺ . . . ≺ Tm. In other words, the first voter orders all the variable modules before all the
clause modules, orders variable groups according to their index, and inside each variable
group she has the ordering Ai ≺ Bi ≺ Ci ≺ Di ≺ Ei ≺ Fi.

We now add two voters with the intent of constucting all the arcs of the set

X0 =

⋃
j

Tj ×
⋃

i

(Ai ∪Bi ∪ Ci)

 ∪⋃
i

(Fi ×Di)

The first of these voters has ordering (E1 ≺ E2 ≺ . . . ≺ En) ≺ (F1 ≺ D1 ≺ F2 ≺ D2 ≺
. . . ≺ Fn ≺ Dn) ≺ (T1 ≺ T2 ≺ . . . ≺ Tm) ≺ (A1 ≺ B1 ≺ C1 ≺ A2 ≺ B2 ≺ C2 ≺ . . . ≺ An ≺
Bn ≺ Cn). The second of these voters has ordering (Tm ≺ Tm−1 ≺ . . . ≺ T1) ≺ (Cn ≺ Bn ≺
An ≺ Cn−1 ≺ Bn−1 ≺ An−1 ≺ . . . ≺ C1 ≺ B1 ≺ A1) ≺ (Fn ≺ Dn ≺ Fn−1 ≺ Dn−1 ≺ . . . ≺

12 Determining a Slater Winner is Complete for Parallel Access to NP

F1 ≺ D1) ≺ (En ≺ En−1 ≺ . . . ≺ E1). Note that these two voters agree that all modules of⋃
j Tj come before all modules of ∪i(Ai ∪Bi ∪ Ci) and that for each i we have Fi ≺ Di, but

disagree on every other pair of modules, hence the two voters together induce exactly the set
of arcs X0 cited above.

If we now consider the three voters we have so far we observe that much of our construction
is already induced:

1. For i < i′ we have arcs from Ai ∪Bi ∪Ci ∪Di ∪Ei ∪Fi to Ai′ ∪Bi′ ∪Ci′ ∪Di′ ∪Ei′ ∪Fi′

because of the preferences of the first voter, as the other two voters disagree on these
arcs.

2. For each i ∈ {1, . . . , n}, inside the group Ai ∪Bi ∪ Ci ∪Di ∪ Ei ∪ Fi, we have arcs that
agree with the ordering Ai ≺ Bi ≺ Ci ≺ Di ≺ Ei ≺ Fi, except that we have arcs from Fi

to Di. This is because the second and third voter agree that Fi ≺ Di, but disagree on
every other pair (hence the preferences of the first voter prevail for the other pairs).

3. For each j < j′ we have arcs from Tj to Tj′ , due to the preferences of the first voter, as
the other two disagree.

4. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} we have arcs from Tj to Ai ∪Bi ∪Ci, because
the second and third voter agree that Tj ≺ (Ai∪Bi∪Ci) (though the first voter disagrees).

5. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} we have arcs from Di ∪Ei ∪Fi to Tj , because
the second and third voter disagree on these pairs, so the preferences of the first voter
break the tie.

We therefore have that the tournament that follows from aggregating the preferences of
the first three voters almost corresponds to the one we want to construct, except that for
each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} the arcs between Tj and Ai ∪Bi ∪ Ci ∪Di ∪ Ei ∪ Fi

correspond to the arcs we would want if xi did not appear in the j-th clause (in other words,
the three voters we have so far induce the general structure of the construction, but do not
encode which variable appears in which clause). Furthermore, if we look at the relationship
between any two modules so far, the margin of victory is always exactly one (that is, there
do not exist two modules X,Y such that all three voters agree that X ≺ Y).

Hence, what remains is to use the four remaining voters to “fix” this, so that if xi appears
(positive or negative) in the j-th clause, we have the arcs prescribed in the reduction of
Theorem 3. We will achieve this by giving two pairs of voters. Each pair of voters will
disagree on all pairs of modules except a specific set of arcs that we want to fix. Hence,
adding the pair of voters to the electorate will repair the arcs in question (since the current
margin of victory for all arcs is one), while leaving everything else unchanged.

Recall that the clause set is given to us partitioned into two sets R,L so that each variable
appears in at most one clause of L and each literal in at most one clause of R. We will use
the slightly weaker property that each literal appears at most once in each of L,R. Abusing
notation we will write j ∈ R if the j-th clause is in R (similarly for j ∈ L). We will also
write xi ∈ cj (respectively ¬xi ∈ cj) if xi appears positive (respectively negative) in the j-th
clause.

Consider now the following two sets of arcs:

X1 =

 ⋃
j∈R

∪i:xi∈cj
(Tj × Fi) ∪ ∪i:¬xi∈cj

(Tj ×Di)

∪
 ⋃

j∈L

∪i:xi∈cj
(Ci × Tj) ∪ ∪i:¬xi∈cj

(Bi × Tj)

Michael Lampis 13

X2 =

 ⋃
j∈L

∪i:xi∈cj
(Tj × Fi) ∪ ∪i:¬xi∈cj

(Tj ×Di)

∪
 ⋃

j∈R

∪i:xi∈cj
(Ci × Tj) ∪ ∪i:¬xi∈cj

(Bi × Tj)

Our plan is to give a pair of voters whose preferences induce the arcs of X1 and another

pair whose preferences induce the arcs of X2. Here when we say that two voters induce a set
of arcs X we mean that for each (a, b) ∈ X both voters have a ≺ b and for each (a, b) 6∈ X
one voter has a ≺ b and the other has b ≺ a. Before we proceed we observe that if X1, X2 are
inducible by a pair of voters each, then adding these four voters to the three voters we have
described so far produces the tournament of Theorem 3. Indeed, suppose that xi appears
positive in clause cj and j ∈ R. Then, if we consider the arcs in the tournament induced by
the first three voters, we need to inverse the arcs between Tj and Fi (which currently point
Fi → Tj), and the arcs between Tj and Ci (which currently point Tj → Ci). But the arcs
between Tj and Fi are inversed thanks to X1, while the arcs between Tj and Ci are inversed
thanks to X2, where we use the fact that X1, X2 represent the consensus of two voters, while
the margin of victory for any arc induced by the first three voters is one. Similar arguments
apply if xi appears negative in cj , or j ∈ L. Hence, if a pair of voters induces X1 and another
induces X2, taking the union of these four voters with the three voters we have described
produces the tournament of Theorem 3 and completes the proof.

We now recall that it was shown in [3] that X1, X2 are inducible by two voters each,
since these sets of arcs are unions of stars (if we contract each module to a vertex). Let us
explain in more detail how to represent X1 as the union of the preferences of two voters (the
arguments for X2 are essentially identical). We will make use of the fact that each literal
appears at most once in L and at most once in R.

We will say that a module from a variable group is “active” if it is incident on an arc of X1.
In particular, modules Ai, Ei, for i ∈ {1, . . . , n} are not active, and neither are modules Fi

such that xi does not appear positive in R (and similarly for Bi, Ci, Di). We will concentrate
on the ordering of active modules because if we find two voter profiles that order these
modules in a way that induces X1, we can add an arbitrary ordering of the inactive modules
in the beginning of the preferences of the first voter, and the opposite of that ordering at
the end of the preferences of the second voter. This will have as effect that the two voters
disagree on any pair that involves an element of an inactive module, as desired.

We now observe that for each active module M from
⋃

i Bi ∪ Ci ∪Di ∪ Fi, there exists
exactly one Tj such that M has arcs to Tj in X1. This is because every literal appears in
at most one clause of R and at most one clause of L. Now, we construct two voter profiles
as follows: one voter orders the Tj modules in increasing order of index and the other in
decreasing order. For each active module Di or Fi, we insert the module immediately after
the Tj from which the module receives arcs in X1 in both orderings; for active modules Bi

or Ci we insert them immediately before the Tj towards which the module has arcs in both
orderings. Note that this does not fully specify the ordering, as if two variables xi, xi′ appear
in cj and j ∈ R, then we need to place Fi and Fi′ immediately after Tj . We resolve such
conflicts by using an arbitrary ordering of the active modules for the first voter and the
opposite of that ordering for the second voter, that is, all modules which are supposed to
appear immediately after Tj are sorted in one way for the first voter and in the opposite
way for the second voter. We now observe that with this ordering for every active module
the two voters agree about the arcs connecting the module to its neighboring Tj , while we
obtain no other arcs between the module and any other Tj′ or any other active module. We
therefore have two voters whose preferences induce X1. J

14 Determining a Slater Winner is Complete for Parallel Access to NP

References
1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:

Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008.
2 Noga Alon. Ranking tournaments. SIAM J. Discret. Math., 20(1):137–142, 2006.
3 Georg Bachmeier, Felix Brandt, Christian Geist, Paul Harrenstein, Keyvan Kardel, Dominik

Peters, and Hans Georg Seedig. k-majority digraphs and the hardness of voting with a constant
number of voters. J. Comput. Syst. Sci., 105:130–157, 2019.

4 Felix Brandt, Markus Brill, and Paul Harrenstein. Tournament solutions. In Handbook of
Computational Social Choice, pages 57–84. Cambridge University Press, 2016.

5 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia. Introduc-
tion to computational social choice. In Handbook of Computational Social Choice, pages 1–20.
Cambridge University Press, 2016.

6 Richard Chang and Jim Kadin. The boolean hierarchy and the polynomial hierarchy: A closer
connection. SIAM J. Comput., 25(2):340–354, 1996. doi:10.1137/S0097539790178069.

7 Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set problem
is np-hard for tournaments. Comb. Probab. Comput., 16(1):1–4, 2007.

8 Irène Charon and Olivier Hudry. An updated survey on the linear ordering problem for
weighted or unweighted tournaments. Ann. Oper. Res., 175(1):107–158, 2010.

9 Vincent Conitzer. Computing slater rankings using similarities among candidates. In Pro-
ceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth
Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Mas-
sachusetts, USA, pages 613–619. AAAI Press, 2006. URL: http://www.aaai.org/Library/
AAAI/2006/aaai06-098.php.

10 Ronald de Haan. Parameterized Complexity in the Polynomial Hierarchy - Extending Parame-
terized Complexity Theory to Higher Levels of the Hierarchy, volume 11880 of Lecture Notes in
Computer Science. Springer, 2019. doi:10.1007/978-3-662-60670-4.

11 Ulle Endriss and Ronald de Haan. Complexity of the winner determination problem in
judgment aggregation: Kemeny, slater, tideman, young. In AAMAS, pages 117–125. ACM,
2015.

12 Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact analysis of dodgson
elections: Lewis carroll’s 1876 voting system is complete for parallel access to NP. J. ACM,
44(6):806–825, 1997.

13 Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Raising NP lower bounds to
parallel NP lower bounds. SIGACT News, 28(2):2–13, 1997. doi:10.1145/261342.261344.

14 Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The complexity of kemeny elections.
Theor. Comput. Sci., 349(3):382–391, 2005.

15 Olivier Hudry. On the complexity of slater’s problems. Eur. J. Oper. Res., 203(1):216–221,
2010.

16 Jörg Rothe, Holger Spakowski, and Jörg Vogel. Exact complexity of the winner problem for
young elections. Theory Comput. Syst., 36(4):375–386, 2003.

17 Klaus W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theor. Comput. Sci., 51:53–80, 1987. doi:10.1016/0304-3975(87)90049-1.

https://doi.org/10.1137/S0097539790178069
http://www.aaai.org/Library/AAAI/2006/aaai06-098.php
http://www.aaai.org/Library/AAAI/2006/aaai06-098.php
https://doi.org/10.1007/978-3-662-60670-4
https://doi.org/10.1145/261342.261344
https://doi.org/10.1016/0304-3975(87)90049-1

Michael Lampis 15

A Omitted Proofs

A.1 Proof of Lemma 1
Lemma 1. Suppose k > 1 (otherwise the claim is trivial) and consider an ordering ≺ that
is winning for v. We will say that a set of vertices S ⊆ V is a block of ≺ if (i) S ⊆ Mi for
some i ∈ {1, . . . , k}; (ii) S is contiguous; (iii) S is maximal, that is, adding any vertex to S
violates one of the two preceding properties.

If the number of blocks is equal to k we are done, as each block is equal to a module so
we have an ordering where each module is contiguous. If we have at least k + 1 blocks, we
will explain how to edit the ordering so that it remains winning for v, it implies a fas of the
same size, and the number of blocks decreases. Repeating this process until we have k blocks
completes the proof.

Consider two vertices x, y, with x ≺ y, which belong to the same module, say x, y ∈M1,
but in distinct blocks. Among all such pairs, select x, y so that their distance in the ordering,
that is, the size of the set Z = {z | x ≺ z ≺ y} is minimized. Let X,Y be the blocks that
contain x, y respectively. Note that by the selection of x, y we have that x is the last vertex
of X, y is the first vertex of Y , X ∪ Y ⊆M1, and M1 ∩ Z = ∅.

Let dZ
out(x) (respectively dZ

in(x)) be the out-degree (respectively in-degree) of x towards
the set Z. Because M1 is a module, all vertices of M1 have the same in-degree and out-degree
towards Z, and in particular, dZ

out(x) = dZ
out(y) and dZ

in(x) = dZ
in(y). Now, if dZ

in(x) > dZ
out(x),

we can obtain an ordering that implies a smaller fas by placing x immediately after the last
vertex of Z. This would contradict the optimality of ≺, so it must be impossible. Similarly,
if dZ

in(x) < dZ
out(x), we have dZ

in(y) < dZ
out(y), and we can obtain a strictly better ordering

by placing y immediately before the first vertex of Z, contradiction. We conclude that
dZ

in(x) = dZ
in(y). Therefore, moving all the vertices of X so that they appear immediately

after the last vertex of Z produces an ordering which is equally good as the current one, is
still winning for v, and has a smaller number of blocks. J

A.2 Proof of Lemma 4
Lemma 4. Given a formula φ as in Lemma 2 we construct a new formula φ′ as follows.
Let x1, x2, . . . , xn be the variables of φ and m be the number of its clauses. For each xi,
i ∈ {1, . . . , n} we construct m variables, call them y1

i , y
2
i , . . . , y

m
i . For each i ∈ {1, . . . , n}, for

j ∈ {1, . . . ,m − 1} we construct the clause (¬yj
i ∨ y

j+1
i), as well as the clause (¬ym

i ∨ y1
i).

Let R be the set of clauses constructed so far and note that each literal appears at most once
and each variable at most twice in these clauses. Intuitively, the clauses of R ensure that for
each i, all variables in the set {y1

i , y
2
i , . . . , y

m
i } must receive the same value in a satisfying

assignment.
Now, we consider the clauses of φ one by one. If the j-th clause contains the variable xi,

we replace it by the variable yj
i . Doing this for all clauses of φ we obtain a set of clauses,

call it L, where each variable appears at most once (assuming without loss of generality that
clauses of φ have no repeated literals).

If xn was the designated variable of φ we set y1
n as the designated variable of φ′. It is

now not hard to make a correspondence between satisfying assignments of φ and φ′ (xi is set
to True if all yj

i are set to True) in a way that preserves weights (the weight of an assignment
to φ′ is m times the weight of the corresponding assignment for φ). Hence, determining if a
maximum weight satisfying assignment to φ′ sets y1

n to True is Θp
2-complete. Observe also

that φ′ is satisfied by the all-False assignment. J

	Introduction
	Definitions and Preliminaries
	Complexity

	Reduction to Slater
	Hardness for 7 Voters
	Omitted Proofs
	Proof of Lemma 1
	Proof of Lemma 4

