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Abstract15

We study a family of generalizations of Edge Dominating Set on directed graphs called16

Directed (p, q)-Edge Dominating Set. In this problem an arc (u, v) is said to dominate17

itself, as well as all arcs which are at distance at most q from v, or at distance at most p to u.18

First, we give significantly improved FPT algorithms for the two most important cases of19

the problem, (0, 1)-dEDS and (1, 1)-dEDS, as well as polynomial kernels. We also improve the20

best-known approximation for these cases from logarithmic to constant. In addition, we show21

that (p, q)-dEDS is FPT parameterized by p + q + tw, but W-hard parameterized just by tw,22

where tw is the treewidth of the underlying graph of the input.23

We then go on to focus on the complexity of the problem on tournaments. Here, we provide24

a complete classification for every possible fixed value of p, q, which shows that the problem25

exhibits a surprising behavior, including cases which are in P; cases which are solvable in quasi-26

polynomial time but not in P; and a single case (p = q = 1) which is NP-hard (under randomized27

reductions) and cannot be solved in sub-exponential time, under standard assumptions.28
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1 Introduction35

Edge Dominating Set (EDS) is a classical graph problem, equivalent to Minimum36

Dominating Set on line graphs. Despite the problem’s prominence, EDS has until recently37

received very little attention in the context of directed graphs. In this paper we investigate38

the complexity of a family of natural generalizations of this classical problem to digraphs,39

building upon recent work [22].40
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23:2 New Results on Directed Edge Dominating Set

Param. p, q FPT / W-hard Kernel Approximability

k
p + q ≤ 1 2O(k)

[22] → 2k
[Thm.3] O(k) vertices [Thm.8] 3-apprx [Thm.4]

p = q = 1 2O(k)
[22] → 9k

[Thm.2] O(k2) vertices [Thm.7] 8-apprx [Thm.5]

max{p, q} ≥ 2 W[2]-hard [22] - no o(ln k)-approx [22]

tw any p, q W[1]-hard [Thm.9] - -
tw+p+q any p, q FPT [Thm.10] unknown -
Table 1 Complexity status for various values of p and q: on general digraphs

One of the reasons that EDS has not so far been well studied in digraphs is that there41

are several natural ways in which the undirected version can be generalized. For example,42

seeing as EDS is exactly Dominating Set in line graphs, one could define Directed EDS43

as (Directed) Dominating Set in line digraphs [23]. In this formulation, an arc (u, v)44

dominates all arcs (v, w); however (v, w) does not dominate (u, v). Another natural way to45

define the problem would be to consider Dominating Set on the underlying graph of the46

line digraph, so as to maximize the symmetry of the problem, while still taking into account47

the directions of arcs. In this formulation, (u, v) dominates arcs coming out of v and arcs48

coming into u, but not other arcs incident on u, v.49

A unifying framework for studying such formulations was recently given in [22], which50

defined (p, q)-dEDS for any two non-negative integers p, q. In this setting, an arc (u, v)51

dominates every other arc which lies in a directed path of length at most q that begins52

at v, or lies in a directed path of length at most p that ends at u. In other words, (u, v)53

dominates arcs in the forward direction up to distance q, and in the backward direction up54

to distance p. The interest in defining the problem in such a general manner is that it allows55

us to capture at the same time Directed Dominating Set on line digraphs ((0, 1)-dEDS),56

Dominating Set on the underlying graph of the line digraph ((1, 1)-dEDS), as well as57

versions corresponding to r-Dominating Set in the line digraph. We thus obtain a family of58

optimization problems on digraphs, with varying degrees of symmetry, all of which crucially59

depend on the directions of arcs in the input digraph.60

Our contribution: In this paper we advance the state of the art on the complexity of61

Directed (p, q)-Edge Dominating Set on two fronts.162

First, we study the complexity and approximability of the problem in general. The63

problem is NP-hard for all values of p, q (except p = q = 0), even for planar bounded-degree64

DAGs [22], so it makes sense to study its parameterized complexity and approximability. We65

show that its two most natural cases, (1, 1)-dEDS and (0, 1)-dEDS admit FPT algorithms66

with running times 9k and 2k respectively, where k is the size of the optimal solution. These67

algorithms significantly improve upon the FPT algorithms given in [22], which uses the fact68

that the treewidth (of the underlying graph of the input) is at most 2k and runs a dynamic69

programming over a tree-decomposition of width at most 10k, obtained by the algorithm70

of [5]. The resulting running-time estimate for the algorithm of [22] is thus around 2510k.71

Though both of our algorithms rely on standard branching techniques, we make use of several72

non-trivial ideas to obtain reasonable bases in their running times. We also show that both73

of these problems admit polynomial kernels. These are the only cases of the problem which74

may admit such kernels, since the problem is W-hard for all other values of p, q [22].75

1 We note that in the remainder we always assume that p ≤ q, as in the case where p > q we can reverse
the direction of all arcs and solve (q, p)-dEDS.
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Furthermore, we give an 8-approximation for (1, 1)-dEDS and a 3-approximation for76

(0, 1)-dEDS. We recall that [22] showed an O(logn)-approximation for general values of p, q,77

and a matching logarithmic lower bound for the case max{p, q} ≥ 2. Therefore our result78

completes the picture on the approximability of the problem by showing that the only two79

currently unclassified cases belong in APX.80

Finally, we consider the problem’s complexity parameterized by the treewidth of the81

underlying graph and show that, even though the problem is FPT when all of p, q, tw are82

parameters, it is in fact W[1]-hard if parameterized only by tw. (See Table 1).83

Our second, and perhaps main contribution in this paper is an analysis of the complexity84

of the problem on tournaments, which are one of the most well-studied classes of digraphs (see85

Table 2). One of the reasons for focusing on this class is that the complexity of Dominating86

Set has a peculiar status on tournaments, as it is solvable in quasi-polynomial time, W[2]-87

hard, but neither in P nor NP-complete (under standard assumptions). Here we provide a88

complete classification of the problem which paints an even more surprising picture. We show89

that (p, q)-dEDS goes from being in P for p + q ≤ 1; to being APX-hard and unsolvable90

in 2n1−ε under the (randomized) ETH for p = q = 1; to being equivalent to Dominating91

Set on tournaments, hence NP-intermediate, quasi-polynomial-time solvable, and W[2]-92

hard, when one of p and q equals 2; and finally to being polynomial-time solvable again if93

max{p, q} ≥ 3 and neither p nor q equals 2. We find these results surprising, because few94

problems demonstrate such erratic complexity behavior when manipulating their parameters95

and because, even though in many cases the problem does seem to behave like Dominating96

Set, the fact that (1, 1)-dEDS becomes significantly harder shows that the problem has97

interesting complexity aspects of its own. The most technical part of this classification98

is the reduction that establishes the hardness of (1, 1)-dEDS, which makes use of several99

randomized tournament constructions, which we show satisfy certain desirable properties100

with high probability; as a result our reduction itself is randomized.101

Due to space restrictions, some of our proofs can be found in the Appendix.102

Range of p, q Complexity
p = q = 1 NP-hard [Thm. 11], FPT [Thm. 2], polynomial kernel [Thm. 7]

p = 2 or q = 2 Quasi-P-time [Thm. 23], W[2]-hard [Thm 22]

remaining cases P-time [Thm. 24 and 25]

Table 2 Complexity status for various values of p and q: on tournaments

Related Work: On undirected graphs Edge Dominating Set, also known as Maximum103

Minimal Matching is NP-complete even on bipartite, planar, bounded degree graphs as104

well as other special cases [34, 24]. It can be approximated within a factor of 2 [19] (or better105

in some special cases [8, 30, 2]), but not a factor better than 7/6 [9] unless P=NP. The106

problem has been the subject of intense study in the parameterized and exact algorithms107

community [33], producing a series of improved FPT algorithms [17, 3, 18, 31]; the current108

best is given in [25]. A kernel with O(k2) vertices and O(k3) edges is also known [21].109

For (p, q)-dEDS, [22] shows the problem to be NP-complete on planar DAGs, in P on trees,110

and W[2]-hard and c ln k-inapproximable on DAGs if max{p, q} > 1. The same paper gives111

FPT algorithms for max{p, q} ≤ 1. Their algorithm performs DP on a tree-decomposition112

of width w in O(25w), and uses the fact that w ≤ 2k, and the algorithm of [5] to obtain a113

decomposition of width 10k.114

Dominating Set is known not to admit an o(logn)-approximation [12, 28], and to be115

W[2]-hard and unsolvable in time no(k) under the ETH [13, 10]. The problem is significantly116
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easier on tournaments, as the optimal is always at most logn, hence there is a trivial nO(logn)
117

(quasi-polynomial)-time algorithm. It remains, however, W[2]-hard [14]. The problem thus118

finds itself in an intermediate space between P and NP, as it cannot have a polynomial-time119

algorithm unless FPT=W[2], and it cannot be NP-complete under the ETH (as it admits a120

quasi-polynomial time algorithm). The generalization of Dominating Set where vertices121

dominate their r-neighborhood has also been well-studied in general [7, 11, 15, 27]. This122

problem is much easier on tournaments for r ≥ 2, as the size of the solution is always a123

constant [4].124

2 Definitions and Preliminaries125

Graphs and domination: We use standard graph-theoretic notation. If G = (V,E) is126

a graph, S ⊆ V a subset of vertices and A ⊆ E a subset of edges, then G[S] denotes the127

subgraph of G induced by S, while G[A] denotes the subgraph of G that includes A and all its128

endpoints. For a vertex v ∈ V , the set of neighbors of v in G is denoted by NG(v), or simply129

N(v), and NG(S) := (
⋃
v∈S N(v))\S will be written as N(S). We define N [v] := N(v)∪{v}130

and N [S] := N(S)∪S. Depending on the context, we use (u, v) for u, v ∈ V to denote either131

an undirected edge connecting two vertices u, v, or an arc (a directed edge) with tail u and132

head v. An incoming (resp. outgoing) arc for vertex v is an arc whose head (resp. tail) is v.133

In a directed graph G = (V,E), the set of out-neighbors (resp.in-neighbors) of a vertex134

v is defined as {u ∈ V : (v, u) ∈ E} (resp. {u ∈ V : (u, v) ∈ E}) and denoted as N+
G (v)135

(resp. N−G (v)). Similarly as for undirected graphs, N+(S) and N−(S) respectively stand136

for the sets (
⋃
v∈S N

+(v)) \ S and (
⋃
v∈S N

−(v)) \ S. For a subdigraph H of G and subsets137

S, T ⊆ V , we let δH(S, T ) denote the set of arcs in H whose tails are in S and heads are in138

T . We use δ−H(S) (resp. δ+
H(S)) to denote the set δH(V \ S, S) (resp. the set δH(S, V \ S)).139

If S is a singleton consisting of a vertex v, we write δ+
H(v) (resp. δ−H(v)) instead of δ+

H({v})140

(resp. δ−H({v})). The in-degree d−H(v) (respectively out-degree d+
H(v)) of a vertex v is defined141

as |δ−H(v)| (resp. |δ+
H(v)|)), and we write dH(v) to denote d+

H(v) + d−H(v). We omit H if it is142

clear from the context. If H is G[A] for some vertex or arc set of G, then we write A in the143

place of G[A]. A source (resp. sink) is a vertex that has no incoming (resp. outgoing) arcs.144

For integers p, q ≥ 0, an arc e = (u, v) is said to (p, q)-dominate itself, and all arcs that145

are on a directed path of length at most p to u or on a directed path of length at most146

q from v. The central problem in this paper is Directed (p, q)-Edge Dominating Set147

((p, q)-dEDS): given a directed graph G = (V,E), a positive integer k and two non-negative148

integers p, q, we are asked to determine whether an arc subset K ⊆ E of size at most k exists,149

such that every arc is (p, q)-dominated by K. Such a K is called a (p, q)-edge dominating set150

of G.151

Complexity background: We assume that the reader is familiar with the basic definitions152

of parameterized complexity, such as the classes FPT and W[1], as well as the Exponential153

Time Hypothesis (ETH, see [10]). For a problem P , we let OPTP denote the value of its154

optimal solution. We also make use of standard graph width measures, such as vertex cover155

number vc, treewidth tw and pathwidth pw [10].156

Tournaments: A tournament is a directed graph in which every pair of distinct vertices157

is connected by a single arc. Given a tournament T , we denote by T rev the tournament158

obtained from T by reversing the direction of every arc. Every tournament has a king159

(sometimes also called a 2-king), i.e. a vertex from which every other vertex can be reached160

by a path of length at most 2. One such king is the vertex of maximum out-degree (see e.g.161

[4]). It is folklore that any tournament contains a Hamiltonian path, i.e. a directed path162
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that uses every vertex. The Dominating Set problem can be solved by brute force in time163

nO(logn) on tournaments, by the following lemma:164

I Lemma 1 ([10]). Every tournament on n vertices has a dominating set of size ≤ logn+ 1.165

3 Tractability166

3.1 FPT algorithms167

In this section, we present FPT branching algorithms for (0, 1)-dEDS and (1, 1)-dEDS. Both168

algorithms operate along similar lines, taking into consideration the particular ways available169

for domination of each arc.170

I Theorem 2. The (1, 1)-dEDS problem parameterized by solution size k can be solved in171

time O∗(9k).172

Proof. We present an algorithm that works in two phases. In the first phase we perform173

a branching procedure which aims to locate vertices with positive out-degree or in-degree174

in the solution. The general approach of this procedure is standard (as long as there is an175

uncovered arc, we consider all ways in which it may be covered), and uses the fact that at176

most 2k vertices have positive in- or out-degree in the solution. However, in order to speed177

up the algorithm, we use a more sophisticated branching procedure which picks an endpoint178

of the current arc (u, v) and completely guesses its behavior in the solution. This ensures179

that this vertex will never be branched on again in the future. Once all arcs of the graph180

are covered, we perform a second phase, which runs in polynomial time, and by using a181

maximum matching algorithm finds the best solution corresponding to the current branch.182

Let us now describe the branching phase of our algorithm. We construct three sets183

of vertices V +, V −, V +−. The meaning of these sets is that when we place a vertex u in184

V +, V −, or V +− we guess that u has (i) positive out-degree and zero in-degree in the optimal185

solution; (ii) positive in-degree and zero out-degree in the optimal solution; (iii) positive186

in-degree and positive out-degree in the optimal solution, respectively. Initially all three sets187

are empty. When the algorithm places a vertex in one of these sets we say that the vertex188

has been marked.189

Our algorithm now proceeds as follows: given a graph G(V,E) and three disjoint sets190

V +, V −, V +− we do the following:191

1. If |V +|+ |V −|+ 2|V +−| > 2k, reject.192

2. While there exists an arc (u, v) with both endpoints unmarked do the following and193

return the best solution:194

a. Call the algorithm with V + := V + ∪ {v} and other sets unchanged.195

b. Call the algorithm with V +− := V +− ∪ {v} and other sets unchanged.196

c. Call the algorithm with V − := V − ∪ {u} and other sets unchanged.197

d. Call the algorithm with V +− := V +− ∪ {u} and other sets unchanged.198

e. Call the algorithm with V + := V + ∪ {u}, V − := V − ∪ {v}, and V +− unchanged.199

It is not hard to see that Step 1 is correct as as |V +|+ |V −|+ 2|V +−| is a lower bound200

on the sum of the degrees of all vertices in the optimal and therefore cannot surpass 2k.201

Branching Step 2 is also correct: in order to cover (u, v) the optimal solution must either202

take an arc coming out of v (2a,2b), or an arc coming into u (2c,2d), or, if none of the203

previous cases apply, it must take the arc itself (2e).204
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23:6 New Results on Directed Edge Dominating Set

Once we have applied the above procedure exhaustively, all arcs of the graph have at least205

one marked endpoint. We say that an arc (u, v) with u ∈ V − ∪ V +−, or with v ∈ V + ∪ V +−
206

is covered. We now check if the graph contains an uncovered arc (u, v) with exactly one207

marked endpoint. We then branch by considering all possibilities for its other endpoint.208

More precisely, if u ∈ V + and v is unmarked, we branch into three cases, where v is placed in209

V +, or V −, or V +− (and similarly if v is the marked endpoint). This branching step is also210

correct, since the degree specification for the currently marked endpoint does not dominate211

the arc (u, v), hence any feasible solution must take an arc incident on the other endpoint.212

Once the above procedure is also applied exhaustively we have a graph where all arcs213

either have both endpoints marked, or have one endpoint marked but in a way that if we214

respect the degree specifications the arc is guaranteed to be covered. What remains is to215

find the best solution that agrees with the specifications of the sets V +, V −, V +−.216

We first add to our solution S all arcs δ(V +, V −), i.e. all arcs (u, v) such that u ∈ V + and217

v ∈ V −, since there is no other way to dominate these arcs. We then define a bipartite graph218

H = (V + ∪ V +−, V − ∪ V +−, δ(V + ∪ V +−, V − ∪ V +−)). That is, H contains all vertices in219

V + along with a copy of V +− on one side, all vertices of V − and a copy of V +− on the other220

side and all arcs in E with tails in V + ∪ V +− and heads in V − ∪ V +−. We now compute a221

minimum edge cover of this graph, that is, a minimum set of edges that touches every vertex.222

This can be done in polynomial time by finding a maximum matching and then adding an223

arbitrary incident edge for each unmatched vertex. It is not hard to see that a minimum224

edge cover of this graph corresponds exactly to the smallest (1, 1) edge dominating set that225

satisfies the specifications of the sets V +, V −, V +−.226

To see that the running time of our algorithm is O∗(9k) we observe that there are two227

branching steps: either we have an arc (u, v) with both endpoints unmarked; or we have228

an arc with exactly one unmarked endpoint. In both cases we measure the decrease of229

the quantity ` := 2k − (|V +|+ |V −|+ |V +−|). The first case produces two instances with230

`′ := `− 1 (2a,2c), and three instances with `′ := `− 2. We therefore have the recurrence231

T (`) ≤ 2T (` − 1) + 3T (` − 2) which gives T (`) ≤ 3`. For the second case, we have three232

branches, all of which decrease `, therefore we also have T (`) ≤ 3` in this case. Taking into233

account that, initially ` = 2k we get a running time of at most O∗(9k). J234

I Theorem 3. The (0, 1)-dEDS problem parameterized by solution size k can be solved in235

time O∗(2k).236

3.2 Approximation algorithms237

We present here constant-factor approximation algorithms for (0, 1)-dEDS, and (1, 1)-dEDS.238

Both algorithms appropriately utilize a maximal matching.239

I Theorem 4. There are polynomial-time 3-approximation algorithms for (0, 1)-dEDS.240

I Theorem 5. There is a polynomial-time 8-approximation algorithm for (1, 1)-dEDS.241

Proof. Let G = (V,E) be an input directed graph. We partition V into (S,R, T ) so that S242

and T are the sets of sources and sinks respectively, and R = V \ S \ T . We construct an243

(1, 1)-edge dominating set K as follows.244

1. Add the arc set δ(S, T ) to K.245

2. For each vertex of v ∈ R ∩N+(S), choose precisely one arc from δ+(v) and add it to K.246

3. For each vertex of v ∈ R ∩N−(T ), choose precisely one arc from δ−(v) and add it to K.247
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4. Let G′ = (R,E′) be the subdigraph of G whose arc set consists of those arcs not (1, 1)-248

dominated by K thus far constructed. Let M be a maximal matching in (the underlying249

graph of) G′. Let M− and M+ be respectively the tails and heads of the arcs in M . To250

K, we add all arcs of M , an arc of δ−G(v) for every v ∈M−, and also an arc of δ+
G(v) for251

every v ∈M+.252

Clearly, the algorithm runs in polynomial time. In particular, for any vertex v considered at253

Step 2-4, both δ+(v) and δ−(v) are non-empty and choosing an arc from a designated set is254

always possible. We show that K is indeed an (1, 1)-edge dominating set. Suppose that an255

arc (u, v) is not (1, 1)-dominated by K. As the first, second and third step of the construction256

ensures that any arc incident with S ∪T is (1, 1)-dominated, we know that (u, v) is contained257

in the subdigraph G′ constructed at step 4. For (u, v) /∈M andM being a maximal matching,258

one of the vertices u, v must be incident with M . Without loss of generality, we assume v is259

incident with M (and the other cases are symmetric). If v ∈M−, then clearly the arc e ∈M260

whose tail coincides with v would (1, 0)-dominate (u, v), a contradiction. If v ∈M+, then261

the outgoing arc of v added to K at step 4 would (1, 0)-dominate (u, v), again reaching a262

contradiction. Therefore, the constructed set K is a solution to (1, 1)-dEDS.263

To prove the claimed approximation ratio, we first note that δ(S, T ) is contained in any264

(optimal) solution because any arc of δ(S, T ) can be (1, 1)-dominated only by itself. Note265

that these arcs do not (1, 1)-dominate any other arcs of G. Further, we have |R ∩N+(S)| ≤266

OPT(1,1)dEDS − |δ(S, T )| because in order to (1, 1)-dominate any arc of the form (s, r) with267

s ∈ S and r ∈ R, one must take at least one arc from {(s, r)} ∪ δ+(r). Since the collection268

of sets {(s, r) : s ∈ S} ∪ δ+(r) are disjoint over all r ∈ R ∩ N+(S), the inequality holds.269

Likewise, it holds that |R ∩N−(T )| ≤ OPT(1,1)dEDS − |δ(S, T )|. In order to (1, 1)-dominate270

the entire arc set M , one needs to take at least |M |/2 arcs. This is because an arc e can271

(1, 1)-dominate at most two arcs of M . That is, we have |M |/2 ≤ OPT(1,1)dEDS − |δ(S, T )|272

Therefore, it is |K| ≤ |δ(S, T )|+ |R ∩N+(S)|+ |R ∩N−(T )|+ 3|M | ≤ 8OPT(1,1)dEDS . J273

3.3 Polynomial kernels274

We give polynomial kernels for (1, 1)-dEDS and (0, 1)-dEDS. We first introduce a relation275

between the vertex cover number and the size of a minimum (1, 1)-edge dominating set,276

shown in [22] and then proceed to show a quadratic-vertex/cubic-edge kernel for (1, 1)-dEDS.277

I Lemma 6 ([22]). Given a directed graph G, let G∗ be the undirected underlying graph of278

G, vc(G∗) be the vertex cover number of G∗, and K be a minimum (1, 1)-edge dominating279

set in G. Then vc(G∗) ≤ 2|K|.280

I Theorem 7. There exists an O(k2)-vertex/O(k3)-edge kernel for (1, 1)-dEDS.281

Proof. Given a directed graph G, we denote the underlying undirected graph of G by G∗.282

Let K be a minimum (1, 1)-edge dominating set and vc(G∗) be the size of a minimum vertex283

cover in G∗. First, we find a maximal matching M in G∗. If |M | > 2k, we conclude this is a284

no-instance by Lemma 6 and the well-known fact that |M | ≤ vc(G∗) [20]. Otherwise, let S285

be the set of endpoints of edges in M . Then S is a vertex cover of size at most 4k for the286

underlying undirected graph of G and V \ S is an independent set.287

We next explain the reduction step. For each v ∈ S, we mark arbitrary k+ 1 tail vertices288

of incoming arcs of v with “in” and arbitrary k + 1 head vertices of outgoing arcs of v with289

“out”. After this marking, if there exists a vertex u ∈ V \ S without marks “in” and “out”,290

we can delete it. We next show correctness. First, we can observe that if some v ∈ S has291

more than k + 1 incoming arcs, they must be dominated by an outgoing arc of v. Similarly,292
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if v ∈ S has more than k+ 1 outgoing arcs, they must be dominated by an incoming arc of v.293

This means that every arc incident on an unmarked vertex u must be dominated because294

each vertex v in S adjacent to u has at least (k + 1) incoming arcs other than (u, v), or295

(k + 1) outgoing arcs other than (v, u), due to the fact that u is unmarked. Moreover, for an296

incoming (resp., outgoing) arc of u, there exists an outgoing (resp., incoming) arc of v ∈ S297

that dominates all arcs dominated by the incoming (resp., outgoing) arc of u except for298

arcs incident on u. Thus we need not include any arc incident on u in the solution. By the299

reduction step, we obtain the reduced graph.300

From the above, the size of an independent set, being the subset of V \ S, is bounded301

by 4k · 2(k + 1) = 8k2 + 8k, following the reduction step. Thus, the number of vertices in302

the reduced graph is at most 4k + 8k2 + 8k = 8k2 + 12k. Moreover, there exist at most303

4k · (8k2 + 12k) = 32k3 + 48k2 arcs between the sets of the vertex cover and the independent304

set. Therefore, the number of arcs in the reduced graph is at most
(4k

2
)

+ 32k3 + 48k2 =305

32k3 + 56k2 − 2k. J306

Using a more strict relation between vc and the size of a minimum (0, 1)-edge dominating307

set, we obtain a linear-vertex/quadratic-edge kernel for (0, 1)-dEDS.308

I Theorem 8. There exists an O(k)-vertex/O(k2)-edge kernel for (0, 1)-dEDS.309

4 W[1]-hardness by treewidth310

In this section we characterize the complexity of (p, q)-dEDS parameterized by treewidth.311

Our main result is that, even though the problem is FPT when parameterized by p+ q + tw,312

it becomes W[1]-hard if parameterized only by tw.313

I Theorem 9. The (p, q)-dEDS problem is W[1]-hard parameterized by the treewidth of the314

input graph.315

I Theorem 10. The (p, q)-dEDS problem can be solved in time O∗((p+ q)O(tw)) on graphs316

of treewidth at most tw.317

5 On Tournaments318

A complete complexity classification for the problems (p, q)-dEDS is presented in this section.319

For p = q = 1, the problem is NP-hard under a randomized reduction while being amenable320

to an FPT algorithm and polynomial kernelization due to the results of Sections 3.1 and 3.3.321

The hardness reduction is given in Subsection 5.1. When p = 2 or q = 2, the complexity322

status of (p, q)-dEDS is equivalent to Dominating Set on tournaments and is discussed in323

Subsection 5.2. In the remaining cases, when p+ q ≤ 1, or max{p, q} ≥ 3 while neither of324

them equals 2, the problems turn out to be in P (Subsection 5.3).325

5.1 Hard: when p = q = 1326

We present a randomized reduction from Independent Set to (1, 1)-dEDS. Our reduction327

preserves the size of the instance up to polylogarithmic factors; as a result it shows that328

(1, 1)-dEDS does not admit a 2n1−ε algorithm, under the randomized ETH. Furthermore,329

our reduction preserves the optimal value, up to a factor (1− o(1)); as a result, it shows that330

(1, 1)-dEDS is APX-hard under randomized reductions.331

Before moving on, let us give a high-level overview of our reduction. The first step is to332

reduce Independent Set to Almost Induced Matching, the problem of finding the333
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maximum set of vertices that induce a graph of maximum degree 1. Our reduction produces334

an instance of Almost Induced Matching that has several special properties, notably335

producing a bipartite graph G = (A,B,E). The basic strategy will be then to construct a336

tournament T = (V ′, E′), where V ′ = A ∪B ∪C, where C is a set of new vertices. All edges337

of E will be directed from A to B, non-edges of E will be directed from B to A, and all other338

edges will be set randomly. This intuitively encodes the structure of G in T . The idea is now339

that a solution S in G (that is, a set of vertices of G that induces a graph with maximum340

degree 1) will correspond to an edge dominating set in T where all vertices except those of S341

will have total degree 2, and the vertices of S will have total degree 1. In particular, vertices342

of S ∩A will have out-degree 1 and in-degree 0, and vertices of S ∩B will have in-degree 1343

and out-degree 0.344

The random structure of the remaining arcs of the tournament T is useful in two respects:345

in one direction, given the solution S for G, it is easy to deal with vertices that have degree 1346

in G[S]: we select the corresponding arc from A to B in T . For vertices of degree 0 however,347

we are forced to look for edge-disjoint paths that will allow us to achieve our degree goals.348

Such paths are guaranteed to exist if C is random and large enough. In the other direction,349

given a good solution in T , we would like to guarantee that, because the internal structure350

of A, B, and C is chaotic, the only way to obtain a large number of vertices with low degree351

is to place those with in-degree 0 in A, and those with out-degree 0 in B.352

I Theorem 11. (1, 1)-dEDS on tournaments cannot be solved in polynomial time, unless353

NP ⊆ BPP. Furthermore, (1, 1)-dEDS is APX-hard under randomized reductions, and does354

not admit an algorithm running in time 2n1−ε for any ε, unless the randomized ETH is false.355

We first reduce the Independent Set problem on cubic graphs to the following in-356

termediate problem called Almost Induced Matching, commonly known as Maximum357

Dissociation Number in the literature [35, 32]. A subgraph of G induced on a vertex set358

S ⊆ V is called an almost induced matching, if every vertex v ∈ S has degree ≤ 1 in G[S].359

I Definition 12. The problem Almost Induced Matching (AIM) takes as input an360

undirected graph G = (V,E). The goal is to find an almost induced matching having the361

maximum number of vertices.362

I Theorem 13. [1, 10] Independent Set is APX-hard on cubic graphs. Furthermore,363

Independent Set cannot be solved in time 2o(n) unless the ETH is false.364

Almost Induced Matching is known to be NP-complete on K1,4-free bipartite graphs365

and on C4-free bipartite graphs with a maximum vertex degree of 3 [6]. It is also NP-hard to366

approximate on arbitrary graphs within a factor of n1/2−ε for any ε > 0 [29]. The next lemma367

supplements the known hardness results on bipartite graphs and might be of independent368

interest.369

I Lemma 14. Almost Induced Matching is APX-hard and cannot be solved in time 2o(n)
370

under the ETH, even on bipartite graphs of degree at most 4. Furthermore, this hardness371

still holds if we are promised that OPTAIM > 0.6n and that there is an optimal solution S372

that includes at least n/20 vertices with degree 0 in G[S].373

As we use a random construction, the following property of a uniform random tournament374

is useful. Intuitively, the property established in Lemma 15 states that it is impossible in a375

large random tournament to have two large sets of vertices X,Y such that all vertices of376

X have in-degree 0 and out-degree 1 in a (1, 1)-edge dominating set, while all vertices of Y377

have in-degree 1 and out-degree 0.378
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I Lemma 15. Let T = (V,E) be a random tournament on the vertex set {1, 2, . . . , n}, in379

which (i, j) is an arc of T with probability 1/2. Then the following event happens with high380

probability: for any two disjoint sets X,Y ⊆ V with |X| > (logn)2 and |Y | > (logn)2, there381

exists a vertex x ∈ X with at least two outgoing arcs to Y .382

I Lemma 16. Let G = (A∪̇B∪̇C,E) be a random directed graph with |A| = |B| = n and383

|C| = 4n such that for any pair (x, y) with {x, y} ∩ C 6= ∅ we have exactly one arc, oriented384

from x to y, or from y to x with probability 1/2. Let ` ≥ n/20 be a positive integer. Then385

with high probability, we have: for any two disjoint sets X ⊆ A,Y ⊆ B with |X| = |Y | = `,386

there exist ` vertex-disjoint directed paths from X to Y .387

I Theorem 17. There is a probabilistic polynomial-time algorithm computing, given an388

instance G of Almost Induced Matching, an instance T of (1, 1)-dEDS such that with389

high probability:390

(i) if OPTAIM (G) ≥ L1, then OPT(1,1)dEDS(T ) ≤ |V (T )| − L1/2 + 1,391

(ii) if OPTAIM (G) < L2 − 5(logL2)2, then OPT(1,1)dEDS(T ) > |V (T )| − L2/2 + 1.392

Proof of Theorem 11. Let G be an instance of Independent Set on cubic graphs and393

let G′ be the instance of Almost Induced Matching obtained by the construction of394

Lemma 14. We set ` as in the reduction and observe that OPTIS(G) ≥ k if and only if395

OPTAIM (G′) ≥ `.396

Let G∗ be a disjoint union of 10(log `)2 copies of G′. Then G∗ is a gap instance, whose397

optimal solution is either at least 10`(log `)2, or at most 10`(log `)2−10(log `)2 ≤ L−5(logL)2,398

where L := 10`(log `)2. Now Theorem 17 implies that using a probabilistic polynomial-time399

algorithm for (1, 1)-dEDS with two-sided bounded errors, one can correctly decide an instance400

of Independent Set on cubic graphs with bounded errors. We observe that the size of the401

instance has only increased by a poly-logarithmic factor, hence an algorithm solving the new402

instance in time 2n1−ε would give a randomized sub-exponential time algorithm for 3-SAT.403

Finally, for APX-hardness, we observe that we may assume we start our reduction from404

an Independent Set instance where either OPTIS ≥ k or OPTIS < rk, for some constant405

r < 1, and for k = Θ(n). Lemma 14 then gives an instance of Almost Induced Matching406

where either OPTAIM ≥ L1 or OPTAIM ≤ r′L1 = L2, for some (other) constant r′ < 1. We407

now use Theorem 17 to create a gap-instance of (1, 1)-dEDS. J408

5.2 Equivalent to Dominating Set on tournaments: p = 2 or q = 2409

I Lemma 18. On tournaments without a source, we have OPT(0,2)dEDS ≤ OPTDS.410

Proof. Let T = (V,E) be a tournament with no source and D ⊆ V be a dominating set of411

T . Then let K ⊆ E be a set containing one arbitrary incoming arc of every vertex in D. We412

claim K (0, 2)-dominates all arcs in E: since D is a dominating set, for any vertex u /∈ D413

there must be an arc (v, u) from some v ∈ D. Thus all outgoing arcs (u,w) from such u /∈ D414

are (0, 2)-dominated by K, as are all arcs (v, u) from v ∈ D. J415

I Lemma 19. Let T = (V,E) be a tournament and let s be a source of T . Then δ+(s) is an416

optimal (p, q)-edge dominating set of T for any p ≤ 1 and q ≥ 1.417

Proof. Since s has no incoming arcs, any (p, q)-edge dominating set must select at least one418

arc from {(s, v)} ∪ δ+(v) for every v ∈ V \ {s} in order to (p, q)-dominate (s, v). Because the419

arc sets {(s, v)}∪ δ+(v) are mutually disjoint over all v ∈ V \ {s}, any (p, q)-edge dominating420

set has size at least |δ+(s)|. Now, observe that δ+(s) (0, 1)-dominates every arc of T . J421
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I Lemma 20. On tournaments on n vertices, for any p ≥ 2 we have: OPT(p,2)dEDS ≤422

OPT(2,2)dEDS ≤ 2 logn+ 3.423

Proof. The first inequality trivially holds, so we prove the second inequality. Let T = (V,E)424

be a tournament on n vertices. If T has no source, then OPT(2,2)dEDS ≤ OPT(0,2)dEDS ≤425

OPTDS ≤ logn + 1, where the second and the last inequality follow from Lemma 18 and426

Lemma 1, respectively. If T rev contains no source, observe that a (0, 2)-edge dominating set427

of T rev is a (2, 0)-edge dominating set of T and the statement holds.428

Therefore, we may assume that T has a source s and a sink t. Let S1 ⊆ V \ {s} be a429

dominating set of T − s of size at most logn+ 1. Clearly, every arc (u, v) of T − s lies on a430

directed path of length at most two from some vertex of S1. Let D1 ⊆ E be a minimal arc431

set such that D1∩ δ−(v) 6= ∅ for every v ∈ S1. Since every v ∈ S1 has positive in-degree, such432

a set D1 exists and we have |D1| ≤ |S1|. Observe that D1 (0,2)-dominates every arc of T − s.433

Applying a symmetric argument to T rev − t, we know that there exists an arc set D2 of size434

at most logn+ 1 which (2, 0)-dominates every arc of T − t. Now D1 ∪D2 (2,2)-dominates435

every arc incident with V \ {s, t}. Therefore, D1 ∪D2 ∪ {(s, t)} is a (2, 2)-dEDS. J436

I Lemma 21. There is an FPT reduction from Dominating Set on tournaments pa-437

rameterized by solution size to (p, q)-EDS parameterized by solution size, when p = 2 or438

q = 2.439

Proof. Without loss of generality we assume that q = 2. Let T = (V,E) be an input440

tournament to Dominating Set, and let k be the solution size. It can be assumed that441

T has no source. We construct a tournament T ′ on vertex set V ∪ {t}, in which t is a sink.442

Given a dominating set D of T , we select an arbitrary arc set K of T ′ so that δ−K(v) = 1 for443

each v ∈ D. It is easy to see that K (0, 2)-dominates every arc of T ′: any arc (u, v) with444

u ∈ D is clearly dominated by K. For any arc (u, v) with u /∈ D, there is w ∈ D such that445

(w, u) ∈ E and thus K (0, 2)-dominates (u, v).446

Conversely, suppose that K is a (p, 2)-edge dominating set of size at most k and let447

K+ be the set of heads of K found in V . Let K− be the set of vertices u ∈ V such that448

(u, t) ∈ K. We have |K+ ∪K−| ≤ k, because each arc of K either contributes an element449

in K+ or in K−. We claim that K+ ∪K− is a dominating set of T . Suppose the contrary,450

therefore there exists u ∈ V \ (K+ ∪K−) that is not dominated by K+ ∪K−. However, the451

arc (u, t) is dominated by K. We have (u, t) 6∈ K, as u 6∈ K−. Therefore, since t is a sink,452

(u, t) is (0, 2)-dominated by an arc (v, w) ∈ K. This means that either w = u, or the arc453

(w, u) exists. However, w ∈ K+, which means that u is dominated. J454

I Theorem 22. On tournaments, the problems (p, 2)-dEDS are W[2]-hard for each fixed p.455

Proof. For all problems, we use the reduction from Set Cover to Dominating set on456

Tournaments given in Theorem 13.14 of [10] and our results follow from the W[2]-hardness457

of that problem (see also Theorem 13.28 therein) and Lemma 21. J458

I Theorem 23. On tournaments, the problems (0, 2)-dEDS, (1, 2)-dEDS and (2, 2)-dEDS459

can be solved in time nO(logn).460

Proof. For (0, 2)-dEDS and (1, 2)-dEDS, the case when a given tournament contains a461

source can be solved in polynomial time by Lemma 19. If the input tournament contains462

no source, then by Lemma 18 we have OPT(1,2)dEDS ≤ OPT(0,2)dEDS ≤ OPTDS , which463

is bounded by logn + 1 by Lemma 1. Lemma 20 states that OPT(p,2)dEDS ≤ 2 logn + 3.464

Exhaustive search over vertex subsets of size O(logn) performs in the claimed runtime. J465
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5.3 P-time solvable: p + q ≤ 1 or, 2 /∈ {p, q} and max{p, q} ≥ 3466

I Theorem 24. (0, 1)-dEDS can be solved in polynomial time on tournaments.467

Proof. We will show that OPT(0,1)dEDS = n − 1 and give a polynomial-time algorithm468

for finding such an optimal solution. First, given a tournament T = (V,E), to see why469

OPT(0,1)dEDS ≥ n− 1 consider any optimal solution K ⊆ E: if there exists a pair of vertices470

u, v ∈ V with d−K(u) = d−K(v) = 0, i.e. a pair of vertices, neither of which has an arc of K as471

an incoming arc, then the arc between them (without loss of generality let its direction be472

(v, u)) is not dominated: as d−K(u) = 0, the arc itself does not belong in K and as d−K(v) = 0,473

there is no arc preceding it that is in K. This leaves (v, u) undominated. Therefore, there474

cannot be two vertices with no incoming arcs in any optimal solution, implying any solution475

must include at least n− 1 arcs.476

To see OPT(0,1)dEDS ≤ n−1, consider a partition of T into strongly connected components477

C1, . . . , Cl, where we can assume these are given according to their topological ordering, i.e.478

for 1 ≤ i < j ≤ l, all arcs between Ci and Cj are directed towards Cj . Let S be the set479

of arcs traversed in breadth-first-search (BFS) from some vertex s ∈ C1 until all vertices480

of C1 are spanned. Also let S′ be the set of arcs (s, u),∀u ∈ Ci,∀i ∈ [2, l], i.e. all outgoing481

arcs from s to every vertex of C2, . . . , Cl. Note that set S′ must contain an arc from s to482

every vertex that is not in C1: T being a tournament means every pair of vertices has an483

arc between them and C1 being the first component in the topological ordering means all484

arcs between its vertices and those of subsequent components are oriented away from C1.485

Then K := S ∪ S′ is a directed (0, 1)-edge dominating set of size n− 1 in T : observe that486

d−K(u) = 1,∀u 6= s ∈ T , i.e. every vertex in T has positive in-degree within K except s. Thus487

all outgoing arcs from all such vertices u are (0, 1)-dominated by K, while all outgoing arcs488

from s are in K, due to the BFS selection for S and the definition of S′.489

Since such an optimal solution K can be computed in polynomial time (partition into490

strongly connected components, BFS), the claim follows. J491

I Theorem 25. For any p, q with max{p, q} ≥ 3, p 6= 2 and q 6= 2, (p, q)-dEDS can be492

solved in polynomial time on tournaments.493

Proof. Suppose without loss of generality that q ≥ 3, as otherwise we can solve (q, p)-dEDS494

on T rev, the tournament obtained by reversing the orientation of every arc. In any tournament495

T , there always exists a king vertex, that is, a vertex with a path of length at most 2 to any496

other vertex in the graph. One such vertex is the vertex of maximum out-degree v. If v is497

not a source, it suffices to select one of its incoming arcs: since there is a path of length at498

most 2 from v to any other vertex u in the graph, any outgoing arc from any such u will be499

(0, 3)-dominated by this selection. This is clearly optimal.500

Suppose now that s is a source. We consider two cases: if p ≤ 1, then Lemma 19 implies501

that δ+(s) is optimal. Finally, suppose s is a source and p ≥ 3. If T does not have a sink,502

then a king of T rev has an incoming arc, which (0, 3)-dominates T rev as observed above, and503

thus T has a (0, 3)-edge dominating set of size 1.504

Therefore, we may assume that T has both a source s and a sink t. Let s′ and t′ be vertices505

of V \ {s, t} with maximum out- and in-degree, respectively. Now {(s, t), (s, s′), (t′, t)} is a506

(3, 3)-edge dominating set. This is because s′ is a king of T − s and thus every arc (u, v) with507

u 6= s is (0, 3)-dominated by (s, s′). Similarly, every arc (u, v) with v 6= t is (3, 0)-dominated508

by (t′, t). The only arc not (3, 3)-dominated by these two arcs is (s, t), which is dominated509

by itself. Examining all vertex subsets of size up to 3, we can compute an optimal (3, 3)-edge510

dominating set in polynomial time. J511
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A Omitted Definitions595

A tree decomposition of a graph G = (V,E) is a pair (X , T ) with T = (I, F ) a tree and596

X = {Xi|i ∈ I} a family of subsets of V (called bags), one for each node of T , with the597

following properties:598

1)
⋃
i∈I Xi = V ;599

2) for all edges (v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi;600

3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .601

The width of a tree decomposition ((I, F ), {Xi|i ∈ I}) is maxi∈I |Xi| − 1. The treewidth of a602

graph G is the minimum width over all tree decompositions of G, denoted by tw(G).603

Moreover, for rooted T , let Gi = (Vi, Ei) denote the terminal subgraph defined by node604

i ∈ I, i.e. the induced subgraph of G on all vertices in bag i and its descendants in T . Also605

let Ni(v) denote the neighborhood of vertex v in Gi and di(u, v) denote the distance between606

vertices u and v in Gi, while d(u, v) (absence of subscript) is the distance in G.607

In addition, a tree decomposition can be converted to a nice tree decomposition of the608

same width (in O(tw2 ·n) time and with O(tw ·n) nodes): the tree here is rooted and binary,609

while nodes can be of four types:610

a) Leaf nodes i are leaves of T and have |Xi| = 1;611

b) Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V and are612

said to introduce v;613

c) Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V and are said to614

forget v;615

d) Join nodes i have two children denoted by i− 1 and i− 2, with Xi = Xi−1 = Xi−2.616

Nice tree decompositions were introduced by Kloks in [26] and using them does not in general617

give any additional algorithmic possibilities, yet algorithm design becomes considerably618

easier.619

Replacing “tree” by “path” in the above, we get the definition of pathwidth pw. We recall620

the following well-known relation:621

I Lemma 26. For any graph G we have tw(G) ≤ pw(G).622

The Dominating Set problem is defined as follows: given an undirected graph G =623

(V,E), we are asked to find a subset of vertices D ⊆ V , such that every vertex not in D has624

at least one neighbor in D: ∀v /∈ D : N(v) ∩D 6= ∅. For a directed graph G = (V,E), every625

vertex not in D is required to have at least one incoming arc from at least one vertex of D:626

∀v /∈ D : δ−(v) ∩D 6= ∅.627

We also use the k-Multicolored Clique problem, which is defined as follows: given628

a graph G = (V,E), with V partitioned into k independent sets V = V1 ] · · · ] Vk, |Vi| =629

n,∀i ∈ [1, k], we are asked to find a subset S ⊆ V , such that G[S] forms a clique with630

|S ∩ Vi| = 1,∀i ∈ [1, k]. The problem k-Multicolored Clique is well-known to be631

W[1]-complete [16].632

B Omitted Material from Section 3:633

Theorem 3: The (0, 1)-dEDS problem parameterized by solution size k can be solved in634

time O∗(2k).635

Proof. We give a branching algorithm that marks vertices of V . During the branching636

process we construct three disjoint sets: V0 contains vertices that will have in-degree 0 in the637

optimal solution; V +
F contains vertices that have positive in-degree in the optimal solution638
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and for which the algorithm has already identified at least one selected incoming arc; and V +
?639

contains vertices that have positive in-degree in the optimal solution for which we have not640

yet identified an incoming arc. The algorithm will additionally mark some arcs as “forced”,641

meaning that these arcs have been identified as part of the solution.642

Initially, the algorithm sets V0 = V +
F = V +

? = ∅. These sets will remain disjoint during643

the branching. We denote V + = V +
F ∪ V

+
? and Vr = V \ (V0 ∪ V +).644

Before performing any branching steps we exhaustively apply the following rules:645

1. If |V +| > k we reject. This is correct since no solution can have more than k vertices646

with positive in-degree.647

2. If there exists an arc (u, v) with u, v ∈ V0 we reject. Such an arc cannot be covered648

without violating the constraint that the in-degrees of u, v stay 0.649

3. If there exists a source v ∈ Vr we set V0 := V0 ∪ {v}. This is correct since a source will650

obviously have in-degree 0 in the optimal solution.651

4. If there exists an arc (u, v) with u ∈ V0 and v 6∈ V +
F we set V +

F := V +
F ∪ {v} and652

V +
? := V +

? \ {v}. This is correct since the only way to cover (u, v) is to take it. We mark653

all arcs with tail u as forced.654

5. If there exists an arc (u, v) with v ∈ V0 and u 6∈ V + we set V +
? := V +

? ∪ {u}. This is655

correct, since we cannot cover (u, v) by selecting it (this would give v positive in-degree).656

6. If there exists an arc (u, v) with v ∈ V +
F and u ∈ Vr which is not marked as forced, then657

we set V +
? := V +

? ∪ {u}. We explain the correctness of this rule below.658

The above rules take polynomial time and can only increase |V +|. We observe that Vr659

contains no sources (Rule 3). To see that Rule 6 is correct, suppose that there is a solution660

in which the in-degree of u is 0, therefore the arc (u, v) is taken. However, since v ∈ V +
F , we661

have already marked another arc that will be taken, so the in-degree of v will end up being662

at least 2. Since u is not a source (Rule 3), we replace (u, v) with an arbitrary incoming arc663

to u. This is still a valid solution.664

The first branching step is the following: suppose that there exists an arc (u, v) with665

u, v ∈ Vr. In one branch we set V +
? := V +

? ∪{u}, and in the other branch we set V0 := V0∪{u}666

and V +
F = V +

F ∪ {v} and mark (u, v) as forced. This branching is correct as any feasible667

solution will either take an arc incoming to u to cover (u, v), or, if not, will take (u, v) itself.668

In both branches the size of V + increases by one.669

Suppose now that we have applied all the above rules exhaustively, and that we cannot670

apply the above branching step. This means that (V0 ∪ V +) is a vertex cover. If there is671

a vertex u ∈ V +
? that has two in-neighbors v1, v2 ∈ Vr we branch as follows: we either set672

V +
? := V +

? ∪ {v1}; or we set V0 := V0 ∪ {v1}, V +
F := V +

F ∪ {u}, and V
+

? := V +
? \ {u} and673

mark the arc (v1, u) as forced. This is correct, since a solution will either take an incoming674

arc to v1, or the arc (v1, u). The first branch clearly increases |V +|. The key observation is675

that |V +| also increases in the second branch, as Rule 6 will immediately apply, and place v2676

in V +
? .677

Suppose now that none of the above applies. Because of Rule 6 there are no arcs from Vr678

to V +
F . Because the second branching Rule does not apply, and because of Rule 4, each vertex679

v ∈ V +
? only has in-neighbors in V + and at most one in-neighbor in Vr. For each v ∈ V +

?680

that has an in-neighbor u ∈ Vr we select (u, v) in the solution; for every other v ∈ V +
? we681

select an arbitrary incoming arc in the solution; for each u ∈ V +
F we select the incoming arcs682

that the branching algorithm has identified. We claim that this is a valid solution. Because683

of Rule 4 all arcs coming out of V0 are covered, because of Rule 2 no arcs are induced by684

V0, and because of Rule 5 all arcs going into V0 have a tail with positive in-degree in the685
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solution. We have selected in the solution every arc from Vr to V +
? , and there are no arcs686

induced by Vr, otherwise we would have applied the first branching rule. All arcs from Vr to687

V +
F are marked as forced and we have selected them in the solution. Finally, all arcs with688

tail in V + are covered.689

Because of the correctness of the branching rules, if there is a solution, one of the690

branching choices will produce it. All rules can be applied in polynomial time, or produce691

two branches with larger values of |V +|. Since this value never goes above k, we obtain an692

O∗(2k) algorithm. J693

Theorem 4: There are polynomial-time 3-approximation algorithms for (0, 1)-dEDS and694

(1, 0)-dEDS.695

Proof. We present an approximation algorithm for (0, 1)-dEDS. The algorithm for (1, 0)-696

dEDS is obtained by reversing the orientation of each arc and applying the algorithm for697

(0, 1)-dEDS.698

Let G = (V,E) be an input directed graph. We partition V into (S,R, T ) so that S and699

T are the sets of sources and sinks respectively, and R = V \ S \ T . A (0, 1)-edge dominating700

set K is constructed as follows.701

1. Add the arc set δ+(S) to K.702

2. For each vertex of v ∈ (R ∩N−(T )) \N+(S), choose precisely one arc from δ−(v) and703

add it to K.704

3. Let G′ = (R,E′) be the subdigraph of G whose arc set consists of arcs not (0, 1)-dominated705

by K thus far constructed. Let M be a maximal matching in (the underlying graph of)706

G′. Let M− be the tails of the arcs in M and let I+ be the set of vertices v of R \ V (M)707

such that δ+
G′(v) 6= ∅. Here V (M) is the set of all vertices contained in some matching708

edge of M . To K, we add all arcs of M , an incoming arc (i.e. any element of δ−G(v)) of v709

for every v ∈M− and an incoming arc (i.e. any element of δ−G(v)) of v for every v ∈ I+.710

Obviously, the above construction can be carried out in polynomial time. Let K1, K2711

and K3 be the set of arcs added to K at step 1, 2 and 3 respectively. Note that K1 = δ+(S)712

must be contained in any solution because the only arc that can (0, 1)-dominate an arc of713

δ+(S) is itself. Moreover, in order to (0, 1)-dominate an arc (r, t) with r ∈ R, t ∈ T which is714

not already (0, 1)-dominated by K1, we must add at least one arc of {(r, t) : t ∈ T} ∪ δ−(r)715

for every r ∈ (R ∩N−(T )) \N+(S). Note that the collection of sets {(r, t) : t ∈ T} ∪ δ−(r)716

are disjoint over all r ∈ (R ∩N−(T )) \N−(T ).717

For step 3, we first observe that any (optimal) solution must contain at least one arc of718

δ−G(v) ∪ δ+
G(v) for every v ∈ I+. In order to justify step 3, the following claim provides a key719

observation.720

I Claim 26.1. It holds that δ(S, I+) = δ(I+, T ) = ∅. Furthermore I+ is an independent set721

in the underlying graph of G.722

Proof. That both sets δ(S, I+) and δ(I+, T ) are empty is implied by the fact that δ+(v) 6= ∅723

for every v ∈ I+. Suppose that I+ is not an independent set in G and let (u, v) be an arc724

with u, v ∈ I+. Since I+ is an independent set in G′, this means that (u, v) ∈ K2 or (u, v) is725

(0, 1)-dominated by K1 ∪K2. Both cases contradict the first statement. J726

By the above claim, the collection of arcs δ−(v) ∪ δ+(v) over all v ∈ I+ are pairwise727

disjoint. In order to (0, 1)-dominate the arc set
⋃
v∈I+ δ+(v), any solution must take at least728

one arc from δ−(v) ∪ δ+(v). Observe that the sets δ−(v) ∪ δ+(v) over all v ∈ I+, δ+(S) and729
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δ−(v) over all v ∈ (R ∩N−(T )) \N+(S) are pairwise disjoint by the above claim. Therefore,730

we have731

|K1|+ |K2|+ |I+| ≤ OPT(0,1)dEDS .732

In order to (0, 1)-dominate the entire arc setM , one needs to take at least |M | arcs. Therefore,733

we deduce734

|K| ≤ |K1|+ |K2|+ 2|M |+ |I+| ≤ 3OPT(0,1)dEDS .735

It remains to show that K is an (0, 1)-edge dominating set. We only need to verify that736

K3 is a (0, 1)-edge dominating set of G′. Any arc (u, v) with u ∈ V (M) is (0, 1)-dominated737

by K3. The remaining case is when u ∈ R \ V (M) and v ∈ V (M). Then u ∈ I+ and the738

incoming arc of u we added to K3 clearly (0, 1)-dominates (u, v). J739

I Lemma 27. Given a directed graph G, let G∗ be the undirected underlying graph of G,740

vc(G∗) be the vertex cover number of G∗, and K be a minimum (0, 1)-edge dominating set in741

G. Then vc(G∗) ≤ |K|.742

Proof. For an arc (u, v), the head vertex v covers all arcs (i.e. edges) dominated by (u, v) in743

G∗. Since K dominates all edges in G, the set of head vertices of K is a vertex cover in G∗.744

Thus, vc(G∗) ≤ |K|. J745

Theorem 8: There exists an O(k)-vertex/O(k2)-edge kernel for (0, 1)-dEDS.746

Proof. Given a directed graph G, we denote the underlying undirected graph of G by G∗. Let747

K be a minimum (0, 1)-directed edge dominating set and vc(G∗) be the size of a minimum748

vertex cover in G∗.749

First, we find a maximal matching M in G∗. If |M | > k, we conclude this is a no-instance750

by Lemma 27 and the fact that |M | ≤ vc(G∗) [20]. Otherwise, let S be the set of endpoints751

of edges in M . Then S is a vertex cover of size at most 2k for G∗ since vc(G∗) ≤ 2|M | [20].752

Let I := V \ S, which is an independent set. Moreover, let V −0 (resp. V +
0 ) be the set of753

vertices with d−(v) = 0 (resp. d+(v) = 0). If there are more than |I \ V +
0 | ≥ k + 1, we can754

conclude this is a no-instance since we need at least k + 1 arcs to dominate all outgoing arcs755

of I \ V +
0 .756

Next, we consider vertices in I ∩ V +
0 . For an arc (u, v) for u ∈ S and v ∈ I ∩ V +

0 , if757

d−(u) = 0, we delete (u, v) and v and set k := k − 1 since (u, v) is only dominated by itself.758

We then suppose d−(u) > 0, and thus u has at least one incoming arc. Since (u, v) only759

dominates itself and an incoming arc of u can dominate (u, v) and itself, we may assume760

that any optimal solution excludes (u, v) and use one of the incoming arc of u in order to761

dominate (u, v). Thus, we can replace the set I ∩ V +
0 by one vertex and then also replace762

each multiple edge by one edge because we only have to observe whether u is the head vertex763

of an arc in the solution.764

The number of vertices in the final graph is at most 2k + k + 1 = 3k + 1 and the number765

of edges is clearly O(k2). J766

C Omitted Material from Section 4:767

Construction: Given an instance [G = (V,E), k] of k-Multicolored Clique, with768

V =
⋃
∀i∈[1,k] Vi and Vi = {vi0, . . . , vin−1} we will construct an instance [G′ = (V ′, E′), tw(G′)]769

of (p, q)-dEDS parameterized by the treewidth of the underlying undirected graph, with770



R. Belmonte and T. Hanaka and I. Katsikarelis and E.J. Kim and M. Lampis 23:19

p = q = 2n, as follows. We first make k main cycles on n vertices V ′i = {ui0, . . . , uin−1},771

∀i ∈ [1, k], each corresponding to a set Vi ⊆ V and we associate each vertex vil ∈ Vi with the772

arc (uil, uil+1) from cycle V ′i (its corresponding arc). Let Ē be the set of non-edges between773

vertices from different sets from G, i.e. the set of all pairs (vil , vjo) /∈ E.774

For each (vil , vjo) ∈ Ē with i < j, we will create the following cross-gadget Ĉi,jl,o : we first775

make five new vertices ai,jl,o, b
i,j
l,o, c

i,j
l,o, d

i,j
l,o and ei,jl,o and then add arcs from ai,jl,o and ci,jl,o to ei,jl,o776

and from ei,jl,o to bi,jl,o and di,jl,o. We let set Qi,jl,o contain all four of these arcs and refer to them777

as the cross-arcs. We also add both arcs between ai,jl,o and ci,jl,o, as well as both arcs between778

bi,jl,o and di,jl,o. These are referred to as the flip-arcs. Finally, we add a path of length 4n− 2779

from bi,jl,o to ai,jl,o and a path of length 4n− 2 from di,jl,o to ci,jl,o (on 4n− 3 new vertices each).780

We call these the long paths.781

To connect each gadget to the main cycles, we then add a path of length n+ l + 1 (with782

n+ l new vertices) from ui0 to ai,jl,o and a path of length 2n− l (with 2n− l− 1 new vertices)783

from bi,jl,o to ui0. We also add a path of length n+ o+ 1 from uj0 to ci,jl,o and a path of length784

2n− o from di,jl,o to uj0.785

Finally, in order to ensure any (2n, 2n)-edge dominating set will select at least one arc786

from each of the k main cycles, we will attach a guard cycle to each middle vertex of each V ′i :787

the middle vertex of V ′i is uin/2 and we attach a cycle of length 3n+ 1 to it.2 This concludes788

our construction and Figure 1 provides an illustration. Clearly, the construction requires789

polynomial time.790

ui
0

ui
1

ui
n/2

ui
n−1

ui
2

uj
0

uj
1

uj
n/2

uj
n−1

uj
2

ei,jx,y

di,jx,y

ci,jx,yai,jx,y

bi,jx,y

ei,jx′,y′

di,jx′,y′

ci,jx′,y′ai,jx′,y′

bi,jx′,y′

3n+ 1 3n+ 1

2n− x

n+ x+ 1

n+ y + 1

2n− y

n+ x′ + 1

2n− x′

n+ y′ + 1

2n− y′

4n− 2

Figure 1 An example of our construction (even n). Dotted lines show the length of each path.

For a given subset K ⊂ V of vertices of G, one from each Vi, let S(K) ⊂ E′ denote the791

set of corresponding arcs in G′, one from each main cycle: if vix ∈ K, then S(K) includes792

2 We assume, without loss of generality, that n is even as we can always add a dummy vertex to each
subset Vi.
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the arc (vix, vix+1). Similarly, let K(S) ⊂ V denote the set of corresponding vertices for each793

arc of S ⊂ E′, where S contains exactly one arc from each main cycle.794

I Lemma 28. Let K ⊂ V such that |K ∩ Vi| = 1 for each i. Then at least one of Qi,jl,o is795

dominated by S(K) for all cross-gadgets if and only if K is k-multicolored clique in G.796

Proof. Let x, y ∈ [0, n− 1] be indices such that vix ∈ Vi and vjy ∈ Vj . For every cross-gadget797

representing non-edge (vil , vjo), we observe the following:798

If l < x, then arc (ai,jl,o, e
i,j
l,o) is (forward) dominated by (uix, uix+1), as the distance from799

uix+1 to ai,jl,o is at most n+ l + 1 + n− x− 1 < n+ x+ 1 + n− x− 1 = 2n.800

If l > x, then arc (ei,jl,o, b
i,j
l,o) is (backward) dominated by (uix, uix+1), as the distance from801

bi,jl,o to uix is at most 2n− l + x < 2n− x+ x = 2n.802

If o < y, then arc (ci,jl,o, e
i,j
l,o) is (forward) dominated by (ujy, u

j
y+1), as the distance from803

uiy+1j to ei,jl,o is at most n+ o+ 1 + n− y − 1 < n+ y + 1 + n− y − 1 = 2n.804

If o > y, then arc (ei,jl,o, d
i,j
l,o) is (backward) dominated by (ujy, u

j
y+1), as the distance from805

di,jl,o to ujy is at most 2n− o+ y < 2n− y + y = 2n.806

If K is a k-multicolored clique in G, there is no non-edge between any pair of vertices807

from K. This means there is no cross-gadget Ĉi,jl,o for which l = x and o = y and therefore808

one of the above four cases applies.809

If there is a pair vix, vjy ∈ K with (vix, vjy) ∈ Ē for some 1 ≤ i 6= j ≤ k, then G′ contains810

the cross-gadget Ĉi,jx,y and none of the four arcs of Qi,jx,y are dominated by S(K) since811

(uix, uix+1) ∈ S(K) dominates up to vertex ai,jx,y going forward and up to vertex bi,jx,y going812

backward, while (ujy, u
j
y+1) ∈ S(K) dominates up to vertex ci,jx,y going forward and up to813

vertex di,jx,y going backward. Clearly, no other arc of S(K) dominates an arc of Qi,jx,y. J814

I Lemma 29. If G has a k-multicolored clique of size k, then G′ has a (2n, 2n)-edge815

dominating set of size |Ē|+ k.816

Proof. Given a k-multicolored clique K ⊂ V , we will show the existence of a (2n, 2n)-edge817

dominating set S ⊂ E′ of size |Ē| + k. By Lemma 28, at least one arc of every Qi,jl,o is818

dominated by S(K). We construct a set Q ⊂ E′ of size |Ē| by choosing one arc per Qi,jl,o for819

every non-edge (vil , v
j
l ) of G, depending on which arc of Qi,jl,o is dominated by S(K).820

Let (ei,jl,o, b
i,j
l,o) be an dominated arc from Qi,jl,o. Then consider the selection of arc (ei,jl,o, d

i,j
l,o)821

for Q: this dominates both arcs (ai,jl,o, e
i,j
l,o) and (ci,jl,o, e

i,j
l,o), along with (di,jl,o, b

i,j
l,o), (bi,jl,o, d

i,j
l,o),822

(ai,jl,o, c
i,j
l,o) and (ci,jl,o, a

i,j
l,o). It also dominates 2n arcs of the long path from di,jl,o to ci,jl,o going823

forward and the rest (up to 2n − 1) arcs going backward. For the long path from bi,jl,o824

to ai,jl,o, this selection dominates 2n− 1 arcs going forward and the rest (2n− 1) going825

backward.826

Let (ei,jl,o, d
i,j
l,o) be an dominated arc from Qi,jl,o. Then consider the selection of arc (ei,jl,o, b

i,j
l,o)827

for Q: this dominates both arcs (ai,jl,o, e
i,j
l,o) and (ci,jl,o, e

i,j
l,o), along with (di,jl,o, b

i,j
l,o), (bi,jl,o, d

i,j
l,o),828

(ai,jl,o, c
i,j
l,o) and (ci,jl,o, a

i,j
l,o). It also dominates 2n arcs of the long path from bi,jl,o to ai,jl,o going829

forward and the rest (up to 2n − 1) arcs going backward. For the long path from di,jl,o830

to ci,jl,o, this selection dominates 2n − 1 arcs going forward and the rest (2n − 1) going831

backward.832

Let (ai,jl,o, e
i,j
l,o) be an dominated arc from Qi,jl,o. Then consider the selection of arc (ci,jl,o, e

i,j
l,o)833

for Q: this dominates both arcs (ei,jl,o, b
i,j
l,o) and (ei,jl,o, d

i,j
l,o), along with (di,jl,o, b

i,j
l,o), (bi,jl,o, d

i,j
l,o),834

(ai,jl,o, c
i,j
l,o) and (ci,jl,o, a

i,j
l,o). It also dominates 2n− 1 arcs of the long path from di,jl,o to ci,jl,o835
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going forward and the rest (up to 2n) arcs going backward. For the long path from bi,jl,o836

to ai,jl,o, this selection dominates 2n− 1 arcs going forward and the rest (2n− 1) going837

backward.838

Let (ci,jl,o, e
i,j
l,o) be an dominated arc from Qi,jl,o. Then consider the selection of arc (ai,jl,o, e

i,j
l,o)839

for Q: this dominates both arcs (ei,jl,o, b
i,j
l,o) and (ei,jl,o, d

i,j
l,o), along with (di,jl,o, b

i,j
l,o), (bi,jl,o, d

i,j
l,o),840

(ai,jl,o, c
i,j
l,o) and (ci,jl,o, a

i,j
l,o). It also dominates 2n− 1 arcs of the long path from bi,jl,o to ai,jl,o841

going forward and the rest (up to 2n) arcs going backward. For the long path from di,jl,o842

to ci,jl,o, this selection dominates 2n − 1 arcs going forward and the rest (2n − 1) going843

backward.844

If more than one of Qi,jl,o are dominated by S(K), then we apply an arbitrary applicable845

case. In all four cases, the arc selected for Q together with S(K) dominates all arcs in the846

cross-gadget Ĉi,jl,o and also the paths connecting Ĉi,jl,o to the main cycles V ′i and V ′j . Finally,847

observe that S(K) dominates all main cycles, as well as the guard cycles attached to their848

middle vertices. J849

I Lemma 30. If G′ has a (2n, 2n)-edge dominating set of size |Ē| + k, then G has a850

k-multicolored clique of size k.851

Proof. We will show the existence of a k-multicolored clique in G, given a (2n, 2n)-edge852

dominating set S of size |Ē|+ k in G′.853

I Claim 30.1. At least one arc from the main cycle V ′i or the guard cycle attached to uin/2854

must be in S.855

Proof. If no arc of the main cycle or the guard cycle attached to uin/2 is in S, consider the856

(3n/2 + 1)-th arc e of the guard cycle: both endpoints of e is at distance ≥ n/2 + 3n/2 ≥ 2n857

from ui0 (and exactly at this distance from ui0). Therefore, no arc outside the main cycle are858

in S dominates e. J859

I Claim 30.2. At least one arc from each cross-gadget Ĉi,jl,o must be in S.860

Proof. Consider the long paths between vertices bi,jl,o, a
i,j
l,o, and between di,jl,o, c

i,j
l,o. Observe861

that the tails of the (2n− 1)-th and (2n)-th arcs of both paths are at distance ≥ 2n from ai,jl,o862

and ci,jl,o. Also the heads of the (2n− 1)-th and (2n)-th arcs of both paths are at distance863

at least 2n to di,jl,o and bi,jl,o. Thus no selection of arcs from outside the cross-gadget could864

dominate these four arcs. J865

I Claim 30.3. If no arc of Qi,jl,o is in S for some cross-gadget Ĉi,jl,o , then at least two arcs of866

Ĉi,jl,o must be in S.867

Proof. Consider any possible selections from Ĉi,jl,o that are not in Qi,jl,o:868

Selecting flip-arc (ai,jl,o, c
i,j
l,o) would leave the (2n − 1)-th arc undominated on the long869

path from di,jl,o to ci,jl,o, as it dominates 2n− 2 arcs going forward and 2n− 1 arcs going870

backward.871

Selecting flip-arc (ci,jl,o, a
i,j
l,o) would leave the (2n − 1)-th arc undominated on the long872

path from bi,jl,o to ai,jl,o, as it dominates 2n− 2 arcs going forward and 2n− 1 arcs going873

backward.874

Selecting flip-arc (bi,jl,o, d
i,j
l,o) would leave the (2n)-th arc undominated on the long path875

from bi,jl,o to a
i,j
l,o, as it dominates 2n−1 arcs going forward and 2n−2 arcs going backward.876
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Selecting flip-arc (di,jl,o, b
i,j
l,o) would leave the (2n)-th arc undominated on the long path877

from di,jl,o to c
i,j
l,o, as it dominates 2n−1 arcs going forward and 2n−2 arcs going backward.878

Selecting an arc on the long path from bi,jl,o to ai,jl,o would only dominate up to 2n − 2879

arcs going backward and 2n− 2 arcs going forward from the long path from di,jl,o to ci,jl,o,880

leaving both the (2n)-th and the (2n− 1)-th arcs undominated.881

Selecting an arc on the long path from di,jl,o to ci,jl,o would only dominate up to 2n − 2882

arcs going backward and 2n− 2 arcs going forward from the long path from bi,jl,o to ai,jl,o,883

leaving both the (2n)-th and the (2n− 1)-th arcs undominated.884

In all of the above cases, at least one extra selection is required to completely dominate the885

gadget and this selection must belong in Ĉi,jl,o as well, as in all cases, the undominated arc(s)886

from the long paths (i.e. the (2n)-th and the (2n− 1)-th) is at distance > 2n from any arc887

incoming on ai,jl,o or ci,jl,o, or outgoing on bi,jl,o or di,jl,o, meaning no selection from outside the888

gadget could dominate these arcs instead (as in Claim 30.2). J889

I Claim 30.4. If there is an (2n, 2n)-edge dominating set S of size k + |Ē|, then there exists890

an (2n, 2n)-edge dominating set containing exactly one arc from each main cycle and one arc891

from Qi,jl,o of each cross-gadget Ĉi,jl,o .892

Proof. By Claim 30.1, for each i ∈ [k] at least one arc of the main cycle or the guard cycle893

attached to it must be in S. Selecting an arc from within the guard cycles would dominate894

strictly less arcs than selecting either the incoming or the outgoing arc of the main cycle895

incident with the middle vertex attached to the guard cycle. Therefore, we may assume that896

S contains exactly one arc from each main cycle.897

By Claim 30.2, the remaining |Ē| arcs of S contains precisely one arc per each cross-gadget.898

By Claim 30.3, if for some gadget none of the Qi,jl,o is in S, then at least two arcs from Ĉi,jl,o899

must be in S, a contradiction. Therefore, S contains precisely one arc from each cross-gadget900

Ĉi,jl,o , which must be one of Qi,jl,o. J901

I Claim 30.5. No arc of Qi,jl,o can dominate all four arcs of Qi,jl,o.902

Proof. Consider a cross-gadget Ĉi,jl,o and the possibility of dominating all four arcs of Qi,jl,o903

by a single selection from the four:904

If arc (ai,jl,o, e
i,j
l,o) is selected, then arc (ci,jl,o, e

i,j
l,o) is undominated, as it is at distance > 4n−2.905

If arc (ci,jl,o, e
i,j
l,o) is selected, then arc (ai,jl,o, e

i,j
l,o) is undominated, as it is at distance > 4n−2.906

If arc (ei,jl,o, b
i,j
l,o) is selected, then arc (ei,jl,o, d

i,j
l,o) is undominated, as it is at distance > 4n−2.907

If arc (ei,jl,o, d
i,j
l,o) is selected, then arc (ei,jl,o, b

i,j
l,o) is undominated, as it is at distance > 4n−2.908

Thus if no arc of Qi,jl,o is already dominated, there is no way to select only one arc of Qi,jl,o to909

dominate all four. J910

By Claim 30.4, we may assume that the given (2n, 2n)-edge dominating set S contain911

exactly one arc from each main cycle and exactly one of Qi,jl,o from each cross-gadget. Let S∗912

denote the intersection of S and the main cycles V ′i and Q denote the intersection of S with913

the cross-gadgets.914

We claim that K(S∗) is a k-multicolored clique of G. Suppose there is a non-edge between915

two vertices of K. Then by Lemma 28, there exists a cross-gadget Ĉi,jl,o such that none of916

Qi,jl,o is dominated by S∗. By Claim 30.5, none of the arcs of Qi,jl,o can dominate all four in917

Qi,jl,o. This contradicts the assumption that S is a (2n, 2n)-edge dominating set, completing918

the proof. J919
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Theorem 9: The (p, q)-dEDS problem is W[1]-hard parameterized by the treewidth of the920

input graph.921

Proof. We establish that the pathwidth of the graph G′ we constructed is O(k). Together922

with Lemmas 29 and 30 this proves the theorem. We use the well-known fact that deleting a923

vertex from a graph can decrease its pathwidth by at most 1 (since a path decomposition of924

the original graph can be constructed by adding the deleted vertex to a path decomposition925

of the new graph).926

Consider the graph G′′ obtained from G′ by deleting the vertices ui0 and uin/2, for all927

i ∈ [1, k]. We will establish that G′′ has constant pathwidth. If this is true, since we928

deleted 2k vertices to obtain it, G′ has pathwidth 2k + O(1). However, every connected929

component of G′′ is either a path (components arising from main and guard cycles) or a cross930

gadget. To see that each cross gadget has constant pathwidth, observe that deleting the931

vertices ai,jx,y, bi,jx,y, ci,jx,y, di,jx,y, ei,jx,y transforms the cross gadget into a collection of disjoint paths.932

This implies that all components of G′′ have constant pathwidth, hence G′′ has constant933

pathwidth. J934

Theorem 10: The (p, q)-dEDS problem can be solved in time O∗((p+ q)O(tw)) on graphs935

of treewidth at most tw.936

Proof (Sketch). The proof relies on standard techniques (Dynamic Programming over tree937

decompositions), so we only sketch the details here. Our algorithm maintains a table for each938

node of the given tree decomposition, indexed by a set of state-assignments to all vertices in939

the bag, each entry of which contains the minimum number of selected arcs from the node’s940

terminal subgraph for the state of each vertex to be justified, i.e. for the partial solution941

described by this set of states to be valid. The state of each vertex in the bag describes its942

distance to the closest endpoint of a selected arc, i.e. it either has a path of length at most943

p to the tail of a selected arc, or the head of a selected arc has a path of length at most q944

to the vertex in question. We also use “promise” states signifying that the partial solution945

has not yet selected the arc that will be closest to some vertex, by doubling the amount of946

states we use. It is not hard to see that using such a state representation, we can compute947

the values of all partial solutions for the problem over the nodes of the tree decomposition948

in time polynomial on the table’s size: the states of introduced vertices must match the949

distances in the node’s subgraph, all partial solutions involving a forgotten vertex must be950

compared over all its states to retain the minimum, while for join nodes, the state of a vertex951

must match the “promise” state for the same vertex in the other branch of the join for the952

partial solutions to be accurately extended. In this way we can check the values of potential953

global solutions in the table of the root node of the tree decomposition. J954

D Omitted Material from Section 5:955

Lemma 14: Almost Induced Matching is APX-hard and cannot be solved in time 2o(n)
956

under the ETH, even on bipartite graphs of degree at most 4. Furthermore, this hardness957

still holds if we are promised that OPTAIM > 0.6n and that there is an optimal solution S958

that includes at least n/20 vertices with degree 0 in G[S].959

Proof. Let a graph G = (V,E) and a positive integer k be the input of Independent Set.960

We construct a graph G′ = (V ′, E′) by subdividing each edge e = (x, y) with three vertices961

vxe, ve, vye so that the edge e = (x, y) is replaced by a length-four path x, vxe, ve, vye, y. In962

addition, we create a copy xp of each vertex x ∈ V of G and add it to G′ as a pendant vertex963
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adjacent only to x. Fix L = n+ 2m+ k. The vertices of G′ corresponding to the original964

vertices of G are considered to inherit their labels in G and we denote them as V . We prove965

that G has an independent set of size k if and only if G′ has an almost induced matching on966

L vertices.967

Suppose that S is an independent set of G with |S| ≥ k. We construct a vertex set S′ of968

G′ so as to contain all vertices of {xp : x ∈ V } ∪ S and also to include precisely one vertex969

set {ve, vye} for each edge e ∈ E, where y /∈ S. Since S is an independent set, such a vertex970

set S′ exists. It is clear that |S′| = n+ k + 2m and G′[S′] has degree at most one, i.e. it is971

an almost induced matching of G′.972

Conversely, let S′ be an almost induced matching of G′ of maximum size, and suppose973

|S′| ≥ L. First, observe that, without loss of generality we can assume that S′ contains all974

vertices of degree 1. If a degree one vertex is not in S′ we add it, and remove its neighbor975

from S′.976

We now choose S′ so as to maximize the number of subdividing vertices contained in977

S′. We argue that for each edge e = (x, y) ∈ E, it holds that |S′ ∩ {vxe, ve, vye}| = 2.978

Clearly |S′ ∩ {vxe, ve, vye}| ≤ 2. Moreover, S′ contains at least one of {vxe, ve, vye}, since979

otherwise S′ ∪ {ve} is an almost induced matching, contradicting the choice of S′. Suppose980

|S′ ∩ {vxe, ve, vye}| = 1. If S′ ∩ {vxe, ve, vye} = {vxe}, then vxe must be matched with x in981

G′[S′] since otherwise, S′∪{ve} is an almost induced matching. Then, the set S′∪{ve}\{x}982

has strictly more subdividing vertices, a contradiction. Therefore, we have S′∩{vxe, ve, vye} =983

{ve}. Now, the maximality of S′ implies that both x and y are contained in S′. Observe984

that S′ ∪ {vxe} \ {x} is an almost induced matching of the same size as S′ having strictly985

more subdividing vertices, a contradiction. Therefore, we have |S′ ∩ {vxe, ve, vye}| = 2 for986

every e = (x, y) ∈ E.987

Moreover, this implies that for every e = (x, y) ∈ E, S′ contains at most one of x and y,988

because, as S′ contains all leaves, if x, y ∈ S′, then vxe, vye 6∈ S′, which would mean that S′989

only contains one of {vxe, ve, vye}. Thus S′ ∩ V corresponds to an independent set of G. It990

remains to see that S′ ∩ (V ∪ {xp : x ∈ V }) has at least n + k vertices, and subsequently991

S′ ∩ V has at least k vertices. This shows that Almost Induced Matching is NP-hard.992

Notice that the constructed instance G′ is bipartite.993

To complete the proof, we note that when G is a cubic graph the constructed graph G′994

has degree at most 4. Moreover, the hard instances of G restricted to cubic graphs satisfy995

k > n/4, since any cubic graph on n vertices has an independent set of size dn/4e. Now, it is996

straightforward to verify that the above reduction is an L-reduction from Independent set997

on cubic graphs to Almost Induced Matching on bipartite graphs of degree at most 4.998

The APX-hardness of the former establishes the APX-hardness of the latter. Furthermore,999

the number of vertices of the new graphs is linear in n. It is easy to verify that the other1000

properties are also true. J1001

Lemma 15: Let T = (V,E) be a random tournament on the vertex set {1, 2, . . . , n}, in1002

which (i, j) is an arc of T with probability 1/2. Then the following event happens with high1003

probability: for any two disjoint sets X,Y ⊆ V with |X| > (logn)2 and |Y | > (logn)2, there1004

exists a vertex x ∈ X with at least two outgoing arcs to Y .1005

Proof. Fix arbitrary sets X and Y satisfying the stated conditions. Let |X| = s1 > log2 n1006

and |Y | = s2 > log2 n. We say that (X,Y ) is strongly biased if each x ∈ X has at most one1007

outgoing arc to Y . Then,1008
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Prob[(X,Y ) is strongly biased] ≤
(
2−s2 · s2

)s1
1009

≤ 2−s1s2+2(logn)3
≤ 2−

s1s2
2 .1010

1011

Applying the union bound, the probability that T has a strongly biased pair (X,Y ) with1012

|X| = s1, |Y | = s2 is at most1013

2−
s1s2

2 · ns1ns2 ≤ 2−
s1s2

41014

for any sufficiently large n. However, this probability is smaller than 1
n3 for sufficiently1015

large n, so taking the union bound over all possible values of s1, s2 gives the claim. J1016

Lemma 16: Let G = (A∪̇B∪̇C,E) be a random directed graph with |A| = |B| = n and1017

|C| = 4n such that for any pair (x, y) with {x, y} ∩ C 6= ∅ we have exactly one arc, oriented1018

from x to y, or from y to x with probability 1/2. Let ` ≥ n/20 be a positive integer. Then1019

with high probability, we have: for any two disjoint sets X ⊆ A,Y ⊆ B with |X| = |Y | = `,1020

there exist ` vertex-disjoint directed paths from X to Y .1021

Proof. Suppose that there do not exist ` vertex-disjoint directed paths from X to Y and let1022

T ⊆ X ∪C ∪Y be a minimal (X,Y )-separator of size at most `−1. We have |C \T | ≥ 3n+1.1023

We say that a vertex u ∈ C \ T is helpful if there exists v1 ∈ A and v2 ∈ B such that1024

(v1, u), (u, v2) are arcs of the graph. Clearly, if T is a separator, C \ T must not contain any1025

helpful vertices.1026

A vertex u ∈ C is not helpful if either all edges between u and A are oriented towards1027

A, or all arcs between u and B are oriented towards u. Each of these events happens with1028

probability at most 2−n/20. Therefore, the probability that all the (at least 3n+ 1) vertices1029

of C \ T are not helpful is at most 2− 3n2
20 (as these events are independent). This is an1030

upper-bound on the probability that two specific sets X,Y do not have |X| vertex disjoint1031

sets connecting them, and are therefore separated by a set T . Taking the sum over all the1032

(at most 2n · 2n · 24n) choices for X,Y, T , and using the union bound, we conclude that with1033

high probability (as n increases) no such sets exist. J1034

Theorem 17: There is a probabilistic polynomial-time algorithm computing, given an in-1035

stance G of Almost Induced Matching, an instance T of (1, 1-dEDS such that with high1036

probability:1037

(i) if OPTAIM (G) ≥ L1, then OPT(1,1)dEDS(T ) ≤ |V (T )| − L1/2 + 1,1038

(ii) if OPTAIM (G) < L2 − 5(logL2)2, then OPT(1,1)dEDS(T ) > |V (T )| − L2/2 + 1.1039

Proof. Let G = (A∪̇B,E) be an input bipartite graph of Almost Induced Matching1040

and L1, L2 be positive integers. We may assume that each vertex of G has degree at most 41041

and no vertex of G is isolated. We may also assume that |A| = |B| = n, and if S is an almost1042

induced matching of G with |S| ≥ L1 then |S ∩A| = |S ∩B|, by taking the disjoint union of1043

two copies of G. This means that we may assume that L1 is even. As noted in Lemma 14,1044

we may also assume that L1 > 1.2n and S0 ≥ 0.1n, where S0 ⊆ S, such that every vertex1045

v ∈ S0 has degree 0 in G[S].1046

From G, we construct a tournament T on the vertex set A′∪̇B′∪̇C, where A′ = {x′ : x′ ∈1047

A}, B′ = {x′ : x′ ∈ B} and |C| = 4n. The arc set of T is formed as follows:1048
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for every pair of vertices x ∈ A and y ∈ B, (x, y) ∈ A(T ) if and only if (x, y) ∈ E.1049

T [A′], T [B′], T [C] are random tournaments in which each pair u, v of vertices gets an1050

orientation u→ v with probability 0.5.1051

For every a ∈ A′ and c ∈ C, we have an orientation a→ c with probability 0.5. The same1052

holds between B′ and C.1053

We prove (i): Suppose that S is an almost induced matching containing at least L11054

vertices, and let S0 and S1 ⊆ S be the sets of all vertices having degree exactly 0 and 1,1055

respectively in G[S]. Slightly abusing notation, let S0 and S1 refer to the corresponding1056

vertex sets in T . Note that |S0 ∩A′| = |S0 ∩B′| ≥ n/20. We construct an arc set D of T as1057

follows. Let M be the set of arcs defined as δ(S1 ∩A′, S1 ∩B). We include all arcs of M in1058

D.1059

By Lemma 16, there exist (whp) |S0 ∩A| vertex-disjoint directed paths P from S0 ∩A to1060

S0 ∩B. We add to D all arcs contained in a path of P, denoted as E(P).1061

Let us now observe that, with high probability, T does not contain any sources or sinks,1062

as the probability that a vertex is a source or a sink is at most 2−n, and there are O(n)1063

vertices in T . We use this fact to complete the solution as follows: consider the digraph1064

T ′ = T − S1 − V (P), where V (P) is the set of all vertices contained in a path of P. Recall1065

that any tournament has a Hamiltonian path. We choose a directed Hamiltonian path Q of1066

T ′, with s and t as the start and end vertices of Q. We add all the arcs E(Q) of Q to D,1067

plus one incoming arc (s′, s) of s and one outgoing arc (t, t′) of t. Since we have no sources1068

or sinks, such arcs (s′, s) and (t, t′) exist. Note that |D′| ≤ |V (T ′)|+ 1.1069

We argue that the obtained arc set1070

D = E(M) ∪ E(P) ∪ E(Q) ∪ {(s′, s), (t, t′)}1071

is a (1, 1)-edge dominating set of T . First note that all internal vertices of the disjoint paths1072

P , as well as all vertices of T ′ have both positive in-degree and positive out-degree, therefore1073

all arcs incident on such vertices are covered. For edges induced by S0 ∪ S1, we have that all1074

arcs of this type going from A to B have been selected (since S is an almost matching), and1075

all arcs going in the other direction are covered as all vertices of (S0 ∪ S1) ∩A have positive1076

out-degree.1077

Lastly, we observe1078

|D| = |V (M)| − |S1|/2 + |V (P)| − |S0|/2 + (|V (T )| − |V (M)| − |V (P)|+ 1)1079

≤ |V (T )| − L1/2 + 1.1080
1081

To see (ii), let D be a (1, 1)-edge dominating set of T of size at most |V (T )| − L2 + 1.1082

We define the following vertex sets:1083

R0,pos = {v ∈ V (T ) : d−D(v) = 0 and d+
D(v) > 0}1084

R0,1 = {v ∈ V (T ) : d−D(v) = 0 and d+
D(v) = 1}1085

Rpos,0 = {v ∈ V (T ) : d−D(v) > 0 and d+
D(v) = 0}1086

R1,0 = {v ∈ V (T ) : d−D(v) = 1 and d+
D(v) = 0}1087

1088

Clearly, it holds that R0,1 ⊆ R0,pos and R1,0 ⊆ Rpos,0. By definition, the arc set from1089

R0,pos to Rpos,0 must be all contained in D because no such arc can be (0, 1)-dominated or1090

(1, 0)-dominated, and the arc needs to dominate itself.1091

δ(R0,pos, Rpos,0) ⊆ D (1)1092
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Given this, we observe that (R0,1 ∩A′) ∪ (R1,0 ∩B′), seen as a vertex set of G sharing the1093

same vertex names, is an almost induced matching of G. If that is not so, then either there1094

exists x ∈ R0,1 ∩A′ with two outgoing arcs to R1,0 ∩B′ or y ∈ R1,0 ∩B′ with two incoming1095

arcs from R0,1 ∩A′. In the former case, both outgoing arcs from x must be contained in D1096

as previously noted. However, this means x /∈ R0,1, a contradiction. A symmetric argument1097

holds in the latter case.1098

Therefore, our aim is to show that a “good chunk” of R0,1 is contained in A′ and that of1099

R1,0 in B′.1100

I Claim 30.6. We have |R0,pos| ≥ L2/2− 1, |Rpos,0| ≥ L2/2− 1 and |R0,1|+ |R1,0| ≥ L2 − 4.1101

Proof. Consider the numbers
∑
v∈V (T ) |δ

−
D(v)| and

∑
v∈V (T ) |δ

+
D(v)|. As every arc (x, y) ∈ D1102

is counted precisely once in each sum, it holds that1103

|D| =
∑

v∈V (T )

d−D(v) =
∑

v∈V (T )

d+
D(v).1104

Observe that there is at most one vertex v with dD(v) = 0. Indeed, if there are two such1105

vertices u and v then the arc between u and v cannot be (1, 1)-dominated. Therefore,1106

|V (T )| − L2/2 + 1 ≥ |D| =
∑

v∈V (T )

d−D(v) =
∑
i

i · |{v ∈ V (T ) : d−D(v) = i}|1107

≥ |V (T )| − |R0,pos|,1108
1109

from which it follows |R0,pos| ≥ L2/2− 1 and similarly |Rpos,0| ≥ L2/2− 1. Also,1110

2|V (T )| − L2 + 2 ≥ 2|D| =
∑

v∈V (T )

dD(v) =
∑
i

i · |{v ∈ V (T ) : dD(v) = i}|1111

≥ |R0,1|+ |R1,0|+ 2(|V (T )| − |R0,1| − |R1,0| − 1)1112
1113

establishing the inequalities. J1114

By (1) and the construction of R0,1, every x ∈ R0,1 has at most one outgoing arc to1115

Rpos,0. Applying Lemma 15 to R0,1 ∩ C and the maximum-sized set out of Rpos,0 ∩ A′,1116

Rpos,0 ∩B′ and Rpos,0 ∩C, we conclude that |R0,1 ∩C| ≤ (logn)2. With a similar argument1117

for R1,0, we point out1118

|R0,1 ∩ C| ≤ (logn)2 and |R1,0 ∩ C| ≤ (logn)2. (2)1119

That is, most vertices of R0,1 and R1,0 can be found in A′ ∪B′.1120

It is easy to see that by Lemma 15, |R0,1 ∩ A′| > (logn)2 implies |R1,0 ∩ A′| ≤ (logn)2
1121

and that |R1,0 ∩A′| > (logn)2 implies |R0,1 ∩A′| ≤ (logn)2. The same statement holds for1122

the intersection with B′. Observe that among the four sets R0,1 ∩A′, R1,0 ∩A′, R0,1 ∩B′1123

and R1,0 ∩B′, at most two of them can have size larger than (logn)2 simultaneously. Due to1124

the cardinality assumption L2 > 1.2n and Inequalities (2), precisely two of them have size1125

strictly larger than (logn)2. We next specify which pairs can be simultaneously large, which1126

is tedious to verify with a similar reasoning.1127

I Claim 30.7. Precisely two out of the sets R0,1 ∩A′, R1,0 ∩A′, R0,1 ∩B′ and R1,0 ∩B′ have1128

size larger than (logn)2. Furthermore, it holds that1129

1. either |R0,1 ∩A′| > (logn)2 and |R1,0 ∩B′| > (logn)2,1130

2. or |R1,0 ∩A′| > (logn)2 and |R0,1 ∩B′| > (logn)2,1131
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Proof. By the observation in the previous paragraph, it suffices to prove that no other pair1132

out of R0,1∩A′, R1,0∩A′, R0,1∩B′ and R1,0∩B′ can be simultaneously larger than (logn)2.1133

Specifically, we show that the pair R0,1 ∩ A′ and R0,1 ∩ B′ cannot have size larger than1134

(logn)2 simultaneously (a similar proof works for the pair R1,0 ∩A′ and R1,0 ∩B′). Suppose1135

the contrary. Then due to R0,1 ∩A′ and Lemma 15, |Rpos,0 ∩ (A′, C ′)| ≤ (logn)2 and thus1136

|Rpos,0 ∩ B′| ≥ L2/2 − 2(logn)2. However, the two sets Rpos,0 ∩ B′ and R0,1 ∩ B′ violate1137

Lemma 15, a contradiction. J1138

Suppose that the first case of the previous claim holds, i.e. |R1,0 ∩ A′| > (logn)2 and1139

|R0,1∩B′| > (logn)2. For every x ∈ B′, we know that the in-degree of x is at most 4 because1140

we reduce from an input instance G whose degree is at most 4. Therefore, x ∈ R0,1 ∩B′ has1141

at least (logn)2 − 4 outgoing arcs to R1,0 ∩A′. However, all such arcs must be included in1142

D by (1), which contradicts the definition of R0,1. Therefore, we have1143

|R0,1 ∩A′| > (logn)2 and |R1,0 ∩B′| > (logn)2
1144

|R1,0 ∩A′| ≤ (logn)2 and |R0,1 ∩B′| ≤ (logn)2.1145
1146

With Inequalities (2) and Claim 30.6, we get:1147

|R0,1 ∩A′|+ |R1,0 ∩B′| ≥ |R0,1|+ |R1,0| − 4(logn)2 ≥ L2 − 4− 4(logn)2.1148

Therefore, (R0,1 ∩ A′) ∪ (R1,0 ∩ B′), seen as a vertex subset of G, is an almost induced1149

matching of size at least L2 − 4− 4(logn)2. From n ≤ 2L2, we establish (ii) for sufficiently1150

large n. J1151
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