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Abstract.3
In Defective Coloring we are given a graph G = (V,E) and two integers χd,∆

∗ and are asked4
if we can partition V into χd color classes, so that each class induces a graph of maximum degree ∆∗.5
We investigate the complexity of this generalization of Coloring with respect to several well-studied6
graph parameters, and show that the problem is W-hard parameterized by treewidth, pathwidth,7
tree-depth, or feedback vertex set, if χd = 2. As expected, this hardness can be extended to larger8
values of χd for most of these parameters, with one surprising exception: we show that the problem9
is FPT parameterized by feedback vertex set for any χd 6= 2, and hence 2-coloring is the only hard10
case for this parameter. In addition to the above, we give an ETH-based lower bound for treewidth11
and pathwidth, showing that no algorithm can solve the problem in no(pw), essentially matching the12
complexity of an algorithm obtained with standard techniques.13

We complement these results by considering the problem’s approximability and show that, with14
respect to ∆∗, the problem admits an algorithm which for any ε > 0 runs in time (tw/ε)O(tw) and15
returns a solution with exactly the desired number of colors that approximates the optimal ∆∗16
within (1 + ε). We also give a (tw)O(tw) algorithm which achieves the desired ∆∗ exactly while17
2-approximating the minimum value of χd. We show that this is close to optimal, by establishing18
that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation19
to χd, even when an extra constant additive error is also allowed.20
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1. Introduction. Defective Coloring is the following problem: we are given23

a graph G = (V,E), and two integer parameters χd,∆
∗, and are asked whether24

there exists a partition of V into at most χd sets (color classes), such that each set25

induces a graph with maximum degree at most ∆∗. Defective Coloring, which26

is also sometimes referred to in the literature as Improper Coloring, is a natural27

generalization of the classical Coloring problem, which corresponds to the case28

∆∗ = 0. The problem was introduced more than thirty years ago [2, 17], and since29

then has attracted a great deal of attention [1, 4, 6, 13, 14, 16, 24, 26, 29, 33, 36, 37].30

From the point of view of applications, Defective Coloring is particularly31

interesting in the context of wireless communication networks, where the assignment32

of colors to vertices often represents the assignment of frequencies to communication33

nodes. In many practical settings, the requirement of traditional coloring that all34

neighboring nodes receive distinct colors is too rigid, as a small amount of interference35

is often tolerable, and may lead to solutions that need drastically fewer frequencies.36

Defective Coloring allows one to model this tolerance through the parameter ∆∗.37

As a result the problem’s complexity has been well-investigated in graph topologies38

motivated by such applications, such as unit-disk graphs and various classes of grids39
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2 R. BELMONTE, M. LAMPIS, AND V. MITSOU

[5, 7, 8, 10, 27, 28]. For more background we refer to [23, 32].40

In this paper we study Defective Coloring from the point of view of parame-41

terized complexity [18, 19, 22, 43]. The problem is of course NP-hard, even for small42

values of χd,∆
∗, as it generalizes Coloring. For the same reason, it is also NP-hard43

to even approximate either χd or ∆∗ (see Lemma 2.1). We are therefore strongly44

motivated to bring to bear the powerful toolbox of structural graph parameters, such45

as treewidth, which have proved extremely successful in tackling other intractable hard46

problems. Indeed, Coloring is one of the success stories of this domain, since the47

complexity of this flagship problem with respect to treewidth (and related parameters48

pathwidth, feedback vertex set, vertex cover) is by now extremely well-understood49

[31, 40, 41]. We pose the natural question of whether similar success can be achieved50

for Defective Coloring, or whether the addition of ∆∗ significantly alters the51

complexity behavior of the problem. Such results are not yet known for Defective52

Coloring, except for the fact that it was observed in [9] that the problem admits53

(by standard techniques) a roughly (χd∆∗)tw-time algorithm, where tw is the graph’s54

treewidth. In parameterized complexity terms, this shows that the problem is FPT55

parameterized by tw + ∆∗. One of our main motivating questions is whether this56

running time can be improved qualitatively (is the problem FPT parameterized only57

by tw?) or quantitavely.58

Our first result is to establish that the problem is W-hard not just for treewidth, but59

also for several much more restricted structural graph parameters, such as pathwidth,60

tree-depth, and feedback vertex set. We recall that for Coloring, the standard χd
tw61

algorithm is FPT by tw, as graphs of bounded treewidth also have bounded chromatic62

number (Lemma 2.2). Our result shows that the complexity of the problem changes63

drastically with the addition of the new parameter ∆∗, and it appears likely that tw64

must appear in the exponent of ∆∗ in the running time, even when ∆∗ is large. More65

strongly, we establish this hardness even for the case χd = 2, which corresponds to66

the problem of partitioning a graph into two parts so as to minimize their maximum67

degree. This identifies Defective Coloring as another member of a family of68

generalizations of Coloring (such as Equitable Coloring or List Coloring)69

which are hard for treewidth [21].70

As one might expect, the W-hardness results on Defective Coloring param-71

eterized by treewidth (or pathwidth, or tree-depth) easily carry over for values of72

χd larger than 2. Surprisingly, we show that this is not the case for the parameter73

feedback vertex set, for which the only W-hard case is 2-coloring: we establish with a74

simple win/win argument that the problem is FPT for any other value of χd. We also75

show that if one considers sufficiently restricted parameters, such as vertex cover, the76

problem does eventually become FPT.77

Our second step is to enhance the W-hardness result mentioned above with the78

aim of determining as precisely as possible the complexity of Defective Coloring79

parameterized by treewidth. Our reduction for tree-depth and feedback vertex set80

is quadratic in the parameter, and hence implies that no algorithm can solve the81

problem in time no(
√

tw) under the Exponential Time Hypothesis (ETH) [30]. We82

therefore present a second reduction, which applies only to pathwidth and treewidth,83

but manages to show that no algorithm can solve the problem in time no(pw) or no(tw)84

under the ETH. This lower bound is tight, as it matches asymptotically the exponent85

given in the algorithm of [9].86

To complement the above results, we also consider the problem from the point of87

view of (parameterized) approximation. Here things become significantly better: we88

give an algorithm using a technique of [39] which for any χd and error ε > 0 runs in89
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Parameter Result (Exact solu-
tion)

Ref. Result (Approxima-
tion)

Ref.

Feedback
Vertex Set

W[1]-hard for χd =
2

Thm 3.1 +1-approximation of
χd in time fvsO(fvs)

Cor 6.7

FPT for χd 6= 2 Thm 5.2
Tree-depth W[1]-hard for any

χd ≥ 2
Thm 3.1 W[1]-hard to color

with (3/2 − ε)χd +
O(1) colors

Thm 6.5

Treewidth,
Pathwidth

No no(pw) or no(tw)

algorithm under
ETH

Thm 4.1 (1+ ε)-approximation
for ∆∗ in (tw/ε)O(tw)

Thm 6.2

2-approximation for
χd in twO(tw)

Thm 6.4

Vertex Cover vcO(vc) algorithm Thm 5.3
Table 1

Summary of results. Hardness results for tree-depth imply the same bounds for treewidth and
pathwidth. Conversely, algorithms which apply to treewidth apply also to all other parameters.

time (tw/ε)O(tw)nO(1) and approximates the optimal value of ∆∗ within a factor of90

(1 + ε). Hence, despite the problem’s W-hardness, we produce a solution arbitrarily91

close to optimal in FPT time.92

Motivated by this algorithm we also consider the complementary approximation93

problem: given ∆∗ find a solution that comes as close to the minimum number of94

colors needed as possible. By building on the approximation algorithm for ∆∗, we are95

able to present a (tw)O(tw)nO(1) algorithm that achieves a 2-approximation for this96

problem. One can observe that this is not far from optimal, since an FPT algorithm97

with approximation ratio better than 3/2 would contradict the problem’s W-hardness98

for χd = 2. However, this simple argument is unsatisfying, because it does not rule99

out algorithms with a ratio significantly better than 3/2, if one also allows a small100

additive error; indeed, we observe that when parameterized by feedback vertex set101

the problem admits an FPT algorithm that approximates the optimal χd within an102

additive error of just 1. To resolve this problem we present a gap-introducing version103

of our reduction which, for any i produces an instance for which the optimal value104

of χd is either 2i, or at least 3i. In this way we show that, when parameterized by105

tree-depth, pathwidth, or treewidth, approximating the optimal value of χd better106

than 3/2 is “truly” hard, and this is not an artifact of the problem’s hardness for107

2-coloring.108

2. Definitions and Preliminaries. For a graph G = (V,E) and two integers109

χd ≥ 1, ∆∗ ≥ 0, we say that G admits a (χd,∆
∗)-coloring if one can partition V into110

χd sets such that the graph induced by each set has maximum degree at most ∆∗.111

Defective Coloring is the problem of deciding, given G,χd,∆
∗, whether G admits112

a (χd,∆
∗)-coloring. For ∆∗ = 0 this corresponds to Coloring.113

We note that since Defective Coloring generalizes Coloring, the problem is114

NP-hard even to approximate, with respect to both χd and ∆∗.115

Lemma 2.1. For any constants ρ > 1,∆∗ ≥ 0, the following problem is NP-116

hard: given a graph G = (V,E), and an integer χd, distinguish whether G admits a117

(χd, 0)-coloring, or whether it does not even admit a (ρχd,∆
∗) coloring.118
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Proof. We recall that Coloring is NP-hard to approximate within any constant119

(indeed, within any non-trivial polynomial factor [20]). For any ρ > 1 we can therefore120

produce in polynomial time a graph G = (V,E) and an integer χd such that it is121

NP-hard to distinguish whether G can be properly colored with χd colors, or whether122

it needs strictly more than ρχd colors.123

We construct a graph G′ by replacing each vertex of G with an independent set124

of ρχd∆∗ + 1 vertices and each (u, v) ∈ E by a complete bipartite graph joining the125

independent sets that replaced u, v. If G is χd-colorable, then G′ is as well, so it admits126

a (χd, 0)-coloring. If G′ admits a (ρχd,∆
∗)-coloring, we construct a coloring of G using127

ρχd colors by giving each u ∈ V the color that appears most often in the independnt128

set that replaced u in G′. This is a valid coloring of G because if two neighbors received129

the same color, this color appears at least d(ρχd∆∗ + 1)/ρχde ≥ ∆∗ + 1 times on two130

neighboring independent sets of G′.131

We assume the reader is familiar with basic notions in parameterized complexity,132

such as the classes FPT and W[1]. For the relevant definitions we refer to the standard133

textbooks [18, 19, 22, 43]. We rely on a number of well-known graph measures:134

treewidth [12], pathwidth, tree-depth [42], feedback vertex set, and vertex cover,135

denoted respectively as tw(G),pw(G), td(G), fvs(G), vc(G), where we drop G if it is136

clear from the context.137

We recall here some standard definitions for the reader’s convenience. A tree138

decomposition of a graph G = (V,E) is a (rooted) tree T = (X, I) such that each node139

of T is a subset of V . We call the elements of X bags. T must obey the following140

constraints: ∀v ∈ V ∃B ∈ X such that v ∈ B; ∀(u, v) ∈ E ∃B ∈ X such that u, v ∈ B;141

∀v ∈ V the bags of X that contain v induce a connected sub-tree. The width of a142

tree decomposition is maxB∈X |B| − 1, and tw(G) is the minimum width of a tree143

decomposition of G. Pathwidth is defined similarly, except the decomposition is144

required to be a path instead of a tree.145

For a rooted tree T we define its height as the number of vertices in the longest path146

from the root to a leaf, and its completion as the graph obtained by connecting each147

node to all of its ancestors. For a graph G we define td(G) as the minimum height of148

any tree whose completion contains G as a subgraph. An equivalent recursive definition149

is the following: td(K1) = 1; if G is disconnected then td(G) is equal to the maximum150

tree-depth of G’s connected components; otherwise td(G) = 1 + minv∈V td(G[V \ v]).151

A graph’s feedback vertex set (respectively vertex cover) is the smallest set of152

vertices whose removal leaves the graph acyclic (respectively edge-less).153

Lemma 2.2. For any graph G we have tw(G)− 1 ≤ fvs(G) ≤ vc(G) and tw(G) ≤154

pw(G) ≤ td(G) − 1 ≤ vc(G). Furthermore, any graph G admits a (tw(G) + 1, 0)-155

coloring, a (pw(G) + 1, 0)-coloring, a (td(G), 0)-coloring, and a (fvs(G) + 2, 0)-coloring.156

Proof. All stated relations are standard but we recall here the proofs for the sake157

of completeness. To obtain tw(G) − 1 ≤ fvs(G), if S ⊆ V is a feedback vertex set,158

we can construct a tree decomposition of G by including all vertices of S in a tree159

decomposition (of width 1) of G[V \ S]. fvs(G) ≤ vc(G) follows because every vertex160

cover is also a feedback vertex set. tw(G) ≤ pw(G) because all path decompositions161

are also valid tree decompositions. pw(G) ≤ td(G)− 1 can be seen by recalling that,162

if G is connected ∃v ∈ V such that td(G) = 1 + td(G[V \ v]). We can now take a path163

decomposition of G[V \ v] and add v to every bag. To see that td(G) ≤ vc(G) + 1164

we observe that for a vertex v that belongs in a minimum vertex cover of G we have165

td(G) ≤ td(G − v) + 1 and vc(G) = vc(G − v) + 1, which allows us to obtain the166

inequality by induction.167
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For the coloring statements, we recall that a graph with treewidth tw is (tw + 1)-168

degenerate, that is, there exists an ordering of its vertices such that each vertex169

has at most tw + 1 neighbors among the vertices that precede it [12]. To see that170

td(G) colors suffice to color G if it is connected, we recall that ∃v ∈ V such that171

td(G) = 1 + td(G[V \ v]), use a unique color for v and td(G)− 1 for the rest of the172

graph. fvs(G) + 2 colors are always sufficient to properly color a graph because we can173

use distinct colors for the feedback vertex set, and two-color the remaining forest.174

The Exponential Time Hypothesis (ETH) states that there exists a constant c3 > 1175

such that 3-SAT on instances with n variables and m clauses cannot be solved in176

time cn+m
3 [30]. For our purposes it will be sufficient to rely on a weaker form of177

the ETH which states that 3-SAT cannot be solved in 2o(n+m) time. We define the178

k-Multi-Colored Clique problem as follows: we are given a graph G = (V,E),179

a partition of V into k independent sets V1, . . . , Vk, such that for all i ∈ {1, . . . , k}180

we have |Vi| = n, and we are asked if G contains a k-clique. It is well-known that181

this problem is W[1]-hard parameterized by k, and that it does not admit any no(k)182

algorithm, unless the ETH is false [18].183

3. W-hardness for Feedback Vertex Set and Tree-depth. The main result184

of this section states that deciding if a graph admits a (2,∆∗)-coloring, where ∆∗ is185

part of the input, is W[1]-hard parameterized by either fvs or td. Because of standard186

relations between graph parameters (Lemma 2.2), this implies also the same problem’s187

W-hardness for parameters pw and tw. As might be expected, it is not hard to extend188

our proof to give hardness for deciding if a (χd,∆
∗)-coloring exists, for any constant189

χd, parameterized by tree-depth (and hence, also treewidth and pathwidth). What is190

perhaps more surprising is that this cannot be done in the case of feedback vertex set.191

Superficially, the reason we cannot extend the reduction in this case is that one of the192

gadgets we use in many copies in our construction has large fvs if χd > 2. However,193

we give a much more convincing reason in Theorem 5.2 of Section 5 where we show194

that Defective Coloring is FPT parameterized by fvs for χd ≥ 3, and therefore, if195

we could extend our reduction in this case it would prove that FPT=W[1].196

The main theorem of this section is stated below. We then present the reduction197

in Sections 3.1, 3.2, and give the Lemmata that imply Theorem 3.1 in Section 3.3.198

Theorem 3.1. Deciding if a graph G admits a (2,∆∗)-coloring, where ∆∗ is part199

of the input, is W[1]-hard parameterized by fvs(G). Deciding if a graph G admits a200

(χd,∆
∗)-coloring, where χd ≥ 2 is any fixed constant and ∆∗ is part of the input is201

W[1]-hard parameterized by td(G).202

3.1. Basic Gadgets. Before we proceed, we present some basic gadgets that will203

be useful in all the reductions of this paper (Theorems 3.1, 4.1, 6.5). We first define a204

building block T (i, j) which is a graph that can be properly colored with i colors, but205

admits no (i− 1, j)-coloring (similar constructions appear in [29]). We then use this206

graph to build two gadgets: the Equality Gadget and the Palette Gadget (Definitions207

3.4 and 3.7). Informally, for given χd,∆
∗, the equality gadget allows us to express208

the constraint that two vertices v1, v2 of a graph must receive the same color in any209

valid (χd,∆
∗)-coloring. The palette gadget will be used to express the constraint that,210

among three vertices v1, v2, v3, there must exist two with the same color. For both211

gadgets we first prove formally that they express these constraints (Lemmata 3.5 and212

3.8). We then show that, under certain conditions, these gadgets can be added to any213

graph without significantly increasing its tree-depth or feedback vertex set (Lemmata214

3.6 and 3.9), that is, that we may use these gadget while maintaining a valid FPT215
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6 R. BELMONTE, M. LAMPIS, AND V. MITSOU

reduction.216

Below, we use K1 to denote the graph that consists of a single isolated vertex.217

Definition 3.2. Given two integers i > 0, j ≥ 0, we define the graph T (i, j)218

recursively as follows: T (1, j) = K1 for all j; for i > 1, T (i, j) is the graph obtained219

by taking (j + 1) disjoint copies of T (i− 1, j) and adding to the graph a new universal220

vertex, that is, a vertex connected to all other vertices.221

Lemma 3.3. For all i > 0, j ≥ 0 we have: T (i, j) admits an (i, 0)-coloring; T (i, j)222

does not admit an (i−1, j)-coloring; td(T (i, j)) = pw(T (i, j))+1 = tw(T (i, j))+1 = i.223

Proof. We begin with the last statement: clearly td(T (1, j)) = pw(T (1, j)) + 1 =224

tw(T (1, j)) + 1 = 1, while it can be seen that tw(T (i, j)) + 1 ≤ pw(T (i, j)) + 1 ≤225

td(T (i, j)) ≤ 1 + td(T (i− 1, j)) by removing the universal vertex. We also observe226

that td(T (i, j)) ≥ pw(T (i, j)) + 1 ≥ tw(T (i, j)) + 1 ≥ i because T (i, j) contains a227

clique of size i. The fact that T (i, j) admits an (i, 0)-coloring now follows by Lemma228

2.2. Finally, to see that T (i, j) does not admit an (i− 1, j)-coloring, we do induction229

on i. Clearly, T (1, j) requires at least one color. Suppose now that T (i, j) does not230

admit an (i− 1, j)-coloring but, for the sake of contradiction, T (i+ 1, j) admits an231

(i, j)-coloring. By assumption, each of the j+1 copies of T (i, j) contained in T (i+1, j)232

must be using all i available colors. Hence, each color appears at least j + 1 times,233

which implies that there is no available color for the universal vertex.234

Definition 3.4. (Equality Gadget) For i ≥ 2, j ≥ 0, let Q(u1, u2, i, j) be a graph235

defined as follows: Q contains ij+1 disjoint copies of T (i−1, j) as well as two vertices236

u1, u2 which are connected to all vertices except each other.237

Lemma 3.5. Let G = (V,E) be a graph with v1, v2 ∈ V and let G′ be the graph238

obtained from G by adding to it a copy of Q(u1, u2, χd,∆
∗) and identifying u1 with v1239

and u2 with v2. Then, any (χd,∆
∗)-coloring of G′ must give the same color to v1, v2.240

Furthermore, if there exists a (χd,∆
∗)-coloring of G that gives the same color to v1, v2,241

this coloring can be extended to a (χd,∆
∗)-coloring of G′.242

Proof. For the first statement, consider a (χd,∆
∗)-coloring of G′ and examine243

the copies of T (χd − 1,∆∗) contained in the equality gadget added to G. For a set244

C ⊆ {1, . . . , χd} with size |C| = χd − 1 we say that C is contained in a copy of245

T (χd − 1,∆∗) if all the colors of C appear in this copy in the coloring of G′. There246

are
(
χd

χd−1

)
= χd such sets of colors C, and every copy of T (χd − 1,∆∗) contains at247

least one by Lemma 3.3. Hence, the set of colors C that is contained in the largest248

number of copies is contained in at least dχd∆∗+1
χd

e = ∆∗ + 1 copies, therefore all its249

colors appear at least ∆∗ + 1 times. This means that v1, v2 cannot take any of the250

colors in C, and therefore must use the same color.251

For the second statement, we want to extend a coloring of G to a coloring of G′.252

Recall that by Lemma 3.3, T (χd − 1,∆∗) can be properly colored with χd − 1 colors,253

and χd − 1 colors are available if v1, v2 use the same colors.254

Lemma 3.6. Let G = (V,E) be a graph, S ⊆ V , and G′ be a graph obtained from255

G by repeated applications of the following operation: we select two vertices v1, v2 ∈ V256

such that v1 ∈ S, add a new copy of Q(u1, u2, χd,∆
∗) and identify ui with vi, for257

i ∈ {1, 2}. Then td(G′) ≤ td(G \ S) + |S|+ χd − 1. Furthermore, if χd = 2 we have258

fvs(G′) ≤ fvs(G \ S) + |S|.259

Proof. For the inequality for td, we begin by observing that td(G′) ≤ td(G′ \ S) +260

|S|, so it suffices to show that td(G′ \ S) ≤ td(G \ S) + χd − 1. Observe now that in261

G′ \ S, in every copy of Q one of the vertices u1, u2 has been removed.262
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By definition, there must exist a rooted tree T1 with td(G \ S) levels such that if263

we complete the tree (that is, connect each node of T1 to all its descendants), G \ S264

is a subgraph of the resulting graph. Similarly, there exists a rooted tree T2 with265

χd− 1 levels such that T (χd− 1,∆∗) is a subgraph of its completion. We now observe266

that if we take T1 and attach to each of its nodes a copy of T2 we have a tree with267

td(G \ S) + χd − 1 levels whose completion contains G′ \ S as a subgraph.268

For the inequality for fvs, if χd = 2 the equality gadgets we have added to G269

contain copies of T (1,∆) = K1. If we remove S from G′, and therefore remove one270

endpoint of each equality gadget, all these copies of K1 become leaves, and hence do271

not affect the size of the graph’s minimum feedback vertex set. Deleting them gives us272

the graph G \ S, so we conclude that fvs(G′ \ S) = fvs(G \ S) which, together with273

the fact that fvs(G′) ≤ fvs(G′ \ S) + |S| completes the proof.274

Definition 3.7. (Palette Gadget) For i ≥ 3, j ≥ 0 we define P (u1, u2, u3, i, j)275

to be the following graph: P contains
(
i
2

)
j + 1 copies of T (i− 2, j), as well as three276

vertices u1, u2, u3 which are connected to every vertex of P except each other.277

Lemma 3.8. Let G = (V,E) be a graph with v1, v2, v3 ∈ V and let G′ be the graph278

obtained from G by adding to it a copy of P (u1, u2, u3, χd,∆
∗) and identifying ui with279

vi for i ∈ {1, 2, 3}. Then, in any (χd,∆
∗)-coloring of G′ at least two of the vertices280

of {v1, v2, v3} must share a color. Furthermore, if there exists a (χd,∆
∗)-coloring of281

G that gives the same color to two of the vertices of {v1, v2, v3}, this coloring can be282

extended to a (χd,∆
∗)-coloring of G′.283

Proof. For the first statement, consider a (χd,∆
∗)-coloring of G′ and examine284

the copies of T (χd − 2,∆∗) contained in the palette gadget added to G. For a set285

C ⊆ {1, . . . , χd} with size |C| = χd − 2 we say that C is contained in a copy of286

T (χd − 2,∆∗) if all the colors of C appear in this copy in the coloring of G′. There287

are
(
χd

χd−2

)
=

(
χd

2

)
such sets of colors C, and every copy of T (χd − 2,∆∗) contains at288

least one by Lemma 3.3. Hence, the set of colors C that is contained in the largest289

number of copies, is contained in at least d (
χd
2 )∆∗+1

(χd
2 )

e = ∆∗ + 1 copies, therefore all290

its colors appear at least ∆∗ + 1 times. This means that v1, v2, v3 cannot take any of291

the colors in C, and therefore have only two colors available for them. By pigeonhole292

principle, two of them must share a color.293

For the second statement, recall that by Lemma 3.3, T (χd−2,∆∗) can be properly294

colored with χd − 2 colors, and χd − 2 colors are available if v1, v2, v3 use at most two295

colors.296

Lemma 3.9. Let G = (V,E) be a graph, S ⊆ V , and G′ be a graph obtained297

from G by repeated applications of the following operation: we select three vertices298

v1, v2, v3 ∈ V such that v1, v2 ∈ S, add a new copy of P (u1, u2, u3, χd,∆
∗) and identify299

ui with vi, for i ∈ {1, 2, 3}. Then td(G′) ≤ td(G \ S) + |S|+ χd − 2.300

Proof. The proof follows along the same lines as the proof of Lemma 3.6. First, we301

observe that td(G′) ≤ td(G′\S)+|S| and then show that td(G′\S) ≤ td(G\S)+χd−2302

by taking a tree T1 with td(G\S) levels whose completion contains G\S and attaching303

to each node a tree T2 with χd − 2 levels whose completion contains T (χd − 2,∆∗).304

3.2. Construction. We are now ready to present a reduction from k-Multi-305

Colored Clique. In this section we describe a construction which, given an instance306

of this problem (G, k) as well as an integer χd ≥ 2 produces an instance of Defective307

Coloring. Recall that we assume that in the initial instance G = (V,E) is given to308

us partitioned into k independent sets V1, . . . , Vk, all of which have size n. We will309
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produce a graph H(G, k, χd) and an integer ∆∗ with the property that H admits a310

(χd,∆
∗)-coloring if and only if G has a k-clique. In the next section we prove the311

correctness of the construction and give bounds on the values of td(H) and fvs(H) to312

establish Theorem 3.1.313

In our new instance we set ∆∗ = |E| −
(
k
2

)
. Let us now describe the graph H.314

Since we will repeatedly use the gadgets from Definitions 3.4 and 3.7, we will use the315

following convention: whenever v1, v2 are two vertices we have already introduced316

to H, when we say that we add an equality gadget Q(v1, v2), this means that we317

add to H a copy of Q(u1, u2, χd,∆
∗) and then identify u1, u2 with v1, v2 respectively318

(similarly for palette gadgets). To ease presentation we will gradually build the graph319

by describing its different conceptual parts.320

Palette Part: Informally, the goal of this part is to obtain two vertices (pA, pB)321

which are guaranteed to have different colors. This part contains the following:322

1. Two vertices called pA, pB which we will call the main palette vertices.323

2. ∆∗ vertices called p1
A, p

2
A, . . . , p

∆∗

A and ∆∗ vertices called p1
B , p

2
B , . . . , p

∆∗

B324

3. ∆∗ equality gadgets Q(pA, p
1
A), Q(pA, p

2
A), . . . , Q(pA, p

∆∗

A ), and ∆∗ equality325

gadgets Q(pB , p
1
B), Q(pB , p

2
B), . . . , Q(pB , p

∆∗

B ).326

4. An edge between pA, pB .327

5. The ∆∗ edges (pA, p
1
A), (pA, p

2
A), . . . , (pA, p

∆∗

A ) as well as the ∆∗ edges (pB , p
1
B),328

(pB , p
2
B), . . . , (pB , p

∆∗

B ).329

Choice Part: Informally, the goal of this part is to encode a choice of a vertex in330

each Vi. To this end we make 2n choice vertices for each color class of the original331

instance. The selection will be encoded by counting how many of the first n of these332

vertices have the same color as pA. Formally, this part contains the following:333

6. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} the vertex cij . We call these the choice334

vertices.335

7. For all i ∈ {1, . . . , k}, the vertices giA and giB . We call these the guard vertices.336

8. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} edges between cij and the vertices giA337

and giB .338

9. For all i ∈ {1, . . . , k}, we add equality gadgets Q(pA, g
i
A) and Q(pB , g

i
B).339

10. If χd ≥ 3, for all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2n} we add a palette gadget340

P (pA, pB , c
i
j).341

Transfer Part: Informally, the goal of this part is to transfer the choices of the342

previous part to the rest of the graph. For each color class of the original instance we343

make (k − 1) “low” transfer vertices, whose deficiency will equal the choice made in344

the previous part, and (k − 1) “high” transfer vertices, whose deficiency will equal the345

complement of the same value. Formally, this part of H contains the following:346

11. For i1, i2 ∈ {1, . . . , k}, i1 6= i2 the vertex hi1,i2 and the vertex li1,i2 . We call347

these the high and low transfer vertices.348

12. For i1, i2 ∈ {1, . . . , k}, i1 6= i2 and for all j ∈ {1, . . . , n} an edge from li1,i2 to349

ci1j .350

13. For i1, i2 ∈ {1, . . . , k}, i1 6= i2 and for all j ∈ {n + 1, . . . , 2n} an edge from351

hi1,i2 to ci1j .352

14. For all i1, i2 ∈ {1, . . . , k}, i1 6= i2 we add an equality gadget Q(pA, li1,i2) and353

an equality gadget Q(pA, hi1,i2).354

Edge representation: Informally, this part contains a gadget representing each edge355

of G. Each gadget will contain a special vertex which will be able to receive the color356

of pB if and only if the corresponding edge, that is, the edge represented by this gadget,357

is part of the clique. Formally, we assume that all the vertices of each Vi are numbered358
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{1, . . . , n}. For each edge e of G, if e connects the vertex with index j1 from Vi1 with359

the vertex with index j2 from Vi2 (assuming without loss of generality i1 < i2) we add360

the following vertices and edges to H:361

15. Four independent sets L1
e, H

1
e , L

2
e, H

2
e with respective sizes n− j1, j1, n− j2,362

j2.363

16. Edges connecting the vertex li1,i2 (respectively, hi1,i2 , li2,i1 , hi2,i1) with all364

vertices of the set L1
e (respectively the sets H1

e , L
2
e, H

2
e ).365

17. A vertex ce, connected to all vertices in L1
e ∪H1

e ∪ L2
e ∪H2

e .366

18. If χd ≥ 3, for each v ∈ L1
e ∪ H1

e ∪ L2
e ∪ H2

e ∪ {ce} we add a palette gadget367

P (pA, pB , v).368

Finally, once we have added a gadget (as described above) for each e ∈ E, we add369

the following structure to H in order to ensure that we have a sufficient number of370

edges included in our clique:371

19. A vertex cU (universal checker) connected to all ce for e ∈ E.372

20. An equality gadget Q(pA, cU ).373

Budget-Setting: Our construction is now almost done, except for the fact that some374

crucial vertices have degree significantly lower than ∆∗ (and hence are always trivially375

colorable). To fix this, we will effectively lower their deficiency budget by giving them376

some extra neighbors. Formally, we add the following:377

21. For each guard vertex giA (respectively giB), we construct an independent378

set GiA (respectively GiB) of size ∆∗ − n and connect it to giA (respectively379

giB). For each v ∈ GiA (respectively GiB) we add an equality gadget Q(pA, v)380

(respectively Q(pB , v)).381

22. For each transfer vertex li1,i2 (respectively hi1,i2), we construct an independent382

set of size ∆∗−n and connect all its vertices to li1,i2 (or respectively to hi1,i2).383

For each vertex v of this independent set we add an equality gadget Q(pA, v).384

23. For each vertex ce we add an independent set of size ∆∗ and connect all its385

vertices to ce. For each vertex v of this independent set we add an equality386

gadget Q(pB , v).387

This completes the construction of the graph H.388

3.3. Correctness. To establish Theorem 3.1 we need to establish three properties389

of the graph H(G, k, χd) described in the preceding section: that the existence of a390

k-clique in G implies that H admits a (χd,∆
∗)-coloring; that a (χd,∆

∗)-coloring of H391

implies the existence of a k-clique in G; and that the tree-depth and feedback vertex392

set of G are bounded by some function of k. These are established in the Lemmata393

below.394

Lemma 3.10. For any χd ≥ 2, if G contains a k-clique, then the graph H(G, k, χd)395

described in the previous section admits a (χd,∆
∗)-coloring.396

Proof. Consider a clique of size k in G that includes exactly one vertex from each397

Vi. We will denote this clique by a function f : {1, . . . , k} → {1, . . . , n}, that is, we398

assume that the clique contains the vertex with index f(i) from Vi. We produce a399

(χd,∆
∗)-coloring of H as follows: vertex pA receives color 1, while vertex pB receives400

color 2. All vertices for which we have added an equality gadget with one endpoint401

identified with pA (respectively pB) take color 1 (respectively 2). We use Lemma 3.5402

to properly color the internal vertices of the equality gadgets.403

We have still left uncolored the choice vertices cij as well as the internal vertices404

L1
e, H

1
e , L

2
e, H

2
e , ce of the edge gadgets. We proceed as follows: for all i ∈ {1, . . . , k} we405

use color 1 on the vertices cil such that l ∈ {1, . . . , f(i)} ∪ {n+ 1, . . . , 2n− f(i)}; we406
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use color 2 on all remaining choice vertices. For every e ∈ E that is contained in the407

clique we color all vertices of the sets L1
e, H

1
e , L

2
e, H

2
e with color 1, and ce with color408

2. For all other edges we use the opposite coloring: we color all vertices of the sets409

L1
e, H

1
e , L

2
e, H

2
e with color 2, and ce with color 1. We use Lemma 3.8 to properly color410

the internal vertices of palette gadgets, since all palette gadgets that we add use either411

color 1 or color 2 twice in their endpoints. This completes the coloring.412

To see that the coloring we described is a (χd,∆
∗)-coloring, first we note that by413

Lemmata 3.5,3.8 internal vertices of equality and palette gadgets are properly colored.414

Vertices pA, pB have exactly ∆∗ neighbors with the same color; guard vertices giA, giB415

have exactly n neighbors with the same color among the choice vertices, hence exactly416

∆∗ neighbors with the same color overall; choice vertices have at most k neighbors417

of the same color, and we can assume that k < |E| −
(
k
2

)
; the vertex cU has exactly418

∆∗ = |E| −
(
k
2

)
neighbors with color 1, since the clique contains exactly

(
k
2

)
edges;419

all internal vertices of edge gadgets have at most one neighbor of the same color.420

Finally, for the transfer vertices li1,i2 and hi1,i2 , we note that li1,i2 (respectively hi1,i2)421

has exactly f(i1) (respectively n − f(i1)) neighbors with color 1 among the choice422

vertices. Furthermore, when i1 < i2, li1,i2 (respectively hi1,i2) has |L1
e| (respectively423

|H1
e |) neighbors with color 1 in the edge gadgets, those corresponding to the edge e424

that belongs in the clique between Vi1 and Vi2 . But by construction |L1
e| = n− f(i1)425

and |H1
e | = f(i1), and with similar observations for the case i2 < i1 we conclude that426

all vertices have deficiency at most ∆∗.427

Lemma 3.11. For any χd ≥ 2, if the graph H(G, k, χd) described in the previous428

section admits a (χd,∆
∗)-coloring, then G contains a k-clique.429

Proof. Suppose that we are given a (χd,∆
∗)-coloring c : V (H)→ {1, . . . , χd} of430

H. We first establish that c(pA) 6= c(pB). Indeed, because of the equality gadgets431

added in Step 3 we have c(p1
A) = c(p2

A) = . . . = c(p∆∗

A ) = c(pA) and c(p1
B) = c(p2

B) =432

. . . = c(p∆∗

B ) = c(pB). Because of the edges added in Step 5 we then know that pA, pB433

each has at least ∆∗ neighbors with the same color. Therefore, because of the edge434

connecting them, we conclude that c(pA) 6= c(pB). Without loss of generality we will435

assume below that c(pA) = 1 and c(pB) = 2.436

Because of the equality gadget of Step 20 we have c(cU ) = 1. Because cU has degree437

|E|, we conclude that it has at least
(
k
2

)
neighbors with color 2. These correspond to a438

set E′ ⊆ E of edges of the original graph with |E′| ≥
(
k
2

)
. We will prove that, in fact,439

E′ induces a k-clique in G.440

Let e ∈ E′ be an edge such that c(ce) = 2. This implies that all the vertices of441

L1
e ∪H1

e ∪L2
e ∪H2

e must take color 1, because by Step 23 ce already has ∆∗ neighbors442

with color 2. In case χd ≥ 3 we have also used here the fact that, by Step 18, every443

internal vertex of the gadget representing e must take color 1 or 2.444

Suppose that e ∈ E′ connects the vertex with index j1 in Vi1 to the vertex445

with index j2 in Vi2 , i1 < i2. We first show that, for an e′ ∈ E also connecting446

Vi1 to Vi2 it must be that e′ 6∈ E′. Suppose for contradiction that e′ ∈ E′, and447

let j′1, j
′
2 be the indices of the endpoints of e′. We observe that li1,i2 has at least448

|L1
e| + |L1

e′ | = 2n − j1 − j′1 neighbors with color 1 in the edge gadgets, while hi1,i2449

has at least |H1
e |+ |H1

e′ | = j1 + j′1 such neighbors. Both li1,i2 and hi1,i2 had ∆∗ − n450

neighbors of color 1 added in Step 22. Finally, among the 2n choice vertices ci1j which451

are neighbors of either li1,i2 or hi1,i2 there are at least n which received color 1, because452

all the choice vertices have colors 1 or 2 (Step 10) and gi1B , which has color 2 (Step453

9), is connected to all of them and also has ∆∗ − n other neighbors of color 2 (Step454

21). Hence, the total number of vertices in N(li1,i2) ∪N(hi1,i2) with color 1 is at least455
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2n+ 2(∆∗ − n) + n > 2∆∗, hence one of these two vertices has deficiency higher than456

∆∗, contradiction. We conclude that e′ 6∈ E′.457

To complete the proof, let us show that the
(
k
2

)
edges of E′, each of which connects458

a different pair of parts of V , are incident on the same endpoints. Take e ∈ E′ as in the459

previous paragraph, and e′ ∈ E′ connecting vertices with indices j′1, j
′
3 from the parts460

Vi1 , Vi3 , for i3 6= i2. It suffices to show that i1 = i′1. Suppose for contradiction i1 6= i′1.461

Consider now the vertices li1,i2 , hi1,i2 , li1,i3 , hi1,i3 , which, by similar reasoning as before,462

have n−j1, j1, n−j′1, j′1 color-1 neighbors in the edge gadgets respectively. If there are463

strictly more than j1 vertices with color 1 among the choice vertices ci1j , j ∈ {1, . . . , n},464

then li1,i2 would have deficiency more than ∆∗. If there are strictly more than n− j1465

vertices with color 1 among the choice vertices ci1j , j ∈ {n + 1, . . . , 2n}, then hi1,i2466

would have deficiency more than ∆∗. Since, by the same reasoning as previously, there467

are at least n vertices with color 1 among the choice vertices ci1j , we conclude that468

there are exactly j1 vertices with color 1 among the c11
j for j ∈ {1, . . . , n}, and exactly469

n− j1 such vertices in the rest. We can now conclude that the only way not to violate470

the deficiency of li1,i3 or hi1,i3 is for i1 = i′1.471

Lemma 3.12. For any χd ≥ 2, the graph H(G, k, χd) described in the previous472

section has td(H) = O(k2 + χd). Furthermore, if χd = 2, then fvs(H) = O(k2).473

Proof. We first observe that all equality and palette gadgets added to the graph474

(Steps 3, 9, 10, 14, 18, 20-23) have at most one endpoint outside {pA, pB}. Hence,475

by Lemmata 3.6, 3.9, we can conclude that td(H) = td(H ′ \ {pA, pB}) + χd + 1 and,476

for χd = 2 we have fvs(H) ≤ fvs(H ′ \ {pA, pB}) + 2, where H ′ is the graph we obtain477

from H if we remove all the equality and palette gadgets. It therefore suffices to show478

that td(H ′) = O(k2) and, if χd = 2, fvs(H ′) = O(k2).479

For both parameters we start by removing from the graph all the guard and480

transfer vertices, which are 2k + 2k(k − 1) = 2k2 in total. We now have that all481

vertices p1
A, p

2
A, . . . , p

∆∗

A , vertices p1
B , p

2
B , . . . , p

∆∗

B , as well as all choice vertices are482

isolated. Furthermore, all vertices added to represent edges, as well as the budget-483

setting vertices, form a tree with root at cU and 3 levels. We conclude that H ′ has484

td(H ′) ≤ 2k2 + 4 and fvs(H ′) ≤ 2k2.485

Theorem 3.1 now follows directly from the reduction we have described and486

Lemmata 3.10,3.11,3.12.487

4. ETH-based Lower Bounds for Treewidth and Pathwidth. In this sec-488

tion we present a reduction which strengthens the results of Section 3 for the parameters489

treewidth and pathwidth. In particular, the reduction we present here establishes that,490

under the ETH, the known algorithm for Defective Coloring for these parameters491

is essentially best possible.492

We use a similar presentation order as in the previous section, first giving the493

construction and then the Lemmata that imply the result. Where possible, we re-use494

the gadgets we have already presented. The main theorem of this section states the495

following:496

Theorem 4.1. For any fixed χd ≥ 2, if there exists an algorithm which, given a497

graph G = (V,E) and parameters χd,∆
∗ decides if G admits a (χd,∆

∗)-coloring in498

time no(pw), then the ETH is false.499

4.1. Basic Gadgets. We use again the equality and palette gadgets of Section 3500

(Definitions 3.4,3.7). Before proceeding, let us show that adding these gadgets to the501

graph does not increase the pathwidth too much. For the two types of gadget Q,P ,502
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we will call the vertices u1, u2(, u3) the endpoints of the gadget.503

Lemma 4.2. Let G = (V,E) be a graph and let G′ be the graph obtained from G504

by repeating the following operation: find a copy of Q(u1, u2, χd,∆
∗), or a copy of505

P (u1, u2, u3, χd,∆
∗); remove all its internal vertices from the graph; and add all edges506

between its endpoints which are not already connected. Then tw(G) ≤ max{tw(G′), χd}507

and pw(G) ≤ pw(G′) + χd.508

Proof. First, we observe that there is a path decomposition of Q(u1, u2, χd,∆
∗)509

with width χd, as by Lemma 3.3 there is a path decomposition of T (χd − 1,∆∗)510

of width χd − 2, and we can add to all its bags the vertices u1, u2. Call this path511

decomposition TQ. In the same way, there is a path decomposition of width χd for512

P (u1, u2, u3, χd,∆
∗), call it TP .513

We now take an optimal tree or path decomposition of G′, call it T ′, and construct514

from it a decomposition of G. Consider a gadget H ∈ {Q,P} that appears in G with515

endpoints u1, u2(, u3). Since in G′ these endpoints form a clique, there is a bag in516

T ′ that contains all of them. Let B be the smallest such bag, that is, the bag that517

contains the smallest number of vertices. Now, if T ′ is a tree decomposition, we take518

TH and attach it to B. If T ′ is a path decomposition, we insert in the decomposition519

immediately after B the decomposition TH where we have added all vertices of B in520

all bags of TH . It is not hard to see that in both cases the decompositions remain521

valid, and we can repeat this process for every H until we have a decomposition of G.522

4.2. Construction. We now describe a construction which, given an instance523

G = (V,E), k, of k-Multi-Colored Clique and a constant χd returns a graph524

H(G, k, χd) and an integer ∆∗ such that H admits a (χd,∆
∗)-coloring if and only if525

G has a k-clique, and the pathwidth of H is O(k + χd). We use m to denote |E|, and526

we set ∆∗ = m −
(
k
2

)
. As in Section 3 we present the construction in steps to ease527

presentation, and we use the same conventions regarding adding Q and P gadgets to528

the graph.529

Palette Part: This part repeats steps 1-5 of the construction of Section 3. We recall530

that this creates two main palette vertices pA, pB (which are eventually guaranteed to531

have different colors).532

Choice Part: In this part we construct a sequence of independent sets, arranged in533

what can be thought of as a k × 2m grid. The idea is that the choice we make in534

coloring the first independent set of every row will be propagated throughout the row.535

We can therefore encode k choices of a number between 1 and n, which will encode536

the clique.537

6. For each i ∈ {1, . . . , k}, for each j ∈ {1, . . . , 2m} we construct an independent538

set Ci,j of size n.539

7. (Backbone vertices) For each i ∈ {1, . . . , k}, for each j ∈ {1, . . . , 2m− 1}, for540

each l ∈ {A.B} we construct a vertex bli,j . We connect bli,j to all vertices of541

Ci,j and all vertices of Ci,j+1.542

8. For each backbone vertex bli,j added in the previous step, for l ∈ {A,B}, we543

add an equality gadget Q(pl, b
l
i,j).544

Edge Representation: In the k × 2m grid of independent sets we have constructed545

we devote two columns to represent each edge of G. In the remainder we assume some546

numbering of the edges of E with the numbers {1, . . . ,m}, as well as a numbering547

of each Vi with the numbers {1, . . . , n}. Suppose that the j-th edge of E, where548

j ∈ {1, . . . ,m} connects the j1-th vertex of Vi1 to the j2-th vertex of Vi2 , where549

j1, j2 ∈ {1, . . . , n} and i1, i2 ∈ {1, . . . , k}. We perform the following steps for each550

This manuscript is for review purposes only.



PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING 13

such edge.551

9. We construct four independent sets H1
j , L

1
j , H

2
j , L

2
j with respective sizes n−552

j1, j1, n− j2, j2.553

10. We construct four vertices h1
j , l

1
j , h

2
j , l

2
j . We connect h1

j (respectively l1j , h
2
j , l

2
j )554

with all vertices of H1
j (respectively L1

j , H
2
j , L

2
j ).555

11. We connect h1
j to all vertices of Ci1,2j−1, l1j to all vertices of Ci1,2j , h

2
j to all556

vertices of Ci2,2j−1, l2j to all vertices of Ci2,2j .557

12. We add equality gadgets Q(pA, h
1
j ), Q(pA, l

1
j ), Q(pA, h

2
j ), Q(pA, l

2
j ).558

13. We add a checker vertex cj and connect it to all vertices of H1
j ∪L1

j ∪H2
j ∪L2

j .559

Validation and Budget-Setting: Finally, we add a vertex that counts how many560

edges we have included in our clique, as well as appropriate vertices to diminish the561

deficiency budget of various parts of our construction.562

14. We add a universal checker vertex cU and connect it to all vertices cj added563

in step 13. We add an equality gadget Q(pA, cU ).564

15. For every vertex cj added in step 13 we construct an independent set of size565

∆∗ and connect all its vertices to cj . For each vertex v in this set we add an566

equality gadget Q(pB , v).567

16. For each vertex constructed in step 10 (h1
j , l

1
j , h

2
j , l

2
j ), we construct an inde-568

pendent set of size ∆∗ − n and connect it to the vertex. For each vertex v of569

this independent set we add an equality gadget Q(pA, v).570

17. For each backbone vertex bli,j , with l ∈ {A,B}, we construct an independent571

set of size ∆∗− n and connect it to bli,j . For each vertex v of this independent572

set we add an equality gadget Q(pl, v).573

18. If χd ≥ 3, for each vertex v added in steps 6-17 we add a palette gadget574

P (pA, pB , v).575

4.3. Correctness.576

Lemma 4.3. For any χd ≥ 2, if G contains a k-clique then the graph H(G, k, χd)577

described in the previous section admits a (χd,∆
∗)-coloring.578

Proof. Suppose that G has a k-clique, given by a function f : {1, . . . , k} →579

{1, . . . , n}, meaning that the clique contains vertex f(i) from the set Vi. We color H580

as follows: pA receives color 1, pB receives color 2, and all vertices on which we have581

attached equality gadgets receive the appropriate color, according to Lemma 3.5. By582

Lemmata 3.5,3.8 we can extend this coloring to the internal vertices of equality and583

palette gadgets. For every independent set Ci,j , we color f(i) of its vertices with 1584

if j is odd, otherwise we color n− f(i) of its vertices with 1; we color the remaining585

vertices of independent sets Ci,j with 2. For the j-th edge of E, if it is contained in586

the clique then we color cj with 2 and H1
j , L

1
j , H

2
j , L

2
j with 1, otherwise we color cj587

with 1 and H1
j , L

1
j , H

2
j , L

2
j with 2. This completes the coloring.588

To see that this coloring is valid, observe that the vertices in the palette part have589

each at most ∆∗ neighbors of the same color; the backbone vertices bli,j have exactly590

∆∗ neighbors of the same color (f(i) in one grid independent set and n− f(i) in the591

other, plus ∆∗ − n from step 17); the vertices l1j , h
1
j , l

2
j , h

2
j if the j-th edge belongs to592

the clique have exactly ∆∗ neighbors with the same color; the same vertices for an593

edge that does not belong to the clique have strictly fewer than ∆∗ neighbors of the594

same color; all vertices cj have at most ∆∗ neighbors with the same color; and vertex595

cU has m−
(
k
2

)
= ∆∗ neighbors with the same color.596

Lemma 4.4. For any χd ≥ 2, if the graph H(G, k, χd) described in the previous597
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14 R. BELMONTE, M. LAMPIS, AND V. MITSOU

section admits a (χd,∆
∗)-coloring, then G contains a k-clique.598

Proof. Suppose that we have a valid (χd,∆
∗)-coloring of H. As in Lemma 3.11599

we can assume that pA, pB receive distinct colors, without loss of generality, colors 1600

and 2 respectively. Because of step 18 we can assume that all the main vertices of the601

graph also receive colors 1 or 2. Because of the equality gadget added in 14 we know602

that vertex cU received color 1. Since it has m neighbors, there must exist at least603

m−∆∗ =
(
k
2

)
vertices cj which received color 2. We call the corresponding edges of G604

the selected edges and we will eventually prove that they induce a clique.605

We define a set of k vertices of G, one from each Vi, as follows: in Vi we select the606

vertex f(i) if there are f(i) vertices with color 1 in Ci,1. We call these k vertices the607

selected vertices of G.608

We now observe that if there are f(i) vertices with color 1 in Ci,j , then there are609

n− f(i) vertices with color 1 in Ci,j+1. To see this observe that if there were more610

than n− f(i) vertices with color 1 in Ci,j+1 this would violate vertex bAi,j , which also611

has color 1 and is connected to Ci,j ∪ Ci,j+1. If there were fewer, this would violate612

the vertex bBi,j , which has color 2. Hence, for any j ∈ {1, . . . ,m} we have that Ci,2j−1613

contains f(i) vertices with color 1, while Ci,2j contains n− f(i) vertices with color 1.614

We now want to show that every selected edge is incident on two selected vertices615

to complete the proof. Consider a cj that corresponds to a selected edge. Since cj616

received color 2, because of step 15 all vertices of H1
j , L

1
j , H

2
j , L

2
j must have color 1.617

Consider now the vertices h1
j , l

1
j , which also have color 1 because of step 12. If h1

j is618

connected to Ci1,2j−1 and l1j is connected to Ci1,2j , then h1
j has (∆∗−n) + |H1

j |+f(i1)619

neighbors with color 1, while l1j has (∆∗ − n) + |L1
j |+ n− f(i1) such neighbors. But620

|L1
j | = n−|H1

j |. We therefore have f(i1) ≤ n−|H1
j | as well as f(i1) ≥ |L1

j | = n−|H1
j |.621

Therefore, f(i1) = |L1
j | and this implies by construction that edge j is incident on622

vertex f(i1) of Vi1 .623

Lemma 4.5. For the graph H(G, k, χd) described in the previous section pw(H) =624

O(k + χd).625

Proof. We first invoke Lemma 4.2 to replace all palette and equality gadgets with626

edges. It suffices to show that the pathwidth of the resulting graph is O(k). We627

continue by removing from the graph the vertices pA, pB , cU . This does not decrease628

the pathwidth by more than 3, since these vertices can be added to all bags. In the629

remaining graph we remove all leaves and isolated vertices. It is not hard to see that630

this does not decrease pathwidth by more than 1, since if we find a path decomposition631

of the remaining graph, we can reinsert the leaves as follows: for each leaf v we find632

the smallest bag in the decomposition that contains its neighbor and insert after it a633

copy of the same bag with v added. We note that removing all leaves deletes from the634

graph all vertices added for budget-setting, as well as the remaining vertices of the635

palette part.636

What remains then is to bound the pathwidth of the graph induced by the backbone637

vertices bli,j , the choice vertices in sets Ci,j , and the edge representation vertices. We638

construct a backbone of a path decomposition as follows: for each j ∈ {1, . . . ,m} we639

construct a bag that contains all bli,2j−1, b
l
i,2j , and bli,2j+1 (if they exist), as well as640

h1
j , l

1
j , h

2
j , l

2
j , cj . We connect these bags in a path in increasing order of j. All these641

bags have with at most O(k).642

We now observe that for every remaining vertex of the graph, there is a bag in643

the path decomposition that we have constructed that contains all its neighbors. We644

therefore do the following: for every remaining vertex v, we find the smallest bag of645
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the path decomposition that contains its neighborhood, and insert after it a copy of646

this bag with v added. This process results in a valid path decomposition, and it does647

not increase the size of the largest bag by more than 1.648

The proof of Theorem 4.1 now follows directly from Lemmata 4.3,4.4,4.5.649

5. Exact Algorithms for Treewidth and Other Parameters. In this sec-650

tion we present several exact algorithms for Defective Coloring. Theorem 5.1651

gives a treewidth-based algorithm which can be obtained using standard techniques.652

We assume that the reader is familiar with dynamic programming on tree decompo-653

sitions, as described in standard textbooks [18]. Essentially the same algorithm was654

already sketched in [9], but we give another version here for the sake of completeness655

and because it is a building block for the approximation algorithm of Theorem 6.2.656

Theorem 5.2 uses a win/win argument to show that the problem is FPT parameterized657

by fvs when χd 6= 2 and therefore explains why the reduction presented in Section 3658

only works for 2 colors. Theorem 5.3 uses a similar argument to show that the problem659

is FPT parameterized by vc (for any χd).660

Theorem 5.1. There is an algorithm which, given a graph G = (V,E), parameters661

χd,∆
∗, and a tree decomposition of G of width tw, decides if G admits a (χd,∆

∗)-662

coloring in time (χd∆∗)O(tw)nO(1).663

Proof. The algorithm uses standard dynamic programming techniques, so we664

sketch some of the details. We assume we are given a nice tree decomposition, as665

defined in [12]. For each bag Bt of the decomposition we denote by B↓t the set of vertices666

included in bags in the sub-tree of the decomposition rooted at Bt. We will maintain667

in each bag Bt a dynamic programming table Dt ⊆ ({1, . . . , χd} × {0, . . . ,∆∗})|Bt|.668

Informally, each element s ∈ ({1, . . . , χd}×{0, . . . ,∆∗})|Bt| is the signature of a partial669

solution: we interpret s as a function which, for each vertex in Bt tells us its color, as670

well as the number of neighbors this vertex has in B↓t \Bt that share the same color.671

The invariant we want to maintain is that s ∈ Dt if and only if there exists a coloring672

of B↓t with signature s. We can now build the DP table inductively:673

• For a Leaf node Bt = {u}, Dt contains all signatures s = (cu, 0), for any674

cu ∈ {1, . . . , χd}.675

• For an Introduce node Bt with child Bt′ such that Bt = Bt′ ∪ {u}, for any676

s′ ∈ Dt′ , and for any cu ∈ {1, . . . , χd}, we add to Dt a signature s which677

agrees with s′ on Bt′ and contains the pair (cu, 0) for vertex u.678

• For a Forget node Bt with child Bt′ such that Bt = Bt′ \ {u} for every679

signature s′ ∈ Dt′ we do the following: let (cu, du) be the pair contained in s′680

corresponding to vertex u. Let Su ⊆ Bt′ be the set of vertices of Bt′ which681

are given color cu according to s′ and which are neighbors of u. We check two682

conditions: first that du + |Su| ≤ ∆∗; second, that for all v ∈ Su such that683

s′ contains the pair (cu, dv) we have dv ≤ ∆∗ − 1. If both conditions hold,684

we add to Dt a signature s that agrees with s′ on Bt \ Su, and that for each685

v ∈ Su such that s′ returns (cu, dv), returns the pair (cu, dv + 1).686

• For a Join node Bt with children Bt1 , Bt2 , (such that Bt = Bt1 = Bt2) we do687

the following: for each s1 ∈ Dt1 and each s2 ∈ Dt2 we check the following two688

conditions for all u ∈ Bt: if s1 returns (cu1 , du1) for u and s2 returns (cu2 , du2)689

we check if cu1 = cu2 ; and we check if du1 + du2 ≤ ∆∗. If both conditions hold690

for all u ∈ Bt we say that s1, s2 are compatible, and we add to Dt a signature691

s which for u ∈ Bt contains the pair (cu1
, du1

+ du2
).692

It is not hard to see that the above operations can be performed in time polynomial693
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16 R. BELMONTE, M. LAMPIS, AND V. MITSOU

in the size of the table, which is upper-bounded by (χd(∆∗ + 1))tw. We can then694

prove by induction that a signature appears in a table Dt if and only if a coloring with695

this signature exists for B↓t . If we assume, without loss of generality, that the root696

bag contains a single vertex, we can check if the graph admits a (χd,∆
∗)-coloring by697

checking if the table of the root bag is non-empty.698

Theorem 5.2. Defective Coloring is FPT parameterized by fvs for χd 6= 2.699

More precisely, there exists an algorithm which given a graph G = (V,E), parameters700

χd,∆
∗, with χd 6= 2, and a feedback vertex set of G of size fvs, decides if G admits a701

(χd,∆
∗)-coloring in time fvsO(fvs)nO(1).702

Proof. We use a win/win argument. First, note that we can assume that χd ≥ 3,703

since if χd = 1 the problem is trivial. Furthermore, if χd ≥ fvs+2 then we can produce704

a (χd,∆
∗)-coloring by giving a distinct color to each vertex of the feedback vertex set705

and properly two-coloring the remaining graph. Hence, we assume in the remainder706

that 3 ≤ χd ≤ fvs + 2.707

Now, if ∆∗ ≤ fvs, then we can use the algorithm of Theorem 5.1. Because of708

Lemma 2.2 this algorithm will run in time fvsO(fvs)nO(1).709

Finally, suppose that ∆∗ > fvs. In this case the answer is always Yes. To see this710

we can produce a coloring as follows: we use a single color for all the vertices of the711

feedback vertex set. Since χd ≥ 3, there are at least two other colors available, so we712

use them to properly color the remaining forest. This is a valid (χd,∆
∗)-coloring, since713

the only vertices that may have neighbors of the same color belong in the feedback714

vertex set, and these can have at most fvs− 1 < ∆∗ neighbors with the same color.715

Theorem 5.3. Defective Coloring is FPT parameterized by vc. More pre-716

cisely, there exists an algorithm which, given a graph G = (V,E), parameters χd,∆
∗,717

and a vertex cover of G of size vc, decides if G admits a (χd,∆
∗)-coloring in time718

vcO(vc)nO(1).719

Proof. The proof is essentially identical to that of Theorem 5.2. We can assume720

that χd ≤ vc (otherwise we use a distinct color for each vertex of the vertex cover,721

and a single color for the independent set), and that χd ≥ 2 (otherwise the problem is722

trivial). If ∆∗ ≤ vc we can use the algorithm of Theorem 5.1, otherwise we can use a723

single color for the vertex cover and another for the independent set.724

6. Approximation Algorithms and Lower Bounds. We now present two725

approximation algorithms which run in FPT time parameterized by treewidth. The726

first algorithm (Theorem 6.2) is an FPT approximation scheme which, given a desired727

number of colors χd, is able to approximate the minimum feasible value of ∆∗ for this728

value of χd arbitrarily well (that is, within a factor (1 + ε)). The second algorithm,729

which also runs in FPT time parameterized by treewidth, given a desired value for730

∆∗, produces a solution that approximates the minimum number of colors χd within a731

factor of 2.732

These results raise the question of whether it is possible to approximate χd as well733

as we can approximate ∆∗, that is, whether there exists an algorithm which comes734

within a factor (1 + ε) (rather than 2) of the optimal number of colors. As a first735

response, one could observe that such an algorithm probably cannot exist, because736

the problem is already hard when χd = 2, and therefore an FPT algorithm with737

multiplicative error less than 3/2 would imply that FPT=W[1]. However, this does738

not satisfactorily settle the problem as it does not rule out an algorithm that achieves739

a much better approximation ratio, if we allow it to also have a small additive error in740

the number of colors. Indeed, as we observe in Corollary 6.7, it is possible to obtain an741
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algorithm which runs in FPT time parameterized by feedback vertex set and has an742

additive error of only 1, as a consequence of the fact that the problem is FPT for χd ≥ 3.743

This poses the question of whether we can design an FPT algorithm parameterized by744

treewidth which, given a (χd,∆
∗)-colorable graph, produces a coloring with ρχd +O(1)745

colors, for ρ < 3/2.746

In the second part of this section we settle this question negatively by showing,747

using a recursive construction that builds on Theorem 3.1, that such an algorithm748

cannot exist. More precisely, we present a gap-introducing version of our reduction:749

the ratio between the number of colors needed to color Yes and No instances remains750

3/2, even as the given χd increases. This shows that the “correct” multiplicative751

approximation ratio for this problem really lies somewhere between 3/2 and 2, or in752

other words, that there are significant barriers impeding the design of a better than753

3/2 FPT approximation for χd, beyond the simple fact that 2-coloring is hard.754

6.1. Approximation Algorithms. Our first approximation algorithm, which755

is an approximation scheme for the optimal value of ∆∗, relies on a method introduced756

in [39] (see also [3, 34, 35]), and a theorem of [11]. The high-level idea is the following:757

intuitively, the obstacle that stops us from obtaining an FPT running time with the758

dynamic programming algorithm of Theorem 5.1 is that the dynamic program is forced759

to store some potentially large values for each vertex. More specifically, to characterize760

a partial solution we need to remember not just the color of each vertex in a bag,761

but also how many neighbors with the same color this vertex has already seen (which762

is a value that can go up to ∆∗). The main trick now is to “round” these values763

in order to decrease the number of possible states a vertex can be found in. To do764

this, we select an appropriate value δ (polynomial in ε
logn ), and try to replace every765

value that the dynamic program would calculate with the next higher integer power766

of (1 + δ). This has the advantage of limiting the number of possible values from767

∆∗ to log(1+δ) ∆∗ ≈ log ∆∗

δ , and this is sufficient to obtain the promised running time.768

The problem is now that the rounding we applied introduces an approximation error,769

which is initially a factor of at most (1 + δ), but may increase each time we apply770

an arithmetic operation as part of the algorithm. To show that this error does not771

get out of control we show that in any bag of the tree all values stored are within a772

factor (1 + δ)h of the correct ones, where h is the height of the bag. We then use a773

theorem of Bodlaender and Hagerup [11] which states that any tree decomposition774

can be balanced in such a way that its height is at most O(log n), and as a result we775

obtain that all values are sufficiently close to being correct.776

The second algorithm we present in this section (Theorem 6.4) uses the approxi-777

mation scheme for ∆∗ to obtain an FPT 2-approximation for χd. The idea here is that,778

given a (χd,∆
∗)-colorable graph, we first produce a (χd, (1 + ε)∆∗)-coloring using the779

algorithm of Theorem 6.2, and then apply a procedure which uses 2 colors for each780

color class of this solution but manages to divide by two the number of neighbors with781

the same color of every vertex. This is achieved with a simple polynomial-time local782

search procedure.783

Theorem 6.1. [11] There is a polynomial-time algorithm which, given a graph784

G = (V,E) and a tree decomposition of G of width tw, produces a tree decomposition785

of G of width at most 3tw + 2 and height O(log n).786

Theorem 6.2. There is an algorithm which, given a graph G = (V,E), parameters787

χd,∆
∗, a tree decomposition of G of width tw, and an error parameter ε > 0, either788

returns a (χd, (1 + ε)∆∗)-coloring of G, or correctly concludes that G does not admit a789
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(χd,∆
∗)-coloring, in time (tw/ε)O(tw)nO(1).790

Proof. Our first step is to invoke Theorem 6.1 to obtain a tree decomposition791

of width O(tw) and height O(log n). We then define a value δ = ε
log2 n

and the set792

Σ = {0} ∪ {(1 + δ)i |i ∈ N, (1 + δ)i ≤ (1 + ε)∆∗}. In other words, the set Σ contains793

(in addition to 0), all positive integer powers of (1 + δ) with value at most (1 + ε)∆∗.794

We note that |Σ| ≤ 1 + log(1+δ)((1 + ε)∆∗) = O(log ∆∗/δ), where we have used the795

properties loga b = ln b/ ln a, and ln(1 + x) ≥ x/2 for x a sufficiently small positive796

constant (that is, for sufficiently large n). Taking into account the value of δ we have797

selected, and the fact that ∆∗ ≤ n, we have |Σ| = O(log3 n/ε).798

We now follow the outline of the algorithm of Theorem 5.1, with the difference799

that we now define a DP table for bag Bt as Dt ⊆ ({1, . . . , χd} × Σ)|Bt|. Again, we800

interpret the elements of Dt as functions which, for each vertex in Bt return a color801

and an approximate number of neighbors that have the same color as this vertex in802

B↓t \Bt.803

More precisely, if a bag Bt is at height h (that is, its maximum distance from a leaf804

bag in the sub-tree rooted at Bt is h) we will maintains the following two invariants:805

1. If there exists a coloring c of B↓t such that all vertices of B↓t \ Bt have at806

most ∆∗ neighbors of the same color, and all vertices of Bt have at most ∆∗807

neighbors of the same color in B↓t \Bt, then there exists s ∈ Dt which assigns808

the same colors as c to Bt; and which, if u ∈ Bt has d′u neighbors with the809

same color in B↓t \Bt in c, returns value du ≤ (1 + δ)hd′u for vertex u, where810

du ∈ Σ.811

2. If there exists a signature s ∈ Dt, then there exists a coloring c of B↓t such812

that all vertices of B↓t \Bt have at most (1 + ε)∆∗ neighbors of the same color;813

all vertices of Bt take in c the colors described in s; if s dictates that a vertex814

u ∈ Bt has du neighbors with the same color in B↓t \Bt, then u has at most815

du neighbors with the same color in B↓t \Bt according to coloring c.816

The first of the two properties above implies that, if there exists a (χd,∆
∗)-817

coloring of G, the algorithm will be able to find some entry in the table of the818

root bag that will allows us to construct a (χd, (1 + δ)H)-coloring, where H is the819

height of the tree decomposition. We recall now that H = O(log n), therefore,820

(1 + δ)H ≤ eδH ≤ eO(ε/ logn) ≤ 1 + ε. Hence, if we establish the first property, we know821

that if a (χd,∆
∗)-coloring exists, the algorithm will be able to find a (χd, (1 + ε)∆∗)-822

coloring. Conversely, the second property assures us that, if the algorithm places a823

signature s in a DP table, there must exist a coloring that matches this signature.824

In order to establish these invariants we must make a further modification to825

the algorithm of Theorem 5.1. We recall that the algorithm makes some arithmetic826

calculation in Forget nodes (where the value dv of neighbors of the forgotten node827

with the same color is increased by 1); and in Join nodes (where values du1 , du2828

corresponding to the same node are added). The problem here is that even if the829

values stored are integer powers of (1 + δ), the results of these additions are not830

necessarily such integer powers. Hence, our algorithm will simply “round up” the831

result of these additions to the closest integer power of (1 + δ). Formally, instead832

of the value dv + 1 we use the value (1 + δ)dlog(1+δ)(dv+1)e, and instead of the value833

du1 + du2 we use the value (1 + δ)dlog(1+δ)(du1+du2 )e.834

We can now establish the two properties by induction. The two interesting cases835

are Forget and Join nodes. For a Join node of height h and the first property, if we have836

established by induction that for the two values du1
, du2

stored in the children’s tables837

we have du1
≤ (1 + δ)h−1d′u1

, du2
≤ (1 + δ)h−1d′u2

, where d′u1
, d′u2

are as described in838
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the first property, then du1
+ du2

≤ (1 + δ)h−1(d′u1
+ d′u2

). However, for the new value839

we calculate we have du ≤ (1 + δ)(du1
+ du2

) ≤ (1 + δ)h(d′u1
+ d′u2

) = (1 + δ)hd′u. For840

the second property, observe that since we always round up, the value stored in the841

table will always be at least as high as the true number of neighbors of a vertex in the842

coloring c. Calculations are similar for Forget nodes.843

Because of the above we have an algorithm that runs in time polynomial in844

|Dt| = (χd|Σ|)O(tw). We can assume without loss of generality that χd ≤ tw + 1,845

otherwise by Lemma 2.2 the graph can be easily properly colored. By the observations846

of |Σ|, specifically the fact that |Σ| = O(log ∆∗/δ) = O(log3 n/ε), we therefore have847

that the running time is (tw log n/ε)O(tw). A well-known win/win argument allows us848

to obtain the promised bound as follows: if tw ≤
√

log n, this running time is in fact849

polynomial in n, 1/ε, so we are done; if
√
logn ≤ tw then log n ≤ tw2 and the running850

time is upper bounded by (tw/ε)O(tw).851

For our second approximation algorithm, we first state a helpful lemma.852

Lemma 6.3. There exists a polynomial-time algorithm which, given a graph with853

maximum degree ∆, produces a two-coloring of that graph where all vertices have at854

most ∆/2 neighbors of the same color.855

Proof. We run what is essentially a local search algorithm for Max Cut. Initially,856

color all vertices with color 1. Then, as long as there exists a vertex u such that the857

majority of its neighbors have the same color as u, we change the color of u. We858

continue with this process until all vertices have a majority of their neighbors with a859

different color. In that case the claim follows. To see that this procedure terminates860

in polynomial time, observe that in each step we increase the number of edges that861

connect vertices of different colors.862

Combining Lemma 6.3 with the algorithm of Theorem 6.4 gives the following863

result:864

Theorem 6.4. There is an algorithm which, given a graph G = (V,E), param-865

eters χd,∆
∗, and a tree decomposition of G of width tw, either returns a (2χd,∆

∗)-866

coloring of G, or correctly concludes that G does not admit a (χd,∆
∗)-coloring, in867

time (tw)O(tw)nO(1).868

Proof. We assume without loss of generality that ∆∗ is sufficiently large (e.g.869

∆∗ ≥ 20), otherwise we can solve the problem exactly by using the fact that χd is870

bounded by tw (by Lemma 2.2) and the algorithm of Theorem 5.1. We invoke the871

algorithm of Theorem 6.2, setting ε = 1/10. The algorithm runs in the promised872

running time. If it reports that G does not admit a (χd,∆
∗)-coloring, we output the873

same answer and we are done.874

Suppose that the algorithm of Theorem 6.2 returned a (χd,
11
10∆∗)-coloring of G.875

We transform this to a (2χd,∆
∗)-coloring by using Lemma 6.3.876

We consider each color class in the returned coloring of G separately. Each class877

induces a graph with maximum degree 11
10∆∗. According to Lemma 6.3, we can878

two-color this graph so that no vertex has more than 11
20∆∗ ≤ ∆∗ neighbors with the879

same color. We produce such a two-coloring for the graph induced by each color class880

using two new colors. Hence, the end result is a (2χd,
11
20∆∗)-coloring of G, which is881

also a valid (2χd,∆
∗)-coloring.882

6.2. Hardness of Approximation. The main result of this section is that χd883

cannot be approximated with a factor better than 3/2 in FPT time (for parameters884

tree-depth, pathwidth, or treewidth), even if we allow the algorithm to also have a885
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constant additive error. We remark that an FPT algorithm with additive error 1 is886

easy to obtain for feedback vertex set (Corollary 6.7).887

Theorem 6.5. For any fixed χd > 0, if there exists an algorithm which, given a888

graph G = (V,E) and a ∆∗ ≥ 0, correctly distinguishes between the case that G admits889

a (2χd,∆
∗)-coloring, and the case that G does not admit a (3χd − 1,∆∗)-coloring in890

FPT time parameterized by td(G), then FPT=W[1].891

Proof. First, observe that the theorem already follows for χd = 1 by Theorem 3.1,892

which states that it is W[1]-hard parameterized by td(G) to decide if a graph admits893

a (2,∆∗)-coloring. Let G1 be the graph produced in the reduction of Theorem 3.1. By894

repeated composition we will construct, for any χd, a graph Gχd such that either Gχd895

admits a (2χd,∆
∗)-coloring, or it does not admit a (3χd − 1,∆∗)-coloring, depending896

on whether G1 admits a (2,∆∗)-coloring.897

Suppose that we have constructed the graph Gχd , for some χd. We describe how898

to build the graph Gχd+1. We start with a copy of G1, which we call the main part of899

our construction. We will add to this many disjoint copies of Gχd and appropriately900

connect them to G1 to obtain Gχd+1.901

Recall that the graph G1 contains two palette vertices pA, pB , each connected to902

∆∗ neighbors pij , i ∈ {1, . . . ,∆∗}, j ∈ {A,B} with both edges and equality gadgets.903

Furthermore, recall that for two colors, an equality gadget with endpoints pj , p
i
j is an904

independent set on 2∆∗ + 1 vertices which are common neighbors of pj and pij .905

For each j ∈ {A,B}, each i ∈ {1, . . . ,∆∗}, and each internal vertex v of the906

equality gadget Q(pj , p
i
j) added in step 3 we add to the main graph

(
3χd+2

3χd

)
∆∗ + 1907

disjoint copies of Gχd and connect all their vertices to pj , p
i
j , and v.908

Now, for every vertex v of G1 that is not part of the palette (that is, every vertex909

that was not constructed in steps 1-5), we add another
(

3χd+2
3χd

)
∆∗ + 1 disjoint copies910

of Gχd and connect all their vertices to pA, pB , and v.911

This completes the construction. We now need to establish three properties: that912

if G1 admits a (2,∆∗)-coloring then Gχd+1 admits a (2χd + 2,∆∗)-coloring; that if G1913

does not admit a (2,∆∗)-coloring then Gχd+1 does not admit a (3χd + 2,∆∗)-coloring;914

and that the tree-depth of Gχd+1 did not increase too much.915

We proceed by induction and assume that all the above have been shown for Gχd .916

For the first property, if G1 admits a (2,∆)-coloring and Gχd admits a (2χd,∆
∗)-917

coloring, then we can construct a coloring of Gχd+1 by taking the same coloring with918

2χd colors for all the copies of Gχd , and using two new colors to color the main graph919

G1.920

For the second property, suppose that we know that a (3χd − 1,∆∗)-coloring921

of Gχd implies the existence of a (2,∆∗)-coloring of G1. We want to show that a922

(3χd + 2,∆∗)-coloring of Gχd+1 also implies a (2,∆∗)-coloring of G1. Suppose then923

that we have such a (3χd + 2,∆∗)-coloring of Gχd+1. If a copy of Gχd included in924

Gχd+1 uses at most 3χd − 1 colors, we are done, since this implies the existence of925

a (2,∆∗)-coloring of G1. Therefore, assume that all copies of Gχd+1 use at least 3χd926

colors.927

Consider now two vertices pj , p
i
j , for some j ∈ {A,B}, i ∈ {1, . . . ,∆∗}. We claim928

that they must receive the same color. To see this, take an internal vertex v of the929

equality gadget Q(pj , p
i
j) and recall that we have added

(
3χd+2

3χd

)
∆∗ + 1 disjoint copies930

of Gχd connected to pj , p
i
j , v. Hence, there is some set of 3χd colors that appears in931

at least ∆∗ + 1 of these copies, and therefore cannot be used in pj , p
i
j , v. Therefore,932

if pj , p
i
j do not share a color, all the 2∆∗ + 1 internal vertices of the equality gadget933
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share the color of one of the two, which violates the correctness of the coloring. We934

conclude that pA has ∆∗ neighbors with its own color, as does pB, therefore, since935

they are connected, pA, pB use distinct colors.936

Consider now any other vertex v of the main graph. Again, we have added937 (
3χd+2

3χd

)
∆∗ + 1 disjoint copies of Gχd connected to pA, pB , v, hence there is a set of938

3χd colors which appears in ∆∗+ 1 copies and is therefore not used by pA, pB , v. Since939

there are 3χd + 2 colors overall and pA, pB use distinct colors, we conclude that v uses940

either the color of pA or that of pB . Hence, the coloring of Gχd+1 contains a 2-coloring941

of G1.942

For the final property, suppose that td(Gχd) ≤ χdtd(G1) + 2χd. We want to943

establish that td(Gχd+1) ≤ (χd + 1)td(G1) + 2χd + 2. To see this, we construct a944

tree for Gχd+1 as follows, the two top vertices are pA, pB, and below these we place945

a tree whose completion contains G1 (hence we have at most td(G1) + 2 levels now).946

For every copy of Gχd that was connected to pA, pB, and a vertex v, we find v and947

attach below it a tree whose completion contains Gχd . Similarly, for every copy of Gχd948

attached to pj , p
i
j , and a vertex v, for some j ∈ {A,B}, i ∈ {1, . . . ,∆∗}, one of the949

vertices v, pij is a descendant of the other in the current tree (since they are connected);950

we attach a tree containing Gχd to this descendant. The total number of levels of the951

tree is therefore td(G1) + 2 + td(Gχd) ≤ (χd + 1)td(G1) + χd + 2, as desired.952

Corollary 6.6. For any constants δ1, δ2 > 0, if there exists an algorithm which,953

given a graph G = (V,E) that admits a (χd,∆
∗)-coloring and parameters χd,∆

∗, is954

able to produce a (( 3
2 − δ1)χd + δ2,∆

∗)-coloring of G in FPT time parameterized by955

td(G), then FPT=W[1].956

Proof. Fix some constants δ1, δ2. We invoke Theorem 6.5 with χd = d δ2+1
δ1
e. The957

graph produced either admits a (2χd,∆)-coloring or does not admit a (3χd − 1,∆)-958

coloring. Suppose that the algorithm described in this corollary exists. Then, in the959

former case it produces a coloring with at most ( 3
2 − δ1) · 2d δ2+1

δ1
e+ δ2 = 3d δ2+1

δ1
e −960

2δ1d δ2+1
δ1
e+ δ2 ≤ 3χd − 2(δ2 + 1) + δ2 ≤ 3χd − 1 colors. Hence, the algorithm would961

be able to distinguish the two cases of a W[1]-hard problem.962

Corollary 6.7. There is an algorithm which, given a graph G = (V,E), param-963

eters χd,∆
∗, and a feedback vertex set of G of size fvs, either returns a (χd + 1,∆∗)-964

coloring of G, or correctly concludes that G does not admit a (χd,∆
∗)-coloring, in965

time (fvs)O(fvs)nO(1).966

Proof. If χd ≥ 3 we simply invoke Theorem 5.2. If χd = 2 we invoke the same967

algorithm with χd = 3. If the algorithm produces a coloring, we output that as the968

solution, otherwise we can report that no (χd,∆
∗)-coloring exists.969

7. Conclusions. In this paper we classified the complexity of Defective Col-970

oring with respect to some of the most well-studied graph parameters, given essentially971

tight ETH-based lower bounds for pathwidth and treewidth, and explored the pa-972

rameterized approximability of the problem. Though this gives a good first overview973

of the problem’s parameterized complexity landscape, there are several questions974

worth investigating next. First, is it possible to make the lower bounds of Section975

4 even tighter, by precisely determining the base of the exponent in the algorithm’s976

dependence? This would presumably rely on a stronger complexity assumption such977

as the SETH, as in [41]. Second, can we determine the complexity of the problem with978

respect to other structural parameters, such as clique-width [15], modular-width [25],979

or neighborhood diversity [38]? For some of these parameters the existence of FPT980

algorithms is already ruled out by the fact that Defective Coloring is NP-hard on981
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cographs [9], however the complexity of the problem is unknown if we also add χd or982

∆∗ as a parameter. Finally, it would be very interesting to close the gap between 2983

and 3/2 on the performance of the best treewidth-parameterized FPT approximation984

for χd.985
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