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PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING*

REMY BELMONTE', MICHAEL LAMPIS}, AND VALIA MITSOU?

Abstract.

In DEFECTIVE COLORING we are given a graph G = (V, E) and two integers xq, A* and are asked
if we can partition V into x4 color classes, so that each class induces a graph of maximum degree A*.
We investigate the complexity of this generalization of COLORING with respect to several well-studied
graph parameters, and show that the problem is W-hard parameterized by treewidth, pathwidth,
tree-depth, or feedback vertex set, if x4 = 2. As expected, this hardness can be extended to larger
values of xq for most of these parameters, with one surprising exception: we show that the problem
is FPT parameterized by feedback vertex set for any xq # 2, and hence 2-coloring is the only hard
case for this parameter. In addition to the above, we give an ETH-based lower bound for treewidth
and pathwidth, showing that no algorithm can solve the problem in n°(P%)  essentially matching the
complexity of an algorithm obtained with standard techniques.

We complement these results by considering the problem’s approximability and show that, with
respect to A*, the problem admits an algorithm which for any e > 0 runs in time (tw/e)o(tw) and
returns a solution with exactly the desired number of colors that approximates the optimal A*
within (1 4+ €). We also give a (tw)?(®") algorithm which achieves the desired A* exactly while
2-approximating the minimum value of xq. We show that this is close to optimal, by establishing
that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation
to x4, even when an extra constant additive error is also allowed.

Key words. Defective Coloring, Improper Coloring, Parameterized Complexity, Treewidth.
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1. Introduction. DEFECTIVE COLORING is the following problem: we are given
a graph G = (V, E), and two integer parameters xq, A*, and are asked whether
there exists a partition of V' into at most x4 sets (color classes), such that each set
induces a graph with maximum degree at most A*. DEFECTIVE COLORING, which
is also sometimes referred to in the literature as IMPROPER COLORING, is a natural
generalization of the classical COLORING problem, which corresponds to the case
A* = 0. The problem was introduced more than thirty years ago [2, 17], and since
then has attracted a great deal of attention [1, 4, 6, 13, 14, 16, 24, 26, 29, 33, 36, 37].

From the point of view of applications, DEFECTIVE COLORING is particularly
interesting in the context of wireless communication networks, where the assignment
of colors to vertices often represents the assignment of frequencies to communication
nodes. In many practical settings, the requirement of traditional coloring that all
neighboring nodes receive distinct colors is too rigid, as a small amount of interference
is often tolerable, and may lead to solutions that need drastically fewer frequencies.
DEFECTIVE COLORING allows one to model this tolerance through the parameter A*.
As a result the problem’s complexity has been well-investigated in graph topologies
motivated by such applications, such as unit-disk graphs and various classes of grids
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2 R. BELMONTE, M. LAMPIS, AND V. MITSOU

[5, 7, 8, 10, 27, 28]. For more background we refer to [23, 32].

In this paper we study DEFECTIVE COLORING from the point of view of parame-
terized complexity [18, 19, 22, 43]. The problem is of course NP-hard, even for small
values of yq, A*, as it generalizes COLORING. For the same reason, it is also NP-hard
to even approximate either yq or A* (see Lemma 2.1). We are therefore strongly
motivated to bring to bear the powerful toolbox of structural graph parameters, such
as treewidth, which have proved extremely successful in tackling other intractable hard
problems. Indeed, COLORING is one of the success stories of this domain, since the
complexity of this flagship problem with respect to treewidth (and related parameters
pathwidth, feedback vertex set, vertex cover) is by now extremely well-understood
[31, 40, 41]. We pose the natural question of whether similar success can be achieved
for DEFECTIVE COLORING, or whether the addition of A* significantly alters the
complexity behavior of the problem. Such results are not yet known for DEFECTIVE
COLORING, except for the fact that it was observed in [9] that the problem admits
(by standard techniques) a roughly (xqA*)™-time algorithm, where tw is the graph’s
treewidth. In parameterized complexity terms, this shows that the problem is FPT
parameterized by tw + A*. One of our main motivating questions is whether this
running time can be improved qualitatively (is the problem FPT parameterized only
by tw?) or quantitavely.

Our first result is to establish that the problem is W-hard not just for treewidth, but
also for several much more restricted structural graph parameters, such as pathwidth,
tree-depth, and feedback vertex set. We recall that for COLORING, the standard xq*™
algorithm is FPT by tw, as graphs of bounded treewidth also have bounded chromatic
number (Lemma 2.2). Our result shows that the complexity of the problem changes
drastically with the addition of the new parameter A*, and it appears likely that tw
must appear in the exponent of A* in the running time, even when A* is large. More
strongly, we establish this hardness even for the case xyq = 2, which corresponds to
the problem of partitioning a graph into two parts so as to minimize their maximum
degree. This identifies DEFECTIVE COLORING as another member of a family of
generalizations of COLORING (such as EQUITABLE COLORING or LIST COLORING)
which are hard for treewidth [21].

As one might expect, the W-hardness results on DEFECTIVE COLORING param-
eterized by treewidth (or pathwidth, or tree-depth) easily carry over for values of
x4 larger than 2. Surprisingly, we show that this is not the case for the parameter
feedback vertex set, for which the only W-hard case is 2-coloring: we establish with a
simple win/win argument that the problem is FPT for any other value of xq. We also
show that if one considers sufficiently restricted parameters, such as vertex cover, the
problem does eventually become FPT.

Our second step is to enhance the W-hardness result mentioned above with the
aim of determining as precisely as possible the complexity of DEFECTIVE COLORING
parameterized by treewidth. Our reduction for tree-depth and feedback vertex set
is quadratic in the parameter, and hence implies that no algorithm can solve the
problem in time n°(V®™) under the Exponential Time Hypothesis (ETH) [30]. We
therefore present a second reduction, which applies only to pathwidth and treewidth,
but manages to show that no algorithm can solve the problem in time n°®¥) or po(tw)
under the ETH. This lower bound is tight, as it matches asymptotically the exponent
given in the algorithm of [9].

To complement the above results, we also consider the problem from the point of
view of (parameterized) approximation. Here things become significantly better: we
give an algorithm using a technique of [39] which for any x4 and error € > 0 runs in
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Parameter Result (Exact solu- | Ref. Result (Approxima- | Ref.
tion) tion)

Feedback W(1]-hard for xq = | Thm 3.1 | +1-approximation of | Cor 6.7

Vertex Set 2 Ya in time fvs@®®)
FPT for xq # 2 Thm 5.2

Tree-depth W]/l]-hard for any | Thm 3.1 | W[1]-hard to color | Thm 6.5
Xd > 2 with (3/2 — €)xa +

O(1) colors
Treewidth, No n°®%) or n°®) [ Thm 4.1 | (1 + ¢)-approximation | Thm 6.2

Pathwidth algorithm  under for A* in (tw/e)O(tW)
ETH
2-approximation for | Thm 6.4
Xd in tw@W)
Vertex Cover | ve©("9) algorithm Thm 5.3
TABLE 1

Summary of results. Hardness results for tree-depth imply the same bounds for treewidth and
pathwidth. Conwversely, algorithms which apply to treewidth apply also to all other parameters.

time (tw/e)?t)nOM) and approximates the optimal value of A* within a factor of
(1 + ¢€). Hence, despite the problem’s W-hardness, we produce a solution arbitrarily
close to optimal in FPT time.

Motivated by this algorithm we also consider the complementary approximation
problem: given A* find a solution that comes as close to the minimum number of
colors needed as possible. By building on the approximation algorithm for A*, we are
able to present a (tw)?t")nO() algorithm that achieves a 2-approximation for this
problem. One can observe that this is not far from optimal, since an FPT algorithm
with approximation ratio better than 3/2 would contradict the problem’s W-hardness
for xq = 2. However, this simple argument is unsatisfying, because it does not rule
out algorithms with a ratio significantly better than 3/2, if one also allows a small
additive error; indeed, we observe that when parameterized by feedback vertex set
the problem admits an FPT algorithm that approximates the optimal x4 within an
additive error of just 1. To resolve this problem we present a gap-introducing version
of our reduction which, for any ¢ produces an instance for which the optimal value
of xq is either 2i, or at least 3i. In this way we show that, when parameterized by
tree-depth, pathwidth, or treewidth, approximating the optimal value of yq better
than 3/2 is “truly” hard, and this is not an artifact of the problem’s hardness for
2-coloring.

2. Definitions and Preliminaries. For a graph G = (V| F) and two integers
Xda > 1, A* > 0, we say that G admits a (x4, A*)-coloring if one can partition V' into
X4 sets such that the graph induced by each set has maximum degree at most A*.
DEFECTIVE COLORING is the problem of deciding, given G, x4, A*, whether G admits
a (x4, A*)-coloring. For A* = 0 this corresponds to COLORING.

We note that since DEFECTIVE COLORING generalizes COLORING, the problem is
NP-hard even to approximate, with respect to both xyq and A*.

LEMMA 2.1. For any constants p > 1,A* > 0, the following problem is NP-
hard: given a graph G = (V, E), and an integer xq, distinguish whether G admits a
(x4, 0)-coloring, or whether it does not even admit a (pxa, A*) coloring.

This manuscript is for review purposes only.



4 R. BELMONTE, M. LAMPIS, AND V. MITSOU

Proof. We recall that COLORING is NP-hard to approximate within any constant
(indeed, within any non-trivial polynomial factor [20]). For any p > 1 we can therefore
produce in polynomial time a graph G = (V, F) and an integer x4 such that it is
NP-hard to distinguish whether G can be properly colored with x4 colors, or whether
it needs strictly more than pyq colors.

We construct a graph G’ by replacing each vertex of G with an independent set
of pxaA* + 1 vertices and each (u,v) € E by a complete bipartite graph joining the
independent sets that replaced u, v. If G is yq-colorable, then G’ is as well, so it admits
a (xd,0)-coloring. If G’ admits a (pxq4, A*)-coloring, we construct a coloring of G using
pXd colors by giving each u € V' the color that appears most often in the independnt
set that replaced u in G’. This is a valid coloring of G because if two neighbors received
the same color, this color appears at least [(pxaA* +1)/pxa| > A* + 1 times on two
neighboring independent sets of G'. O

We assume the reader is familiar with basic notions in parameterized complexity,
such as the classes FPT and W[1]. For the relevant definitions we refer to the standard
textbooks [18, 19, 22, 43]. We rely on a number of well-known graph measures:
treewidth [12], pathwidth, tree-depth [42], feedback vertex set, and vertex cover,
denoted respectively as tw(G), pw(G), td(G), fvs(G), ve(G), where we drop G if it is
clear from the context.

We recall here some standard definitions for the reader’s convenience. A tree
decomposition of a graph G = (V, E) is a (rooted) tree T' = (X, I) such that each node
of T is a subset of V. We call the elements of X bags. T must obey the following
constraints: Yo € V 3B € X such that v € B; V(u,v) € E 3B € X such that u,v € B;
Vv € V the bags of X that contain v induce a connected sub-tree. The width of a
tree decomposition is maxpex |B| — 1, and tw(G) is the minimum width of a tree
decomposition of G. Pathwidth is defined similarly, except the decomposition is
required to be a path instead of a tree.

For a rooted tree T we define its height as the number of vertices in the longest path
from the root to a leaf, and its completion as the graph obtained by connecting each
node to all of its ancestors. For a graph G we define td(G) as the minimum height of
any tree whose completion contains G as a subgraph. An equivalent recursive definition
is the following: td(K;) = 1; if G is disconnected then td(G) is equal to the maximum
tree-depth of G’s connected components; otherwise td(G) = 1 + min,cy td(G[V \ v]).

A graph’s feedback vertex set (respectively vertex cover) is the smallest set of
vertices whose removal leaves the graph acyclic (respectively edge-less).

LEMMA 2.2. For any graph G we have tw(G) — 1 < fvs(G) < ve(G) and tw(G) <

pw(G) < td(G) — 1 < ve(G). Furthermore, any graph G admits a (tw(G) + 1,0)-
coloring, a (pw(G)+1,0)-coloring, a (td(G),0)-coloring, and a (fvs(G)+2,0)-coloring.

Proof. All stated relations are standard but we recall here the proofs for the sake
of completeness. To obtain tw(G) — 1 < fvs(G), if S C V is a feedback vertex set,
we can construct a tree decomposition of G by including all vertices of S in a tree
decomposition (of width 1) of G[V'\ S]. fvs(G) < ve(G) follows because every vertex
cover is also a feedback vertex set. tw(G) < pw(G) because all path decompositions
are also valid tree decompositions. pw(G) < td(G) — 1 can be seen by recalling that,
if G is connected Fv € V such that td(G) = 1 +td(G[V \ v]). We can now take a path
decomposition of G[V \ v] and add v to every bag. To see that td(G) < ve(G) + 1
we observe that for a vertex v that belongs in a minimum vertex cover of G we have
td(G) < td(G — v) + 1 and ve(G) = ve(G — v) + 1, which allows us to obtain the
inequality by induction.

This manuscript is for review purposes only.
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PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING 5

For the coloring statements, we recall that a graph with treewidth tw is (tw + 1)-
degenerate, that is, there exists an ordering of its vertices such that each vertex
has at most tw + 1 neighbors among the vertices that precede it [12]. To see that
td(G) colors suffice to color G if it is connected, we recall that Jv € V such that
td(G) = 1+ td(G[V \ v]), use a unique color for v and td(G) — 1 for the rest of the
graph. fvs(G) + 2 colors are always sufficient to properly color a graph because we can
use distinct colors for the feedback vertex set, and two-color the remaining forest. O

The Exponential Time Hypothesis (ETH) states that there exists a constant cg > 1
such that 3-SAT on instances with n variables and m clauses cannot be solved in
time ¢4 ™™ [30]. For our purposes it will be sufficient to rely on a weaker form of
the ETH which states that 3-SAT cannot be solved in 2°("t™) time. We define the
k-MULTI-COLORED CLIQUE problem as follows: we are given a graph G = (V, E),
a partition of V into k independent sets Vi,...,V,, such that for all i € {1,...,k}
we have |V;| = n, and we are asked if G contains a k-clique. It is well-known that
this problem is W[1]-hard parameterized by k, and that it does not admit any nok)
algorithm, unless the ETH is false [18].

3. W-hardness for Feedback Vertex Set and Tree-depth. The main result
of this section states that deciding if a graph admits a (2, A*)-coloring, where A* is
part of the input, is W[1]-hard parameterized by either fvs or td. Because of standard
relations between graph parameters (Lemma 2.2), this implies also the same problem’s
W-hardness for parameters pw and tw. As might be expected, it is not hard to extend
our proof to give hardness for deciding if a (x4, A*)-coloring exists, for any constant
Xd, parameterized by tree-depth (and hence, also treewidth and pathwidth). What is
perhaps more surprising is that this cannot be done in the case of feedback vertex set.
Superficially, the reason we cannot extend the reduction in this case is that one of the
gadgets we use in many copies in our construction has large fvs if xq > 2. However,
we give a much more convincing reason in Theorem 5.2 of Section 5 where we show
that DEFECTIVE COLORING is FPT parameterized by fvs for xq > 3, and therefore, if
we could extend our reduction in this case it would prove that FPT=W|1].

The main theorem of this section is stated below. We then present the reduction
in Sections 3.1, 3.2, and give the Lemmata that imply Theorem 3.1 in Section 3.3.

THEOREM 3.1. Deciding if a graph G admits a (2, A*)-coloring, where A* is part
of the input, is W[1]-hard parameterized by fvs(G). Deciding if a graph G admits a
(xa, A*)-coloring, where xq > 2 is any fived constant and A* is part of the input is
W/1]-hard parameterized by td(G).

3.1. Basic Gadgets. Before we proceed, we present some basic gadgets that will
be useful in all the reductions of this paper (Theorems 3.1, 4.1, 6.5). We first define a
building block T (7, j) which is a graph that can be properly colored with ¢ colors, but
admits no (¢ — 1, j)-coloring (similar constructions appear in [29]). We then use this
graph to build two gadgets: the Equality Gadget and the Palette Gadget (Definitions
3.4 and 3.7). Informally, for given x4, A*, the equality gadget allows us to express
the constraint that two vertices v1,vs of a graph must receive the same color in any
valid (x4, A*)-coloring. The palette gadget will be used to express the constraint that,
among three vertices vy, vo, v3, there must exist two with the same color. For both
gadgets we first prove formally that they express these constraints (Lemmata 3.5 and
3.8). We then show that, under certain conditions, these gadgets can be added to any
graph without significantly increasing its tree-depth or feedback vertex set (Lemmata
3.6 and 3.9), that is, that we may use these gadget while maintaining a valid FPT
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reduction.
Below, we use K7 to denote the graph that consists of a single isolated vertex.

DEFINITION 3.2. Given two integers i > 0,5 > 0, we define the graph T (i,])
recursively as follows: T'(1,j) = Ky for all j; fori > 1, T(i,j) is the graph obtained
by taking (7 + 1) disjoint copies of T(i — 1,7) and adding to the graph a new universal
vertex, that is, a vertex connected to all other vertices.

LEMMA 3.3. For alli > 0,7 > 0 we have: T (i,7) admits an (i,0)-coloring; T (i, j)
does not admit an (i—1, j)-coloring; td(T (¢,7)) = pw(T (4,7))+1 = tw(T (¢,5)) +1 =i.

Proof. We begin with the last statement: clearly td(7(1,5)) = pw(7(1,5))+1 =
w(T(1,7)) +1 = 1, while it can be seen that tw(7 (¢,5)) + 1 < pw(7T (4,5)) + 1 <
td(T(4,7)) < 14+td(T (i — 1,5)) by removing the universal vertex. We also observe
that td(7(¢,5)) > pw(7 (4,7)) + 1 > tw(7(i,5)) + 1 > i because T (4,j) contains a
clique of size 7. The fact that 7 (i, ) admits an (4, 0)-coloring now follows by Lemma
2.2. Finally, to see that 7 (7,j) does not admit an (¢ — 1, j)-coloring, we do induction
on i. Clearly, T(1,j) requires at least one color. Suppose now that 7 (i,j) does not
admit an (¢ — 1, j)-coloring but, for the sake of contradiction, 7 (i 4+ 1,5) admits an
(i, j)-coloring. By assumption, each of the j+1 copies of T (¢, ) contained in 7 (i+1, j)
must be using all ¢ available colors. Hence, each color appears at least j + 1 times,
which implies that there is no available color for the universal vertex. ]

DEFINITION 3.4. (Equality Gadget) Fori > 2,5 >0, let Q(u1,us2,4,5) be a graph
defined as follows: Q contains ij+1 disjoint copies of T (i—1,7) as well as two vertices
u1, Uy which are connected to all vertices except each other.

LEMMA 3.5. Let G = (V, E) be a graph with vi,v2 € V and let G’ be the graph
obtained from G by adding to it a copy of Q(uy,us, xa,A*) and identifying uy with vy
and ug with vy. Then, any (xq, A*)-coloring of G' must give the same color to vy, vs.
Furthermore, if there exists a (xa, A*)-coloring of G that gives the same color to vy, va,
this coloring can be extended to a (xa, A*)-coloring of G'.

Proof. For the first statement, consider a (xq, A*)-coloring of G’ and examine
the copies of T(xa — 1, A*) contained in the equality gadget added to G. For a set
C C {1,...,xa} with size |C| = xa — 1 we say that C is contained in a copy of
T(xa —1,A*) if all the colors of C appear in this copy in the coloring of G’. There
are (ijl) = x4 such sets of colors C, and every copy of T (xq — 1, A*) contains at
least one by Lemma 3.3. Hence, the set of colors C that is contained in the largest
number of copies is contained in at least [%1 = A* + 1 copies, therefore all its
colors appear at least A* 4+ 1 times. This means that v, vs cannot take any of the
colors in C, and therefore must use the same color.

For the second statement, we want to extend a coloring of G to a coloring of G'.
Recall that by Lemma 3.3, T (xqa — 1, A*) can be properly colored with xq — 1 colors,
and xq — 1 colors are available if vy, vy use the same colors. 0

LEMMA 3.6. Let G = (V, E) be a graph, S CV, and G’ be a graph obtained from
G by repeated applications of the following operation: we select two vertices vi,v2 € V.
such that v1 € S, add a new copy of Q(uy,us,xa,A*) and identify u; with v;, for
i€{1,2}. Then td(G") <td(G\ S) + |S| + xa — 1. Furthermore, if xa = 2 we have
fvs(G') < tvs(G\ S) + |5].

Proof. For the inequality for td, we begin by observing that td(G") < td(G'\ S) +
|S], so it suffices to show that td(G'\ S) < td(G \ S) 4+ x4 — 1. Observe now that in
G’ \ S, in every copy of @ one of the vertices u1,us has been removed.
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By definition, there must exist a rooted tree 77 with td(G \ S) levels such that if
we complete the tree (that is, connect each node of T3 to all its descendants), G\ S
is a subgraph of the resulting graph. Similarly, there exists a rooted tree Ty with
Xda — 1 levels such that 7 (xq — 1, A*) is a subgraph of its completion. We now observe
that if we take T and attach to each of its nodes a copy of 75 we have a tree with
td(G \ S) + xa — 1 levels whose completion contains G’ \ S as a subgraph.

For the inequality for fvs, if xq = 2 the equality gadgets we have added to G
contain copies of 7(1,A) = K;. If we remove S from G’, and therefore remove one
endpoint of each equality gadget, all these copies of K7 become leaves, and hence do
not affect the size of the graph’s minimum feedback vertex set. Deleting them gives us
the graph G\ S, so we conclude that fvs(G’\ S) = fvs(G \ S) which, together with
the fact that fvs(G’) < fvs(G' \ S) + |S| completes the proof. d

DEFINITION 3.7. (Palette Gadget) For i > 3,7 > 0 we define P(uy,uz,us,1,j)
to be the following graph: P contains (;)j + 1 copies of T(i —2,7), as well as three
vertices uq, us, uz which are connected to every vertex of P except each other.

LEMMA 3.8. Let G = (V, E) be a graph with vi,ve,vs € V and let G’ be the graph
obtained from G by adding to it a copy of P(ui,us2,us, xa, A*) and identifying u; with
v; fori € {1,2,3}. Then, in any (xa, A*)-coloring of G' at least two of the vertices
of {v1,v2,v3} must share a color. Furthermore, if there exists a (xa, A*)-coloring of
G that gives the same color to two of the vertices of {vi,va,vs}, this coloring can be
extended to a (x4, A*)-coloring of G'.

Proof. For the first statement, consider a (xq, A*)-coloring of G’ and examine
the copies of T (xa — 2,A*) contained in the palette gadget added to G. For a set
C C {1,...,xa} with size |C| = xa — 2 we say that C is contained in a copy of
T(xa — 2,A*) if all the colors of C appear in this copy in the coloring of G’. There
are (x§i2) = (X;) such sets of colors C, and every copy of T (x4 — 2, A*) contains at
least one by Lemma 3.3. Hence, the set of ((:Sdlt))is C that is contained in the largest

5 )AT+1

number of copies, is contained in at least [/

1 = A* + 1 copies, therefore all

its colors appear at least A* + 1 times. This means that vy, v, v3 cannot take any of
the colors in C', and therefore have only two colors available for them. By pigeonhole
principle, two of them must share a color.

For the second statement, recall that by Lemma 3.3, T (xq — 2, A*) can be properly
colored with yq — 2 colors, and xq — 2 colors are available if vy, v, v3 use at most two
colors. 0

LEMMA 3.9. Let G = (V,E) be a graph, S C V, and G’ be a graph obtained
from G by repeated applications of the following operation: we select three vertices
vy, Vg, U3 € V such that v1,vs € S, add a new copy of P(u1,us, us, x4, A*) and identify
u; with vy, fori € {1,2,3}. Then td(G’) < td(G\ S) + |S| + xa — 2.

Proof. The proof follows along the same lines as the proof of Lemma 3.6. First, we
observe that td(G") < td(G'\S)+|S| and then show that td(G'\S) < td(G\S)+xa—2
by taking a tree T} with td(G\ S) levels whose completion contains G'\ S and attaching
to each node a tree Ts with xq — 2 levels whose completion contains 7 (xq — 2, A*).0

3.2. Construction. We are now ready to present a reduction from k-MULTI-
COLORED CLIQUE. In this section we describe a construction which, given an instance
of this problem (G, k) as well as an integer x4 > 2 produces an instance of DEFECTIVE
COLORING. Recall that we assume that in the initial instance G = (V, E) is given to
us partitioned into k independent sets Vi, ..., V, all of which have size n. We will
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produce a graph H(G,k, xq) and an integer A* with the property that H admits a
(xa, A*)-coloring if and only if G has a k-clique. In the next section we prove the
correctness of the construction and give bounds on the values of td(H) and fvs(H) to
establish Theorem 3.1.

In our new instance we set A* = |E| — (g) Let us now describe the graph H.
Since we will repeatedly use the gadgets from Definitions 3.4 and 3.7, we will use the
following convention: whenever vy, v are two vertices we have already introduced
to H, when we say that we add an equality gadget Q(v1,v2), this means that we
add to H a copy of Q(u1,us, xda, A*) and then identify u, us with vy, ve respectively
(similarly for palette gadgets). To ease presentation we will gradually build the graph
by describing its different conceptual parts.

Palette Part: Informally, the goal of this part is to obtain two vertices (pa,pg)
which are guaranteed to have different colors. This part contains the following:
1. Two vertices called p4, pp which we will call the main palette vertices.
2. A* vertices called pYy,p?, ... ,p%* and A* vertices called pk, p%, ... 7p%*
3. A* equality gadgets Q(pa,py), Q(pa,pd);---,Q(pa,py ), and A* equality
gadgets Q(pp, pp), Q(PB,PR), -, QPB: DY )-
4. An edge between pa,pp.
5. The A* edges (pA,p}Ll*), (pa,pA)s -, (pa,p3 ) as well as the A* edges (pp, pk),
(vasz)a ey (pBJQ% )
Choice Part: Informally, the goal of this part is to encode a choice of a vertex in
each V;. To this end we make 2n choice vertices for each color class of the original
instance. The selection will be encoded by counting how many of the first n of these
vertices have the same color as p4. Formally, this part contains the following:
6. For alli e {1,...,k}, s €{1,...,2n} the vertex cg We call these the choice
vertices.
7. For alli € {1,...,k}, the vertices g and g%. We call these the guard vertices.
8 Forallie {1,...,k}, j €{1,...,2n} edges between cg- and the vertices g’
and gt.
9. For all i € {1,...,k}, we add equality gadgets Q(pa,gy) and Q(pg, g).
10. If xq > 3, for all s € {1,...,k}, j € {1,...,2n} we add a palette gadget
P(pa,pB,cj).
Transfer Part: Informally, the goal of this part is to transfer the choices of the
previous part to the rest of the graph. For each color class of the original instance we
make (k — 1) “low” transfer vertices, whose deficiency will equal the choice made in
the previous part, and (k — 1) “high” transfer vertices, whose deficiency will equal the
complement of the same value. Formally, this part of H contains the following:
11. For iy,i3 € {1,...,k}, 91 # iz the vertex h;, ;, and the vertex ;, ;,. We call
these the high and low transfer vertices.
12. For iy,ip € {1,...,k}, i1 # 42 and for all j € {1,...,n} an edge from [;, ;, to
cit.
13. onr i1,92 € {1,...,k}, i1 # iy and for all j € {n+1,...,2n} an edge from
hi17i2 to C;l.
14. For all 41,2 € {1,...,k}, i1 # iz we add an equality gadget Q(pa,l;, i,) and
an equality gadget Q(pa, Ry iy )-
Edge representation: Informally, this part contains a gadget representing each edge
of G. Each gadget will contain a special vertex which will be able to receive the color
of pp if and only if the corresponding edge, that is, the edge represented by this gadget,
is part of the clique. Formally, we assume that all the vertices of each V; are numbered
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{1,...,n}. For each edge e of G, if e connects the vertex with index j; from V;, with
the vertex with index js from V;, (assuming without loss of generality i; < i2) we add
the following vertices and edges to H:
15. Four independent sets L}, H}, L2 H? with respective sizes n — j1, j1, n — Jjo,
J2-

16. Edges connecting the vertex I;, ;, (respectively, R, 4y, lis.i15 Riyiy ) With all
vertices of the set L} (respectively the sets H}, L2, H?).

17. A vertex c,, connected to all vertices in L1 U H} U L2 U HZ.

18. If xq > 3, for each v € LL U H} U L2 U H? U {c.} we add a palette gadget
P(pa,pB,v).

Finally, once we have added a gadget (as described above) for each e € E, we add
the following structure to H in order to ensure that we have a sufficient number of
edges included in our clique:

19. A vertex cy (universal checker) connected to all ¢, for e € E.

20. An equality gadget Q(pa,cy).

Budget-Setting: Our construction is now almost done, except for the fact that some
crucial vertices have degree significantly lower than A* (and hence are always trivially
colorable). To fix this, we will effectively lower their deficiency budget by giving them
some extra neighbors. Formally, we add the following:
21. For each guard vertex g% (respectively g%), we construct an independent
set G’y (respectively G) of size A* —n and connect it to gy (respectively
g%). For each v € Gy (respectively G%) we add an equality gadget Q(pa,v)
(respectively Q(pg,v)).
22. For each transfer vertex l;, ;, (respectively hy, ;,), we construct an independent
set of size A* —n and connect all its vertices to l;, ;, (or respectively to h;, ;).
For each vertex v of this independent set we add an equality gadget Q(pa,v).
23. For each vertex ¢, we add an independent set of size A* and connect all its
vertices to c.. For each vertex v of this independent set we add an equality
gadget Q(pp,v).
This completes the construction of the graph H.

3.3. Correctness. To establish Theorem 3.1 we need to establish three properties
of the graph H(G, k, xq) described in the preceding section: that the existence of a
k-clique in G implies that H admits a (xq, A*)-coloring; that a (x4, A*)-coloring of H
implies the existence of a k-clique in G; and that the tree-depth and feedback vertex
set of G are bounded by some function of k. These are established in the Lemmata
below.

LEMMA 3.10. For any xq > 2, if G contains a k-clique, then the graph H(G, k, xq)
described in the previous section admits a (xa, A*)-coloring.

Proof. Consider a clique of size k in G that includes exactly one vertex from each
V;. We will denote this clique by a function f: {1,...,k} — {1,...,n}, that is, we
assume that the clique contains the vertex with index f(¢) from V;. We produce a
(xd, A*)-coloring of H as follows: vertex p4 receives color 1, while vertex pp receives
color 2. All vertices for which we have added an equality gadget with one endpoint
identified with pa (respectively pg) take color 1 (respectively 2). We use Lemma 3.5
to properly color the internal vertices of the equality gadgets.

We have still left uncolored the choice vertices cé- as well as the internal vertices
L H}! L2 H? c, of the edge gadgets. We proceed as follows: for all i € {1,...,k} we
use color 1 on the vertices ¢! such that 1 € {1,..., f(i))}U{n+1,...,2n— f(i)}; we
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use color 2 on all remaining choice vertices. For every e € E that is contained in the
clique we color all vertices of the sets L!, H}, L?, H? with color 1, and ¢, with color
2. For all other edges we use the opposite coloring: we color all vertices of the sets
Ll H} L2 H? with color 2, and ¢, with color 1. We use Lemma 3.8 to properly color
the internal vertices of palette gadgets, since all palette gadgets that we add use either
color 1 or color 2 twice in their endpoints. This completes the coloring.

To see that the coloring we described is a (xq, A*)-coloring, first we note that by
Lemmata 3.5,3.8 internal vertices of equality and palette gadgets are properly colored.
Vertices pa, pp have exactly A* neighbors with the same color; guard vertices ¢4, g4
have exactly n neighbors with the same color among the choice vertices, hence exactly
A* neighbors with the same color overall; choice vertices have at most & neighbors
of the same color, and we can assume that k < |E| — (g), the vertex cy has exactly
A* = |E| - (g) neighbors with color 1, since the clique contains exactly (g) edges;
all internal vertices of edge gadgets have at most one neighbor of the same color.
Finally, for the transfer vertices l;, ;, and h;, ;,, we note that [;, ;, (respectively h;, ;,)
has exactly f(i1) (respectively n — f(i1)) neighbors with color 1 among the choice
vertices. Furthermore, when iy < ia, l;, ;, (respectively h;, ;,) has |Ll| (respectively
|H!|) neighbors with color 1 in the edge gadgets, those corresponding to the edge e
that belongs in the clique between V;, and V;,. But by construction |L| =n — f(i1)
and |H}| = f(i1), and with similar observations for the case i < i; we conclude that
all vertices have deficiency at most A*. ]

LEMMA 3.11. For any xq > 2, if the graph H(G, k, xa) described in the previous
section admits a (xa,A*)-coloring, then G contains a k-clique.

Proof. Suppose that we are given a (xq, A*)-coloring ¢ : V(H) — {1,...,xa} of
H. We first establish that ¢(pa) # c¢(pp). Indeed, because of the equality gadgets
added in Step 3 we have c(p}) = c(p}) = ... = c(p}’) = c(pa) and c(pk) = c(p%) =
S c(pﬁ*) = ¢(pp). Because of the edges added in Step 5 we then know that pa, ps
each has at least A* neighbors with the same color. Therefore, because of the edge
connecting them, we conclude that ¢(pa) # ¢(pg). Without loss of generality we will
assume below that ¢(pa) = 1 and ¢(pp) = 2.

Because of the equality gadget of Step 20 we have c¢(cy) = 1. Because ¢y has degree
|E|, we conclude that it has at least (g) neighbors with color 2. These correspond to a
set E' C F of edges of the original graph with |E’| > (’;) We will prove that, in fact,
E’ induces a k-clique in G.

Let e € E' be an edge such that ¢(c.) = 2. This implies that all the vertices of
LLUH!UL? U H? must take color 1, because by Step 23 ¢ already has A* neighbors
with color 2. In case xq > 3 we have also used here the fact that, by Step 18, every
internal vertex of the gadget representing e must take color 1 or 2.

Suppose that e € E’ connects the vertex with index j; in V;, to the vertex
with index js in Vj,, i1 < i3. We first show that, for an ¢’ € F also connecting
Vi, to Vi, it must be that ¢’ ¢ E’. Suppose for contradiction that ¢/ € E’, and
let 1,75 be the indices of the endpoints of ¢/. We observe that l;, ;, has at least
|LY| + |LL| = 2n — j1 — j{ neighbors with color 1 in the edge gadgets, while h;, ;,
has at least |H}| + |H} | = j1 + j; such neighbors. Both I;, ;, and h, ;, had A* —n
neighbors of color 1 added in Step 22. Finally, among the 2n choice vertices cél which
are neighbors of either [;, ;, or h;, ;, there are at least n which received color 1, because
all the choice vertices have colors 1 or 2 (Step 10) and g/, which has color 2 (Step
9), is connected to all of them and also has A* — n other neighbors of color 2 (Step
21). Hence, the total number of vertices in N(I;, ;,) U N (h;, 4,) with color 1 is at least
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2n 4 2(A* —n) +n > 2A*, hence one of these two vertices has deficiency higher than
A* contradiction. We conclude that e’ & E'.

To complete the proof, let us show that the (g) edges of E’, each of which connects
a different pair of parts of V, are incident on the same endpoints. Take e € E’ as in the
previous paragraph, and ¢’ € E’ connecting vertices with indices j1, j4 from the parts
Viy, Vig, for iz # io. It suffices to show that 43 = 4{. Suppose for contradiction i; # ).
Consider now the vertices l;, i,, Piy is) liy ig> Ry i3, Which, by similar reasoning as before,
have n—j1, j1, n—j1, j1 color-1 neighbors in the edge gadgets respectively. If there are

strictly more than j; vertices with color 1 among the choice vertices cz-l, je{l,...,n},
then /;, ;, would have deficiency more than A*. If there are strictly more than n — j;
vertices with color 1 among the choice vertices ¢, j € {n +1,...,2n}, then h;, 4,

would have deficiency more than A*. Since, by the same reasoning as previously, there
are at least n vertices with color 1 among the choice vertices c;}, we conclude that

there are exactly j; vertices with color 1 among the c}l for j € {1,...,n}, and exactly
n — j1 such vertices in the rest. We can now conclude that the only way not to violate
the deficiency of l;, ;, or hi, ;, is for i; = . 1]

LEMMA 3.12. For any xa > 2, the graph H(G,k,xa) described in the previous
section has td(H) = O(k? + xq). Furthermore, if xa = 2, then fvs(H) = O(k?).

Proof. We first observe that all equality and palette gadgets added to the graph
(Steps 3, 9, 10, 14, 18, 20-23) have at most one endpoint outside {p,pp}. Hence,
by Lemmata 3.6, 3.9, we can conclude that td(H) = td(H' \ {pa,pp}) + xa + 1 and,
for x4 = 2 we have fvs(H) < fvs(H' \ {pa, pp}) + 2, where H’ is the graph we obtain
from H if we remove all the equality and palette gadgets. It therefore suffices to show
that td(H’) = O(k?) and, if xq = 2, fvs(H') = O(k?).

For both parameters we start by removing from the graph all the guard and
transfer Vertlces Wthh are 2k + 2k(k -1) = 2k2 in total. We now have that all
vertices pA,pA, . ,pA , vertices pB,pB, e ,pB , as well as all choice vertices are
isolated. Furthermore, all vertices added to represent edges, as well as the budget-
setting vertices, form a tree with root at ¢y and 3 levels. We conclude that H’ has
td(H') < 2k% + 4 and fvs(H') < 2k2. O

Theorem 3.1 now follows directly from the reduction we have described and
Lemmata 3.10,3.11,3.12.

4. ETH-based Lower Bounds for Treewidth and Pathwidth. In this sec-
tion we present a reduction which strengthens the results of Section 3 for the parameters
treewidth and pathwidth. In particular, the reduction we present here establishes that,
under the ETH, the known algorithm for DEFECTIVE COLORING for these parameters
is essentially best possible.

We use a similar presentation order as in the previous section, first giving the
construction and then the Lemmata that imply the result. Where possible, we re-use
the gadgets we have already presented. The main theorem of this section states the
following:

THEOREM 4.1. For any fized xq > 2, if there exists an algorithm which, given a
graph G = (V, E) and parameters xa, A* decides if G admits a (x4, A*)-coloring in
time n°®Y) | then the ETH is false.

4.1. Basic Gadgets. We use again the equality and palette gadgets of Section 3
(Definitions 3.4,3.7). Before proceeding, let us show that adding these gadgets to the
graph does not increase the pathwidth too much. For the two types of gadget Q, P,
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we will call the vertices u1,us(,us) the endpoints of the gadget.

LEMMA 4.2. Let G = (V, E) be a graph and let G' be the graph obtained from G
by repeating the following operation: find a copy of Q(uq,uz, x4, A*), or a copy of
P(uy,ug,us, x4, A*); remove all its internal vertices from the graph; and add all edges
between its endpoints which are not already connected. Then tw(G) < max{tw(G’), xa}
and pw(GQ) < pw(G’) + xa-

Proof. First, we observe that there is a path decomposition of Q(u1,us, xq, A*)
with width xq4, as by Lemma 3.3 there is a path decomposition of T (xq — 1, A*)
of width xq — 2, and we can add to all its bags the vertices ui,us. Call this path
decomposition Ty. In the same way, there is a path decomposition of width x4 for
P(uy,u2,us, xd, A*), call it Tp.

We now take an optimal tree or path decomposition of G’, call it 7", and construct
from it a decomposition of G. Consider a gadget H € {Q, P} that appears in G with
endpoints wuy, us(,uz). Since in G’ these endpoints form a clique, there is a bag in
T’ that contains all of them. Let B be the smallest such bag, that is, the bag that
contains the smallest number of vertices. Now, if T is a tree decomposition, we take
Ty and attach it to B. If T” is a path decomposition, we insert in the decomposition
immediately after B the decomposition T where we have added all vertices of B in
all bags of Ty. It is not hard to see that in both cases the decompositions remain
valid, and we can repeat this process for every H until we have a decomposition of G.0

4.2. Construction. We now describe a construction which, given an instance
G = (V,E), k, of k-MuLTI-COLORED CLIQUE and a constant yq returns a graph
H(G,k,xq) and an integer A* such that H admits a (x4, A*)-coloring if and only if
G has a k-clique, and the pathwidth of H is O(k + xa). We use m to denote |E|, and
we set A* =m — (g) As in Section 3 we present the construction in steps to ease
presentation, and we use the same conventions regarding adding ) and P gadgets to

the graph.

Palette Part: This part repeats steps 1-5 of the construction of Section 3. We recall
that this creates two main palette vertices pa, pp (which are eventually guaranteed to
have different colors).

Choice Part: In this part we construct a sequence of independent sets, arranged in
what can be thought of as a £ x 2m grid. The idea is that the choice we make in
coloring the first independent set of every row will be propagated throughout the row.
We can therefore encode k choices of a number between 1 and n, which will encode
the clique.
6. For each i € {1,...,k}, for each j € {1,...,2m} we construct an independent
set C; ; of size n.
7. (Backbone vertices) For each i € {1,...,k}, for each j € {1,...,2m — 1}, for
each | € {A.B} we construct a vertex bé,j' We connect béjj to all vertices of
C;,; and all vertices of Cj j41.
8. For each backbone vertex bé, ; added in the previous step, for [ € {A, B}, we
add an equality gadget Q(pi, b} ;).
Edge Representation: In the & x 2m grid of independent sets we have constructed
we devote two columns to represent each edge of G. In the remainder we assume some
numbering of the edges of E with the numbers {1,...,m}, as well as a numbering
of each V; with the numbers {1,...,n}. Suppose that the j-th edge of E, where
j € {1,...,m} connects the ji-th vertex of V;, to the jo-th vertex of Vj,, where
j1,92 € {1,...,n} and iy,i2 € {1,...,k}. We perform the following steps for each
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such edge.
9. We construct four independent sets H Jl, L}, H ]2, L? with respective sizes n —

Ji, J1,m — Ja2, jo.

10. We construct four vertices h}, l}, h?, l?. We connect hJ1 (respectively ljl-, h?, ZJQ)
with all vertices of H ]1 (respectively le, H JZ, L?)

11. We connect h} to all vertices of Cj, 251, l]l to all vertices of C;
vertices of Cj, 251, l]2. to all vertices of (i, o;.

12. We add equality gadgets Q(pa, h),Q(pa,1}), Q(pa, h?),Q(pa,13).

13. We add a checker vertex c; and connect it to all vertices of H jl U L} U H]2 U L?.

1,255 h? to all

Validation and Budget-Setting: Finally, we add a vertex that counts how many
edges we have included in our clique, as well as appropriate vertices to diminish the
deficiency budget of various parts of our construction.

14. We add a universal checker vertex ¢y and connect it to all vertices c¢; added
in step 13. We add an equality gadget Q(pa,cv).

15. For every vertex c; added in step 13 we construct an independent set of size
A* and connect all its vertices to c;. For each vertex v in this set we add an
equality gadget Q(ps,v).

16. For each vertex constructed in step 10 (h]l,ljl»7 h% ljz), we construct an inde-
pendent set of size A* —n and connect it to the vertex. For each vertex v of
this independent set we add an equality gadget Q(pa,v).

17. For each backbone vertex bﬁyj, with | € {A, B}, we construct an independent
set of size A* —n and connect it to bé, ;- For each vertex v of this independent
set we add an equality gadget Q(pi,v).

18. If xq4 > 3, for each vertex v added in steps 6-17 we add a palette gadget
P(pA7pB7 ’U).

4.3. Correctness.

LEMMA 4.3. For any xq > 2, if G contains a k-clique then the graph H(G,k, xq)
described in the previous section admits a (xa, A*)-coloring.

Proof. Suppose that G has a k-clique, given by a function f : {1,...,k} —
{1,...,n}, meaning that the clique contains vertex f(¢) from the set V;. We color H
as follows: pa receives color 1, pp receives color 2, and all vertices on which we have
attached equality gadgets receive the appropriate color, according to Lemma 3.5. By
Lemmata 3.5,3.8 we can extend this coloring to the internal vertices of equality and
palette gadgets. For every independent set C; ;, we color f(i) of its vertices with 1
if j is odd, otherwise we color n — f(i) of its vertices with 1; we color the remaining
vertices of independent sets C; ; with 2. For the j-th edge of E, if it is contained in
the clique then we color ¢; with 2 and H}, L}, H;, L? with 1, otherwise we color c;
with 1 and H;, L;, HJZ, L? with 2. This completes the coloring.

To see that this coloring is valid, observe that the vertices in the palette part have
each at most A* neighbors of the same color; the backbone vertices bé, . have exactly
A* neighbors of the same color (f(¢) in one grid independent set and n — f(7) in the
other, plus A* — n from step 17); the vertices l;, h}, l?, h? if the j-th edge belongs to
the clique have exactly A* neighbors with the same color; the same vertices for an
edge that does not belong to the clique have strictly fewer than A* neighbors of the
same color; all vertices ¢; have at most A* neighbors with the same color; and vertex

cy has m — (g) = A* neighbors with the same color. ]

LEMMA 4.4. For any x4 > 2, if the graph H(G,k,xa) described in the previous
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section admits a (xa,A*)-coloring, then G contains a k-clique.

Proof. Suppose that we have a valid (xq, A*)-coloring of H. As in Lemma 3.11
we can assume that p4, pp receive distinct colors, without loss of generality, colors 1
and 2 respectively. Because of step 18 we can assume that all the main vertices of the
graph also receive colors 1 or 2. Because of the equality gadget added in 14 we know
that vertex cy received color 1. Since it has m neighbors, there must exist at least
m—A* = (’2“) vertices ¢; which received color 2. We call the corresponding edges of G
the selected edges and we will eventually prove that they induce a clique.

We define a set of k vertices of G, one from each V;, as follows: in V; we select the
vertex f(¢) if there are f(i) vertices with color 1 in C; ;. We call these k vertices the
selected vertices of G.

We now observe that if there are f(¢) vertices with color 1 in C; ;, then there are
n — f(i) vertices with color 1 in C; j41. To see this observe that if there were more
than n — f(¢) vertices with color 1 in C; ;41 this would violate vertex bA] which also
has color 1 and is connected to C; ; U C; j41. If there were fewer, this would violate
the vertex b?], which has color 2. Hence, for any j € {1,...,m} we have that C; 2;_1
contains f(¢) vertices with color 1, while C; »; contains n — f () vertices with color 1.

We now want to show that every selected edge is incident on two selected vertices
to complete the proof. Consider a c¢; that corresponds to a selected edge. Since c;
received color 2, because of step 15 all vertices of H; ! L1 H; 2 L2 must have color 1.
Consider now the vertices h1 lj which also have color 1 because of step 12. If hl i
connected to Cy, 951 and I} is connected to Cj, o, then hj has (A* —n) + |H}| +f(11)
neighbors with color 1, while I} has (A* —n) 4 |Lj| +n — f(i1) such neighbors. But
|Li| = n—|H}|. We therefore have f(i1) < n—|Hj| as well as f(i1) > |Lj| = n—|Hj|.
Therefore, f(i1) = \le| and this implies by construction that edge j is incident on
vertex f(iy) of Vj,. 0

LEMMA 4.5. For the graph H(G, k, xq) described in the previous section pw(H) =
O(k + xa)-

Proof. We first invoke Lemma 4.2 to replace all palette and equality gadgets with
edges. It suffices to show that the pathwidth of the resulting graph is O(k). We
continue by removing from the graph the vertices pa,pp,cy. This does not decrease
the pathwidth by more than 3, since these vertices can be added to all bags. In the
remaining graph we remove all leaves and isolated vertices. It is not hard to see that
this does not decrease pathwidth by more than 1, since if we find a path decomposition
of the remaining graph, we can reinsert the leaves as follows: for each leaf v we find
the smallest bag in the decomposition that contains its neighbor and insert after it a
copy of the same bag with v added. We note that removing all leaves deletes from the
graph all vertices added for budget-setting, as well as the remaining vertices of the
palette part.

What remains then is to bound the pathwidth of the graph induced by the backbone
vertices bl i.j» the choice vertices in sets C; j, and the edge representation vertices. We

construct a backbone of a path decomposition as follows: for each j € {1,...,m} we
construct a bag that contains all b 2j—1s bl 2> and bz.,2y+1 (if they ex1st), as well as
h}7 ljl, h?, lj, . We connect these bags in a path in increasing order of j. All these

bags have w1th at most O(k).

We now observe that for every remaining vertex of the graph, there is a bag in
the path decomposition that we have constructed that contains all its neighbors. We
therefore do the following: for every remaining vertex v, we find the smallest bag of
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the path decomposition that contains its neighborhood, and insert after it a copy of
this bag with v added. This process results in a valid path decomposition, and it does
not increase the size of the largest bag by more than 1. ]

The proof of Theorem 4.1 now follows directly from Lemmata 4.3,4.4,4.5.

5. Exact Algorithms for Treewidth and Other Parameters. In this sec-
tion we present several exact algorithms for DEFECTIVE COLORING. Theorem 5.1
gives a treewidth-based algorithm which can be obtained using standard techniques.
We assume that the reader is familiar with dynamic programming on tree decompo-
sitions, as described in standard textbooks [18]. Essentially the same algorithm was
already sketched in [9], but we give another version here for the sake of completeness
and because it is a building block for the approximation algorithm of Theorem 6.2.
Theorem 5.2 uses a win/win argument to show that the problem is FPT parameterized
by fvs when xq # 2 and therefore explains why the reduction presented in Section 3
only works for 2 colors. Theorem 5.3 uses a similar argument to show that the problem
is FPT parameterized by vc (for any xq).

THEOREM b5.1. There is an algorithm which, given a graph G = (V, E), parameters
Xd, A*, and a tree decomposition of G of width tw, decides if G admits a (x4, A*)-
coloring in time (xqA*)CE)pOM),

Proof. The algorithm uses standard dynamic programming techniques, so we
sketch some of the details. We assume we are given a nice tree decomposition, as
defined in [12]. For each bag B, of the decomposition we denote by Bf the set of vertices
included in bags in the sub-tree of the decomposition rooted at B;. We will maintain
in each bag B; a dynamic programming table D; C ({1,...,xa} x {0,..., A*})IBel,
Informally, each element s € ({1,..., x4} x {0,..., A*})!B¢l is the signature of a partial
solution: we interpret s as a function which, for each vertex in By tells us its color, as
well as the number of neighbors this vertex has in BtL \ B; that share the same color.
The invariant we want to maintain is that s € Dy if and only if there exists a coloring
of Bf with signature s. We can now build the DP table inductively:

e For a Leaf node B; = {u}, D; contains all signatures s = (¢,,0), for any
Cy € {L"'aXd}-

e For an Introduce node B, with child By such that B, = By U {u}, for any
s € Dy, and for any ¢, € {1,...,xa}, we add to D; a signature s which
agrees with s’ on By and contains the pair (c,,0) for vertex u.

e For a Forget node B; with child By such that B; = By \ {u} for every
signature s’ € Dy we do the following: let (¢,,d,) be the pair contained in s’
corresponding to vertex u. Let S, C By be the set of vertices of By which
are given color ¢, according to s’ and which are neighbors of u. We check two
conditions: first that d, + |S,| < A*; second, that for all v € S, such that
s’ contains the pair (¢,,d,) we have d, < A* — 1. If both conditions hold,
we add to D; a signature s that agrees with s’ on B; \ Sy, and that for each
v € S, such that s returns (c,,d,), returns the pair (¢,,d, + 1).

e For a Join node B; with children By,, By,, (such that By = By, = By,) we do
the following: for each s; € D;, and each sy € D, we check the following two
conditions for all u € By: if s1 returns (¢, ,dy, ) for w and sg returns (cy,, dy,)
we check if ¢,,, = ¢y,; and we check if d,,, +d,, < A*. If both conditions hold
for all u € B; we say that s, so are compatible, and we add to D; a signature
s which for u € B; contains the pair (¢, , dy, + du,)-

It is not hard to see that the above operations can be performed in time polynomial
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16 R. BELMONTE, M. LAMPIS, AND V. MITSOU

in the size of the table, which is upper-bounded by (xq(A* + 1))*. We can then
prove by induction that a signature appears in a table D, if and only if a coloring with
this signature exists for Bti . If we assume, without loss of generality, that the root
bag contains a single vertex, we can check if the graph admits a (xq, A*)-coloring by
checking if the table of the root bag is non-empty. 0

THEOREM 5.2. DEFECTIVE COLORING is FPT parameterized by fvs for xq # 2.
More precisely, there exists an algorithm which given a graph G = (V, E), parameters
Xd, A%, with xq # 2, and a feedback vertex set of G of size fvs, decides if G admits a
(xd, A*)-coloring in time fysOEvs) 001

Proof. We use a win/win argument. First, note that we can assume that yq > 3,
since if xq = 1 the problem is trivial. Furthermore, if x4 > fvs+ 2 then we can produce
a (xa, A*)-coloring by giving a distinct color to each vertex of the feedback vertex set
and properly two-coloring the remaining graph. Hence, we assume in the remainder
that 3 < xq < fvs+ 2.

Now, if A* < fvs, then we can use the algorithm of Theorem 5.1. Because of
Lemma 2.2 this algorithm will run in time fvs® 90,

Finally, suppose that A* > fvs. In this case the answer is always Yes. To see this
we can produce a coloring as follows: we use a single color for all the vertices of the
feedback vertex set. Since yq > 3, there are at least two other colors available, so we
use them to properly color the remaining forest. This is a valid (yq, A*)-coloring, since
the only vertices that may have neighbors of the same color belong in the feedback
vertex set, and these can have at most fvs — 1 < A* neighbors with the same color.O

THEOREM 5.3. DEFECTIVE COLORING s FPT parameterized by vc. More pre-
cisely, there exists an algorithm which, given a graph G = (V, E), parameters xq, A*,

and a vertex cover of G of size vc, decides if G admits a (xq, A*)-coloring in time
veO(ve) ,0(1)

Proof. The proof is essentially identical to that of Theorem 5.2. We can assume
that xq < vc (otherwise we use a distinct color for each vertex of the vertex cover,
and a single color for the independent set), and that x4 > 2 (otherwise the problem is
trivial). If A* < vc we can use the algorithm of Theorem 5.1, otherwise we can use a
single color for the vertex cover and another for the independent set. ]

6. Approximation Algorithms and Lower Bounds. We now present two
approximation algorithms which run in FPT time parameterized by treewidth. The
first algorithm (Theorem 6.2) is an FPT approzimation scheme which, given a desired
number of colors yq, is able to approximate the minimum feasible value of A* for this
value of xq arbitrarily well (that is, within a factor (1 + €)). The second algorithm,
which also runs in FPT time parameterized by treewidth, given a desired value for
A*, produces a solution that approximates the minimum number of colors xq within a
factor of 2.

These results raise the question of whether it is possible to approximate x4 as well
as we can approximate A*, that is, whether there exists an algorithm which comes
within a factor (1 4 ¢€) (rather than 2) of the optimal number of colors. As a first
response, one could observe that such an algorithm probably cannot exist, because
the problem is already hard when yq = 2, and therefore an FPT algorithm with
multiplicative error less than 3/2 would imply that FPT=W][1]. However, this does
not satisfactorily settle the problem as it does not rule out an algorithm that achieves
a much better approximation ratio, if we allow it to also have a small additive error in
the number of colors. Indeed, as we observe in Corollary 6.7, it is possible to obtain an
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PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING 17

algorithm which runs in FPT time parameterized by feedback vertex set and has an
additive error of only 1, as a consequence of the fact that the problem is FPT for xq > 3.
This poses the question of whether we can design an FPT algorithm parameterized by
treewidth which, given a (yq, A*)-colorable graph, produces a coloring with pxq+ O(1)
colors, for p < 3/2.

In the second part of this section we settle this question negatively by showing,
using a recursive construction that builds on Theorem 3.1, that such an algorithm
cannot exist. More precisely, we present a gap-introducing version of our reduction:
the ratio between the number of colors needed to color Yes and No instances remains
3/2, even as the given xq increases. This shows that the “correct” multiplicative
approximation ratio for this problem really lies somewhere between 3/2 and 2, or in
other words, that there are significant barriers impeding the design of a better than
3/2 FPT approximation for x4, beyond the simple fact that 2-coloring is hard.

6.1. Approximation Algorithms. Our first approximation algorithm, which
is an approximation scheme for the optimal value of A* relies on a method introduced
in [39] (see also [3, 34, 35]), and a theorem of [11]. The high-level idea is the following:
intuitively, the obstacle that stops us from obtaining an FPT running time with the
dynamic programming algorithm of Theorem 5.1 is that the dynamic program is forced
to store some potentially large values for each vertex. More specifically, to characterize
a partial solution we need to remember not just the color of each vertex in a bag,
but also how many neighbors with the same color this vertex has already seen (which
is a value that can go up to A*). The main trick now is to “round” these values
in order to decrease the number of possible states a vertex can be found in. To do
this, we select an appropriate value § (polynomial in -5-), and try to replace every
value that the dynamic program would calculate with the next higher integer power
of (14 ¢). This has the advantage of limiting the number of possible values from
A* to log(y ) A" & log(SA* , and this is sufficient to obtain the promised running time.
The problem is now that the rounding we applied introduces an approximation error,
which is initially a factor of at most (1 + J), but may increase each time we apply
an arithmetic operation as part of the algorithm. To show that this error does not
get out of control we show that in any bag of the tree all values stored are within a
factor (1 4 &)" of the correct ones, where h is the height of the bag. We then use a
theorem of Bodlaender and Hagerup [11] which states that any tree decomposition
can be balanced in such a way that its height is at most O(logn), and as a result we
obtain that all values are sufficiently close to being correct.

The second algorithm we present in this section (Theorem 6.4) uses the approxi-
mation scheme for A* to obtain an FPT 2-approximation for yq. The idea here is that,
given a (xa, A*)-colorable graph, we first produce a (xq, (1 + €)A*)-coloring using the
algorithm of Theorem 6.2, and then apply a procedure which uses 2 colors for each
color class of this solution but manages to divide by two the number of neighbors with
the same color of every vertex. This is achieved with a simple polynomial-time local
search procedure.

THEOREM 6.1. [11] There is a polynomial-time algorithm which, given a graph
G = (V, E) and a tree decomposition of G of width tw, produces a tree decomposition
of G of width at most 3tw + 2 and height O(logn).

THEOREM 6.2. There is an algorithm which, given a graph G = (V, E), parameters
Xd, A%, a tree decomposition of G of width tw, and an error parameter € > 0, either
returns a (x4, (1 + €)A*)-coloring of G, or correctly concludes that G does not admit a
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18 R. BELMONTE, M. LAMPIS, AND V. MITSOU

(xd, A*)-coloring, in time (tw/e)PtW)pO0),

Proof. Our first step is to invoke Theorem 6.1 to obtain a tree decomposition
of width O(tw) and height O(logn). We then define a value 6 = foary, and the set
L ={0}U{(1+6)" i e N,(1+0)" < (1+ €)A*}. In other words, the set 3 contains
(in addition to 0), all positive integer powers of (1 4 ¢) with value at most (1 + €)A*.
We note that [S| < 1+1log(,, 4 ((1+ €)A*) = O(log A*/6), where we have used the
properties log, b = Inb/Ina, and In(1 + ) > z/2 for x a sufficiently small positive
constant (that is, for sufficiently large n). Taking into account the value of § we have
selected, and the fact that A* < n, we have |X| = O(log® n/e).

We now follow the outline of the algorithm of Theorem 5.1, with the difference
that we now define a DP table for bag B, as D; C ({1,..., x4} x £)/Pl. Again, we
interpret the elements of D; as functions which, for each vertex in B; return a color
and an approzrimate number of neighbors that have the same color as this vertex in
B¥\ B,.

More precisely, if a bag By is at height h (that is, its maximum distance from a leaf
bag in the sub-tree rooted at B; is h) we will maintains the following two invariants:

1. If there exists a coloring ¢ of B} such that all vertices of By \ B; have at
most A* neighbors of the same color, and all vertices of B, have at most A*
neighbors of the same color in Bf \ B, then there exists s € D; which assigns
the same colors as ¢ to By; and which, if v € B; has d), neighbors with the
same color in Bi \ B; in c, returns value d,, < (1 + 9)"d’, for vertex u, where
d, € 2.

2. If there exists a signature s € Dy, then there exists a coloring ¢ of Btl such
that all vertices of B} \ B; have at most (1+¢)A* neighbors of the same color;
all vertices of B; take in ¢ the colors described in s; if s dictates that a vertex
u € By has d,, neighbors with the same color in Btl \ Bi, then u has at most
d,, neighbors with the same color in Bf \ B; according to coloring c.

The first of the two properties above implies that, if there exists a (yq,A*)-
coloring of G, the algorithm will be able to find some entry in the table of the
root bag that will allows us to construct a (xg, (1 + §))-coloring, where H is the
height of the tree decomposition. We recall now that H = O(logn), therefore,
(14 0)7 < e < O(e/logn) < ] ¢, Hence, if we establish the first property, we know
that if a (xq, A*)-coloring exists, the algorithm will be able to find a (x4, (1 + €)A*)-
coloring. Conversely, the second property assures us that, if the algorithm places a
signature s in a DP table, there must exist a coloring that matches this signature.

In order to establish these invariants we must make a further modification to
the algorithm of Theorem 5.1. We recall that the algorithm makes some arithmetic
calculation in Forget nodes (where the value d, of neighbors of the forgotten node
with the same color is increased by 1); and in Join nodes (where values d,,,, dy,
corresponding to the same node are added). The problem here is that even if the
values stored are integer powers of (1 + §), the results of these additions are not
necessarily such integer powers. Hence, our algorithm will simply “round up” the
result of these additions to the closest integer power of (1 + ¢). Formally, instead
of the value d,, + 1 we use the value (1 + 9) Mogars) (4o D1 and instead of the value
dy, + dy, we use the value (1 4 §)M108a+s) (dur+duz)],

We can now establish the two properties by induction. The two interesting cases
are Forget and Join nodes. For a Join node of height h and the first property, if we have
established by induction that for the two values d,,,,d,,, stored in the children’s tables
we have dy,, < (14 6)"7'd,, , dy, < (1+6)"*d]_, where d], ,d,,, are as described in

wy) U2 — w1 Uy

This manuscript is for review purposes only.



839
840
841
842
843
844
845
846
847
848
849
850
851

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING 19

the first property, then dy, + dy, < (14 6)"71(d,,, + d,). However, for the new value
we calculate we have d, < (14 0)(du, + du,) < (1+6)"(d,, + d,,,) = (1+6)"d],. For
the second property, observe that since we always round up, the value stored in the
table will always be at least as high as the true number of neighbors of a vertex in the
coloring c. Calculations are similar for Forget nodes.

Because of the above we have an algorithm that runs in time polynomial in
|Dy| = (xa|Z))°®). We can assume without loss of generality that yq < tw -+ 1,
otherwise by Lemma 2.2 the graph can be easily properly colored. By the observations
of |¥|, specifically the fact that |Z| = O(log A*/8) = O(log® n/e), we therefore have
that the running time is (twlogn/e)°™). A well-known win/win argument allows us
to obtain the promised bound as follows: if tw < y/logn, this running time is in fact
polynomial in n, 1/¢, so we are done; if \/logn < tw then logn < tw? and the running
time is upper bounded by (tw/e)° W), d

For our second approximation algorithm, we first state a helpful lemma.

LEMMA 6.3. There exists a polynomial-time algorithm which, given a graph with
mazimum degree A, produces a two-coloring of that graph where all vertices have at
most A/2 neighbors of the same color.

Proof. We run what is essentially a local search algorithm for MAX CuUT. Initially,
color all vertices with color 1. Then, as long as there exists a vertex u such that the
majority of its neighbors have the same color as u, we change the color of u. We
continue with this process until all vertices have a majority of their neighbors with a
different color. In that case the claim follows. To see that this procedure terminates
in polynomial time, observe that in each step we increase the number of edges that
connect vertices of different colors. a0

Combining Lemma 6.3 with the algorithm of Theorem 6.4 gives the following
result:

THEOREM 6.4. There is an algorithm which, given a graph G = (V, E), param-
eters xa, A*, and a tree decomposition of G of width tw, either returns a (2xq, A*)-

coloring of G, or correctly concludes that G does not admit a (xa, A*)-coloring, in
time (tw)Ot)pOM)

Proof. We assume without loss of generality that A* is sufficiently large (e.g.
A* > 20), otherwise we can solve the problem exactly by using the fact that x4 is
bounded by tw (by Lemma 2.2) and the algorithm of Theorem 5.1. We invoke the
algorithm of Theorem 6.2, setting ¢ = 1/10. The algorithm runs in the promised
running time. If it reports that G does not admit a (xq, A*)-coloring, we output the
same answer and we are done.

Suppose that the algorithm of Theorem 6.2 returned a (xd, %A*)—coloring of G.
We transform this to a (2xq4, A*)-coloring by using Lemma 6.3.

We consider each color class in the returned coloring of G separately. Each class
induces a graph with maximum degree %A*. According to Lemma 6.3, we can
two-color this graph so that no vertex has more than %A* < A* neighbors with the
same color. We produce such a two-coloring for the graph induced by each color class
using two new colors. Hence, the end result is a (2x4, %A*)—coloring of G, which is
also a valid (2xq, A*)-coloring. 0

6.2. Hardness of Approximation. The main result of this section is that x4
cannot be approximated with a factor better than 3/2 in FPT time (for parameters
tree-depth, pathwidth, or treewidth), even if we allow the algorithm to also have a

This manuscript is for review purposes only.



20 R. BELMONTE, M. LAMPIS, AND V. MITSOU

constant additive error. We remark that an FPT algorithm with additive error 1 is
easy to obtain for feedback vertex set (Corollary 6.7).

THEOREM 6.5. For any fixed xq > 0, if there exists an algorithm which, given a
graph G = (V, E) and a A* >0, correctly distinguishes between the case that G admits
a (2xa, A*)-coloring, and the case that G does not admit a (3xq — 1, A*)-coloring in
FPT time parameterized by td(G), then FPT=W/1].

Proof. First, observe that the theorem already follows for xyq = 1 by Theorem 3.1,
which states that it is W[1]-hard parameterized by td(G) to decide if a graph admits
a (2, A*)-coloring. Let G* be the graph produced in the reduction of Theorem 3.1. By
repeated composition we will construct, for any x4, a graph GX¢ such that either GX4¢
admits a (2xq, A*)-coloring, or it does not admit a (3xq — 1, A*)-coloring, depending
on whether G! admits a (2, A*)-coloring.

Suppose that we have constructed the graph GX4, for some xq. We describe how
to build the graph GXa+!. We start with a copy of G, which we call the main part of
our construction. We will add to this many disjoint copies of GX¢ and appropriately
connect them to G' to obtain GXa+1,

Recall that the graph G contains two palette vertices p4, pp, each connected to
A* neighbors pﬁ-, ie{l,...,A*}, j € {A, B} with both edges and equality gadgets.
Furthermore, recall that for two colors, an equality gadget with endpoints p;, pé is an
independent set on 2A* + 1 vertices which are common neighbors of p; and pz

For each j € {A, B}, each i € {1,...,A*}, and each internal vertex v of the
equality gadget Q(pj,pé-) added in step 3 we add to the main graph (3’§i:2)A* +1
disjoint copies of GX¢ and connect all their vertices to p;, pz-, and v.

Now, for every vertex v of G that is not part of the palette (that is, every vertex
that was not constructed in steps 1-5), we add another (3>§;:2) A* + 1 disjoint copies
of GX4 and connect all their vertices to pa,pp, and v.

This completes the construction. We now need to establish three properties: that
if G admits a (2, A*)-coloring then GX4+! admits a (2xq + 2, A*)-coloring; that if G*
does not admit a (2, A*)-coloring then GX4*! does not admit a (3xq + 2, A*)-coloring;
and that the tree-depth of GX4*! did not increase too much.

We proceed by induction and assume that all the above have been shown for GX4.
For the first property, if G! admits a (2, A)-coloring and GX¢ admits a (2xq, A*)-
coloring, then we can construct a coloring of GXa*! by taking the same coloring with
2xq colors for all the copies of GX4 and using two new colors to color the main graph
G'.

For the second property, suppose that we know that a (3xq — 1, A*)-coloring
of GX¢ implies the existence of a (2, A*)-coloring of G'. We want to show that a
(3xa + 2, A*)-coloring of GXaT! also implies a (2, A*)-coloring of G!. Suppose then
that we have such a (3xq + 2, A*)-coloring of GXa+1, If a copy of GX¢ included in
GXat! uses at most 3yq — 1 colors, we are done, since this implies the existence of
a (2, A*)-coloring of G*. Therefore, assume that all copies of GX4*! use at least 3xq
colors.

Consider now two vertices pj,pz-, for some j € {A,B}, i€ {1,...,A*}. We claim
that they must receive the same color. To see this, take an internal vertex v of the

equality gadget Q(p;, p;) and recall that we have added (3>§§£2) A* + 1 disjoint copies
of GX¢ connected to pj, p;'-, v. Hence, there is some set of 3xq colors that appears in
at least A* + 1 of these copies, and therefore cannot be used in p;;, pé-, v. Therefore,

if py, p} do not share a color, all the 2A* + 1 internal vertices of the equality gadget
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share the color of one of the two, which violates the correctness of the coloring. We
conclude that p4 has A* neighbors with its own color, as does pg, therefore, since
they are connected, p,pp use distinct colors.

Consider now any other vertex v of the main graph. Again, we have added
(3§;:2)A* + 1 disjoint copies of GX4 connected to pa,pp, v, hence there is a set of
3xq colors which appears in A* 41 copies and is therefore not used by pa,pg,v. Since
there are 3xq + 2 colors overall and p4, pp use distinct colors, we conclude that v uses
either the color of p4 or that of pp. Hence, the coloring of GX4¢*+! contains a 2-coloring
of G*.

For the final property, suppose that td(GX¢) < yqtd(G') + 2xq. We want to
establish that td(GXat!) < (yq + 1)td(G') + 2xq + 2. To see this, we construct a
tree for GXaT1 as follows, the two top vertices are p4, pp, and below these we place
a tree whose completion contains G (hence we have at most td(G') + 2 levels now).
For every copy of GX4 that was connected to pa,pp, and a vertex v, we find v and
attach below it a tree whose completion contains GX4. Similarly, for every copy of GX4
attached to pj,pj-, and a vertex v, for some j € {4, B}, i € {1,...,A*}, one of the
vertices v, p§- is a descendant of the other in the current tree (since they are connected);
we attach a tree containing GX4 to this descendant. The total number of levels of the
tree is therefore td(G1) + 2 + td(GX4) < (xq + 1)td(G') + xa + 2, as desired. d

COROLLARY 6.6. For any constants 01,02 > 0, if there exists an algorithm which,
given a graph G = (V, E) that admits a (x4, A*)-coloring and parameters xa, A*, is
able to produce a ((% — 61)xd + 92, A*)-coloring of G in FPT time parameterized by
td(Q), then FPT=W[1].

Proof. Fix some constants 1, d2. We invoke Theorem 6.5 with x4 = [525—'1"1]. The
graph produced either admits a (2yq4, A)-coloring or does not admit a (3xq — 1, A)-
coloring. Suppose that the algorithm described in this corollary exists. Then, in the
former case it produces a coloring with at most (2 — &;) - 2[52’5—?11 + 0y = 3[‘3%11 -
26, f‘s%—'fl} + 2 <3xa —2(d2 + 1) + 62 < 3xq — 1 colors. Hence, the algorithm would
be able to distinguish the two cases of a W[1]-hard problem. O

COROLLARY 6.7. There is an algorithm which, given a graph G = (V, E), param-
eters x4, A*, and a feedback vertex set of G of size fvs, either returns a (xa + 1, A*)-
coloring of G, or correctly concludes that G does not admit a (xa, A*)-coloring, in
time (fvs)Ovs)nO1),

Proof. If xq > 3 we simply invoke Theorem 5.2. If x4 = 2 we invoke the same
algorithm with yq = 3. If the algorithm produces a coloring, we output that as the
solution, otherwise we can report that no (x4, A*)-coloring exists. 0

7. Conclusions. In this paper we classified the complexity of DEFECTIVE COL-
ORING with respect to some of the most well-studied graph parameters, given essentially
tight ETH-based lower bounds for pathwidth and treewidth, and explored the pa-
rameterized approximability of the problem. Though this gives a good first overview
of the problem’s parameterized complexity landscape, there are several questions
worth investigating next. First, is it possible to make the lower bounds of Section
4 even tighter, by precisely determining the base of the exponent in the algorithm’s
dependence? This would presumably rely on a stronger complexity assumption such
as the SETH, as in [41]. Second, can we determine the complexity of the problem with
respect to other structural parameters, such as clique-width [15], modular-width [25],
or neighborhood diversity [38]? For some of these parameters the existence of FPT
algorithms is already ruled out by the fact that DEFECTIVE COLORING is NP-hard on
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cographs [9], however the complexity of the problem is unknown if we also add xq or
A* as a parameter. Finally, it would be very interesting to close the gap between 2
and 3/2 on the performance of the best treewidth-parameterized FPT approximation
for xq.
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