
Sub-exponential Approximation Schemes for
CSPs: from Dense to Almost Sparse∗

Dimitris Fotakis1, Michael Lampis2, and Vangelis Th. Paschos2

1 School of Electrical and Computer Engineering, National Technical University
of Athens, Greece
fotakis@cs.ntua.gr

2 PSL Research University, Université Paris Dauphine
LAMSADE, CNRS UMR7243
michail.lampis@dauphine.fr,paschos@lamsade.dauphine.fr

Abstract
It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS 99),

that Max-CUT admits a PTAS on dense graphs, and more generally, Max-k-CSP admits a
PTAS on “dense” instances with Ω(nk) constraints. In this paper we extend and generalize their
exhaustive sampling approach, presenting a framework for (1 − ε)-approximating any Max-k-
CSP problem in sub-exponential time while significantly relaxing the denseness requirement on
the input instance.

Specifically, we prove that for any constants δ ∈ (0, 1] and ε > 0, we can approximate Max-
k-CSP problems with Ω(nk−1+δ) constraints within a factor of (1 − ε) in time 2O(n1−δ lnn/ε3).
The framework is quite general and includes classical optimization problems, such as Max-CUT,
Max-DICUT, Max-k-SAT, and (with a slight extension) k-Densest Subgraph, as special cases.
For Max-CUT in particular (where k = 2), it gives an approximation scheme that runs in time
sub-exponential in n even for “almost-sparse” instances (graphs with n1+δ edges).

We prove that our results are essentially best possible, assuming the ETH. First, the density
requirement cannot be relaxed further: there exists a constant r < 1 such that for all δ > 0,
Max-k-SAT instances with O(nk−1) clauses cannot be approximated within a ratio better than
r in time 2O(n1−δ). Second, the running time of our algorithm is almost tight for all densities.
Even for Max-CUT there exists r < 1 such that for all δ′ > δ > 0, Max-CUT instances with
n1+δ edges cannot be approximated within a ratio better than r in time 2n1−δ′ .

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Algorithm, Complexity, Polynomial and Subexponential Approximation,
Max-k-csp, Sampling, Randomized rounding

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The complexity of Constraint Satisfaction Problems (CSPs) has long played a central role
in theoretical computer science and it quickly became evident that almost all interesting
CSPs are NP-complete [29]. Thus, since approximation algorithms are one of the standard

∗ This research was supported by the project AlgoNow, co-financed by the European Union (European
Social Fund - ESF) and Greek national funds, through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program:
THALES, investing in knowledge society through the European Social Fund.

© D. Fotakis, M. Lampis and V. Th. Paschos;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Sub-exponential Approximation Schemes for CSPs

tools for dealing with NP-hard problems, the question of approximating the corresponding
optimization problems (Max-CSP) has attracted significant interest over the years [30].
Unfortunately, most CSPs typically resist this approach: not only are they APX-hard [24],
but quite often the best polynomial-time approximation ratio we can hope to achieve for
them is that guaranteed by a trivial random assignment [22]. This striking behavior is often
called approximation resistance.

Approximation resistance and other APX-hardness results were originally formulated in
the context of polynomial-time approximation. It would therefore seem that one conceivable
way for working around such barriers could be to consider approximation algorithms running
in super-polynomial time, and indeed super-polynomial approximation for NP-hard problems
is a topic that has been gaining more attention in the literature recently [11, 8, 7, 12, 13, 14].
Unfortunately, the existence of quasi-linear PCPs with small soundness error, first given
in the work of Moshkovitz and Raz [25], established that approximation resistance is a
phenomenon that carries over even to sub-exponential time approximation, essentially “killing”
this approach for CSPs. For instance, we now know that if, for any ε > 0, there exists
an algorithm for Max-3-SAT with ratio 7/8 + ε running in time 2n1−ε this would imply
the existence of a sub-exponential exact algorithm for 3-SAT, disproving the Exponential
Time Hypothesis (ETH). It therefore seems that sub-exponential time does not improve
the approximability of CSPs, or put another way, for many CSPs obtaining a very good
approximation ratio requires almost as much time as solving the problem exactly.

Despite this grim overall picture, many positive approximation results for CSPs have
appeared over the years, by taking advantage of the special structure of various classes of
instances. One notable line of research in this vein is the work on the approximability of dense
CSPs, initiated by Arora, Karger and Karpinski [4] and independently by de la Vega [15].
The theme of this set of results is that the problem of maximizing the number of satisfied
constraints in a CSP instance with arity k (Max-k-CSP) becomes significantly easier if the
instance contains Ω(nk) constraints. More precisely, it was shown in [4] that Max-k-CSP
admits a polynomial-time approximation scheme (PTAS) on dense instances, that is, an
algorithm which for any constant ε > 0 can in time polynomial in n produce an assignment
that satisfies (1 − ε)OPT constraints. Subsequent work produced a stream of positive
[17, 5, 2, 10, 9, 21, 3, 20, 23] (and some negative [16, 1]) results on approximating CSPs
which are in general APX-hard, showing that dense instances form an island of tractability
where many optimization problems which are normally APX-hard admit a PTAS.
Our contribution: The main goal of this paper is to use the additional power afforded by
sub-exponential time to extend this island of tractability as much as possible. To demonstrate
the main result, consider a concrete CSP such as Max-3-SAT. As mentioned, we know that
sub-exponential time does not in general help us approximate this problem: the best ratio
achievable in, say, 2

√
n time is still 7/8. On the other hand, this problem admits a PTAS

on instances with Ω(n3) clauses. This density condition is, however, rather strict, so the
question we would like to answer is the following: Can we efficiently approximate a larger
(and more sparse) class of instances while using sub-exponential time?

In this paper we provide a positive answer to this question, not just for Max-3-SAT, but
also for any Max-k-CSP problem. Specifically, we show that for any constants δ ∈ (0, 1],
ε > 0 and integer k ≥ 2, there is an algorithm which achieves a (1 − ε) approximation of
Max-k-CSP instances with Ω(nk−1+δ) constraints in time 2O(n1−δ lnn/ε3). A notable special
case of this result is for k = 2, where the input instance can be described as a graph. For
this case, which contains classical problems such as Max-CUT, our algorithm gives an
approximation scheme running in time 2O(n∆ lnn/ε3) for graphs with average degree ∆. In

D. Fotakis, M. Lampis and V. Th. Paschos 3

other words, this is an approximation scheme that runs in time sub-exponential in n even
for almost sparse instances where the average degree is ∆ = nδ for some small δ > 0. More
generally, our algorithm provides a trade-off between the time available and the density of
the instances we can handle. For graph problems (k = 2) this trade-off covers the whole
spectrum from dense to almost sparse instances, while for general Max-k-CSP, it covers
instances where the number of constraints ranges from Θ(nk) to Θ(nk−1).
Techniques: The algorithms in this paper are an extension and generalization of the
exhaustive sampling technique given by Arora, Karger and Karpinski [4], who introduced a
framework of smooth polynomial integer programs to give a PTAS for dense Max-k-CSP.
The basic idea of that work can most simply be summarized for Max-CUT. This problem
can be recast as the problem of maximizing a quadratic function over n boolean variables.
This is of course a hard problem, but suppose that we could somehow “guess” for each vertex
how many of its neighbors belong in each side of the cut. This would make the quadratic
problem linear, and thus much easier. The main intuition now is that, if the graph is dense,
we can take a sample of O(logn) vertices and guess their partition in the optimal solution.
Because every non-sample vertex will have “many” neighbors in this sample, we can with
high confidence say that we can estimate the fraction of neighbors on each side for all vertices.
The work of de la Vega [15] uses exactly this algorithm for Max-CUT, greedily deciding the
vertices outside the sample. The work of [4] on the other hand pushed this idea to its logical
conclusion, showing that it can be applied to degree-k polynomial optimization problems,
by recursively turning them into linear programs whose coefficients are estimated from the
sample. The linear programs are then relaxed to produce fractional solutions, which can be
rounded back into an integer solution to the original problem.

On a very high level, the approach we follow in this paper retraces the steps of [4]: we
formulate Max-k-CSP as a degree-k polynomial maximization problem; we then recursively
decompose the degree-k polynomial problem into lower-degree polynomial optimization
problems, estimating the coefficients by using a sample of variables for which we try all
assignments; the result of this process is an integer linear program, for which we obtain a
fractional solution in polynomial time; we then perform randomized rounding to obtain an
integer solution that we can use for the original problem.

The first major difference between our approach and [4] is of course that we need to use
a larger sample. This becomes evident if one considers Max-CUT on graphs with average
degree ∆. In order to get the sampling scheme to work we must be able to guarantee that
each vertex outside the sample has “many” neighbors inside the sample, so we can safely
estimate how many of them end up on each side of the cut. For this, we need a sample
of size at least n logn/∆. Indeed, we use a sample of roughly this size, and exhausting all
assignments to the sample is what dominates the running time of our algorithm. As we argue
later, not only is the sample size we use essentially tight, but more generally the running
time of our algorithm is essentially optimal (under the ETH).

Nevertheless, using a larger sample is not in itself sufficient to extend the scheme of [4]
to non-dense instances. As observed in [4] “to achieve a multiplicative approximation for
dense instances it suffices to achieve an additive approximation for the nonlinear integer
programming problem”. In other words, one of the basic ingredients of the analysis of [4] is
that additive approximation errors of the order εnk can be swept under the rug, because we
know that in a dense instance the optimal solution has value Ω(nk). This is not true in our
case, and we are therefore forced to give a more refined analysis of the error of our scheme,
independently bounding the error introduced in the first step (coefficient estimation) and
the last (randomized rounding).

4 Sub-exponential Approximation Schemes for CSPs

A further complication arises when considering Max-k-CSP for k > 2. The scheme of [4]
recursively decomposes such dense instances into lower-order polynomials which retain the
same “good” properties. This seems much harder to extend to the non-dense case, because
intuitively if we start from a non-dense instance the decomposition could end up producing
some dense and some sparse sub-problems. Indeed we present a scheme that approximates
Max-k-CSP with Ω(nk−1+δ) constraints, but does not seem to extend to instances with fewer
than nk−1 constraints. As we will see, there seems to be a fundamental complexity-theoretic
justification explaining exactly why this decomposition method cannot be extended further.

To ease presentation, we first give all the details of our scheme for the special case of
Max-CUT in Section 3. We then present the full framework for approximating smooth
polynomials in Section 4; this implies the approximation result for Max-k-SAT and more
generally Max-k-CSP. We then show in Section 5 that it is possible to extend our framework
to handle k-Densest Subgraph, a problem which can be expressed as the maximization of
a polynomial subject to linear constraints. For this problem we obtain an approximation
scheme which, given a graph with average degree ∆ = nδ gives a (1− ε) approximation in
time 2O(n1−δ/3 lnn/ε3). Observe that this extends the result of [4] for this problem not only
in terms of the density of the input instance, but also in terms of k (the result of [4] required
that k = Ω(n)).
Hardness: What makes the results of this paper more interesting is that we can establish
that in many ways they are essentially best possible, if one assumes the ETH. In particular,
there are at least two ways in which one may try to improve on these results further: one
would be to improve the running time of our algorithm, while another would be to extend
the algorithm to the range of densities it cannot currently handle. In Section 6 we show that
both of these approaches would face significant barriers. Our starting point is the fact that
(under ETH) it takes exponential time to approximate Max-CUT arbitrarily well on sparse
instances, which is a consequence of the existence of quasi-linear PCPs. By manipulating
such Max-CUT instances, we are able to show that for any average degree ∆ = nδ with δ < 1
the time needed to approximate Max-CUT arbitrarily well almost matches the performance
of our algorithm. Furthermore, starting from sparse Max-CUT instances, we can produce
instances of Max-k-SAT with O(nk−1) clauses while preserving hardness of approximation.
This gives a complexity-theoretic justification for our difficulties in decomposing Max-k-CSP
instances with less than nk−1 constraints.

2 Notation and Preliminaries

An n-variate degree-d polynomial p(~x) is β-smooth [4], for some constant β ≥ 1, if for
every ` ∈ {0, . . . , d}, the absolute value of each coefficient of each degree-` monomial in the
expansion of p(~x) is at most βnd−`. An n-variate degree-d β-smooth polynomial p(~x) is
δ-bounded, for some constant δ ∈ (0, 1], if for every `, the sum, over all degree-` monomials in
p(~x), of the absolute values of their coefficients is O(βnd−1+δ). Therefore, for any n-variate
degree-d β-smooth δ-bounded polynomial p(~x) and any ~x ∈ {0, 1}n, |p(~x)| = O(dβnd−1+δ).
Optimization Problem. Our algorithms for Max-CUT, Max-k-SAT, and Max-k-CSP
are obtained by reducing to the following problem: Given an n-variate d-degree β-smooth
δ-bounded polynomial p(~x), we seek a binary vector ~x∗ ∈ {0, 1}n that maximizes p.
Polynomial Decomposition and General Approach. As in [4, Lemma 3.1], our general
approach is motivated by the fact that any n-variate d-degree β-smooth polynomial p(~x) can
be naturally decomposed into a collection of n polynomials pj(~x). Each of them has degree
d− 1 and at most n variables and is β-smooth.

D. Fotakis, M. Lampis and V. Th. Paschos 5

I Proposition 1 ([4]). Let p(~x) be any n-variate degree-d β-smooth polynomial. Then,
there exist a constant c and degree-(d − 1) β-smooth polynomials pj(~x) such that p(~x) =
c+

∑n
j=1 xjpj(~x).

Graph Optimization Problems. Let G(V,E) be a (simple) graph with n vertices and
m edges. For each vertex i ∈ V , N(i) denotes i’s neighborhood in G, i.e., N(i) = {j ∈ V :
{i, j} ∈ E}. We let deg(i) = |N(i)| be the degree of i in G and ∆ = 2|E|/n denote the
average degree of G. We say that a graph G is δ-almost sparse, for some constant δ ∈ (0, 1],
if m = Ω(n1+δ) (and thus, ∆ = Ω(nδ)).

In Max-CUT, we seek a partitioning of the vertices of G into two sets S0 and S1 so
that the number of edges with endpoints in S0 and S1 is maximized. If G has m edges, the
number of edges in the optimal cut is at least m/2.

In k-Densest Subgraph, given an undirected graph G(V,E), we seek a subset C of k
vertices so that the induced subgraph G[C] has a maximum number of edges.
Constraint Satisfaction Problems. An instance of (boolean) Max-k-CSP with n vari-
ables consists of m boolean constraints f1, . . . , fm, where each fj : {0, 1}k → {0, 1} depends
on k variables and is satisfiable, i.e., fj evaluates to 1 for some truth assignment. We seek
a truth assignment to the variables that maximizes the number of satisfied constraints.
Max-k-SAT is a special case of Max-k-CSP where each constraint fj is a disjunction of k
literals. An averaging argument implies that the optimal assignment of a Max-k-CSP (resp.
Max-k-SAT) instance with m constraints satisfies at least 2−km (resp. (1− 2−k)m) of them.
We say that an instance of Max-k-CSP is δ-almost sparse, for some constant δ ∈ (0, 1], if
the number of constraints is m = Ω(nk−1+δ).

Using standard arithmetization techniques (see e.g., [4, Sec. 4.3]), we can reduce any
instance of Max-k-CSP with n variables to an n-variate degree-k polynomial p(~x) so that
the optimal truth assignment for Max-k-CSP corresponds to a maximizer ~x∗ ∈ {0, 1}
of p(~x) and the value of the optimal Max-k-CSP solution is equal to p(~x∗). Since each
k-tuple of variables can appear in at most 2k different constraints, p(~x) is β-smooth, for
β ∈ [1, 4k], and has at least m and at most 4km monomials. Moreover, if the instance of
Max-k-CSP has m = Θ(nk−1+δ) constraints, then p(~x) is δ-bounded and its maximizer ~x∗
has p(~x∗) = Ω(nk−1+δ).
Notation and Terminology. An algorithm has approximation ratio ρ ∈ (0, 1] (or is ρ-
approximate) if for all instances, the value of its solution is at least ρ times the value of the
optimal solution.

For graphs with n vertices or CSPs with n variables, we say that an event E happens
with high probability (or whp.), if E happens with probability at least 1− 1/nc, for some
constant c ≥ 1.

For brevity and clarity, we sometimes write α ∈ (1 ± ε1)β ± ε2γ, for some constants
ε1, ε2 > 0, to denote that (1− ε1)β − ε2γ ≤ α ≤ (1 + ε1)β + ε2γ.

3 Approximating Max-CUT in Almost Sparse Graphs

In this section, we apply our approach to Max-CUT, which serves as a convenient example
and allows us to present the intuition and the main ideas.

The Max-CUT problem in a graph G(V,E) is equivalent to maximizing, over all binary
vectors ~x ∈ {0, 1}n, the following n-variate degree-2 2-smooth polynomial

p(~x) =
∑
{i,j}∈E

(xi(1− xj) + xj(1− xi))

6 Sub-exponential Approximation Schemes for CSPs

Setting a variable xi to 0 indicates that the corresponding vertex i is assigned to the left side
of the cut, i.e., to S0, and setting xi to 1 indicates that vertex i is assigned to the right side
of the cut, i.e., to S1. We assume that G is δ-almost sparse and thus, has m = Ω(n1+δ) edges
and average degree ∆ = Ω(nδ). Moreover, if m = Θ(n1+δ), p(~x) is δ-bounded, since for each
edge {i, j} ∈ E, the monomial xixj appears with coefficient −2 in the expansion of p, and
for each vertex i ∈ V , the monomial xi appears with coefficient deg(i) in the expansion of p.
Therefore, for ` ∈ {1, 2}, the sum of the absolute values of the coefficients of all monomials
of degree ` is at most 2m = O(n1+δ).

Next, we extend and generalize the approach of [4] and show how to (1− ε)-approximate
the optimal cut, for any constant ε > 0, in time 2O(n lnn/(∆ε3)) (see Theorem 4). The running
time is subexponential in n, if G is δ-almost sparse.

3.1 Outline and Main Ideas

Applying Proposition 1, we can write the smooth polynomial p(~x) as

p(~x) =
∑
j∈V

xj(deg(j)− pj(~x)) , (1)

where pj(~x) =
∑
i∈N(j) xi is a degree-1 1-smooth polynomial that indicates how many

neighbors of vertex j are in S1 in the solution corresponding to ~x. The key observation, due
to [4], is that if we have a good estimation ρj of the value of each pj at the optimal solution
~x∗, then approximate maximization of p(~x) can be reduced to the solution of the following
Integer Linear Program:

max
∑
j∈V

yj(deg(j)− ρj) (IP)

s.t. (1− ε1)ρj − ε2∆ ≤
∑

i∈N(j)

yi ≤ (1 + ε1)ρj + ε2∆ ∀j ∈ V

yj ∈ {0, 1} ∀j ∈ V

The constants ε1, ε2 > 0 and the estimations ρj ≥ 0 are computed so that the optimal solution
~x∗ is a feasible solution to (IP). We always assume wlog. that 0 ≤

∑
i∈N(j) yi ≤ deg(j),

i.e., we let the lhs of the j-th constraint be max{(1 − ε1)ρj − ε2∆, 0} and the rhs be
min{(1+ ε1)ρj + ε2∆, deg(j)}. Clearly, if ~x∗ is a feasible solution to (IP), it remains a feasible
solution after this modification. We let (LP) denote the Linear Programming relaxation of
(IP), where each yj ∈ [0, 1].

The first important observation is that for any ε1, ε2 > 0, we can compute estimations
ρj , by exhaustive sampling, so that ~x∗ is a feasible solution to (IP) with high probability
(see Lemma 1). The second important observation is that the objective value of any feasible
solution ~y to (LP) is close to p(~y) (see Lemma 2). Namely, for any feasible solution ~y,∑
j∈V yj(deg(j)− ρj) ≈ p(~y).
Based on these observations, the approximation algorithm performs the following steps:

1. We guess a sequence of estimations ρ1, . . . , ρn, by exhaustive sampling, so that ~x∗ is a
feasible solution to the resulting (IP) (see Section 3.2 for the details).

2. We formulate (IP) and find an optimal fractional solution ~y∗ to (LP).
3. We obtain an integral solution ~z by applying randomized rounding to ~y∗ (and the method

of conditional probabilities, as in [28, 27]).

D. Fotakis, M. Lampis and V. Th. Paschos 7

To see that this procedure indeed provides a good approximation to p(~x∗), we observe that:

p(~z) ≈
∑
j∈V

zj(deg(j)− ρj) ≈
∑
j∈V

y∗j (deg(j)− ρj) ≥
∑
j∈V

x∗j (deg(j)− ρj) ≈ p(~x∗) , (2)

The first approximation holds because ~z is an (almost) feasible solution to (IP) (see Lemma 3),
the second approximation holds because the objective value of ~z is a good approximation to
the objective value of ~y∗, due to randomized rounding, the inequality holds because ~x∗ is a
feasible solution to (LP) and the final approximation holds because ~x∗ is a feasible solution
to (IP).

In Sections 3.3 and 3.4, we make the notion of approximation precise so that p(~z) ≥
(1− ε)p(~x∗). As for the running time, it is dominated by the time required for the exhaustive-
sampling step. Since we do not know ~x∗, we need to run the steps (2) and (3) above for
every sequence of estimations produced by exhaustive sampling. So, the outcome of the
approximation scheme is the best of the integral solutions ~z produced in step (3) over all
executions of the algorithm. In Section 3.2, we show that a sample of size O(n lnn/∆)
suffices for the computation of estimations ρj so that ~x∗ is a feasible solution to (IP) with
high probability. If G is δ-almost sparse, the sample size is sublinear in n and the running
time is subexponential in n.

3.2 Obtaining Estimations ρj by Exhaustive Sampling
To obtain good estimations ρj of the values pj(~x∗) =

∑
i∈N(j) x

∗
i , i.e., of the number of j’s

neighbors in S1 in the optimal cut, we take a random sample R ⊆ V of size Θ(n lnn/∆) and
try exhaustively all possible assignments of the vertices in R to S0 and S1. If ∆ = Ω(nδ), we
have 2O(n lnn/∆) = 2O(n1−δ lnn) different assignments. For each assignment, described by a
0/1 vector ~x restricted to R, we compute an estimation ρj = (n/|R|)

∑
i∈N(j)∩R xi, for each

vertex j ∈ V , and run the steps (2) and (3) of the algorithm above. Since we try all possible
assignments, one of them agrees with ~x∗ on all vertices of R. So, for this assignment, the
estimations computed are ρj = (n/|R|)

∑
i∈N(j)∩R x

∗
i . The following shows that for these

estimations, we have that pj(~x∗) ≈ ρj with high probability.

I Lemma 1. Let ~x be any binary vector. For all α1, α2 > 0, we let γ = Θ(1/(α2
1α2)) and

let R be a multiset of r = γn lnn/∆ vertices chosen uniformly at random with replacement
from V . For any vertex j, if ρj = (n/r)

∑
i∈N(j)∩R xi and ρ̂j =

∑
i∈N(j) xi, with probability

at least 1− 2/n3,

(1− α1)ρ̂j − (1− α1)α2∆ ≤ ρj ≤ (1 + α1)ρ̂j + (1 + α1)α2∆ (3)

We note that ρj ≥ 0 and always assume that ρj ≤ deg(j), since if ρj satisfies (3),
min{ρj ,deg(j)} also satisfies (3). For all ε1, ε2 > 0, setting α1 = ε1

1+ε1 and α2 = ε2 in
Lemma 1, and taking the union bound over all vertices, we obtain that for γ = Θ(1/(ε21ε2)),
with probability at least 1− 2/n2, the following holds for all vertices j ∈ V :

(1− ε1)ρj − ε2∆ ≤ ρ̂j ≤ (1 + ε1)ρj + ε2∆ (4)

Therefore, with probability at least 1− 2/n2, the optimal cut ~x∗ is a feasible solution to (IP)
with the estimations ρj obtained by restricting ~x∗ to the vertices in R.

3.3 The Cut Value of Feasible Solutions
We next show that the objective value of any feasible solution ~y to (LP) is close to p(~y). There-
fore, assuming that ~x∗ is feasible, any good approximation to (IP) is a good approximation
to the optimal cut.

8 Sub-exponential Approximation Schemes for CSPs

I Lemma 2. Let ρ1, . . . , ρn be non-negative numbers and ~y be any feasible solution to (LP).
Then,

p(~y) ∈
∑
j∈V

yj(deg(j)− ρj)± 2(ε1 + ε2)m (5)

Proof. Using (1) and the formulation of (LP), we obtain that:

p(~y) =
∑
j∈V

yj

deg(j)−
∑

i∈N(j)

yi

 ∈∑
j∈V

yj (deg(j)− ((1∓ ε1)ρj ∓ ε2∆))

=
∑
j∈V

yj(deg(j)− ρj)± ε1
∑
j∈V

yjρj ± ε2∆
∑
j∈V

yj

∈
∑
j∈V

yj(deg(j)− ρj)± 2(ε1 + ε2)m

The first inclusion holds because ~y is feasible for (LP) and thus,
∑
i∈N(j) yi ∈ (1±ε1)ρj±ε2∆,

for all j. The third inclusion holds because∑
j∈V

yjρj ≤
∑
j∈V

ρj ≤
∑
j∈V

deg(j) = 2m,

since each ρj is at most deg(j), and because ∆
∑
j∈V yj ≤ ∆n = 2m. J

3.4 Randomized Rounding of the Fractional Optimum
As a last step, we show how to round the fractional optimum ~y∗ = (y∗1 , . . . , y∗n) of (LP) to an
integral solution ~z = (z1, . . . , zn) that almost satisfies the constraints of (IP).

To this end, we use randomized rounding, as in [28]. In particular, we set independently
each zj to 1, with probability y∗j , and to 0, with probability 1− y∗j . By Chernoff bounds1,
we obtain that with probability at least 1− 2/n8, for each vertex j,

(1− ε1)ρj − ε2∆− 2
√

deg(j) ln(n) ≤
∑

i∈N(j)

zi ≤ (1 + ε1)ρj + ε2∆ + 2
√

deg(j) ln(n) (6)

Specifically, the inequality above follows from the Chernoff bound in footnote 1, with
k = deg(j) and t = 2

√
deg(j) ln(n), since E[

∑
i∈N(j) zj] =

∑
i∈N(j) y

∗
j ∈ (1 ± ε1)ρj ± ε2∆.

By the union bound, (6) is satisfied with probability at least 1− 2/n7 for all vertices j.
By linearity of expectation, E[

∑
j∈V zj(deg(j)− ρj)] =

∑
j∈V y

∗
j (deg(j)− ρj). Moreover,

since the probability that ~z does not satisfy (6) for some vertex j is at most 2/n7 and since
the objective value of (IP) is at most n2, the expected value of a rounded solution ~z that
satisfies (6) for all vertices j is least

∑
j∈V y

∗
j (deg(j)− ρj)− 1 (assuming that n ≥ 2). Using

the method of conditional expectations, as in [27], we can find in (deterministic) polynomial
time an integral solution ~z that satisfies (6) for all vertices j and has

∑
j∈V zj(deg(j)− ρj) ≥∑

j∈V y
∗
j (deg(j) − ρj) − 1. Next, we sometimes abuse the notation and refer to such an

integral solution ~z (computed deterministically) as the integral solution obtained from ~y∗ by
randomized rounding.

The following is similar to Lemma 2 and shows that the objective value p(~z) of the
rounded solution ~z is close to the optimal value of (LP).

1 We use the following standard Chernoff bound (see e.g., [19, Theorem 1.1]): Let Y1, . . . , Yk independent
random variables in [0, 1] and let Y =

∑k

j=1 Yj . Then for all t > 0, P[|Y − E[Y]| > t] ≤ 2 exp(−2t2/k).

D. Fotakis, M. Lampis and V. Th. Paschos 9

I Lemma 3. Let ~y∗ be the optimal solution of (LP) and let ~z be the integral solution obtained
from ~y∗ by randomized rounding (and the method of conditional expectations). Then,

p(~z) ∈
∑
j∈V

y∗j (deg(j)− ρj)± 3(ε1 + ε2)m (7)

3.5 Putting Everything Together

Therefore, for any ε > 0, if G is δ-almost sparse and ∆ = nδ, the algorithm described
in Section 3.1, with sample size Θ(n lnn/(ε3∆)), computes estimations ρj such that the
optimal cut ~x∗ is a feasible solution to (IP) whp. Hence, by the analysis above, the algorithm
approximates the value of the optimal cut p(~x∗) within an additive term of O(εm). Specifically,
setting ε1 = ε2 = ε/16, the value of the cut ~z produced by the algorithm satisfies the following
with probability at least 1− 2/n2 :

p(~z) ≥
∑
j∈V

y∗j (deg(j)−ρj)−3εm/8 ≥
∑
j∈V

x∗j (deg(j)−ρj)−3εm/8 ≥ p(~x∗)−εm/2 ≥ (1−ε)p(~x∗)

The first inequality follows from Lemma 3, the second inequality holds because ~y∗ is the
optimal solution to (LP) and ~x∗ is feasible for (LP), the third inequality follows from Lemma 2
and the fourth inequality holds because the optimal cut has at least m/2 edges.

I Theorem 4. Let G(V,E) be a δ-almost sparse graph with n vertices. Then, for any ε > 0,
we can compute, in time 2O(n1−δ lnn/ε3) and with probability at least 1− 2/n2, a cut ~z of G
with value p(~z) ≥ (1− ε)p(~x∗), where ~x∗ is the optimal cut.

4 Approximate Maximization of Smooth Polynomials

Generalizing the ideas applied to Max-CUT, we arrive at the main algorithmic result of
the paper: an algorithm to approximately optimize β-smooth δ-bounded polynomials p(~x)
of degree d over all binary vectors ~x ∈ {0, 1}n. The intuition and the main ideas are quite
similar to those in Section 3, but the details are significantly more involved because we are
forced to recursively decompose degree d polynomials to eventually obtain a linear program.
In the Appendix, Section B, we take care of the technical details and prove the following:

I Theorem 5. Let p(~x) be an n-variate degree-d β-smooth δ-bounded polynomial. Then, for
any ε > 0, we can compute, in time 2O(d7β3n1−δ lnn/ε3) and with probability at least 1− 8/n2,
a binary vector ~z so that p(~z) ≥ p(~x∗)− εnd−1+δ, where ~x∗ is the maximizer of p(~x).

Max-k-CSP: Using Theorem 5 it is a straightforward observation that for any Max-k-CSP
problem (for constant k) we can obtain an algorithm which, given a Max-k-CSP instance
with Ω(nk−1+δ) constraints for some δ > 0, for any ε > 0 returns an assignment that
satisfies (1− ε)OPT constraints in time 2O(n1−δ lnn/ε3). This follows from Theorem 5 using
two observations: first, the standard arithmetization of Max-k-CSP described in Section 2
produces a degree-k β-smooth δ-bounded polynomial for β depending only on k. Second,
the optimal solution of such an instance satisfies at least Ω(nk−1+δ) constraints, therefore
the additive error given in Theorem 5 is O(εOPT). This algorithm for Max-k-CSP contains
as special cases algorithm for various standard problems such as Max-CUT, Max-DICUT
and Max-k-SAT.

10 Sub-exponential Approximation Schemes for CSPs

5 Approximating the k-Densest Subgraph in Almost Sparse Graphs

In this section, we present an extension of the algorithms we have presented which can be
used to approximate k-Densest Subgraph in δ-almost sparse graphs. This is a problem
also handled in [4], but only for the case where k = Ω(n). Smaller values of k cannot be
handled by the scheme of [4] for dense graphs because when k = o(n) the optimal solution
has objective value much smaller than the additive error of εn2 inherent in their scheme.

Here we obtain a sub-exponential time approximation scheme that works on graphs with
Ω(n1+δ) edges for all k by judiciously combining two approaches: when k is relatively large,
we use a sampling approach similar to Max-CUT; when k is small, we can resort to the
naïve algorithm that tries all

(
n
k

)
possible solutions. We select (with some foresight) the

threshold between the two algorithms to be k = Ω(n1−δ/3), so that in the end we obtain an
approximation scheme with running time of 2O(n1−δ/3 lnn), that is, slightly slower than the
approximation scheme for Max-CUT. It is clear that the brute-force algorithm achieves this
running time for k = O(n1−δ/3), so in the remainder we focus on the case of large k.

The k-Densest Subgraph problem in a graph G(V,E) is equivalent to maximizing, over
all vectors ~x ∈ {0, 1}n, the n-variate degree-2 1-smooth polynomial p(~x) =

∑
{i,j}∈E xixj ,

under the linear constraint
∑
j∈V xj = k. Setting a variable xi to 1 indicates that the vertex

i is included in the set C that induces a dense subgraph G[C] of k vertices. We assume that
G is δ-almost sparse i.e. m = Ω(n1+δ) edges. As usual, ~x denotes the optimal solution.

The algorithm follows the same general approach and the same basic steps as the algorithm
for Max-CUT in Section 3. In the following, we highlight only the differences.
Obtaining Estimations by Exhaustive Sampling. We first observe that if G is δ-
almost sparse and k = Ω(n1−δ/3), a random subset of k vertices contains Ω(n1+δ/3) edges in
expectation. We thus assume that the optimal solution induces at least Ω(n1+δ/3) edges.

Working as in Section 3.2, we use exhaustive sampling and obtain for each vertex j ∈ V ,
an estimation ρj of j’s neighbors in the optimal dense subgraph, i.e., ρj is an estimation
of ρ̂j =

∑
i∈N(j) x

∗
i . For the analysis, we apply Lemma 1 with nδ/3, instead of ∆, or in

other words, we use a sample of size Θ(n1−δ/3 lnn). The reason is that we can only tolerate
an additive error of εn1+δ/3, by the lower bound on the optimal solution observed in the
previous paragraph. Then, the running time due to exhaustive sampling is 2O(n1−δ/3 lnn).

By Lemma 1 and the discussion following it in Section 3.2, we obtain that for all ε1, ε2 > 0,
if we use a sample of the size Θ(n1−δ/3 lnn/(ε21ε2)), with probability at least 1− 2/n2, the
following holds for all estimations ρj and all vertices j ∈ V :

(1− ε1)ρj − ε2nδ/3 ≤ ρ̂j ≤ (1 + ε1)ρj + ε2n
δ/3 (8)

Linearizing the Polynomial. Applying Proposition 1, we can write the polynomial p(~x)
as p(~x) =

∑
j∈V xjpj(~x), where pj(~x) =

∑
i∈N(j) xi is a degree-1 1-smooth polynomial that

indicates how many neighbors of vertex j are in C in the solution corresponding to ~x. Then,
using the estimations ρj of

∑
i∈N(j) x

∗
i , obtained by exhaustive sampling, we have that

approximate maximization of p(~x) can be reduced to the solution of the following ILP:

max
∑
j∈V

yjρj (IP′)

s.t. (1− ε1)ρj − ε2nδ/3 ≤
∑

i∈N(j)

yi ≤ (1 + ε1)ρj + ε2n
δ/3 ∀j ∈ V

∑
i∈V

yi = k

D. Fotakis, M. Lampis and V. Th. Paschos 11

By (8), if the sample size is |R| = Θ(n1−δ/3 lnn/(ε21ε2)), with probability at least 1− 2/n2,
the densest subgraph ~x∗ is a feasible solution to (IP′) with the estimations ρj obtained
by restricting ~x∗ to the vertices in R. In the following, we let (LP′) denote the Linear
Programming relaxation of (IP′), where each yj ∈ [0, 1].
The Number of Edges in Feasible Solutions. We next show that the objective value
of any feasible solution ~y to (LP′) is close to p(~y). Therefore, assuming that ~x∗ is feasible,
any good approximation to (IP′) is a good approximation to the densest subgraph.

I Lemma 6. Let ρ1, . . . , ρn be non-negative numbers and ~y be any feasible solution to (LP ′).
Then,

p(~y) ∈ (1± ε1)
∑
j∈V

yjρj ± ε2n1+δ/3 (9)

Randomized Rounding of the Fractional Optimum. As a last step, we show how to
round the fractional optimum ~y∗ = (y∗1 , . . . , y∗n) of (LP′) to an integral solution ~z = (z1, . . . , zn)
that almost satisfies the constraints of (IP′). We use randomized rounding, as for Max-CUT.

I Lemma 7. Let ~y∗ be the optimal solution of (LP′) and let ~z be the integral solution obtained
from ~y∗ by randomized rounding (and the method of conditional expectations). Then,

p(~z) ∈ (1± ε1)2
∑
j∈V

y∗j ρj ± 3ε2n1+δ/3 (10)

We thus arrive to the main theorem of this section.

I Theorem 8. Let G(V,E) be a δ-almost sparse graph with n vertices. Then, for any integer
k ≥ 1 and for any ε > 0, we can compute, in time 2O(n1−δ/3 lnn/ε3) and with probability at
least 1− 2/n2, an induced subgraph ~z of G with k vertices whose number of edges satisfies
p(~z) ≥ (1− ε)p(~x∗), where ~x∗ is the number of edges in the k-Densest Subgraph of G.

6 Lower Bounds

We now give some lower bound arguments showing that the schemes we have presented are,
in some senses, likely to be almost optimal. Our complexity assumption will be the ETH,
which states that no algorithm can solve instances of 3-SAT of size n in time 2o(n).

There are two natural ways in which one may hope to improve or extend the algorithms
we have presented so far: relaxing the density requirement or decreasing the running time.
First, recall that the algorithm we have given for Max-k-CSP works in the density range
between nk and nk−1. Here, we give a reduction establishing that it’s unlikely that this can
be improved. Our starting point is the following (known) inapproximability result.

I Theorem 9. There exist c, s ∈ (0, 1) with c > s such that for all ε > 0 we have: if there
exists an algorithm which, given an n-vertex 5-regular instance of Max-CUT, can distinguish
between the case where a solution cuts at least a c fraction of the edges and the case where
all solutions cut at most an s fraction of the edges in time 2n1−ε then the ETH fails.

I Theorem 10. There exists r > 1 such that for all ε > 0 and all (fixed) integers k ≥ 3
we have the following: if there exists an algorithm which r-approximates Max-k-SAT on
instances with Ω(nk−1) clauses in time 2n1−ε then the ETH fails.

12 Sub-exponential Approximation Schemes for CSPs

Proof. We reduce a Max-CUT instance from Theorem 9 to Max-2-SAT: the set of variables
is the set of vertices; for each edge (u, v) we include the clauses (u ∨ v) and (¬u ∨ ¬v). The
new instance has n variables and 5n clauses and there exist constants c, s such that either
some assignment satisfies 5cn clauses or all assignments satisfy at most 5sn of them.

Fix k and add to the instance (k−2)n new variables x(i,j), i ∈ {1, . . . , k−2}, j ∈ {1, . . . , n}.
We perform the following transformation: for each clause (l1 ∨ l2) and for each tuple
(i1, i2, . . . , ik−2) ∈ {1, . . . , n}k−2 we construct 2k−2 new clauses of size k. The first two
literals of these clauses are l1, l2. The rest consist of the variables x(1,i1), x(2,i2), . . . , x(k,ik−2),
but in each clause a different set of variables is negated. In other words, to construct a clause
of the new instance we select a clause of the original instance, one variable from each of the
groups of n new variables, and a subset of these variables to be negated.

First, observe that the new instance has 5nk−12k clauses and (k − 1)n variables, which
satisfies the density conditions. Consider an assignment of the original formula. Any satisfied
clause has now been replaced by nk−22k satisfied clauses, while for an unsatisfied clause any
assignment to the new variables satisfies exactly nk−2(2k − 1) clauses. Thus, for fixed k,
there exist constants s′, c′ such that either a c′ fraction of the clauses of the new instance is
satisfiable or at most a s′ fraction is. If we had an approximation algorithm with ratio better
than c′/s′ running in time 2N1−ε , where N is the number of variables of the new instance,
we could use it to decide the original instance in time that would disprove the ETH. J

A second possible avenue for improvement may be to consider potential speedups of our
algorithms. We give an almost tight answer to such questions via the following theorem.

I Theorem 11. There exists r > 1 such that for all ε > 0 we have the following: if there
exists an algorithm which, for some ∆ = o(n), r-approximates Max-CUT on n-vertex
∆-regular graphs in time 2(n/∆)1−ε then the ETH fails.

Proof. Without loss of generality we prove the theorem for the case when the degree is a
multiple of 10. Consider an instance G(V,E) of Max-CUT as given by Theorem 9. Let
n = |V | and suppose that the desired degree is d = 10∆, where ∆ is a function of n. We
construct a graph G′ as follows: for each vertex u ∈ V we introduce ∆ new vertices u1, . . . , u∆
as well as 5∆ “consistency” vertices cu1 , . . . , cu5∆. For every edge (u, v) ∈ E we add all edges
(ui, vj) for i, j ∈ {1, . . . ,∆}. Also, for every u ∈ V we add all edges (ui, cuj), for i ∈ {1, . . . ,∆}
and j ∈ {1, . . . , 5∆}. This completes the construction.

The graph we have constructed is 10∆-regular and is made up of 6∆n vertices. Consider
an optimal cut and observe that, for a given u ∈ V all the vertices cui can be assumed to
be on the same side of the cut, since they all have the same neighbors. Furthermore, for a
given u ∈ V , all vertices ui can be assumed to be on the same side of the cut, namely on the
side opposite that of cui , since the vertices cui are a majority of the neighborhood of each ui.
With this observation it is easy to construct a one-to-one correspondence between cuts in G
and locally optimal cuts in G′.

Consider a cut that cuts c|E| edges of G. If we set all ui of G′ on the same side as u is in
G we cut c|E|∆2 edges of the form (ui, vj). Furthermore, by placing the cui on the opposite
side of ui we cut 5∆2|V | edges. Thus the max cut of G′ is at least c|E|∆2 + 5∆2|V |. Using
the observations on locally optimal cuts of G′ we can conclude that if G′ has a cut with
s|E|∆2 + 5∆2|V | edges, then G has a cut with s|E| edges. Having 2|E| = 5|V | (since G is
5-regular) we get a constant ratio r between the size of the cut of G′ in the two cases.

Suppose now that we have an approximation algorithm with ratio better than r which,
given an N -vertex d-regular graph runs in time 2(N/d)1−ε . Giving our constructed instance
as input to this algorithm would allow to decide the original instance in time 2n1−ε . J

D. Fotakis, M. Lampis and V. Th. Paschos 13

References

1 Nir Ailon and Noga Alon. Hardness of fully dense problems. Inf. Comput., 205(8):1117–
1129, 2007.

2 Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random
sampling and approximation of max-csps. J. Comput. Syst. Sci., 67(2):212–243, 2003.

3 Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure for the as-
signment problem with applications to dense graph arrangement problems. Mathematical
Programming, Series A, 92:1–36, 2002.

4 Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. Journal of Computer and System Sci-
ences, 58:193–210, 1999.

5 Cristina Bazgan, Wenceslas Fernandez de la Vega, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of minimum constraint satisfaction. Random
Struct. Algorithms, 23(1):73–91, 2003.

6 Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended
abstract). In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Au-
tomata, Languages and Programming, 26th International Colloquium, ICALP’99, Prague,
Czech Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer
Science, pages 200–209. Springer, 1999.

7 Nicolas Bourgeois, Federico Della Croce, Bruno Escoffier, and Vangelis Th. Paschos. Fast
algorithms for min independent dominating set. Discrete Applied Mathematics, 161(4-
5):558–572, 2013.

8 Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max inde-
pendent set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Applied Mathematics, 159(17):1954–1970, 2011.

9 Jean Cardinal, Marek Karpinski, Richard Schmied, and Claus Viehmann. Approximating
subdense instances of covering problems. Electronic Notes in Discrete Mathematics, 37:297–
302, 2011.

10 Jean Cardinal, Marek Karpinski, Richard Schmied, and Claus Viehmann. Approximating
vertex cover in dense hypergraphs. J. Discrete Algorithms, 13:67–77, 2012.

11 Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Independent set, in-
duced matching, and pricing: Connections and tight (subexponential time) approximation
hardnesses. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 370–379. IEEE Computer Society,
2013.

12 Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009.

13 Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor. Comput.
Sci., 411(40-42):3701–3713, 2010.

14 Marek Cygan, Marcin Pilipczuk, and Jakub Onufry Wojtaszczyk. Capacitated domination
faster than O(2n). Inf. Process. Lett., 111(23-24):1099–1103, 2011.

15 Wenceslas Fernandez de la Vega. MAX-CUT has a randomized approximation scheme in
dense graphs. Random Struct. Algorithms, 8(3):187–198, 1996.

16 Wenceslas Fernandez de la Vega and Marek Karpinski. On the approximation hardness of
dense TSP and other path problems. Inf. Process. Lett., 70(2):53–55, 1999.

17 Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approximation of
dense weighted instances of MAX-CUT. Random Struct. Algorithms, 16(4):314–332, 2000.

18 Irit Dinur. The PCP theorem by gap amplification. In Proc. 38th ACM Symp. on Theory
of Computing, pages 241–250, 2006.

14 Sub-exponential Approximation Schemes for CSPs

19 Devdatt P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

20 Martin E. Dyer, Alan M. Frieze, and Mark Jerrum. Approximately counting hamilton
paths and cycles in dense graphs. SIAM J. Comput., 27(5):1262–1272, 1998.

21 Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for
dense problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS
’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 12–20. IEEE Computer Society,
1996.

22 Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
23 Tomokazu Imamura and Kazuo Iwama. Approximating vertex cover on dense graphs. In

Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 582–589. SIAM,
2005.

24 Sanjeev Khanna, Madhu Sudan, and David P. Williamson. A complete classification of the
approximability of maximization problems derived from boolean constraint satisfaction. In
Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, pages 11–20. ACM, 1997.

25 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5),
2010.

26 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

27 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximat-
ing packing integer programs. Journal of Computer and System Sciences, 37(2):130–143,
1988.

28 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: A technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–474, 1987.

29 Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton,
Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, pages 216–226. ACM, 1978.

30 Luca Trevisan. Inapproximability of combinatorial optimization problems. Electronic Col-
loquium on Computational Complexity (ECCC), 2004.

D. Fotakis, M. Lampis and V. Th. Paschos 15

A Appendix

A.1 Proof of Proposition 1

The proposition is shown in [4, Lemma 3.1]. We prove it here just for completeness. Each
polynomial pj(~x) is obtained from p(~x) if we keep only the monomials with variable xj and
pull xj out, as a common factor. The constant c takes care of the constant term in p(~x).
Each monomial of degree ` in p(~x) becomes a monomial of degree ` − 1 in pj(~x), which
implies that the degree of pj(~x) is d − 1. Moreover, by the β-smoothness condition, the
coefficient t of each degree-` monomial in p(~x) has |t| ≤ βnd−`. The corresponding monomial
in pj(~x) has degree `− 1 and the same coefficient t with |t| ≤ βnd−1−(`−1). Therefore, if p(~x)
is β-smooth, each pj(~x) is also β-smooth. J

A.2 Proof of Lemma 1

Sketch. If ρ̂j = Ω(∆), the neighbors of j are well-represented in the random sample R
whp., because |R| = Θ(n lnn/∆). Therefore, |ρ̂j − ρj | ≤ α1ρ̂j whp., by Chernoff bounds.
If ρ̂j = o(∆), the lower bound in (3) becomes trivial, since it is non-positive, while ρj ≥ 0.
As for the upper bound, we increase some xi to x′i ∈ [0, 1], so that ρ̂′j = α2∆. Then,
ρ′j ≤ (1 + α1)ρ̂′j = (1 + α1)α2∆ whp., by the same Chernoff bound as above. Now the upper
bound of (3) follows from ρj ≤ ρ′j , which holds for any instantiation of the random sample R.
The formal proof follows from Lemma 12, with β = 1, d = 2 and q = 0, and with ∆ instead
of nδ. J

A.3 The Proof of Lemma 3

Using (6) and an argument similar to that in the proof of Lemma 2, we obtain that:

p(~z) =
∑
j∈V

zj

deg(j)−
∑

i∈N(j)

zi

∈
∑
j∈V

zj

(
deg(j)−

(
(1∓ ε1)ρj ∓ ε2∆∓ 2

√
deg(j) ln(n)

))
=
∑
j∈V

zj(deg(j)− ρj)± ε1
∑
j∈V

zjρj ± ε2∆
∑
j∈V

zj ± 2
∑
j∈V

zj
√

deg(j) ln(n)

∈
∑
j∈V

zj(deg(j)− ρj)± (3ε1 + 2ε2)m

∈
∑
j∈V

y∗j (deg(j)− ρj)± 3(ε1 + ε2)m

The first inclusion holds because ~z satisfies (6) for all j ∈ V . For the third inclusion, we use
that

∑
j∈V zjρj ≤

∑
j∈V deg(j) = 2m, that ∆

∑
i∈V zi ≤ ∆n = 2m and that by Jensen’s

inequality,

2
∑
j∈V

zj
√

deg(j) lnn ≤
∑
j∈V

√
4 deg(j) lnn ≤

√
8mn lnn ≤ ε1m,

16 Sub-exponential Approximation Schemes for CSPs

assuming that n and m = Ω(n1+δ) are sufficiently large. For the last inclusion, we recall
that

∑
j∈V zj(deg(j) − ρj) ≥

∑
j∈V y

∗
j (deg(j) − ρj) − 1 and assume that m is sufficiently

large. J

B Approximate Maximization of Polynomials: The Proof of
Theorem 5

Next, we significantly generalize the ideas applied to Max-CUT so that we approximately
optimize β-smooth δ-bounded polynomials p(~x) of degree d over all binary vectors ~x ∈ {0, 1}n.
The structure of this section deliberately parallels the structure of Section 3, so that the
application to Max-CUT can always serve as a reference for the intuition behind the
generalization.

As in [4] (and as explained in Section 2), we exploit the fact that any n-variate degree-d
β-smooth polynomial p(~x) can be decomposed into n degree-(d− 1) β-smooth polynomials
pj(~x) such that p(~x) = c +

∑
j∈N xjpj(~x) (Proposition 1). For smooth polynomials of

degree d ≥ 3, we apply Proposition 1 recursively until we end up with smooth polynomials
of degree 1. Specifically, using Proposition 1, we further decompose each degree-(d − 1)
β-smooth polynomial pi1(~x) into n degree-(d− 2) β-smooth polynomials pi1j(~x) such that
pi1(~x) = ci1 +

∑
j∈N xjpi1j(~x), etc. At the basis of the recursion, at depth d − 1, we

have β-smooth polynomials pi1...id−1(~x) of degree 1, one for each (d − 1)-tuple of indices
(i1, . . . , id−1) ∈ Nd−1. These polynomials are written as

pi1...id−1(~x) = ci1...id−1 +
∑
j∈N

xjci1...id−1j ,

where ci1...id−1j are constants (these are the coefficients of the corresponding degree-d
monomials in the expansion of p(~x)). Due to β-smoothness, |ci1...id−1j | ≤ β and |ci1...id−1 | ≤
βn. Inductively, β-smoothness implies that each polynomial pi1...id−`(~x) of degree ` ≥ 1 in
this decomposition2 has |pi1...id−`(~x)| ≤ (`+ 1)βn` for all binary vectors ~x ∈ {0, 1}n. Such a
decomposition of p(~x) in β-smooth polynomials of degree d− 1, d− 2, . . . , 1 can be computed
recursively in time O(nd).

B.1 Outline and General Approach

As in Section 3 (and as in [4]), we observe that if we have good estimations ρi1...id−` of the
values of each degree-` polynomial pi1...id−`(~x) at the optimal solution ~x∗, for each level
` = 1, . . . , d− 1 of the decomposition, then approximate maximization of p(~x) can be reduced

2 This decomposition can be performed in a unique way if we insist that i1 < i2 < · · · < id−1, but this is
not important for our analysis.

D. Fotakis, M. Lampis and V. Th. Paschos 17

to the solution of the following Integer Linear Program:

max
∑
j∈N

yjρj (d-IP)

s.t. ci1 +
∑
j∈N

yjρi1j ∈ ρi1 ± ε1ρ̄i1 ± ε2nd−1+δ ∀i1 ∈ N

ci1i2 +
∑
j∈N

yjρi1i2j ∈ ρi1i2 ± ε1ρ̄i1i2 ± ε2nd−2+δ ∀(i1, i2) ∈ N ×N

· · ·

ci1...id−` +
∑
j∈N

yjρi1...id−`j ∈ ρi1...id−` ± ε1ρ̄i1...id−` ± ε2nd−`+δ ∀(i1, . . . , id−`) ∈ Nd−`

· · ·

ci1...id−1 +
∑
j∈N

yjci1...id−1j ∈ ρi1...id−1 ± ε1ρ̄i1...id−1 ± ε2nδ ∀(i1, . . . , id−1) ∈ Nd−1

yj ∈ {0, 1} ∀j ∈ N

In (d-IP), we also use absolute value estimations ρ̄i1...id−` . For each level ` ≥ 1 of the
decomposition of p(~x) and each tuple (i1, . . . , id−`) ∈ Nd−`, we define the corresponding
absolute value estimation as ρ̄i1...id−` =

∑
j∈N |ρi1...id−`j |. Namely, each absolute value

estimation ρ̄i1...id−` at level ` is the sum of the absolute values of the estimations ρi1...id−`j
at level `− 1. The reason that we use absolute value estimations and set the lhs/rhs of the
constraints to ρi1...id−` ± ε1ρ̄i1...id−` , instead of simply to (1± ε1)ρi1...id−` , is that we want to
consider linear combinations of positive and negative estimations ρi1...id−` in a uniform way.

Similarly to Section 3, the estimations ρi1...id−` (and ρ̄i1...id−`) are computed (by exhaustive
sampling) and the constants ε1, ε2 > 0 are calculated so that the optimal solution ~x∗ is a
feasible solution to (d-IP). In the following, we let ~ρ denote the sequence of estimations
ρi1...id−` , for all levels ` and all tuples (i1, . . . , id−`) ∈ Nd−`, that we use to formulate (d-IP).
The absolute value estimations ρ̄i1...id−` can be easily computed from ~ρ. We let (d-LP) denote
the Linear Programming relaxation of (d-IP), where each yj ∈ [0, 1], let ~x∗ denote the binary
vector that maximizes p(~x), and let ~y∗ ∈ [0, 1]n denote the fractional optimal solution of
(d-LP).

As in Section 3, the approach is based on the facts that (i) for all constants ε1, ε2 > 0, we
can compute estimations ~ρ, by exhaustive sampling, so that ~x∗ is a feasible solution to (d-IP)
with high probability (see Lemma 12 and Lemma 13); and that (ii) the objective value of any
feasible solution ~y to (d-LP) is close to p(~y) (see Lemma 14 and Lemma 15). Based on these
observations, the general description of the approximation algorithm is essentially identical
to the three steps described in Section 3.1 and the reasoning behind the approximation
guarantee is that of (2).

B.2 Obtaining Estimations by Exhausting Sampling
We first show how to use exhaustive sampling and obtain an estimation ρi1...id−` of the value
at the optimal solution ~x∗ of each degree-` polynomial pi1...id−`(~x) in the decomposition of
p(~x).

As in Section 3.2, we take a sample R from N , uniformly at random and with replacement.
The sample size is r = Θ(n1−δ lnn). We try exhaustively all 0/1 assignments to the variables
in R, which can performed in time 2r = 2O(n1−δ lnn). For each assignment, described by a 0/1
vector ~s restricted to R, we compute the corresponding estimations recursively, as described

18 Sub-exponential Approximation Schemes for CSPs

Algorithm 1 Recursive estimation procedure Estimate(pi1...id−`(~x), `, R,~s)

Input: n-variate degree-` polynomial pi1...id−`(~x), R ⊆ N and a value sj ∈ {0, 1} for each
j ∈ R

Output: Estimation ρi1...id−` of pi1...id−`(~s), where ~sR = ~s

if ` = 0 then return ci1...id /* pi1...id(~x) is equal to the constant ci1...id */
compute decomposition pi1...id−`(~x) = ci1...id−` +

∑
j∈N xjpi1...id−`j(~x)

for all j ∈ N do
ρi1...id−`j ← Estimate(pi1...id−`j(~x), `− 1, R,~s)

ρi1...id−` ← ci1...id−` + |N |
|R|
∑
j∈R sjρi1...id−`j

return ρi1...id−`

in Algorithm 1. Specifically, for the basis level ` = 0 and each d-tuple (i1, . . . , id) ∈ Nd of
indices, the corresponding estimation is the coefficient ci1...id of the monomial xi1 · · ·xid in the
expansion of p(~x). For each level `, 1 ≤ ` ≤ d−1, and each (d−`)-tuple (i1, . . . , id−`) ∈ Nd−`,
given the level-(`− 1) estimations ρi1...id−`j of pi1...id−`j(~s), for all j ∈ N , we compute the
level-` estimation ρi1...id−` of pi1...id−`(~s) from ~s as follows:

ρi1...id−` = ci1...id−` + n

r

∑
j∈R

sjρi1···id−`j (11)

In Algorithm 1, ~s is any vector in {0, 1}n that agrees with ~s on the variables of R. Given
the estimations ρi1...id−`j , for all j ∈ N , we can also compute the absolute value estimations
ρ̄i1...id−` at level `. Due to the β-smoothness property of p(~x), we have that |ci1...id−` | ≤ βn`,
for all levels ` ≥ 0. Moreover, we assume that 0 ≤ ρ̄i1...id−` ≤ `βn` and |ρi1...id−` | ≤ (`+1)βn`,
for all levels ` ≥ 1. This assumption is wlog. because due to β-smoothness, any binary vector
~x is feasible for (d-IP) with such values for the estimations ρi1...id−` and the absolute value
estimations ρ̄i1...id−` .
I Remark. For simplicity, we state Algorithm 1 so that it computes, from ~s, an estimation
ρi1...id−` of the value of a given degree-` polynomial pi1...id−`(~x) at ~s. So, we need to apply
Algorithm 1 O(nd−1) times, one for each polynomial that arises in the recursive decomposition,
with the same sample R and the same assignment ~s. We can easily modify Algorithm 1 so
that a single call Estimate(p(~x), d, R,~s) computes the estimations of all the polynomials that
arise in the recursive decomposition of p(~x). Thus, we save a factor of d on the running time.
The running time of the simple version is O(dnd), while the running time of the modified
version is O(nd).

B.3 Sampling Lemma
We use the next lemma to show that if ~s = ~x∗R, the estimations ρi1...id−` computed by
Algorithm 1 are close to ci1...id−` +

∑
j∈N x

∗
jρi1...id−`j with high probability.

I Lemma 12. Let ~x be any binary vector and let (ρj)j∈N be any sequence such that for
some integer q ≥ 0 and some constant β ≥ 1, ρj ∈ [0, (q + 1)βnq], for all j ∈ N . For all
integers d ≥ 1 and for all α1, α2 > 0, we let γ = Θ(dqβ/(α2

1α2)) and let R be a multiset
of r = γn1−δ lnn indices chosen uniformly at random with replacement from N , where
δ ∈ (0, 1] is any constant. If ρ = (n/r)

∑
j∈R ρjxj and ρ̂ =

∑
j∈N ρjxj, with probability at

least 1− 2/nd+1,

(1− α1)ρ̂− (1− α1)α2n
q+δ ≤ ρ ≤ (1 + α1)ρ̂+ (1 + α1)α2n

q+δ (12)

D. Fotakis, M. Lampis and V. Th. Paschos 19

Proof. To provide some intuition, we observe that if ρ̂ = Ω(nq+δ), we have Ω(nδ) values
ρj = Θ(nq). These values are well-represented in the random sample R, with high probability,
since the size of the sample is Θ(n1−δ lnn). Therefore, |ρ̂− ρ| ≤ α1ρ̂, with high probability,
by standard Chernoff bounds. If ρ̂ = o(nq+δ), the lower bound in (12) becomes trivial, since
it is non-positive, while ρ ≥ 0. As for the upper bound, we increase the coefficients ρj to
ρ′j ∈ [0, (q+ 1)βnq], so that ρ̂′ = α2n

q+δ. Then, ρ′ ≤ (1 +α1)ρ̂′ = (1 +α1)α2n
q+δ, with high

probability, by the same Chernoff bound as above. Now the upper bound of (12) follows
from ρ ≤ ρ′, which holds for any instantiation of the random sample R.

We proceed to formalize the idea above. For simplicity of notation, we let B = (q+ 1)βnq
and a2 = α2/((q + 1)β) throughout the proof. For each sample l, l = 1, . . . , r, we let Xl

be a random variable distributed in [0, 1]. For each index j, if the l-th sample is j, Xl

becomes ρj/B, if xj = 1, and becomes 0, otherwise. Therefore, E[Xl] = ρ̂/(Bn). We
let X =

∑r
l=1Xl. Namely, X is the sum of r independent random variables identically

distributed in [0, 1]. Using that r = γn1−δ lnn, we have that E[X] = γρ̂ lnn/(Bnδ) and that
ρ = BnX/r = BnδX/(γ lnn).

We distinguish between the case where ρ̂ ≥ a2Bn
δ and the case where ρ̂ < a2Bn

δ. We
start with the case where ρ̂ ≥ a2Bn

δ. Then, by Chernoff bounds3,

P[|X − E[X]| > α1E[X]] ≤ 2 exp
(
−α

2
1γρ̂ lnn
3Bnδ

)
≤ 2 exp(−α2

1a2γ lnn/3) ≤ 2/nd+1

For the second inequality, we use that ρ̂ ≥ a2Bn
δ. For the last inequality, we use that

γ ≥ 3(d+ 1)/(α2
1a2) = 3(d+ 1)(q + 1)β/(α2

1α2), since a2 = α2/((q + 1)β). Therefore, with
probability at least 1− 2/nd+1,

(1− α1)γρ̂ lnn
Bnδ

≤ X ≤ (1 + α1)γρ̂ lnn
Bnδ

Multiplying everything by Bn/r = Bnδ/(γ lnn), we have that with probability at least
1− 2/nd+1, (1− α1)ρ̂ ≤ ρ ≤ (1 + α1)ρ̂, which clearly implies (12).

We proceed to the case where ρ̂ < a2Bn
δ. Then, (1 − α1)ρ̂ < (1 − α1)a2Bn

δ =
(1− α1)α2n

q+δ. Therefore, since ρ ≥ 0, because ρj ≥ 0, for all j ∈ N , the lower bound of
(12) on ρ is trivial. For the upper bound, we show that with probability at least 1− 1/nd+1,
ρ ≤ (1 + α1)a2Bn

δ = (1 + α1)α2n
q+δ. To this end, we consider a sequence (ρ′j)j∈N so that

ρj ≤ ρ′j ≤ (q + 1)βnq, for all j ∈ N , and ρ̂′ =
∑
j∈N ρ

′
jxj = a2Bn

q+δ. We can obtain
such a sequence by increasing an appropriate subset of ρj up to (q + 1)βnq (if ~x does not
contain enough 1’s, we may also change some xj from 0 to 1). For the new sequence, we let
ρ′ = (n/r)

∑
j∈R ρ

′
jxj and observe that ρ ≤ ρ′, for any instantiation of the random sample

R. Therefore,

P[ρ > (1 + α1)α2n
q+δ] ≤ P[ρ′ > (1 + α1)ρ̂′] ,

where we use that ρ̂′ = a2Bn
δ = α2n

q+δ. By the choice of ρ̂′, we can apply the same Chernoff
bound as above and obtain that P[ρ′ > (1 + α1)ρ̂′] ≤ 1/nd+1. J

3 We use the following bound (see e.g., [19, Theorem 1.1]): Let Y1, . . . , Yk be independent random
variables identically distributed in [0, 1] and let Y =

∑k

j=1 Yj . Then for all ε ∈ (0, 1), P[|Y − E[Y]| >
εE[Y]] ≤ 2 exp(−ε2 E[Y]/3).

20 Sub-exponential Approximation Schemes for CSPs

Lemma 12 is enough for Max-CUT and graph optimization problems, where the estimations
ρi1...id−`j are non-negative. For arbitrary smooth polynomials however, the estimations
ρi1...id−`j may also be negative. So, we need a generalization of Lemma 12 that deals with
both positive and negative estimations. To this end, given a sequence of estimations (ρj)j∈N ,
with ρj ∈ [−(q + 1)βnq, (q + 1)βnq], we let ρ+

j = max{ρj , 0} and ρ−j = min{ρj , 0}, for all
j ∈ N . Namely, ρ+

j (resp. ρ−j) is equal to ρj , if ρj is positive (resp. negative), and 0,
otherwise. Moreover, we let

ρ+ = (n/r)
∑
j∈R

ρ+
j xj , ρ̂+ =

∑
j∈N

ρ+
j xj , ρ− = (n/r)

∑
j∈R

ρ−j xj and ρ̂− =
∑
j∈N

ρ−j xj

Applying Lemma 12 once for positive estimations and once for negative estimations (with
the absolute values of ρ−j , ρ− and ρ̂−, instead), we obtain that with probability at least
1− 4/nd+1, the following inequalities hold:

(1− α1)ρ̂+ − (1− α1)α2n
q+δ ≤ ρ+ ≤ (1 + α1)ρ̂+ + (1 + α1)α2n

q+δ

(1 + α1)ρ̂− − (1 + α1)α2n
q+δ ≤ ρ− ≤ (1− α1)ρ̂− + (1− α1)α2n

q+δ

Using that ρ = ρ+ + ρ− and that ρ̂ = ρ̂+ + ρ̂−, we obtain the following generalization of
Lemma 12.

I Lemma 13 (Sampling Lemma). Let ~x ∈ {0, 1}n and let (ρj)j∈N be any sequence such that
for some integer q ≥ 0 and some constant β ≥ 1, |ρj | ≤ (q + 1)βnq, for all j ∈ N . For all
integers d ≥ 1 and for all α1, α2 > 0, we let γ = Θ(dqβ/(α2

1α2)) and let R be a multiset of
r = γn1−δ lnn indices chosen uniformly at random with replacement from N , where δ ∈ (0, 1]
is any constant. If ρ = (n/r)

∑
j∈R ρjxj , ρ̂ =

∑
j∈N ρjxj and ρ̄ =

∑
j∈N |ρj |, with probability

at least 1− 4/nd+1,

ρ̂− α1ρ̄− 2α2n
q+δ ≤ ρ ≤ ρ̂+ α1ρ̄+ 2α2n

q+δ (13)

For all constants ε1, ε2 > 0 and all constants c, we use Lemma 13 with α1 = ε1 and
α2 = ε2/2 and obtain that for γ = Θ(dqβ/(ε21ε2)), with probability at least 1− 4/nd+1, the
following holds for any binary vector ~x and any sequence of estimations (ρj)j∈N produced
by Algorithm 1 with ~s = ~xR (note that in Algorithm 1, the additive constant c is included in
the estimation ρ when its value is computed from the estimations ρj).

ρ︷ ︸︸ ︷
c+ n

r

∑
j∈R

ρjxj −ε1

ρ̄︷ ︸︸ ︷∑
j∈N
|ρj | −ε2nq+δ ≤ c+

∑
j∈N

xjρj ≤

ρ︷ ︸︸ ︷
c+ n

r

∑
j∈R

ρjxj +ε1

ρ̄︷ ︸︸ ︷∑
j∈N
|ρj |+ε2nq+δ

(14)

Now, let us consider (d-IP) with the estimations computed by Algorithm 1 with ~s = ~x∗R (i.e.,
with the optimal assignment for the variables in the random sample R). Then, using (14)
and taking the union bound over all constraints, which are at most 2nd−1, we obtain that
with probability at least 1− 8/n2, the optimal solution ~x∗ is a feasible solution to (d-IP).
So, from now on, we condition on the high probability event that ~x∗ is a feasible solution to
(d-IP) and to (d-LP).

B.4 The Value of Feasible Solutions to (d-LP)
From now on, we focus on estimations ~ρ produced by Estimate(p(~x), d, R,~s), where R is a
random sample from N and ~s = ~x∗R, and the corresponding programs (d-IP) and (d-LP).

D. Fotakis, M. Lampis and V. Th. Paschos 21

The analysis in Section B.2 implies that ~x∗ is a feasible solution to (d-IP) (and to (d-LP)),
with high probability.

We next show that for any feasible solution ~y of (d-LP) and any polynomial q(~x) in the
decomposition of p(~x), the value of q(~y) is close to the value of c+

∑
j yjρj in the constraint

of (d-LP) corresponding to q. Applying Lemma 14, we show below (see Lemma 15) that
p(~y) is close to c+

∑
j∈N yjρj , i.e., to the objective value of ~y in (d-LP) and (d-IP), for any

feasible solution ~y.
To state and prove the following lemma, we introduce cumulative absolute value estimations

τ̄i1...id−` , defined recursively as follows: For level ` = 1 and each tuple (i1, . . . , id−1) ∈ Nd−1,
we let τ̄i1...id−1 = ρ̄i1...id−1 =

∑
j∈N |ci1...id−1j |. For each level ` ≥ 2 of the decomposition

of p(~x) and each tuple (i1, . . . , id−`) ∈ Nd−`, we let τ̄i1...id−` = ρ̄i1...id−` +
∑
j∈N τ̄i1...id−`j .

Namely, each cumulative absolute value estimation τ̄i1...id−` is equal to the sum of all absolute
value estimations that appear below the root of the decomposition tree of pi1...id−`(~x).

I Lemma 14. Let q(~x) be any `-degree polynomial appearing in the decomposition of p(~x), let
q(~x) = c+

∑
j∈N xjqj(~x) be the decomposition of q(~x), let ρ and {ρj}j∈N be the estimations

of q and {qj}j∈N produced by Algorithm 1 and used in (d-LP), and let τ̄ and {τ̄j}j∈N be the
corresponding cumulative absolute value estimations. Then, for any feasible solution ~y of
(d-LP)

ρ− ε1τ̄ − `ε2n`−1+δ ≤ q(~y) ≤ ρ+ ε1τ̄ + `ε2n
`−1+δ (15)

Proof. The proof is by induction on the degree `. The basis, for ` = 1, is trivial, because
in the decomposition of q(~x), each qj(~x) is a constant cj . Therefore, Algorithm 1 outputs
ρj = cj and

q(~y) = c+
∑
j∈N

yjqj(~x) = c+
∑
j∈N

yjcj ∈ ρ± ε1τ̄ ± ε2nδ ,

where the inclusion follows from the feasibility of ~y for (d-LP). We also use that at level
` = 1, τ̄ = ρ̄ (i.e., cumulative absolute value estimations and absolute value estimations are
identical).

We inductively assume that (15) is true for all degree-(` − 1) polynomials qj(~x) that
appear in the decomposition of q(~x) and establish the lemma for q(~x) = c+

∑
j∈N xjqj(~x).

We have that:

q(~y) = c+
∑
j∈N

yjqj(~y) ∈ c+
∑
j∈N

yj
(
ρj ± ε1τ̄j ± (`− 1)ε2n`−2+δ)

=

c+
∑
j∈N

yjρj

± ε1 ∑
j∈N

yj τ̄j ± (`− 1)ε2
∑
j∈N

yjn
`−2+δ

∈
(
ρ± ε1ρ̄± ε2n`−1+δ)± ε1 ∑

j∈N
τ̄j ± (`− 1)ε2n`−1+δ

∈ ρ± ε1τ̄ ± `ε2n`−1+δ

The first inclusion holds by the induction hypothesis. The second inclusion holds because
(i) ~y is a feasible solution to (d-LP) and thus, c +

∑
j∈N yjρj satisfies the corresponding

constraint; (ii)
∑
j∈N yj τ̄j ≤

∑
j∈N τ̄j ; and (iii)

∑
j∈N yj ≤ n. The last inclusion holds

because τ̄ = ρ̄+
∑
j∈N τ̄j , by the definition of cumulative absolute value estimations. J

Using Lemma 14 and the notion of cumulative absolute value estimations, we next show that
p(~y) is close to c+

∑
j∈N yjρj , for any feasible solution ~y.

22 Sub-exponential Approximation Schemes for CSPs

I Lemma 15. Let p(~x) = c +
∑
j∈N xjpj(~x) be the decomposition of p(~x), let {ρj}j∈N be

the estimations of {pj}j∈N produced by Algorithm 1 and used in (d-LP), and let {τ̄j}j∈N be
the corresponding cumulative absolute value estimations. Then, for any feasible solution ~y of
(d-LP)

p(~y) ∈ c+
∑
j∈N

yjρj ± ε1
∑
j∈N

τ̄j ± (d− 1)ε2nd−1+δ (16)

Proof. By Lemma 14, for any polynomial pj , pj(~y) ∈ ρj ± ε1τ̄j ± (d− 1)ε2nd−2+δ. Therefore,

p(~y) = c+
∑
j∈N

yjpj(~y) ∈ c+
∑
j∈N

yj
(
ρj ± ε1τ̄j ± (d− 1)ε2nd−2+δ)

= c+
∑
j∈N

yjρj ± ε1
∑
j∈N

yj τ̄j ± (d− 1)ε2
∑
j∈N

yjn
d−2+δ

∈ c+
∑
j∈N

yjρj ± ε1
∑
j∈N

τ̄j ± (d− 1)ε2nd−1+δ

The second inclusion holds because yj ∈ [0, 1] and
∑
j∈N yj ≤ n. J

B.5 Randomized Rounding of the Fractional Optimum
The last step is to round the fractional optimum ~y∗ = (y∗1 , . . . , y∗n) of (d-LP) to an integral
solution ~z = (z1, . . . , zn) that almost satisfies the constraints of (d-IP) and has an expected
objective value for (d-IP) very close to the objective value of ~y∗.

To this end, we use randomized rounding, as in [28]. In particular, we set independently
each zj to 1, with probability y∗j , and to 0, with probability 1− y∗j . The analysis is based on
the following lemma, whose proof is similar to the proof of Lemma 12.

I Lemma 16. Let ~y ∈ [0, 1]n be any fractional vector and let ~z ∈ {0, 1}n be an integral
vector obtained from ~y by randomized rounding. Also, let (ρj)j∈N be any sequence such that
for some integer q ≥ 0 and some constant β ≥ 1, ρj ∈ [0, (q + 1)βnq], for all j ∈ N . For all
integers k ≥ 1 and for all constants α, δ > 0 (and assuming that n is sufficiently large), if
ρ =

∑
j∈N ρjzj and ρ̂ =

∑
j∈N ρjyj, with probability at least 1− 2/nk+1,

(1− α)ρ̂− (1− α)αnq+δ ≤ ρ ≤ (1 + α)ρ̂+ (1 + α)αnq+δ (17)

Proof. We first note that E[ρ] = ρ̂. If ρ̂ = Ω(nq lnn), then |ρ− ρ̂| ≤ αρ̂, with high probability,
by standard Chernoff bounds. If ρ̂ = o(nq lnn), the lower bound in (17) becomes trivial,
because ρ ≥ 0 and o(nq lnn) < αnq+δ, if n is sufficiently large. As for the upper bound, we
increase the coefficients ρj to ρ′j ∈ [0, (q + 1)βnq], so that ρ̂′ = Θ(nq lnn). Then, the upper
bound is shown as in the second part of the proof of Lemma 12.

We proceed to the formal proof. For simplicity of notation, we let B = (q + 1)βnq
throughout the proof. For j = 1, . . . , n, we let Xj = zjρj/B be a random variable distributed
in [0, 1]. Each Xj independently takes the value ρj/B, with probability yj , and 0, otherwise.
We let X =

∑n
j=1Xj be the sum of these independent random variables. Then, E[X] = ρ̂/B

and X =
∑
j∈N zjρj/B = ρ/B.

As in Lemma 12, we distinguish between the case where ρ̂ ≥ 3(k + 1)B lnn/α2 and the
case where ρ̂ < 3(k + 1)B lnn/α2. We start with the case where ρ̂ ≥ 3(k + 1)B lnn/α2.
Then, by Chernoff bounds (we use the bound in footnote 3),

P[|X − E[X]| > αE[X]] ≤ 2 exp
(
−α

2ρ̂

3B

)
≤ 2 exp(−(k + 1) lnn) ≤ 2/nk+1 ,

D. Fotakis, M. Lampis and V. Th. Paschos 23

where we use that ρ̂ ≥ 3(k + 1)B lnn/α2. Therefore, with probability at least 1− 2/nk+1,

(1− α)ρ̂/B ≤ X ≤ (1 + α)ρ̂/B

Multiplying everything by B and using that X = ρ/B, we obtain that with probability at
least 1− 2/nk+1, (1− α)ρ̂ ≤ ρ ≤ (1 + α)ρ̂, which implies (17).

We proceed to the case where ρ̂ < 3(k + 1)B lnn/α2. Then, assuming that n is large
enough that nδ/ lnn > 3(k + 1)(q + 1)β/α3, we obtain that (1 − α)ρ̂ < (1 − α)αnq+δ.
Therefore, since ρ ≥ 0, because ρj ≥ 0, for all j ∈ N , the lower bound of (17) on ρ is trivial.
For the upper bound, we show that with probability at least 1− 1/nk+1, ρ ≤ (1 + α)αnq+δ.
To this end, we consider a sequence (ρ′j)j∈N so that ρj ≤ ρ′j ≤ (q + 1)βnq, for all j ∈ N , and

ρ̂′ =
∑
j∈N

ρ′jyj = 3(k + 1)B lnn
α2

We can obtain such a sequence by increasing an appropriate subset of ρj up to (q+ 1)βnq (if∑
j∈N ~y is not large enough, we may also increase some yj up to 1). For the new sequence,

we let ρ′ =
∑
j∈R ρ

′
jzj and observe that ρ ≤ ρ′, for any instantiation of the randomized

rounding (if some yj are increased, the inequality below follows from a standard coupling
argument). Therefore,

P[ρ > (1 + α)αnq+δ] ≤ P[ρ′ > (1 + α)ρ̂′] ,

where we use that ρ̂′ = 3(k + 1)B lnn/α2 and that αnδ > 3(k + 1)(q + 1)β lnn/α2, which
holds if n is sufficiently large. By the choice of ρ̂′, we can apply the same Chernoff bound as
above and obtain that P[ρ′ > (1 + α)ρ̂′] ≤ 1/nk+1. J

Lemma 16 implies that if the estimations ρj are non-negative, the rounded solution ~z

is almost feasible for (d-IP) with high probability. But, as in Section B.2, we need a
generalization of Lemma 16 that deals with both positive and negative estimations. To
this end, we work as in the proof of Lemma 13. Given a sequence of estimations (ρj)j∈N ,
with ρj ∈ [−(q + 1)βnq, (q + 1)βnq], we define ρ+

j = max{ρj , 0} and ρ−j = min{ρj , 0}, for
all j ∈ N . Moreover, we let ρ+ =

∑
j∈N ρ

+
j zj , ρ̂+ =

∑
j∈N ρ

+
j yj , ρ− =

∑
j∈N ρ

−
j zj and

ρ̂− =
∑
j∈N ρ

−
j yj . Applying Lemma 16, once for positive estimations and once for negative

estimations (with the absolute values of ρ−j , ρ− and ρ̂−, instead), we obtain that with
probability at least 1− 4/nk+1,

(1− α)ρ̂+ − (1− α)αnq+δ ≤ ρ+ ≤ (1 + α)ρ̂+ + (1 + α)αnq+δ

(1 + α)ρ̂− − (1 + α)αnq+δ ≤ ρ− ≤ (1− α)ρ̂− + (1− α)αnq+δ

Using that ρ = ρ+ + ρ− and that ρ̂ = ρ̂+ + ρ̂−, we obtain the following generalization of
Lemma 16.

I Lemma 17 (Rounding Lemma). Let ~y ∈ [0, 1]n be any fractional vector and let ~z ∈ {0, 1}n
be an integral vector obtained from ~y by randomized rounding. Also, let (ρj)j∈N be any
sequence such that for some integer q ≥ 0 and some constant β ≥ 1, |ρj | ≤ (q + 1)βnq, for
all j ∈ N . For all integers k ≥ 1 and for all constants α, δ > 0 (and assuming that n is
sufficiently large), if ρ =

∑
j∈N ρjzj, ρ̂ =

∑
j∈N ρjyj and ρ̄ =

∑
j∈N |ρj |, with probability at

least 1− 4/nk+1,

ρ̂− αρ̄− 2αnq+δ ≤ ρ ≤ ρ̂+ αρ̄+ 2αnq+δ (18)

24 Sub-exponential Approximation Schemes for CSPs

For all constants ε1, ε2 > 0 and all constants c, we can use Lemma 17 with α = max{ε1, ε2/2}
and obtain that for all integers k ≥ 1, with probability at least 1 − 4/nk+1, the following
holds for the binary vector ~z obtained from a fractional vector ~y by randomized rounding.

c+
∑
j∈N

yjρj − ε1

ρ̄︷ ︸︸ ︷∑
j∈N
|ρj | −ε2nq+δ ≤ c+

∑
j∈N

zjρj ≤ c+
∑
j∈N

yjρj + ε1

ρ̄︷ ︸︸ ︷∑
j∈N
|ρj |+ε2nq+δ (19)

Using (19) with k = 2(d+ 1), the fact that ~y∗ is a feasible solution to (d-LP), and the fact
that (d-LP) has at most 2nd−1 constraints, we obtain that ~z is an almost feasible solution to
(d-IP) with high probability. Namely, with probability at least 1− 8/nd+4, the integral vector
~z obtained from the fractional optimum ~y∗ by randomized rounding satisfies the following
system of inequalities for all levels ` ≥ 1 and all tuples (i1, . . . , id−`) ∈ Nd−` (for each level
` ≥ 1, we use q = `− 1, since |ρi1...id−`j | ≤ `βn`−1 for all j ∈ N).

ci1...id−` +
∑
j∈N

zjρi1...id−`j ∈ ρi1...id−` ± 2ε1ρ̄i1...id−` ± 2ε2n`−1+δ (20)

Having established that ~z is an almost feasible solution to (d-IP), with high probability,
we proceed as in Section 3.4. By linearity of expectation, E[

∑
j∈N zjρj] =

∑
j∈V y

∗
j ρj .

Moreover, the probability that ~z does not satisfy (20) for some level ` ≥ 1 and some tuple
(i1, . . . , id−`) ∈ Nd−` is at most 8/nd+4 and the objective value of (d-IP) is at most 2(d+1)βnd,
because, due to the β-smoothness property of p(~x), |p(~x∗)| ≤ (d + 1)βnd. Therefore, the
expected value of a rounded solution ~z that satisfies the family of inequalities (20) for all
levels and tuples is least

∑
j∈V y

∗
j ρj − 1 (assuming that n is sufficiently large). Using the

method of conditional expectations, as in [27], we can find in (deterministic) polynomial time
an integral solution ~z that satisfies the family of inequalities (20) for all levels and tuples
and has c +

∑
j∈V zjρj ≥ c − 1 +

∑
j∈V y

∗
j ρj . As in Section 3.4, we sometimes abuse the

notation and refer to such an integral solution ~z (computed deterministically) as the integral
solution obtained from ~y∗ by randomized rounding.

The following lemmas are similar to Lemma 14 and Lemma 15. They use the notion of
cumulative absolute value estimations and show that the objective value p(~z) of the rounded
solution ~z is close to the optimal value of (d-LP).

I Lemma 18. Let ~y∗ be an optimal solution of (d-LP) and let ~z be the integral solution
obtained from ~y∗ by randomized rounding (and the method of conditional expectations). Then,
for any level ` ≥ 1 in the decomposition of p(~x) and any tuple (i1, . . . , id−`) ∈ Nd−`,

pi1...id−`(~z) ∈ ρi1...id−` ± 2ε1τ̄i1...id−` ± 2`ε2n`−1+δ (21)

Proof. The proof is by induction on the degree ` and similar to the proof of Lemma 14. The
basis, for ` = 1, is trivial, because in the decomposition of p(~x), each pi1...id(~x) is a constant
ci1...id . Therefore, ρi1...id = ci1...id and

pi1...id−1(~z) = c+
∑
j∈N

zjpi1...id−1j(~z) = c+
∑
j∈N

zjci1...id−1j ∈ ρi1...id−1±2ε1τ̄i1...id−1±2ε2nδ ,

where the inclusion follows from the approximate feasibility of ~z for (d-LP), as expressed by
(20). We also use that at level ` = 1, τ̄i1...id−1 = ρ̄i1...id−1 .

We inductively assume that (21) is true for the values of all degree-(`− 1) polynomials
pi1...id−`j at ~z and establish the lemma for pi1...id−`(~z) = ci1...id−` +

∑
j∈N zjpi1...id−`j(~z). We

D. Fotakis, M. Lampis and V. Th. Paschos 25

have that:

pi1...id−`(~z) = ci1...id−` +
∑
j∈N

zjpi1...id−`j(~z)

∈ ci1...id−` +
∑
j∈N

zj
(
ρi1...id−`j ± 2ε1τ̄i1...id−`j ± 2(`− 1)ε2n`−2+δ)

=

ci1...id−` +
∑
j∈N

zjρi1...id−`j

± 2ε1
∑
j∈N

zj τ̄i1...id−`j ± 2(`− 1)ε2
∑
j∈N

zjn
`−2+δ

∈
(
ρi1...id−` ± 2ε1ρ̄i1...id−` ± 2ε2n`−1+δ)± 2ε1

∑
j∈N

τ̄i1...id−`j ± 2(`− 1)ε2n`−1+δ

∈ ρi1...id−` ± 2ε1τ̄i1...id−` ± 2`ε2n`−1+δ

The first inclusion holds by the induction hypothesis. The second inclusion holds because:
(i) ~z is an approximately feasible solution to (d-IP) and thus, ci1...id−` +

∑
j∈N zjρi1...id−`j

satisfies (20); (ii)
∑
j∈N zj τ̄i1...id−`j ≤

∑
j∈N τ̄i1...id−`j ; and (iii)

∑
j∈N zj ≤ n. The last

inclusion holds because τ̄i1...id−` = ρ̄i1...id−` +
∑
j∈N τ̄i1...id−`j , by the definition of cumulative

absolute value estimations. J

I Lemma 19. Let ~y∗ be an optimal solution of (d-LP) and let ~z be the integral solution
obtained from ~y∗ by randomized rounding (and the method of conditional expectations). Then,

p(~z) ∈ c+
∑
j∈N

zjρj ± 2ε1
∑
j∈N

τ̄j ± 2(d− 1)ε2nd−1+δ (22)

Proof. By Lemma 18, for any polynomial pj appearing in the decomposition of p(~x), we
have that pj(~z) ∈ ρj ± 2ε1τ̄j ± 2(d− 1)ε2nd−2+δ. Therefore,

p(~z) = c+
∑
j∈N

zjpj(~z) ∈ c+
∑
j∈N

zj
(
ρj ± 2ε1τ̄j ± 2(d− 1)ε2nd−2+δ)

= c+
∑
j∈N

zjρj ± 2ε1
∑
j∈N

zj τ̄j ± 2(d− 1)ε2
∑
j∈N

zjn
d−2+δ

∈ c+
∑
j∈N

zjρj ± 2ε1
∑
j∈N

τ̄j ± 2(d− 1)ε2nd−1+δ

The second inclusion holds because zj ∈ {0, 1} and
∑
j∈N zj ≤ n. J

B.6 Cumulative Absolute Value Estimations of δ-Bounded Polynomials
To bound the total error of the algorithm, in Section B.7, we need an upper bound on∑

j∈N τ̄j , i.e., on the sum of the cumulative absolute value estimations at the top level of
the decomposition of a β-smooth δ-bounded polynomial p(~x). In this section, we show that∑
j∈N τ̄j = O(d2βnd−1+δ). This upper bound is an immediate consequence of an upper

bound of O(dβnd−1+δ) on the sum of the absolute value estimations, for each level ` of the
decomposition of p(~x).

For simplicity and clarity, we assume, in the statements of the lemmas below and in
their proofs, that the hidden constant in the definition of p(~x) as a δ-bounded polynomial is
1. If this constant is some κ ≥ 1, we should multiply the upper bounds of Lemma 20 and
Lemma 21 by κ.

26 Sub-exponential Approximation Schemes for CSPs

I Lemma 20. Let p(~x) be an n-variate degree-d β-smooth δ-bounded polynomial. Also
let ρi1...id−` and ρ̄i1...id−` be the estimations and absolute value estimations, for all levels
` ∈ {1, . . . , d− 1} of the decomposition of p(~x) and all tuples (i1, . . . , id−`) ∈ Nd−`, computed
by Algorithm 1 and used in (d-LP) and (d-IP). Then, for each level ` ≥ 1, the sum of the
absolute value estimations is:∑

(i1,...,id−`)∈Nd−`
ρ̄i1...id−` ≤ `βnd−1+δ (23)

Proof. The proof is by induction on the level ` of the decomposition. For the basis, we recall
that for ` = 1, level-1 absolute value estimations are defined as

ρ̄i1...id−1 =
∑
j∈N
|ρi1...id−1j | =

∑
j∈N
|ci1...id−1j |

This holds because, in Algorithm 1, each level-0 estimation ρi1...id−1id is equal to the coefficient
ci1...id−1id of the corresponding degree-d monomial. Hence, if p(~x) is a degree-d β-smooth
δ-bounded polynomial, we have that∑

(i1,...,id−1)∈Nd−1

ρ̄i1...id−1 =
∑

(i1,...,id−1,j)∈Nd
|ci1...id−1j | ≤ βnd−1+δ (24)

The upper bound holds because by the definition of degree-d β-smooth δ-bounded polynomials,
for each ` ∈ {0, . . . , d}, the sum, over all monomials of degree d− `, of the absolute values
of their coefficients is O(βnd−1+δ) (and assuming that the hidden constant is 1, at most
βnd−1+δ). In (24), we use this upper bound for ` = 0 and for the absolute values of the
coefficients of all degree-d monomials in the expansion of p(~x).

For the induction step, we consider any level ` ≥ 2. We observe that any binary vector ~x
satisfies the level-(`−1) constraints of (d-LP) and (d-IP) with certainty, if for each level-(`−1)
estimation,

ρi1...id−`j ≤ ci1...id−`j +
∑
l∈N

|ρi1...id−`jl| = ci1...id−`j + ρ̄i1...id−`j

We also note that we can easily enforce such upper bounds on the estimations computed
by Algorithm 1. Since each level-` absolute value estimation is defined as ρ̄i1...id−` =∑
j∈N |ρi1...id−`j |, we obtain that for any level ` ≥ 2,∑
(i1,...,id−`)∈Nd−`

ρ̄i1...id−` ≤
∑

(i1,...,id−`,j)∈Nd−`+1

(
|ci1...id−`j |+ ρ̄i1...id−`j

)
≤ βnd−1+δ + (`− 1)βnd−1+δ = `βnd−1+δ

For the second inequality, we use the induction hypothesis and that since p(~x) is β-smooth
and δ-bounded, the sum, over all monomials of degree d − ` + 1, of the absolute values
|ci1...id−`j | of their coefficients ci1...id−`j is at most βnd−1+δ. We also use the fact that the
estimations are computed over the decomposition tree of the polynomial p(~x). Hence, each
coefficient ci1...id−`j is included only once in the sum. J

I Lemma 21. Let p(~x) be an n-variate degree-d β-smooth δ-bounded polynomial. Also let
τ̄i1...id−` be the cumulative absolute value estimations, for all levels ` ∈ {1, . . . , d− 1} of the
decomposition of p(~x) and all tuples (i1, . . . , id−`) ∈ Nd−`, corresponding to the estimations
ρi1...id−` computed by Algorithm 1 and used in (d-LP) and (d-IP). Then,∑

j∈N
τ̄j ≤ d(d− 1)βnd−1+δ/2 (25)

D. Fotakis, M. Lampis and V. Th. Paschos 27

Proof. Using induction on the level ` of the decomposition and Lemma 20, we show that for
each level ` ≥ 1, the sum of the cumulative absolute value estimations is:∑

(i1,...,id−`)∈Nd−`
τ̄i1...id−` ≤ (`+ 1)`βnd−1+δ/2 (26)

The conclusion of the lemma is obtained by applying (26) for the first level of the decomposi-
tion of p(~x), i.e., for ` = d− 1.

For the basis, we recall that for ` = 1, level-1 cumulative absolute value estimations are
defined as τ̄i1...id−1 = ρ̄i1...id−1 . Using Lemma 20, we obtain that:∑

(i1,...,id−1)∈Nd−1

τ̄i1...id−1 =
∑

(i1,...,id−1)∈Nd−1

ρ̄i1...id−1 ≤ βnd−1+δ

We recall (see also Section B.4) that for each ` ≥ 2, level-` cumulative absolute value
estimations are defined as τ̄i1...id−` = ρ̄i1...id−` +

∑
j∈N τ̄i1...id−`j . Summing up over all tuples

(i1, . . . , id−`) ∈ Nd−`, we obtain that for any level ` ≥ 2,

∑
(i1,...,id−`)∈Nd−`

τ̄i1...id−` =
∑

(i1,...,id−`)∈Nd−`

ρ̄i1...id−` +
∑
j∈N

τ̄i1...id−`j

=

∑
(i1,...,id−`)∈Nd−`

ρ̄i1...id−` +
∑

(i1,...,id−`,j)∈Nd−`−1

τ̄i1...id−`j

≤ `βnd−1+δ + `(`− 1)βnd−1+δ/2 = (`+ 1)`βnd−1+δ/2 ,

where the inequality follows from Lemma 20 and from the induction hypothesis. J

B.7 Concluding the Proof of Theorem 5
Therefore, for any constant ε > 0, if p(~x) is an n-variate degree-d β-smooth δ-bounded
polynomial, the algorithm described in the previous sections computes an integral solution ~z
that approximately maximizes p(~x). Specifically, setting ε1 = ε/(4d(d−1)β) ε2 = ε/(8(d−1)),
p(~z) satisfies the following with probability at least 1− 8/n2 :

p(~z) ≥

c+
∑
j∈N

y∗j ρj

− ε

2d(d− 1)β
∑
j∈N

τ̄j − εnd−1+δ/4

≥

c+
∑
j∈N

y∗j ρj

− εnd−1+δ/2

≥

c+
∑
j∈N

x∗jρj

− εnd−1+δ/2

≥

p(~x∗)− ε

4d(d− 1)β
∑
j∈N

τ̄j − εnd−1+δ/8

− εnd−1+δ/2

≥ p(~x∗)− εnd−1+δ

The first inequality follows from Lemma 19. The second inequality follows from the hy-
pothesis that p(~x) is β-smooth and δ-bounded. Then Lemma 21 implies that

∑
j∈N τ̄j ≤

d(d−1)
2 βnd−1+δ . As in Section B.6, we assume that the constant hidden in the definition of

28 Sub-exponential Approximation Schemes for CSPs

p(~x) as a δ-bounded polynomial is 1. If this constant is some κ ≥ 1, we should also divide
ε1 by κ. The third inequality holds because ~y∗ is an optimal solution to (d-LP) and ~x∗ is
a feasible solution to (d-LP). The fourth inequality follows from Lemma 15. For the last
inequality, we again use Lemma 21. This concludes the proof of Theorem 5.

C Missing Proofs for k-Densest Subgraph

C.1 Proof of Lemma 6

Using the decomposition of p(~y) and the formulation of (LP′), we obtain that:

p(~y) =
∑
j∈V

yj
∑

i∈N(j)

yi ∈
∑
j∈V

yj

(
(1± ε1)ρj ± ε2nδ/3

)
= (1± ε1)

∑
j∈V

yjρj ± ε2nδ/3
∑
j∈V

yj

∈ (1± ε1)
∑
j∈V

yjρj ± ε2n1+δ/3

The first inclusion holds because ~y is feasible for (LP′) and thus,
∑
i∈N(j) yi ∈ (1± ε1)ρj ±

ε2n
δ/3, for all j. The second inclusion holds because

∑
j∈V yj ≤ n. J

C.2 Proof of Lemma 7

We obtain that with probability at least 1− 2/n8,

k − 2
√
n ln(n) ≤

∑
j∈V

zi ≤ k + 2
√
n ln(n) (27)

Specifically, the inequality above follows from the Chernoff bound in footnote 1, with
t = 2

√
n ln(n), since E[

∑
i∈N(j) zj] = k. Moreover, applying Lemma 16 with q = 0, β = 1,

k = 7, δ/3 (instead of δ) and α = max{ε1, ε2/2}, and using that ~y∗ is a feasible solution to
(LP′) and that ε1 ∈ (0, 1), we obtain that with probability at least 1− 2/n8, for each vertex
j,

(1− ε1)2ρj − 2ε2nδ/3 ≤
∑

i∈N(j)

zi ≤ (1 + ε1)2ρj + 2ε2nδ/3 (28)

By the union bound, the integral solution ~z obtained from ~y∗ by randomized rounding
satisfies (27) and (28), for all vertices j, with probability at least 1− 3/n7.

By linearity of expectation, E[
∑
j∈V zjρj] =

∑
j∈V y

∗
j ρj . Moreover, since the probability

that ~z does not satisfy either (27) or (28), for some vertex j, is at most 3/n7, and since the
objective value of (IP′) is at most n2, the expected value of a rounded solution ~z that (27)
and (28), for all vertices j, is least

∑
j∈V y

∗
j ρj − 1 (assuming that n ≥ 2). As in Max-CUT,

such an integral solution ~z can be found in (deterministic) polynomial time using the method
of conditional expectations (see [27]).

Using the decomposition of p(~y) and an argument similar to that in the proof of Lemma 6,

D. Fotakis, M. Lampis and V. Th. Paschos 29

we obtain that:

p(~z) =
∑
j∈V

zj
∑

i∈N(j)

zi ∈
∑
j∈V

zj

(
(1± ε1)2ρj ± 2ε2nδ/3

)
= (1± ε1)2

∑
j∈V

zjρj ± 2ε2nδ/3
∑
j∈V

zj

∈ (1± ε1)2
∑
j∈V

zjρj ± 2ε2n1+δ/3

∈ (1± ε1)2
∑
j∈V

y∗j ρj ± 3ε2n1+δ/3

The first inclusion holds because ~z satisfies (28) for all j ∈ V . For the second inclusion, we
use that

∑
j∈V zj ≤ n. For the last inclusion, we recall that

∑
j∈V zjρj ≥

∑
j∈V y

∗
j ρj − 1

and assume that n is sufficiently large. J

C.3 Proof of Theorem 8
For ε > 0, if G is δ-almost sparse and k = Ω(n1−δ/3), the algorithm described computes
estimations ρj such that the densest subgraph ~x∗ is a feasible solution to (IP′) whp. Hence,
by the analysis given, the algorithm computes a slightly infeasible solution approximating
the number of edges in the densest subgraph with k vertices within a multiplicative factor of
(1− ε1)2 and an additive error of ε2n1+δ/3. Setting ε1 = ε2 = ε/8, the number of edges in
the subgraph induced by ~z satisfies the following with probability at least 1− 2/n2 :

p(~z) ≥ (1− ε1)2
∑
j∈V

y∗j ρj − 3ε2n1+δ/3 ≥ (1− ε1)2
∑
j∈V

x∗jρj − 3ε2n1+δ/3

≥ p(~x∗)− εn1+δ/3 ≥ (1− ε)p(~x∗)

The first inequality follows from Lemma 7, the second inequality holds because ~y∗ is the
optimal solution to (LP) and ~x∗ is feasible for (LP), the third inequality follows from Lemma 6
and the fourth inequality holds because the optimal cut has at least Ω(n1+δ/3) edges.

This solution is infeasible by at most 2
√
n lnn = o(k) vertices and can become feasible

by adding or removing at most so many vertices and O(n1/2+δ) edges. J

D Missing Hardness Proofs

Theorem 9. This inapproximability result follows from the construction of quasi-linear
size PCPs given, for example, in [18]. In particular, we use as starting point a result
explicitly formulated in [25] as follows: “Solving 3-SAT on inputs of size N can be reduced
to distinguishing between the case that a 3CNF formula of size N1+o(1) is satisfiable and the
case that only 7

8 + o(1) fraction of its clauses are satisfiable”.
Take an arbitrary 3-SAT instance of size N , which according to the ETH cannot be

solved in time 2o(N). By applying the aforementioned PCP construction we obtain a 3CNF
formula of size N1+o(1) which is either satisfiable or far from satisfiable. Using standard
constructions ([26, 6]) we can reduce this formula to a 5-regular graph G(V,E) which will be
a Max-CUT instance (we use degree 5 here for concreteness, any reasonable constant would
do). We have that |V | is only a constant factor apart from the size of the 3CNF formula.
At the same time, there exist constants c, s such that, if the formula was satisfiable G has
a cut of c|E| edges, while if the formula was far from satisfiable G has no cut with more
than s|E| edges. If there exists an algorithm that can distinguish between these two cases in

30 Sub-exponential Approximation Schemes for CSPs

time 2|V |1−ε the whole procedure would run in 2N1−ε+o(1) and would allow us to decide if the
original formula was satisfiable. J

	Introduction
	Notation and Preliminaries
	Approximating Max-CUT in Almost Sparse Graphs
	Outline and Main Ideas
	Obtaining Estimations j by Exhaustive Sampling
	The Cut Value of Feasible Solutions
	Randomized Rounding of the Fractional Optimum
	Putting Everything Together

	Approximate Maximization of Smooth Polynomials
	Approximating the k-Densest Subgraph in Almost Sparse Graphs
	Lower Bounds
	Appendix
	Proof of Proposition 1
	Proof of Lemma 1
	The Proof of Lemma 3

	Approximate Maximization of Polynomials: The Proof of Theorem 5
	Outline and General Approach
	Obtaining Estimations by Exhausting Sampling
	Sampling Lemma
	The Value of Feasible Solutions to (d-LP)
	Randomized Rounding of the Fractional Optimum
	Cumulative Absolute Value Estimations of -Bounded Polynomials
	Concluding the Proof of Theorem 5

	Missing Proofs for k-Densest Subgraph
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 8

	Missing Hardness Proofs

