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Abstract
The complexity of various Constraint Satisfaction Problems (CSP) when parameterized by

structural measures (such as treewidth or clique-width) is a very well-investigated area. In this
paper, we take a fresh look at such questions from the point of view of approximation, considering
four standard CSP predicates: AND, OR, PARITY, and MAJORITY. By providing new or
tighter hardness results for the satisfiability versions, as well as approximation algorithms for
the corresponding maximization problems, we show that already these basic predicates display a
diverse set of behaviors, ranging from being FPT to optimize exactly for quite general parameters
(PARITY), to being W-hard but well-approximable (OR, MAJORITY) to being W-hard and
inapproximable (AND). Our results indicate the interest in posing the question of approximability
during the usual investigation of CSP complexity with regards to the landscape of structural
parameters.
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1 Introduction

Constraint Satisfaction Problems (CSPs) play a central role in almost all branches of
theoretical computer science. Starting from CNFSAT, the prototypical NP-complete problem,
the computational complexity of CSPs has been widely studied from various points of view.
In this paper we focus on two aspects of CSP complexity which, though extremely well-
investigated, have mostly been considered separately so far in the literature: parameterized
complexity and approximability. We study four standard predicates and contribute some of
the first results indicating that the point of view of approximability considerably enriches
the parameterized complexity landscape of CSPs.
Parameterized CSPs. The vast majority of interesting CSPs are NP-hard [28, 18]. This
has motivated the study of such problems from a parameterized complexity point of view, and
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indeed this topic has attracted considerable attention in the literature [14, 32, 11, 25, 13, 31].
We refer the reader to [27] where an extensive classification of CSP problems for a large
range of parameters is given. In this paper we focus on structurally parameterized CSPs,
that is, we consider CSPs where the parameter is some measure of the structure of the input
instance. The central idea behind this approach is to represent the structure of the CSP
using a (hyper-)graph and leverage the powerful tools commonly applied to parameterized
graph problems (such as tree decompositions) to solve the CSP.

The typical goal of this line of research is to find the most general parameterization of a
CSP that still remains fixed-parameter tractable (FPT). To give a concrete example for a
very well-known CSP, CNFSAT is FPT when parameterized by the treewidth of its incidence
graph1 but it is W-hard for more general parameters such as clique-width [23], or even the
more restricted modular treewidth [24]. General (boolean) CSP on the other hand, where
the description of each constraint is part of the input is known to be a harder problem: it
is already W[1]-hard parameterized by the incidence treewidth, but FPT parameterized by
the treewidth of the primal graph [30]. Thus, parameterized investigations aim to locate the
boundary where a CSP jumps from being FPT to being W-hard. It is of course a natural
question how we can deal with the W-hard cases of a CSP once they are identified.
Approximation. CSPs also play a central role in the theory of (polynomial-time) approxi-
mation algorithms [33, 19, 4]. In this context we typically consider a CSP as an optimization
problem (MAXCSP) where the goal is to find an assignment to the variables that satisfies as
many of the constraints as possible. Unfortunately, essentially all non-trivial CSPs are hard
to approximate (APX-hard) from this point of view [18], even those where deciding if an
assignment can satisfy all constraints is in P (e.g. 2CNFSAT or Horn SAT). Thus, research
in this area typically focuses on discovering exactly the best approximation ratio that can be
achieved in polynomial time. Amazingly, for many natural CSPs this happens to be exactly
the ratio achieved by a completely random assignment [17]. This motivates the question of
whether we can find natural cases where non-trivial efficient approximations are possible.
Results. In this paper we consider four different types of CSPs where the constraints are
respectively OR, AND, PARITY and MAJORITY functions. Our approach follows, for the
most part, the standard parameterized complexity script: we consider the input instance’s
incidence graph and try to determine the complexity of the CSP when parameterized by
various graph widths. The new ingredient in our approach is that, in addition to trying to
determine which parameters make a CSP FPT or W-hard, we also ask if the optimization
versions of W-hard cases can be well-approximated. We believe that this is a question of
special interest since, as it turns out, there are CSPs for which W-hardness can be (almost)
circumvented using approximation, and others which are inapproximable.

More specifically, our results are as follows: for OR constraints, which corresponds to the
standard CNFSAT (MAXCNFSAT) problem, we present a new hardness proof establishing
that deciding a formula’s satisfiability is W-hard even if parameterized by the incidence graph’s
neighborhood diversity. Neighborhood diversity is a parameter much more restricted than
modular treewidth [20], for which the strongest previously known W[1]-hardness result was
known [24]. We complement this negative result with a strong positive approximation result:
there exists an FPT Approximation Scheme (FPT-AS)2 for MAXCNFSAT parameterized
by clique-width, that is, an algorithm which for all ε > 0 runs in time f(k, ε)nO(1) and
returns an assignment satisfying (1− ε)OPT clauses. Thus, even though we establish that

1 See the next section for a definition of incidence graphs
2 We follow here the standard definition of FPT-AS given in [22].



H. Dell, E. Kim, M. Lampis, V. Mitsou and T. Mömke 3

solving CNFSAT exactly is W-hard even for extremely restricted dense graph parameters,
MAXCNFSAT is well-approximable even in the quite general case of clique-width. To the best
of our knowledge, this is the first approximation result of this type for a W-hard MAXCSP
problem.

Recalling that CNFSAT is FPT parameterized by the treewidth of the incidence graph,
we consider other problems for which the jump from treewidth to clique-width could have
interesting complexity consequences. We show that AND and PARITY constraints exhibit
two wildly different behaviors. On the one hand, the problem of maximizing the largest
possible number of satisfied PARITY constraints remains FPT even for dense parameters
such as clique-width. On the other hand, by modifying our reduction for CNFSAT, we are
able to show not only that maximizing the number of satisfied AND constraints is W[1]-hard
parameterized by neighborhood diversity, but also that this problem cannot even admit
an FPT-AS (like MAXCNFSAT), unless W[1]=FPT. We recall that PARITY and AND
constraints are similar in other aspects: for example, for both we can decide in polynomial
time if an assignment satisfying all constraints exists.

Finally, we consider CSPs with MAJORITY constraints, that is, constraints which are
satisfied if at least half their literals are true. We give a reduction establishing that this is
an interesting case of a natural constraint type for which deciding satisfiability is already
W[1]-hard parameterized by incidence treewidth. We complement this negative result with
two algorithmic results: first, we show that the corresponding MAXCSP is FPT parameterized
by incidence vertex cover. Then, we use this algorithm as a sub-routine to obtain an FPT-AS
for the parameter feedback vertex set. Both of these algorithmic results also apply to
the more general case of THRESHOLD constraints. We leave it as an interesting open
problem to examine if the hardness for treewidth also applies to feedback vertex set, or in the
converse direction, if the approximation algorithm for feedback vertex set can be extended
to treewidth.

2 Preliminaries

A boolean CSP ψ is defined as a set {C1, . . . , Cm} of m constraints over a set X(ψ) =
{x1, . . . , xn} of n variables and their negations. Each constraint Ci is regarded as a function
of literals (positive or negative appearances of variables) mapped to the set {0, 1}, where
literals can take the values 0 or 1. Furthermore, we define |Cj | to denote the arity of constraint
Cj (the number of literals that occur in C) and |ψ| = m the number of constraints in ψ. For
simplicity, we also write li ∈ Cj for a literal li and a constraint Cj if li appears on Cj .

We will be dealing with boolean constraint satisfaction problems for four well-studied
boolean functions: OR constraints, AND constraints, PARITY (or XOR) constraints and
MAJORITY constraints. We say that an assignment t : X → {0, 1} satisfies a constraint C
of type:

◦ OR, if ∃li ∈ C, t(li) = 1;
◦ AND, if ∀li ∈ C, t(li) = 1;
◦ PARITY, if it satisfies some equation Σli∈Ct(li) = b (for b ∈ {0, 1}) modulo 2;
◦ MAJORITY, if at least d|C|/2e literals in C are set to 1. More generally, we may consider
THRESHOLD constraints, where a certain threshold number of literals must be set to
true to satisfy the constraint.

Let occ(ψ) =
∑
C∈ψ |C| be the total number of variable occurrences in ψ, that is, the

total size of the formula. For a variable x, we write ψx for the set of all constraints C ∈ ψ
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where x occurs either positive or negative; for the functions we consider without loss of
generality, no clause contains both literals. Thus, the total number of occurrences of a
variable x is equal to |ψx|.

We are dealing also with MAXCSPs, where given a set of constraints ψ, we are interested
in finding an assignment to the variables that maximizes the number of satisfied constraints.
The natural decision version of this problem is, given a target k, decide whether there exists
an assignment that satisfies at least k constraints. Clearly, the problem where we want
to decide whether we can satisfy all the constraints is a special case of the above decision
problem since we can set k = m, but in some cases we consider this simpler decision version,
particularly when we want to show hardness.

In the case of OR constraints, the CSP and MAXCSP problems correspond to the more
widely known CNFSAT and MAXCNFSAT problems. In this case we call the constraints
clauses. When the constraint function is AND, the MAXCSP problem is called MAXDNFSAT.
In that case, the constraints are called terms.

For a CSP ψ, the incidence graph G∗ψ is defined as the bipartite graph where we construct
one vertex vi for each variable xi and one vertex uj for each constraint Cj and connect vi
with uj if xi ∈ Cj .

We are interested in parameterizations of the incidence graph p(G∗ψ) (or simply p∗ if G∗ψ
is clear from the context), where p is a structural parameter of G∗ψ. We are mostly interested
in the two most widely studied graph parameters, treewidth tw∗ and clique-width cw∗. We
refer the reader to standard parameterized complexity textbooks for the definitions, as well
as the definitions of standard parameterized complexity terminology used in this paper [8].

3 CNFSAT and MAXCNFSAT

In this section we consider CSPs and MAXCSPs with OR constraints. These problems are
widely known as CNFSAT and MAXCNFSAT.

CNFSAT and MAXCNFSAT are very well-studied from the parameterized complexity
perspective. It is known that both the decision and the maximization version can be
solved exactly in FPT time parameterized by tw∗ [1]. However, in the realm of dense
graph parameters the best algorithms for CNFSAT and MAXCNFSAT run in XP time
parameterized by cw∗ [29, 26]. This complexity jump from treewidth to clique-width is
known to be unavoidable: it was proven in [24] that CNFSAT is W[1]-hard even when
parameterized by incidence modular treewidth mtw∗ which is a restriction of cw∗3.

Below, we attempt to explore two natural ways in order to circumvent this last negative
result. The first is to search for a good FPT approximation algorithm, while the second is to
consider formulas with an even simpler incidence graph structure.

The first approach is quite fruitful. Indeed, in Section 3.1, we present an FPT approxi-
mation scheme for the above parameterizations. Intuitively, the algorithm works as follows:
given a formula φ with ‘small’ incidence clique-width, we first examine the formula to see if
it contains many or few ‘large’ clauses. If the formula contains relatively few large clauses,
then we simply disregard them. We then know that the incidence graph does not contain
‘large’ bi-cliques, so by a theorem of Gurski and Wanke [15] the remaining formula has small
treewidth and we can solve the problem. If on the other hand the original formula contains

3 A graph of bounded modular treewidth is a graph of bounded treewidth after merging modules into a
single vertex, where a module is a set of vertices with same neighborhood outside of the set).
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Figure 1 Parameter Map for MAXCNFSAT: algorithmic results hold downwards whereas
hardness results hold upwards.

a large number of large clauses, then we observe that we can rely on a random assignment to
satisfy almost everything.

The second approach is to consider more restrictive (dense) graph parameters, in the
hope that (exact) CNFSAT could be FPT. As mentioned, the reduction of [24] already shows
that we have to look at parameters more restrictive than modular treewidth; in fact this
reduction constructs a formula whose incidence graph has small feedback vertex set after
contracting modules. To this end, in Section 3.2 we concentrate on a much more restricted
case: formulas with small incidence neighborhood diversity nd∗.

I Definition 1. A graph G(V,E) has neighborhood diversity nd(G) = k if we can divide V
into k disjoint sets V1, . . . Vk such that ∀i ∈ 1, . . . k,∀u, v ∈ Vi∀w ∈ V, (w, v) ∈ E ↔ (w, u) ∈
E.

In other words, nd(G) = k if V can be divided into k modules that are either cliques or
independent sets.

This type of formulas is very restrictive: we only allow a small number of variable- and
clause-types, where all same-type variables belong to the same clauses and all same-type
clauses involve the same variables. This very restrictive set of formulas is clearly a subset of
formulas having mtw∗ ≤ k, because contracting all modules leaves a graph with order at
most k (instead of treewidth at most k).

We prove that CNFSAT is W[1]-hard parameterized by nd∗. Intuitively what this result
tells us is that, despite the simple structure of the incidence graph, the fact that we can’t
distinguish between positive and negative appearances of the variables is really responsible
for the complexity blow-up.

Figure 1 summarizes known and new results for CNFSAT and MAXCNFSAT for the
discussed parameterizations.

3.1 Approximation Algorithm for Clique-width
I Theorem 2. There is a randomized algorithm that, given a CNF formula ψ with n variables,
m clauses, and incidence clique-width cw, runs in time f(ε, cw) · poly(n+m), and outputs a
truth assignment that satisfies at least (1− ε) ·OPT clauses in expectation.

We formulate the following basic lemma about probability distributions.

I Lemma 3. For all ε, L > 0 there is a c = c(ε, L) > 0 such that all c′ ≥ c and all sequences
p1, . . . , pc′ ≥ 0 with

∑c′

i=1 pi ≤ 1 have an index d ≤ c/L with the property

p[d,L·d]
.=
L·d∑
j=d

pj < ε .

Proof. Let ε, L > 0. We set c = c(ε, L) below. Assume for contradiction that p[d,L·d] ≥ ε holds
for all d ∈ [1, c/L]. If there are 1/ε+ 1 disjoint intervals [a1, L · a1], . . . , [a1/ε+1, L · a1/ε+1] ⊆
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[1, c], then we arrive at a contradiction with the fact that the pi’s are non-negative and sum
to at most one. Clearly there exists a constant c = c(ε, L) such that 1/ε+ 1 disjoint intervals
of the form [a, La] fit into [1, c]. This proves the claim. J

For an arbitrary given ε > 0, we fix L = ε−4. We use Lemma 3 as follows: For a CNF
formula ψ, we define pi as the fraction of clauses of size i, that is,

pi
.=

∣∣∣{C ∈ ψ ∣∣∣ |C| = i
}∣∣∣

|ψ|
.

Then Lemma 3 gives us a number d ≤ c(ε) such that the total fraction of clauses whose size
is between d and ε−4d is bounded by ε. It is now natural to partition all clauses into short,
medium, and long clauses. More precisely, we define ψ = ψ<d ∪̇ ψ[d,D] ∪̇ ψ>D for D = ε−4d

as follows:

ψ<d
.=
{
C ∈ ψ

∣∣∣ |C| < d
}
,

ψ[d,D] .=
{
C ∈ ψ

∣∣∣ d ≤ |C| ≤ D} , and
ψ>D

.=
{
C ∈ ψ

∣∣∣ |C| > D
}
.

An immediate corollary to Lemma 3 is thus that we can choose d ≤ c(ε) in such a way that
|ψ[d,D]| ≤ ε|ψ|.

I Corollary 4. For all ε > 0 there is some c = c(ε) > 0 such that all CNF formulas ψ have
some d = d(ε) ∈ [1, c] with |ψ[d,ε−4d]| ≤ ε · |ψ| .

If ψ[d,D] = ∅ holds for D = ε−4d and d ∈ [1, c(ε)], we say that ψ is ε-well separated. We
call ψ ε′-balanced if, in addition, we have |ψ<d| ≥ ε′m and |ψ>D| ≥ ε′m.

I Lemma 5. Let ψ be an ε-well separated formula (and thus V = V (ψ<d) ∪ V (ψ>D)).
Then, for each subset ψ̂ ⊆ ψ>D with |ψ̂| > ε2m, there is a variable y such that |ψ<dy | ≤

ε2|ψ̂y|.

That is, for every set ψ̂ that contains a significant fraction of long clauses, there is a variable
that occurs |ψ̂y| times in ψ̂, but only at most an ε2-fraction of that in the short clauses.

Proof. Let ψ̂ ⊆ ψ>D with |ψ̂| > ε2m Note that the total number of literal occurrences in ψ̂
is occ(ψ̂) > D · ε2 ·m = ε−2dm. In contrast, occ(ψ<d) < dm. Now suppose that there was
no variable y with the claimed properties, that is, suppose that every variable y satisfies
|ψ<dy | > ε2|ψ̂y|. Then the total number of variable occurrences in ψ<d can be bounded from
below as follows:

occ(ψ<d) =
∑
y

|ψ<dy | >
∑
y

ε2|ψ̂y| = ε2 occ(ψ̂) > d ·m.

This yields a contradiction and thus proves the claim. J

Proof of Theorem 2. The algorithm A works as follows. Let ε′ = ε2, and we assume w.l.o.g.
that ε < 1/8. Given a CNF formula φ, we compute an ε′-well separated formula ψ by
dropping all clauses in φ[d,D]. Corollary 4 guarantees that the fraction of deleted clauses is
bounded by ε′. If ψ is not ε/2-balanced, we discard the smaller side (with fewer clauses) and
only handle the larger one: If ψ<d is the larger side, we compute an optimal assignment
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for ψ<d in FPT time, by using the result of Gurski and Wanke [15]. This way the total
number of unsatisfied clauses is at most εm/2, and together with the unsatisfied clauses due
to applying Corollary 4, the total number of unsatisfied clauses is smaller than εm. Since
OPT > m/2, we get the approximation guarantee.

If ψ>D is the larger side, we use a random assignment. This way, at most εm/2 clauses
from ψ<d are violated, and in expectation at most a 2−D fraction of clauses from ψ>D are
violated. Since 2−D is smaller than ε/4, we conclude that – together with unsatisfied clauses
due to applying Corollary 4 – at least (1− ε)m clauses are satisfied in expectation.

This finishes the analysis of unbalanced formulas, and in the remaining proof we may
assume that ψ is ε/2-balanced. To handle this case, we determine a set of variables Y such
that
◦ there are at most εm/4 short clauses with variables from Y and
◦ there are at most ε2m long clauses that contain ≤ 1/ε variables from Y .
Before we construct Y , let us verify that the properties of Y imply the correctness of

the theorem. Our algorithm computes a satisfying assignment of the short clauses without
variables from Y , again using the result of Gurski and Wanke [15]. Afterwards it assigns
values uniformly at random to the variables in Y .

There are at most ε′m = ε2m unsatisfied clauses due to applying Corollary 4, εm/4 short
clauses clauses that we did not consider when satisfying clauses from ψ<d, and ε2m clauses
from ψ>D that we did not consider in the random assignment. Additionally, in expectation
there are less than 2−1/εm clauses left unsatisfied from the remaining |ψ>D| − ε2m clauses
from ψ>D. Since we assumed that ε < 1/8, the theorem follows.

To construct the set Y , we iteratively apply Lemma 5 with the parameter ε/4. Initially,
we set ψ̂ = ψ>D. In each iteration, we identify a variable y according to the lemma and add
the variable to Y . In the subsequent iterations, we mark y to be inactive and handle it as if
it was not contained in any clause. Whenever we identify a clause C that has at least 1/ε
inactive variables (i. e., variables from Y ), we remove C from ψ̂. We continue this process
until |ψ̂| ≤ ε2. Note that applying Lemma 5 for ε/4 but having an ε′-well separated formula
ensures that at all times, all clauses in ψ̂ have sufficiently many literals to apply Lemma 5.
Therefore the process terminates and the generated set Y has the aimed-for properties since
|Y | ≤ m/ε. J

3.2 Hardness for Neighborhood Diversity
I Theorem 6. CNFSAT parameterized by the incidence neighborhood diversity nd∗ is W[1]-
hard.
Proof. The reduction is from k-Multicolored Clique. Given a k-partite graphG(V1, . . . , Vk, E),
where |Vi| = n, we construct a formula φ as described below.

First, we construct k groups of variables X = X1 ∪ X2, . . . ∪ Xn, with |Xi| = logn.
Variable xji should correspond to the ith bit in the binary representation of the vertices of
group Vj . We also construct

(
k
2
)
groups of clauses as follows: for each non-edge (u, v) between

vertex parts Vi and Vj , we create a clause that represents u and v in binary, with a positive
literal representing the bit 0 and a negative one the bit 1. For example, if ui3 ∈ Vi, u

j
1 ∈ Vj ,

and
(
ui3, u

j
1

)
/∈ E, then we create the clause

(
¬xi0 ∨ ¬xi1 ∨ x

j
0 ∨ ¬x

j
1

)
. Each clause should

contain 2 logn literals.
The intuition behind the construction is that, for every pair i, j, there is a bijection

between pairs of vertices
(
vir, v

j
s

)
in G∗φ and clauses that consist of variables Xi ∪Xj such

that:
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(
vir, v

j
s

)
↔

 ∨
q:qth bit
of r(2) is 0

xiq
∨

q:qth bit
of r(2) is 1

¬xiq
∨

q:qth bit
of s(2) is 0

xjq
∨

q:qth bit
of s(2) is 1

¬xjq


Indeed, for any pair Xi, Xj , there are 22 logn = n2 different ways to create a clause

using all the variables from Xi ∪Xj . Furthermore, by construction, every non-edge of G
corresponds to a unique clause in φ. Thus every edge in G corresponds to a clause not in φ
and vice versa.

Having that said, given a satisfying assignment, for every pair of variable groups, the
unique unsatisfiable clause c (variables assigned value 0 appear positive whereas those assigned
value 1 appear negative) does not belong in φ (since all clauses of φ are satisfied). This
clause corresponds to an edge in G.

On the other hand, given a clique in G, any pair of clique vertices corresponds to some
clause not in φ. Thus, the assignment that falsifies this clause should satisfy all other clauses
of this given pair of variables.

Notice that the neighborhood diversity of the incidence graph of the constructed formula
is k +

(
k
2
)
(one module for every variable or clause group).

J

4 From Treewidth to Clique-width

Perhaps the main conclusion of the previous section is that the move from sparse graph
parameters (such as treewidth) to dense graph parameters can significantly change the
complexity of a CSP. CNFSAT becomes W-hard even for an extremely restricted dense
graph parameter (neighborhood diversity), but it at least remains well-approximable even in
the much more general case of clique-width.

In this section we observe that the transition from sparse to dense parameters can have
wildly varying effects for different CSPs. First, by modifying our reduction for CNFSAT we
show that the problem of maximizing the number of satisfied AND constraints is W[1]-hard
parameterized by neighborhood diversity. Furthermore, because the maximum number of
constraints that could be satisfied in our reduction is also bounded by some function of the
parameter, we show that if an approximation algorithm with performance similar to that for
MAXCNFSAT could be devised for this problem then FPT=W[1]. Thus, MAXDNFSAT,
which is FPT parameterized by treewidth, becomes significantly harder for dense parameters.

I Theorem 7. Suppose that there exists an FPT-AS which ∀ε > 0 computes an (1 − ε)-
approximate solution for MAXDNFSAT and runs in time f(nd∗, ε) · poly(n), where nd∗ is
the incidence neighborhood diversity of an AND CSP φ. Then, FPT = W[1].

We can observe however that, unlike MAXCNFSAT and MAXDNFSAT, there exist
natural CSPs for which the transition from treewidth to clique-width does not entail any
significant change in complexity. A case in point is MAXPARITY. Recall that finding an
assignment that satisfies the maximum number of linear equations modulo 2 is one of the
prototypical APX-hard problems [17], despite the fact that deciding if an assignment can
satisfy all equations is in P (by Gauss elimination). Here, we show that MAXPARITY is
FPT, regardless of whether the parameter is treewidth or clique-width. The main intuition
is that in this CSP, negations are (almost) irrelevant. Thus, unlike the case of CNFSAT and
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MAXDNFSAT the incidence graph captures much more of the real structure of the CSP
instance.

I Theorem 8. Given an input PARITY CSP instance φ, MAXPARITY can be solved
optimally in time f(cw∗)|φ|O(1), where cw∗ is the incidence clique-width of φ.

5 Below treewidth: The case of Majority

In this section we deal with CSPs where each constraint is a MAJORITY or a THRESHOLD
constraint. In this problem each constraint is supplied with an integer value t (the threshold)
and it is satisfied if and only if at least t of its literals are set to true. MAJORITY is the
special case of this predicate where t is always equal to half the arity of each constraint.

MAJORITY and THRESHOLD constraints are of course some of the most natural and
well-studied predicates in many contexts: for example, MAXCSP for such constraints contains
the complexity of finding an assignment that satisfies as many inequalities as possible in a 0-1
Integer Linear Program whose coefficients are in {−1, 0, 1}. This problem, sometimes called
Maximum Feasible Subset has been well-studied in the literature [9, 3, 2]. MAJORITY
constraints also play a central role in learning theory [10, 16] and in hardness of approximation
[6].

5.1 Hardness
We first consider the complexity of deciding whether a CSP with THRESHOLD constraints
can be completely satisfied parameterized by the treewidth of the incidence graph. Unfor-
tunately, this turns out to be a hard problem, even for the special case of MAJORITY
constraints.

I Theorem 9. MAJORITY parameterized by the incidence treewidth tw∗ is W[1]-hard.

The full proof of this theorem is given in the appendix.

5.2 Exact Algorithms
Motivated by the negative result of Theorem 9 we now investigate the complexity of MA-
JORITY for more restricted parameters. The first parameter we consider is the vertex
cover of the incidence graph. This is a natural, though quite restrictive, parameter which is
often considered for problems which are W-hard for treewidth. Note that parameterizing by
incidence vertex cover is almost equivalent (though slightly more general) to parameterizing
by the number of constraints.

In the following theorem we establish that for this parameter even the maximization
problem for the (more general) THRESHOLD constraints is FPT.

I Theorem 10. MAXTHRESHOLD parameterized by the number of constraints is FPT.

Proof. Let φ be a CSP with m = |φ| constraints. First, we will exhaustively search among
all possible 2m subsets of φ for a feasible solution of maximum size. For each such candidate
S we need to verify whether there is an assignment that satisfies all C ∈ S.

Now, given a candidate set of constraints S where |S| = k ≤ m, our goal is to construct
an equivalent ILP πS over a variable-set L, where |L| is bounded by a function of m. We
then know that we can solve πS in FPT time [21].

We divide the set of variables X appearing in S into at most 3k disjoint sets Xi according
to the state of a variable in regards to each of the k constraints of S: appearing positive
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(0), appearing negative (1), not appearing (2). Now, for each set Xi we define a variable of
the ILP li measuring how many variables from Xi are set to true. Now we can construct
the following equivalent ILP: for each Cj ∈ S we create an inequality involving those Xis
that participate in Cj . The equation is going to be

∑
l+i −

∑
l−i ≥ t(Cj)−

∑
|X−i |, where

X+
i (resp. X−i ) are all the sets of variables that appear positive (resp. negative) in Cj .

Furthermore we have the constraints that |Xi| ≥ li ≥ 0. Finding a feasible integer solution
for πS gives a feasible assignment for S.

J

I Corollary 11. THRESHOLD parameterized by the incidence vertex cover vc∗ is FPT.

Proof. Given a threshold CSP φ with a variable set X and a vertex cover S with size k of
the incidence graph, we define SX , SY ⊆ S to be vertices of S corresponding to variables
and constraints respectively. Since |SX | ≤ k we can consider all possible assignments of
SX . For each such assignment we can compute the exact number of satisfied constraints
corresponding to φ \ SY . Thus we need to solve at most 2k instances with bounded number
of constraints.

J

5.3 Approximation
The results of Theorem 9 naturally pose the following question: can we evade the W-hardness
of MAJORITY by designing an FPT-AS for the problem? In this section, though we do not
resolve this question, we give some first positive indication that this may be possible. We
consider THRESHOLD parameterized by the incidence graph’s feedback vertex set (that is,
the number of vertices that need to be deleted to make the graph acyclic). This is a natural,
well-studied parameter that generalizes vertex cover but is a restriction of treewidth. It is
also connected to the concept of back-door sets to acyclicity, which is well-studied in the
parameterized CSP literature [23, 12].

Observe that approximating this CSP is non-trivial, since MAJORITY with constraints
of arity two already generalizes Max-2SAT, and is hence APX-hard. On the other hand,
MAXMAJORITY can easily be 2-approximated by considering any assignment and its
negation. Hence, the natural goal here is a (1− ε) approximation ratio. Using Corollary 11
as a sub-routine we can give an FPT-AS scheme which achieves exactly this.

I Theorem 12. There exists an approximation scheme for THRESHOLD such that ∀ε > 0
and any input φ it runs in time f(k, ε)|φ|O(1) with k = fvs∗ being the incidence feedback
vertex set of the incidence graph of φ, and returns an (1− ε) approximate solution.

Proof. We consider two cases:

◦ If |φ| ≤ 2k/ε, this case reduces to Theorem 10 because the graph has vertex cover bounded
by a function of k, ε.

◦ If |φ| > 2k/ε, then with similar argumentation as Corollary 10 we can consider that the
fvs(G∗φ) contains only constraint vertices (that is, we guess the assignment of variables in
the feedback vertex set). We now proceed by simply deleting these constraints from the
instance. Since the resulting instance is acyclic we can find the optimal solution in the
remaining constraints of φ in polynomial time. Call the produced solution SOL and the
optimal solution OPT. Then we have: SOL ≥ OPT− k. Now, observe that OPT ≥ |φ|/2
because if an assignment satisfies less than half of the constraints, its negation satisfies
the rest. Therefore OPT > k/ε which gives OPT−k

OPT > 1− ε.

J
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6 Missing Proofs

6.1 Proof of Theorem 7

Proof of Theorem 7. The reduction is again from k-Multicolored Clique and follows similar
ideas with that of Theorem 6.

Again, given a k-partite graph G(V1, V2, . . . , Vk, E), where |Vi| = n, we construct k groups
of variables as in Theorem 6 and

(
k
2
)
groups of AND constraints but this time we create a

constraint that represents u and v in binary for each (existing) edge (u, v) between vertex
parts Vi and Vj . The constraint representing edge (u, v) is satisfied if and only if the truth
assignment corresponds to the binary representations of u and v. There will be |E| constraints
in total and each constraint will contain 2 logn literals.

A selection of vi ∈ Vi corresponds to an assignment over the variables in Xi. Given two
variable groups Xi, Xj and an assignment over these variables, at most one constraint can
be satisfiable. Intuitively, this constraint (if it exists) corresponds to an edge between Vi, Vj .
Finding the assignment that satisfies the most AND constraints is equivalent with finding
the k-densest subgraph in the k-partite graph. We shall prove that having an FPT-AS for
the MAXDNFSAT problem implies that we can solve k-Multicolored Clique in FPT time.

Suppose that we have an FPT-AS for MAXDNFSAT such that for all ε > 0, it computes
an (1− ε) approximate solution and runs in time f(k, ε) · poly(n).

Set 1
ε = k2(>

(
k
2
)
). The running time of this algorithm is f(k, ε) ·poly(n) = g(k) ·poly(n).

◦ If G has a k-clique, then there should be
(
k
2
)
satisfied constraints, so the algorithm shall

return a value ≥ (1− ε)
(
k
2
)
, which rounds up to

(
k
2
)
.

◦ If G has no k-clique, then there are at most
(
k
2
)
− 1 satisfied constraints, which is the

best value the algorithm can return in this case.

Thus, by running the approximation algorithm for MAXDNFSAT for ε = 1
k2 we should

be able to distinguish between having a k clique and a clique of lesser size in FPT time.
J

6.2 Proof of Theorem 8

Proof of Theorem 8. We rely on the meta-theorem of [5] which states that all problems
expressible in (an optimization version of) CMSO1 can be solved in linear time. We recall
that in this context we are allowed to express problems that quantify over sets of vertices
of the input graph, and also express constraints on the cardinalities of these sets modulo a
constant number.

The key intuition here is that, when given a linear equation mod 2 of the form
∑
i li = b

where b ∈ {0, 1} and the li are literals, we may view it equivalently as a constraint of the
form

∑
i xi = b′, where all the xi are variables and b′ = b if and only if the original constraint

contained an even number of negated literals on the left hand side.
Having performed the above pre-processing we can now express our problem in CMSO1.

We are looking for the largest set of constraints S (which are vertices of the incidence graph),
such that there exists a set of variables X which satisfies the following: every constraint in S
has a number of neighbors in X that is equal to its right-hand side (mod 2). Thus, S is the
set of satisfied constraints and X the set of variables set to 1 in the satisfying assignment.

J
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6.3 Proof of Theorem 9
Proof of Theorem 9. We first prove that a generalization of MAJORITY, THRESHOLD,
is W[1]-hard parameterized by tw∗. For THRESHOLD, the constraints are each assigned a
threshold function t : C → IN and in order for a constraint C to be satisfied, at least t(C)
literals need to be set to true. The question is again whether we can satisfy all the constraints.
We then show how to reduce this more general version to MAJORITY parameterized by
tw∗, where essentially, for each constraint C, t(C) = d|C|/2e.

The reduction is from k-Capacitated Vertex Cover parameterized by the treewidth of the
graph. The definition of this problem is given in Def. 13. This problem was shown to be
W[1]-hard parameterized by treewidth in [7].

I Definition 13. A graph with capacities G(V,E,w) is a graph supplemented with a function
on the vertices w : V → IN (indicating the capacity of each vertex), where 0 ≤ w(v) ≤ d(v),
with d(v) being the degree of a vertex v. A set S ⊆ V is a capacitated vertex cover of G if
there exists a function g : E → S that assigns for each edge e = (u, v) a guarding endpoint
u or v in S and, furthermore, the total number of edges guarded by any vertex v does not
exceed w(v).

k-Capacitated Vertex Cover: Given a graph with capacities G(V,E,w) and an integer
k ≤ n, decide whether there exists a capacitated vertex cover of size at most k.

Given a graph with capacities G(V,E,w), we construct a THRESHOLD CSP φ as follows.
We first construct the following variables: for every v ∈ V we construct a variable xv which
should be true if v was chosen in the capacitated vertex cover; also, for every e = (u, v) ∈ E
we construct two variables xeu, xev (xeu being true indicates that u guards e).

Now we need to express the following statements with threshold constraints.

1. “If a vertex v guards an edge e then v is in the vertex cover” : for all e ∈ E and each of
its incident vertices we construct one constraint (¬xve, xv) with threshold 1;

2. “Every edge is covered” : for all e = (u, v) ∈ E, we construct one constraint (xue, xve)
with threshold 1.

3. “No vertex exceeds its capacity” : for all v ∈ V , we construct one constraint of size d(u)
that contains literals ¬xvei for every incident edge ei of v. This constraint should have
threshold d(v)− w(v).

4. “At most k vertices were picked in the vertex cover” : we construct one constraint which
should contain all literals ¬xvj

for every vertex vj ∈ V with threshold |V | − k.

The forward direction is clear: given a capacitated vertex cover S of size at most k and
a valid function g : E → S, setting variables to true as suggested above should satisfy all
threshold constraints. For the opposite direction, if all the constraints have been satisfied, then
at most k variables xv should be set to true from the last constraint. Vertices corresponding
to these variables are put in the vertex cover. The values of g(e) are set according to the
values of variables xue, xve: at least one of the two should be true, according to constraint 2.
If xue is true then set g(e) = u. If both xue, xve are true, then set g(e) arbitrarily. Constraints
1 and 2 should certify that the selected set S is indeed a capacitated vertex cover, whereas
constraint 3 verifies that capacities are met.

Last we need to show that the incidence treewidth tw(G∗φ) of φ is bounded by a function
of the treewidth of the original graph tw(G). Indeed, G∗φ is a subdivision of the original
graph G with the addition of a false twin vertex for every vertex in G and a universal vertex
connected to all original vertices. To see this, first observe that for every edge e = (u, v) in
G we shall construct four variable vertices xu, xue, xve, xv in G∗φ, where consecutive vertices
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in this sequence are connected through constraint vertices (the first and last pair because
of 1 and the middle pair because of 2, see figure Fig. 2a). Subdividing an edge (u, v) to
(u,w), (w, v) doesn’t increase the treewidth of the graph: create a new bag containing all
u, v, w and connect it to some bag which contains both u and v. Then for every vertex v
in G whose incident edges are e1, . . . , ed(v), the constraint vertex from 3 which connects to
vertices xve1 , . . . , xved(v) can be considered as a false twin of xv in Gφ (if we ignore the fact
that the edges (xv, xvei

) are subdivided, see figure Fig. 2b). Creating a false twin u′ for
every original vertex u at most doubles the treewidth: for every bag that u appears put u′
as well. Last, because of the existence of constraint 4 we have one vertex corresponding to
this constraint which connects to all xvj

, vj ∈ V . The addition of one vertex increases the
treewidth by at most one (put the new vertex in all bags). So tw(G∗φ) ≤ 2 · tw(G) + 1

(a) Subdivision gadget (b) Twin gadget

Figure 2 Gadgets in the new graph Gφ

In order to show now that MAJORITY is W [1]-hard starting from THRESHOLD, there
are two cases we need to resolve: when a threshold is lower than the majority and when it is
higher.

When a constraint C has threshold t(C) < d|C|/2e, we construct a new constraint C ′
by adding d dummy variables to it such that the new constraint has t(C ′) = d|C′|/2e. A
dummy variable can always be satisfied by setting it to true, so t(C ′) = t(C) + d. So overall
in order to figure out d, we need to solve the equation t(C) + d = d|C|+ d/2e, which gives
d = |C| − 2t(C). Observe that adding new variables to a constraint corresponds to adding
leaves to the constraint vertex in the incidence graph, which does not increase the treewidth.

On the other hand, if a constraint C has threshold t(C) > d|C|/2e, again we add d′ new
variables but this time we make sure that these variables cannot be set to true. In order
to certify this, we should also add for each new variable x one additional constraint (¬x).
In this second case, t(C ′) = t(C), so the number of additional variables d′ = 2t(C) − |C|.
Again, the incidence treewidth does not change since this time we simply append P2s on the
constraint vertex.

J
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