
Parameterized Algorithms for Parity Games

Jakub Gajarský1∗, Michael Lampis2, Kazuhisa Makino3,
Valia Mitsou4†, and Sebastian Ordyniak5‡

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
2LAMSADE, Université Paris Dauphine, France

3RIMS, Kyoto University, Japan
4SZTAKI, Hungarian Academy of Sciences, Budapest, Hungary

5Institute for Computergraphics and Algorithms, TU Wien, Vienna, Austria

Abstract

Determining the winner of a Parity Game is a major problem in com-
putational complexity with a number of applications in verification. In a
parameterized complexity setting, the problem has often been considered
with parameters such as (directed versions of) treewidth or clique-width,
by applying dynamic programming techniques.

In this paper we adopt a parameterized approach which is more in-
spired by well-known (non-parameterized) algorithms for this problem.
We consider a number of natural parameterizations, such as by Directed
Feedback Vertex Set, Distance to Tournament, and Modular Width. We
show that, for these parameters, it is possible to obtain recursive param-
eterized algorithms which are simpler, faster and only require polynomial
space. We complement these results with some algorithmic lower bounds
which, among others, rule out a possible avenue for improving the best-
known sub-exponential time algorithm for parity games.

1 Introduction

A Parity Game is an infinite two-player game played on a parity game arena
by the two players Even and Odd. A parity game arena is a sinkless directed
graph, where every vertex is controlled by exactly one of the two players and is
addionally assigned a priority (an integer value). Initially, a token is placed on
some vertex of the graph (the starting vertex) and at each step of the game the
player that controls the vertex that currently contains the token has to move

∗Supported by the research centre Institute for Theoretical Computer Science (CE-ITI),
project P202/12/G061
†Supported by ERC Starting Grant PARAMTIGHT (No. 280152)
‡Supported by Employment of Newly Graduated Doctors of Science for Scientific Excel-

lence (CZ.1.07/2.3.00/30.0009).

1

the token along a directed edge to any outneighbor of that vertex. This leads
to an infinite path, which is won by the player that corresponds to the parity of
the highest priority occuring infinitely often on that path. Given such a parity
game arena and a starting vertex v, the problem is to decide which of the two
players has a winning strategy on the given arena if the token is initially placed
on v.

Although a parity game may, at first glance, seem like an odd kind of game
to play, the problem of deciding the winner of a parity game is extremely well-
studied. One of the reasons is that solving parity games captures the com-
plexity of model-checking for the modal µ-calculus, which has a large number
of applications in software verification (see e.g. [17, 14, 8]). Despite extensive
efforts by the community, it is still a major open question whether there exists
a polynomial-time algorithm for this problem [21, 5, 22, 13].

In addition to their wealth of practical applications, parity games are also
especially interesting from a complexity-theoretic point of view because of their
intriguing complexity status. Despite not being known to be in P, deciding
parity games in known to be in NP∩coNP [14], and in fact even in UP∩coUP
[20]. The former of these two inclusions follows directly from the (non-trivial)
fact that optimal strategies are known to be positional (or memoryless) [23] and
the fact that single-player parity games are in P. Parity games are also known to
be reducible to (and therefore “easier” than) a number of other natural classes
of games, including mean payoff games (which admit a pseudo-polynomial time
algorithm) [29] and simple stochastic games [11]. Thus, in a sense, deciding the
winner of a parity game is a problem that seems to lie only slightly out of reach
of current algorithmic techniques, and could perhaps be solvable in polynomial
time. However, the best currently known time upper bound is (roughly) n

√
n

[22].
Since, despite all this effort, it is still not clear if a polynomial-time algorithm

for parity games is possible, several more recent works have attempted to tackle
this problem from a parameterized complexity perspective. Perhaps the most
natural parameter for this problem is the maximum priority p. Although this
problem is known to be in XP, i.e., solvable in polynomial-time for fixed p, (by
a classical O(np)algorithm due to McNaughton [24], later improved to O(np/3)
[7, 21, 27]), it is unclear if this parameterization could be in FPT, i.e., solvable in
time O∗(f(p))1 for some function f of p, though this question has been explicitly
considered [3].

A direction which has been much more fruitful is to add a second parameter
to the problem, usually some structural graph parameter of the input graph.
Here, several non-trivial algorithmic results are known. For digraphs whose
underlying graph has treewidth k the problem is solvable in time (roughly)
pO(k) [25], while a similar running time is achievable if k is the (directed) clique-
width of the input digraph [26]. For several directed variations of the notion
of treewidth, such as entanglement, DAG-width and kelly-width, algorithms

1As usual in parameterized complexity the O∗(f(k))-notation, for some function f of the
parameter k, means that there is an algorithm running in time O(f(k)nO(1)), where n is the
input size of the problem.

2

running in nO(k) time are known [2, 1, 19]. More recently, an algorithm running
in f(p, k)nO(1) time for these measures was given in [6], for some computable
function f .

Thanks to the above results we now know that parity games are FPT for
the most standard structural graph parameters, if parameterized by both k and
the maximum priority p. It is however, worthy of note that, to the best of our
knowledge, this problem is not known to be FPT when the number of priorities
is not part of the parameter for any non-trivial graph width. Furthermore, all
the above algorithms, which use somewhat complicated dynamic programming
techniques, also require space exponential in k. Can this be improved?
Our contribution: This paper provides a number of algorithms for various
natural structural parameterizations of parity games. More specifically, we show
the following results:

• There exists an algorithm running in time O∗
(
4kplog k

)
when k is any of

the following parameters: the size of the graph’s directed feedback vertex
set, the number of vertices controlled by one of the two players, or the
number of vertices whose deletion makes the graph a tournament.

• There exists an algorithm running in time O∗
(
kO(
√
k)
)

when k is the

modular width of the input graph.

Conceptually, the main contribution of this paper is in repurposing the ideas
of the classical algorithm of McNaughton [24] (and its sub-exponential time vari-
ation by Jurdzinski, Paterson and Zwick [22]) in the parameterized complexity
setting. By avoiding the dynamic programming paradigm, we are able to give
a number of very simple to implement, recursive algorithms. Notably, all the
algorithms of this paper run in polynomial space.

Our first set of algorithmic results introduces the notion of a dominion hitter.
Informally, a dominion is a confined area of the graph where one player has a
winning strategy. The algorithmic importance of dominions was recognized in
[22], where the algorithm begins by exhaustively looking for a small dominion
in the graph, before running the simple recursive algorithm of [24]. We give a
parameterized counterpart of this idea which can be applied whenever we can
find a small set of vertices that intersects all dominions. We then also provide
three natural example parameterizations where this is the case, showing that
this may be an idea of further interest.

We then consider graphs of modular width k. Modular width is a graph
parameter that has recently attracted attention in the parameterized complexity
community as a more restricted alternative to clique-width [15, 16]. We show
that, in this more restricted case, the O∗

(
pk
)

complexity of the algorithm for
clique-width can be improved to a running time that is FPT parameterized only
by k, with a sub-exponential parameter dependence. The core algorithmic idea
again combines the recursive algorithm of McNaughton, with a judicious search
for dominions.

We complement these algorithms with a couple of hardness results. First,
as mentioned, one of the key steps in the sub-exponential algorithm of [22] (and

3

in most of our algorithms) consists of exhaustively searching the graph for a
dominion. In [22] searching for a dominion of size k is done by checking all sets
of k vertices. We give a reduction from Multi-Colored Clique showing that
this is likely optimal, thus ruling out one possible avenue for improving the algo-
rithm of [22]. Furthermore, in order to demonstrate that the parameterizations
we consider are non-trivial, we give a reduction showing that Rabin games (a
more general class of infinite games) remain hard for many of the cases of this
paper.

2 Definitions and Preliminaries

2.1 Parity Games, Dominions and Attractors

In a parity game the input is a sinkless directed graph G(V,E), where V is
partitioned into two sets V0, V1, a priority function Pr : V → N, and a starting
vertex v ∈ V . Throughout the paper we use n to denote |V | and p to denote the
maximum priority given to any vertex of G max{Pr(u) : u ∈ V }. We also use
N+(u) (respectively N−(u)) to denote the set of out-neighbors (in-neighbors)
of the vertex u.

In this game there are two players, player 0 (the even player) and player
1 (the odd player), controlling the vertices of V0 and V1 respectively. A token
is initially placed on the starting vertex v and, in each turn, the player who
controls the vertex that currently contains the token selects one of its out-
neighbors and moves the token there (an out-neighbor always exists, since the
graph has no sinks). The play then goes on to the next round and continues
infinitely. Player 0 is the winner of a play if and only if the vertex that has
maximum priority out of all the vertices that appear infinitely often in the play
has even priority; otherwise, player 1 is the winner. A player has a winning
strategy from a starting vertex v, if she has a way to construct a winning play
when the game starts from v no matter how the opponent plays. For more
information on parity games see for example [17].

We use Wi(G), for i ∈ {0, 1} to denote the winning region of player i in the
game graph G, that is, the set of vertices from which player i has a winning
strategy (and we will simply write Wi if G is clear from the context). It is a
well-known (but non-trivial) fact that each player has a memory-less positional
strategy, i.e a strategy where decisions depend on the current position of the
token and not on the history, that allows her to win all the vertices of her
winning region [4, 14, 23]. We will make use of the following basic fact:

Fact 1. For all i ∈ {0, 1} and all vertices v ∈ Vi we have v ∈Wi if and only if
N+(v) ∩Wi 6= ∅.

Let us now formally define two notions that will be crucial throughout this
paper: dominions and attractors.

Definition 1. A set of vertices D ⊆ V is an i-dominion, for some i ∈ {0, 1} if
the following hold:

4

1. There are no arcs from D ∩ V1−i to V \D and every vertex of D ∩ Vi has
an out-neighbor in D.

2. Player i has a winning strategy for all starting vertices in the parity game
on the induced subgraph G[D].

Informally, an i-dominion is a region of the graph where player i can force
the token to remain, and by doing so she manages to win the game. It is not
hard to see that Wi(G) is always an i-dominion, but smaller i-dominions could
also exist.

Definition 2. An i-attractor of a set of vertices S, for some i ∈ {0, 1}, denoted
attri(S), is the smallest superset of S that satisfies the following:

1. There are no arcs from Vi \ attri(S) to attri(S).

2. Every vertex of V1−i \ attri(S) has an out-neighbor outside of attri(S).

Intuitively, an i-attractor of a set S is a region inside which player i can
force the token to eventually enter S (this should obviously include S itself).

It is not hard to see that an i-attractor can be calculated in polynomial
time by iteratively adding vertices to S, as dictated by the above specifications.
One of the reasons that we are interested in attractors is that they allow us to
simplify the game once we identify some part of one player’s winning region,
thanks to the following fact, which is e.g. shown in [22, Lemma 4.5].

Fact 2. If, for some i ∈ {0, 1} and S ⊆ V , we have S ⊆ Wi, then Wi(G) =
attri(S) ∪Wi(G \ attri(S)).

We will often make use of the fact that an attractor for one player cannot
expand into the region of a dominion controlled by the opponent.

Lemma 1. For i ∈ {0, 1} let D be an i-dominion and S ⊆ V be a set of vertices
such that S ∩D = ∅. Then attr1−i(S) ∩D = ∅.

Proof. Consider the iterative process that adds vertices to S to build attr1−i(S).
No vertex of D can be the first to be added to the attractor in this process:
vertices of D ∩ Vi have an out-neighbor in D and vertices of D ∩ V1−i have all
their out-neighbors in D.

Finally, let us point out that a dominion that is completely controlled by a
single player can be found (and by Fact 2 removed from the graph) in polynomial
time. We will therefore always assume that in all the graphs we consider, no
player can win without at some point passing the token to her opponent.

Fact 3. If there exists a dominion D such that D ⊆ Vi for some i ∈ {0, 1}, then
such a dominion can be found in polynomial time.

5

2.2 Attractor-based Algorithms

We give here a short descriptive sketch of the attractor-based algorithms of
[24, 22]. One of the main approaches for solving parity games is the attractor-
based approach often referred to as McNaughton’s algorithm [24, 28]. We sketch
here the algorithm, which has served as the starting point of many subsequent
improvements, as well as most of the algorithms of this paper. The first step in
McNaughton’s algorithm is to locate the set of vertices S that have maximum
priority p in the input graph. Let i := p mod 2. One then calculates the set
A := attri(S). We now recursively call the algorithm on the graph G \ A, that
is, the graph obtained by deleting the vertices of A. This allows us to calculate
the winning regions of G \A.

There are now two cases. If player i wins from every vertex of this new
graph, then she has a strategy to win from every vertex of G. To see this,
observe that when the token enters A player i can follow a strategy that leads
the token to S, therefore, if the token enters A infinitely often in a play, the
maximum priority will be p, which is winning for i. If the token does not enter
A infinitely often then play is eventually restricted to G \A where player i wins
everywhere. So, in this case we are done. If, on the other hand, player 1 − i
wins some vertices of G \ A then W1−i(G \ A), which is a (1 − i)-dominion in
G \A, is also a (1− i)-dominion in G. Therefore, we can use Fact 2 to simplify
the graph. We then recursively solve the remaining game.

Theorem 1. [24] McNaughton’s algorithm solves parity games in time O∗(np).

Proof. Let T (n, p) denote the worst-case running time of the algorithm. Then
T (n, p) ≤ T (n − 1, p − 1) + T (n − 1, p) + nO(1), since in the first recursive call
the maximum priority has been decreased and in the second call (if it is made)
we have deleted at least one vertex. Solving this recurrence gives the claimed
bound.

Perhaps one of the most notable improvements building upon McNaughton’s
algorithm is the deterministic sub-exponential algorithm of Jurdzinski, Paterson
and Zwick [22] (before their work the only sub-exponential algorithms known
for this problem were randomized LP-based algorithms [5]). Let us also sketch
this approach, which we extend in this paper. The idea is to precede the running
of McNaughton’s algorithm by a pre-processing step, which looks for a “small”
dominion in the input graph. The pre-processing is done by brute force, trying
out all sets of size at most c, where c is a parameter to be optimized later (in
section 5 we argue that this brute force step cannot be improved). If such a
dominion is found, it can be removed from the graph using Fact 2. Otherwise, we
know that if McNaughton’s algorithm makes a second recursive call, a dominion
of size at least c will have been removed from the graph. Judiciously selecting
c to balance the two steps gives a sub-exponential running time.

Theorem 2. [22] The algorithm of Jurdzinski, Paterson and Zwick solves parity
games in time nO(

√
n).

6

Proof. We select c to be
√
n. Then, if T (n) is the worst-case running time on n

vertices, we have T (n) ≤
(
n
c

)
cc + T (n− 1) + T (n− c).

3 Strong Dominion Hitters

In this section we introduce the notion of a dominion hitter and show several
(parameterized) algorithmic applications. The ideas presented here are heavily
inspired by the sub-exponential algorithm of [22], which looks for small domin-
ions in the input graph. Here we will be interested in the intersection of the
located dominion with a special set that intersects all dominions. We give two
straight-forward applications of this idea (for parameters directed feedback ver-
tex set and number of vertices of one player) and a slightly more involved one
(for parameter distance from tournament). Before moving forward, let us give
some useful definitions.

Definition 3. A set S ⊆ V is a dominion hitter if for every (non self-controlled)
dominion D of G we have S ∩D 6= ∅. A set S ⊆ V is a strong dominion hitter
if, for every V ′ ⊆ V for which G[V ′] is a game, S ∩ V ′ is a dominion hitter in
G[V ′].

Let us explain the intuition behind the definition of strong dominion hitters.
First, by Fact 3 we can remove self-controlled dominions in polynomial time
from G and all of its subgames. Now, if G contains a strong dominion hitter
S with |S| = k then McNaughton’s algorithm will run in time O∗

(
nk
)
, since

the second recursive call will always delete at least one vertex of S (in fact the
running time can also be upper-bounded by O∗

(
pk
)
, since the first recursive call

decreases p).
Our strategy in this section will be to improve upon McNaughton’s algorithm

significantly by following a strategy similar to that of [22]. Suppose we are given
a strong dominion hitter S. First, we look for a dominion that has a small
intersection with S. As we will argue, this can be done by solving parity games
(recursively) on a much simpler graph where a large part of S has been deleted.
If such a dominion is found, it can be removed from the graph. If that fails, then
every dominion must have a large intersection with S, therefore we know that
McNaughton’s algorithm’s second recursive call will be on a graph where much
of S has been deleted. Proper balancing allows us to obtain a running time of
O∗
(
plog k4k

)
(Lemma 2). Let us now describe exactly how dominion hitters can

be exploited.

Lemma 2. There is an algorithm which, given a parity game instance G(V,E)
and a strong dominion hitter S with |S| = k decides the problem in O∗

(
plog k4k

)
time.

Proof. The algorithm proceeds as follows: first, for every S′ ⊂ S with |S′| = s,
where s is a parameter to be fixed later, we will try to find a dominion D such

7

that D∩S ⊆ S′. For i ∈ {0, 1} we will describe how to find such an i-dominion,
if it exists.

Let A := attr1−i(S \S′). We solve parity games on the graph G\A by recur-
sively calling this algorithm. Now, we claim that Wi(G\A) (if non-empty) is an
i-dominion in G. To see this, observe that, by definition, the game restricted to
Wi(G\A) is a win for i, and vertices of V1−i∩Wi(G\A) have no outgoing edges
to A, by the definition of attractors, or W1−i(G \ A), by Fact 1. On the other
hand, we claim that if an i-dominion D exists in G such that D ∩ S ⊆ S′ then
D ⊆Wi(G\A). This follows from Lemma 1. Thus, we can conclude whether an
i-dominion with the requested intersection with S exists (and find it if it does)
by solving parity games on a graph where at least |S \ S′| ≥ k − s vertices of
S have been deleted. If a dominion is found, we can remove it from the graph
using Fact 2.

If no dominion (of either player) is found in the first phase, since S is a do-
minion hitter we know that any dominion includes at least s vertices of S. We
now essentially follow McNaughton’s approach: remove an attractor of the max-
imum priority vertices, solve the remaining graph recursively and, if necessary,
remove the discovered winning region and solve the remainder recursively.

Let us analyze the running time of the above procedure. Suppose that
T (n, p, k) is the worst-case running time for a graph with n vertices, maximum
priority p and a strong dominion hitter of size k. The first phase requires time
at most 2

(
k
s

)
[T (n, p, s) + O(na)] (removing a dominion takes polynomial time

O(na)). If a dominion D is found, we solve recursively an instance where we
have removed an attractor of D in time T (n, p, k − 1) +O(na). If no dominion
is found, we first make a recursive call that takes time T (n, p − 1, k) + O(na)
since the maximum priority is decreased and then a recursive call that takes
time at most T (n, p, k − s) + O(na). Removing self-controlled dominions takes
polynomial time O(nb). So, overall we have

T (n, p, k) ≤ 2

(
k

s

)
[T (n, p, s) +O(na)] + max{T (n, p, k − 1),

T (n, p− 1, k) + T (n, p, k − s)}+O(na + nb)

Observe that the algorithm we have described generalizes the algorithm of
[22]: in the worst case k = n (the dominion hitter is all the vertices) and we
can select s =

√
n to obtain essentially the same running time. However, here

we want to leverage the fact that we may have a small dominion hitter. We
will set s = k/2 and prove inductively that T (n, p, k) ≤ 4kplog kO(nc), where
c > max{a, b} is a constant.

For p, k > 4, and sufficiently large n:

8

(a)

2

(
k
k
2

)
[T (n, p, k/2) +O(na)] + T (n, p, k − 1) +O(na + nb) ≤

2k4
k
2 plog

k
2O(nc) + 4k−1plog kO(nc) + 2kO(na + nb) ≤(

1

p
+

1

4
+

2kO(na + nb)

4kplog kO(nc)

)
4kplog kO(nc) ≤

4kplog kO(nc).

(b)

2

(
k
k
2

)
[T (n, p, k/2) +O(na)] + T (n, p− 1, k) + T (n, p, k/2) +O(na + nb) ≤

2kT (n, p, k/2) + T (n, p− 1, k) + 2kO(na + nb) ≤
2k4

k
2 plog

k
2O(nc) + 4k(p− 1)log kO(nc) + 2kO(na + nb) ≤(

1

p
+

(
p− 1

p

)log k

+
2kO(na + nb)

4kplog kO(nc)

)
4kplog kO(nc) ≤

4kplog kO(nc).

3.1 Direct applications

Let us first consider two direct applications of the idea of strong dominion
hitters. One is the parameterization of the problem where the parameter is the
directed feedback vertex set S of the graph, i.e. a set of vertices whose removal
makes the graph a DAG. Since every dominion should contain a directed cycle, S
is clearly a strong dominion hitter. Application of Lemma 2 is straightforward.

Theorem 3. Given an instance of parity games G(V,E) and a directed feedback
vertex set S, |S| ≤ k of G, there exists an algorithm which decides the problem
in time O∗

(
plog k4k

)
.

Another example is the parameterization of the problem where the parameter
k is equal to |V1|, the number of vertices controlled by one of the players. Because
of Fact 3, V1 is a strong dominion hitter. Once again Lemma 2 can be applied
directly.

Theorem 4. There exists an algorithm which given an instance of parity games
G(V,E) such that |V1| = k decides the problem in time O∗

(
4kplog k

)
.

9

3.2 More involved case

Now we will see how we can apply the idea of strong dominion hitters to a less
straightforward case, where the graph is almost a tournament (a tournament is
a directed graph having at least one arc between every pair of vertices).

Once again, due to Fact 3, G is free of i-controlled i-dominions (we call these
dominions happy). In fact, this implies something even stronger: that no happy
dominion exists in any subgame of G. Then all i-dominions in G shall have an
unhappy vertex, i.e. a vertex controlled by player (1 − i). The next fact shall
prove useful.

Fact 4. Let v0 ∈ V0 ∩W1 and v1 ∈ V1 ∩W0 be unhappy vertices. Then v0 and
v1 are not neighbors.

Proof. (v0, v1) 6∈ E, otherwise the even player would have had a way to escape
from v0 to W0. With similar reasoning (v1, v0) 6∈ E.

We first need to establish that parity games on tournaments can be solved
in polynomial time, using the above observation. In fact, we can show that in
tournaments, after we remove happy dominions, one player wins all the vertices.
The fact that parity games are polynomially decidable on tournaments was
already shown in [12], but a proof is included here for the sake of completeness.

We then study the parameterization where the parameter is the vertex-
deletion distance of the graph from being a tournament. In this case, the graph
is basically a tournament plus a set S of at most k additional vertices which
might be missing arcs (this case is more general than the case of a tournament
missing a set of k edges).

The algorithm is similar to Lemma 2. If S happens to be a dominion hitter
the procedure reduces S by at least k

2 either during the preprocessing or during
the second recursive call of McNaughton’s algorithm. If S is not a dominion
hitter, then the dominion found after removing attri(p) might not intersect S.
In this case however, we argue that the (1 − i)-attractor of the winning region
W1−i(G \ attri(p)) of the smaller graph should absorb all vertices of V1−i \ S,
leaving an instance where player (1− i) has vertices only in S (up to k vertices).
We can then use Theorem 4. The algorithmic results of this section are thus
summarized in the following two theorems.

Theorem 5. Parity games on tournaments can be solved in polynomial time.

Proof. Given a tournament T , we use Fact 3 to obtain a tournament G(V,E)
with no happy dominions.

We will first prove that in G all vertices are won by one player, that is either
W0 or W1 of G is empty. Suppose that W0,W1 are both non-empty. Then,
by Fact 4 there would be two unhappy vertices which would not be connected.
This is a contradiction because G is a tournament.

What we need to figure out is which of the two players wins. This can be
done once again by running McNaughton’s algorithm, though we show that in
the case of tournaments we don’t need the second recursive call. Indeed, suppose

10

we have removed attri(p) of the maximum priority p and solved the remaining
game G′(V ′, E′). This too is a tournament, so one player should win the whole
graph. If player i wins everything in G′, then this is clearly the case for G. If
player 1− i wins everything in G′, then V ′ is an (1− i)-dominion of G and by
the observation that all vertices are won by one player this makes player (1− i)
the winner in the rest of G.

All that remains is to find a strategy for player (1− i) in attri(p) = V \ V ′.
We know that player (1− i) should be winning the whole graph, so any vertex
belonging in Vi ∩ V ′ should not be able to escape to attri(p) (we know that
there exists at least one such vertex, call it u). That means that all vertices in
attri(p)∩V1−i should have at least one outgoing edge towards V ′ (say to u). So
the strategy for player 1− i is to send the token to u.

Theorem 6. Given a graph G(V,E) on n vertices and a set S ⊆ V with |S| ≤ k
such that G\S is a tournament, parity games can be solved in time O∗

(
plog k4k

)
.

Proof. Again, we first pre-process the graph to obtain graph G(V,E) with no
happy dominions. G should also have a set S of at most k vertices the removal
of which leaves a tournament.

We proceed in a similar way as in Lemma 2. First, for i ∈ {0, 1}, for all
S′ ⊂ S of size |S′| ≤ k

2 we try to find a dominion D∩S′ 6= ∅. If such a dominion
exists we remove it from the graph using Fact 2 and solve a smaller instance.
Otherwise we know that every dominion either uses at least k

2 vertices from S
or it has an empty intersection with S.

In the latter case, we run McNaughton’s algorithm: remove A = attri(p)
and potentially find a winning region W1−i(G \ A) with at least one unhappy
vertex vi ∈W1−i(G \A) ∩ Vi.

• If W1−i(G \A) ∩ S 6= ∅, this case should be similar to Lemma 2.

• If W1−i(G\A)∩S = ∅, observe that all vertices in A\S should have vi as
an out-neighbor, otherwise vi would belong in A. Furthermore, by Fact
4, all unhappy vertices of Wi(G \ A) should belong to S. Thus, when we
compute A′ = attr1−i(W1−i(G\A)), all vertices of player (1− i) but those
in S will be absorbed, so G \ A′ should be a graph where player (1 − i)
controls possibly only vertices from S. We shall then proceed similarly to
Theorem 4.

The complexity of this algorithm is similar to that of Lemma 2. If we
call A(n, p, k) the worst-case running time for a graph with n vertices, max-
imum priority p and a set of k vertices missing arcs and O(na) the com-
plexity of removing a dominion, the first phase again requires time at most
2
(
k
k
2

)
[A(n, p, k/2) + O(na)]. If we find a dominion D intersecting S, we solve

recursively in time A(n, p, k−1)+O(na) an instance where at least one element
of S is removed. If no dominion is found, then the first recursive call takes time
A(n, p − 1, k) + O(na). After that, either S is reduced by k

2 and the second

11

recursive call takes time A(n, p, k/2) +O(na), or one of the players is left with
no more than k vertices, which by Theorem 4 shall take time 4kplog kO(nc) to
solve. So, overall we have:

A(n, p, k) ≤ 2

(
k
k
2

)
[A(n, p, k/2) +O(na)] + max{A(n, p, k − 1),

A(n, p− 1, k) + max{A(n, p, k/2), 4kplog kO(nc)}}+O(na)

This recursive function can be proven inductively to be ≤ 4kplog k+1O(nd) for
sufficiently large values of n, p, k, d. Most computations are similar to Lemma 2
and perhaps what remains is to prove the following part of the inductive step:

For p, k > 4, d ≥ c and sufficiently large n:

2

(
k
k
2

)
[A(n, p, k/2) +O(na)] +A(n, p− 1, k) + 4kplog kO(nc) +O(na) ≤

2k4
k
2 plog

k
2+1O(nd) + 4k(p− 1)log k+1O(nd) + 4kplog kO(nc) + 2kO(na) ≤

4kplog kO(nd) +

(
p− 1

p

)log k+1

4k(p− 1)log k+1O(nd) + 2kO(na) ≤(
1

p
+

(
p− 1

p

)log k+1

+
2kO(na)

4kplog k+1O(nc)

)
4kplog k+1O(nd) ≤

4kplog k+1O(nd).

This concludes the proof.

4 Modular Width and Graphs with k Modules

The main result of this section is an FPT algorithm which solves parity games
on graphs with small modular width. In fact, the algorithm we present is able
to handle the more general case of strongly connected graphs whose vertex set
can be partitioned into k > 1 modules. For such graphs, we are able to obtain a
sub-exponential FPT algorithm, even for unbounded p (that is, parameterized
just by k), and from this we can then obtain the same result for modular width.

Recall that a set of vertices M of a directed graph G(V,E) is a module if for
any two vertices u, v ∈M we have N+(u) \M = N+(v) \M and N−(u) \M =
N−(v) \ M , that is, all vertices of M have the same in- and out-neighbors
outside of M . Let us begin this section by presenting an algorithm that decides
parity games on G in time O∗

(
4k
)
. We then give an improved version with

sub-exponential running time.

4.1 Exponential FPT algorithm

Suppose that we are given a strongly connected graph G(V,E), along with a
partition of V into k > 1 non-empty modules M1, . . .Mk. We will call these the

12

graph’s basic modules.
On a high level, the strategy we will follow is again a variation of Mc-

Naughton’s algorithm. This algorithm makes two recursive calls, each on a
graph obtained from G by removing an attractor of some set. If the removed
set contains all of Mj ∩ Vi for some j ∈ {1, . . . , k}, i ∈ {0, 1} then we can intu-
itively think that we are making a lot of progress: such recursive calls cannot
have a depth of more than 2k before we are able to solve the problem (this is
where the O∗

(
4k
)

running time comes from). Thus, our high-level strategy is to
avoid branching in cases where the removed set does not simplify the graph in
this way.

Let us begin by arguing that the algorithm’s second recursive call always
makes significant progress in the sense described above. In the remainder we
assume, as in the previous section, that the graph has been simplified using Fact
3, so each player must at some point pass the token to her opponent to avoid
losing. We now need a helpful lemma.

Lemma 3. Let M be a non-sink module of G and suppose that Wi ∩M 6= ∅.
Then, Vi ∩M ⊆ Wi. Furthermore, there exists a vertex v ∈ Wi \M such that
there is an edge from M to v.

Proof. Let M ′ ⊆ V \M be the set of vertices that have an incoming edge from
M (and, therefore, have incoming edges from all vertices of M , since M is a
module). By assumption, M ′ 6= ∅.

If M ′ ∩Wi 6= ∅ then we are done, because all vertices of Vi ∩M have an
out-neighbor in Wi, so they must also belong in Wi by Fact 1.

Let us then show that it cannot be the case that M ′ ∩Wi = ∅. In that case
we have M ′ ⊆ W1−i. Observe now that M ∩ V1−i ⊆ W1−i by Fact 1 and the
fact that M ′ is non-empty. Any winning play for player i starting from a vertex
u ∈M must eventually visit either M ∩ V1−i (because player i does not control
a winning cycle) or M ′. However, both of these sets are subsets of W1−i, which
is a contradiction.

An informal way to interpret Lemma 3 is that, if a player wins some vertex of
a module, then she must be winning all the vertices she controls in that module.
We now have the following:

Corollary 1. Let D be an i-dominion, for some i ∈ {0, 1} and M a non-sink
module such that D ∩M 6= ∅. Then attri(D) ⊇M ∩ Vi.

Proof. Similarly to the proof of Lemma 3, if the graph contains no trivial cycles
(which it does not, thanks to Fact 3) then D cannot be contained in M .

We now know that the second recursive call of McNaughton’s algorithm will
always remove all the vertices owned by one of the two players in one of the
basic modules. What remains is to deal with the first recursive call, where we
remove an attractor of the maximum priority vertices. In this case we cannot

13

guarantee that the removal of the attractor will necessarily produce a much
simpler graph. However, we will argue that, if the graph is not simplified, the
removed vertices were “irrelevant”: their presence does not change the winning
status of any other vertex. We will then be able to calculate their winning
status without making the second recursive call using Lemma 3. The key idea
is contained in the following lemma.

Lemma 4. Let p be the maximum priority in G, v be a vertex with priority p
and i := p mod 2. Let A := attri({v}). Suppose that A ⊆ Mj for some basic
non-sink module Mj and that if A contains a vertex controlled by some player,
then Mj \ A also contains a vertex controlled by that player. Then we have
Wi(G) \A = Wi(G \A).

Proof. Observe that for any u ∈ W1−i(G \ A) we also have u ∈ W1−i(G), by
standard properties of attractors. Contrapositively, u ∈Wi(G) \A implies that
u ∈Wi(G\A). Therefore, it suffices to show that for all u ∈Wi(G\A) we have
u ∈ Wi(G). In other words, we need to describe a strategy for player i which
wins in G at least the same vertices i can win in G \A.

We will say that a vertex u ∈ G\A is problematic if u ∈Wi(G\A)∩W1−i(G),
that is, u is a counterexample to the lemma. If a problematic vertex u exists,
then there must exist a problematic vertex that has an edge to A in G. To see
this, consider a play starting from u where player i uses her optimal strategy
for G\A. If player 1− i is using her optimal strategy in G, then the token must
eventually leave Wi(G \ A) (otherwise player i would win). This can only be
done through a vertex of V1−i, since player i is following a strategy that keeps
the token in Wi(G \A). Such vertices have no edges to W1−i(G \A), therefore
the only way out is through A.

Suppose then that u is a problematic vertex that has an edge to A. Therefore,
u ∈ V1−i, otherwise u would be in the attractor. Suppose that u 6∈Mj . It must
then be the case that Mj \ A ⊆ Wi(G \ A), by Fact 1, since u has edges to
all of Mj . If, on the other hand, u ∈ Mj then for any u′ 6∈ Mj that has
an incoming edge from Mj we have u′ ∈ Wi(G \ A). This again implies that
Mj \A ⊆Wi(G \A), using Lemma 3.

So, if there exists a problematic vertex u then player i is winning all of Mj \A
in G \ A. If v ∈ Vi then player i can follow the following strategy in G: for
vertices of G \ A follow an optimal strategy for G \ A, for vertices of A \ {v}
follow a strategy that leads the token to v, and from v push the token to a
vertex of V \Mj that belongs in Wi(G \ A) (such a vertex exists by Lemma
3). If the token enters A infinitely often player i wins, otherwise the last time
the token leaves A it is trapped in Wi(G \ A), where player i wins. Thus, no
problematic vertex can exist in this case.

Finally, suppose that v ∈ V1−i. By the conditions of the lemma there exists
a vertex w ∈ V1−i ∩ (Mj \ A). As before, if there exists a problematic vertex,
player i wins all of Mj \ A, including w, in G \ A. Therefore, player i wins (in
G \ A) every vertex w′ 6∈ Mj that has an incoming edge from Mj . Player i
now follows the same strategy as in the previous paragraph. Observe that once

14

again, if the token visits A infinitely often the maximum priority is p, otherwise,
when the token leaves v it will go to a vertex that player i wins in G \A.

We are now ready to put everything together to obtain the promised algo-
rithm.

Theorem 7. Consider a parity game on a strongly connected graph G(V,E)
where V is partitioned into k > 1 non-empty modules. There exists an algorithm
that decides the winning regions of the two players and their winning strategies
from these regions in time O∗

(
4k
)
.

Proof. We will run a version of McNaughton’s algorithm, so at each step we will
be looking at a subgraph of G. The measure of progress for our algorithm will
be the number of pairs i, j for i ∈ {0, 1} and j ∈ {1, . . . , k} such that Vi∩Mj 6= ∅
in the current graph. Initially the measure has value at most 2k and we want
to prove that any non-trivial recursive step decreases its value.

We want to maintain the following invariant: for each basic module Mj of
the original graph, in any considered subgraph the vertices of Mj which remain
form a module which is either controlled by a single player or has some outgoing
edge. The invariant is initially satisfied, since the graph is strongly connected,
therefore all modules have outgoing edges.

Let us argue that, as long as we produce the considered subgraphs by re-
moving attractors, the invariant will always hold. Indeed, suppose that at some
point in the algorithm’s execution one of the basic modules Mj has lost all its
outgoing arcs. That means that we removed an attractor that contained a ver-
tex v such that all vertices of Mj were pointing to v. Thus, for some i ∈ {0, 1}
all vertices of Vi ∩Mj must have also been placed in the same attractor as v.

The algorithm is now the following: first, suppose that there exists a module
Mj without outgoing edges. We solve the problem on G[Mj]; this can be done in
polynomial time since all its vertices belong to one player. We can now simplify
G using Fact 2. We then continue with the remainder of the graph.

So the interesting case is when all basic modules have outgoing edges. Now
we do the following: first locate a vertex v with maximum priority p, and let
i := p mod 2. Let A := attri({v}). If A fulfills the requirements of Lemma 4
then we solve the problem on G \ A recursively. We then know the winning
status of all vertices of G\A in G, since by Lemma 4 this does not change when
we put the attractor back. We can also infer the winning status of vertices of
A: if u ∈ A ∩ Vl for l ∈ {0, 1} then there exists a vertex u′ ∈ (Mj \A) ∩ Vl and
we know the winning status of u′. By Lemma 3 u has the same winner. Thus,
in this case we are done.

Finally, if A does not fulfill the requirements of Lemma 4 then we solve
(recursively) the problem on G \A and then proceed as in McNaughton’s algo-
rithm. That is, we know that W1−i(G \ A) is a (1 − i)-dominion in G, so we
use Fact 2 to remove it and solve recursively in the rest of the graph. We will
argue that in both of these cases the graph we recurse on is simpler.

15

If A does not fulfill the requirements of Lemma 4, then we have two cases: In
the first case, A contains some vertex u of another module Mj′ . If u ∈ Vi then
A contains all vertices of Mj′ ∩ Vi (which was non-empty) so the complexity
measure is reduced. If u ∈ V1−i then A must contain all of Mj , so again
the complexity measure is reduced. In the second case, A contains all of the
vertices of Mj controlled by some player, so deleting A eliminates Vl ∩Mj for
some l ∈ {0, 1}. So, the graph obtained after removing A is simpler.

For the second recursive call, observe that if we know the winning status of
a vertex u, we know the winning status of all vertices which are in the same
module and controlled by the same player as u (by Lemma 3). So we can assume
that for the second recursive call we remove a region that contains all of Vi∩Mj

for some i, j.
We are now ready to conclude that the running time of the recursive algo-

rithm we have described is O∗
(
4k
)
. To see this, note that if the algorithm makes

two recursive calls, each is on a graph where we have just removed all of Vi∩Mj

for some i, j. Suppose that we started with a graph where all modules have
outgoing edges. Then, after a depth of at most 2k−1 operations where Vi ∩Mj

is removed for some i, j, we have a graph that contains a module Mj without
outgoing edges. Furthermore, by the stated invariant, this module is controlled
by a single player and can be solved in polynomial time.

It’s now easy to apply the above algorithm to the case of modular width.

Corollary 2. There exists a O∗
(
4k
)

algorithm that decides parity games on
graphs with modular width k.

Proof. Recall that a graph has modular width k if it isK1 or it can be partitioned
into at most k modules such that each module induces a graph with modular
width k. This recursive structure is usually described by a tree, called a modular
decomposition, which can be calculated in linear time [18].

If the input graph is strongly connected then we can invoke Theorem 7.
Otherwise, we find a strongly connected component without outgoing edges.
This part of the graph also has modular width k, so we can apply to it Theorem
7 and, after calculating its winning regions, remove them from the original graph
and repeat.

4.2 Sub-exponential FPT algorithm

Let us now present an improved version of the algorithm of Theorem 7. The
idea is inspired by the improved version of McNaughton’s algorithm from [22]:
we will first look for a dominion that is confined inside at most

√
k of the k basic

modules. If such a dominion is found we can simplify the graph. Otherwise,
we know that the second recursive call (when made) will touch at least

√
k

dominions, thus making significant progress.

16

Theorem 8. Consider a parity game on a strongly connected graph G(V,E)
where V is partitioned into k > 1 non-empty modules. There exists an algorithm
that decides the winning regions of the two players and their winning strategies

from these regions in time kO(
√
k)nO(1).

Proof. We use the same invariant and the same measure of progress as in the
proof of Theorem 7. The difference now is the following: suppose that each of
the (remaining) basic modules has outgoing edges. Also, suppose that we know
that removing that attractor of the maximum priority does not make progress
(otherwise we handle this case as in Theorem 7 with a single recursive call).

Now, before doing anything else we attempt to find a dominion that touches
a small number of these modules. Specifically, for each set S ⊆ {1, . . . , k} such
that |S| ≤

√
k we want to see if the current graph contains a dominion confined

in ∪j∈SMj . To see if such an i-dominion exists, for some i ∈ {0, 1}, we remove
a (1− i)-attractor of the set ∪j 6∈SMj and recursively solve the remaining graph
using Theorem 7. The complexity of this step is dominated by trying all sets

S, and is therefore kO(
√
k).

If the above step finds a dominion, we remove it from the graph using Fact
2 and repeat the process. Otherwise, we run an iteration of McNaughton’s
algorithm, knowing that the second recursive call (if made) will touch at least√
k modules. The complexity is therefore given by the recurrence T (n, k) ≤

kO(
√
k) +T (n, k− 1) +T (n, k−

√
k). This is the same recurrence as in Theorem

2.

Corollary 3. There exists a kO(
√
k)nO(1) algorithm that decides parity games

on graphs with modular width k.

5 Hardness Results

5.1 Finding Dominions

In this section we consider the parameterized complexity of the following prob-
lem: given an instance of parity games, does there exist a dominion consisting
of at most k vertices? This problem arises very naturally in the course of ex-
amining the sub-exponential time algorithm given in [22]. The first step of this
algorithm is to look for a “small” dominion, that is, a dominion that has size
k, where k is a parameter to be optimized. The approach proposed in [22] is
simply to try out all

(
n
k

)
sets of vertices of size k and solve parity games on the

resulting subgraph. Since solving parity games in a graph with k vertices can be
done in time sub-exponential in k, the

(
n
k

)
factor dominates the running time of

this process. It is therefore natural to ask whether this can be sped up, which
in turn would imply that a different value should be chosen for k to get the best
worst-case bound on the algorithm. One could plausibly hope to try improving
the running time to something like 2

√
n (from n

√
n) using such an approach.

17

Unfortunately, Theorem 9 establishes that improving significantly upon this
brute force method is likely to be very hard. In particular, we give a parameter-
ized reduction from Multi-Colored Clique, showing that finding a dominion

of size at most k cannot be done in time no(
√
k) (under standard assumptions).

Theorem 9. There is no algorithm which, given an instance of parity games

decides if there exists a dominion on at most k vertices in time no(
√
k), unless

the ETH fails.

Proof. We will use the results given in [9, 10], which show that Multi-Colored
Clique cannot be solved in time O(no(k)) under ETH, by giving a quadratic
fpt-reduction, i.e., the parameter of the constructed instance is quatratic in the
parameter of the originial instance, from Multi-Colored Clique.

The reduction is from Multi-Colored Clique: we are given a graph
G(V,E) with V partitioned into k independent sets and are asked if there
exists a clique of size k. We construct a directed graph G′(V ′, E′). We set
V ′ = V ∪ E ∪ {1, . . . , k} ∪ {(i, j) | 1 ≤ i < j ≤ k}. In other words, we create
a vertex for each vertex and for each edge of the original graph, as well as a
vertex for each color and each pair of colors.

We then add a directed edge from each vertex i, for i ∈ {1, . . . , k} to each
vertex u that has color i in G. Similarly, for each (i, j) with 1 ≤ i < j ≤ k
we add edges from (i, j) to the vertex representing (u, v) ∈ E where u, v have
colors i, j in G respectively. For each vertex representing (u, v) ∈ E we add
edges to the vertices representing u, v ∈ V . Finally, for each u ∈ V and for
each (u, v) ∈ E we add edges from the vertices representing u and (u, v) to all
i ∈ {1, . . . , k} and all (i, j), 1 ≤ i < j ≤ k. All vertices are given priority 1.
Player 1 controls vertices i and (i, j) and player 0 the vertices corresponding to
V ∪ E.

Of course, it is clear that player 1 wins everywhere in this game, since all
priorities are odd. The question is if she can trap player 0 in a small dominion.
We argue that there exists a dominion of size at most 2(k +

(
k
2

)
) if and only if

G has a k-clique. The theorem then follows.
Suppose that G has a k-clique. Then the dominion for player 1 contains all

her vertices, as well as the vertices corresponding to vertices and edges of the
clique.

For the converse direction, suppose that player 1 has some dominion D in
G′. It must contain some vertices of player 0, therefore it must contain all
vertices of player 1. For player 1 to construct a dominion she must select an
out-neighbor of each vertex she controls, and since these vertices have disjoint
out-neighborhoods a dominion of the presribed size can only exist if she selects
exactly one out-neighbor for each of her vertices. This selection corresponds to
a selection of k vertices and

(
k
2

)
edges in the original graph. If one of the selected

edges is incident on an unselected vertex in G, then D is not a dominion because
player 0 could escape through the vertex representing that edge in G′.

18

5.2 Rabin Games

A Rabin game is another type of infinite game played on a graph, which in some
sense generalizes parity games. In this section we present a simple reduction
which shows that the algorithmic results we have obtained for parity games are
unlikely to be extendible to Rabin games. Viewed another way, this reduction
shows that the restricted graph classes we have considered are still quite non-
trivial.

First, let us define a Rabin game. We are again given a directed graph
G(V,E), where V is partitioned into V0 and V1, the vertices controlled by each
player. In addition, we are given a set of k pairs (Ii, Fi) ⊆ V × V . The winning
condition is the following: Player 0 wins if there exists an i ∈ {1, . . . , k} such
that the token visits Ii infinitely often but only visits the vertices of Fi a finite
number of times. Otherwise, Player 1 wins.

Let us note that it is not hard to see that this game generalizes parity
games. Given an instance of parity games with maximum priority p we can set
Ii = Pr−1(2i) and Fi = ∪j≥iPr−1(2j + 1) for each i ≤ p/2. In fact, a more
complicated reduction in the opposite direction is possible: it is known that
parity games parameterized by the maximum priority p are FPT-equivalent to
Rabin games parameterized by the number of winning conditions k [3]. Never-
theless, this reduction requires super-polynomial time to run. In the context of
polynomial time solvability the two problems are quite different. While parity
games are in NP∩coNP, Rabin games are NP-complete.

Our reduction is from Multi-Colored Clique. It is essentially a simple
tweak of known reductions for parity games (see e.g. the reduction in [3]).
The new feature is that we are careful that the graph produced has some very
restricted structure. Below, we will say that a vertex is non-trivial if its out-
degree is more than 1.

Theorem 10. There is a polynomial-time reduction from Multi-Colored
Clique to Rabin games which produces an instance G(V,E) with the following
properties:

• G can be turned into a DAG by deleting one vertex.

• G has modular width 2k + 1.

• Player 0 controls k non-trivial vertices.

• Player 1 controls 1 non-trivial vertex.

Proof. Recall that Rabin games, unlike parity games, are not symmetric. If
Player 0 has a winning strategy, she also has a positional winning strategy.
However, the same is not true for Player 1, who may have a winning strategy
that alternates the out-going arc selected from a vertex between rounds [3].

Let G′(V ′, E′) be an instance of Multi-Colored Clique. We construct
an instance of Rabin games as follows. First, V = V ′ ∪ {1, . . . , k} ∪ {s}. We
have arcs (s, i) for all i ∈ {1, . . . , k}. For each i ∈ {1, . . . , k} we also have all

19

arcs from the vertex i to all vertices of V ′ with color i. Finally, all vertices
of V ′ have an out-going arc to s. Vertex s is controlled by Player 1, while
vertices i ∈ {1, . . . , k} are controlled by Player 0. The remaining vertices have
out-degree 1, so their owner is irrelevant.

Let us also define the winning conditions. For each u ∈ V ′ we define Iu = {u}
and Fu = V ′ \ N(u), that is, for each vertex u of the original graph Player 0
can win by visiting u infinitely often, provided she refrains from visiting its
non-neighbors.

It is not hard to see that the graph satisfies the claimed properties. Let us
therefore establish correctness. First, suppose there exists a multi-colored clique
of size k in the original graph. Player 0 has the following positional strategy: for
each vertex i she selects the outgoing arc that leads to the vertex of the clique.
Then, for any strategy of Player 1, some vertex of V ′ will be visited infinitely
often without visiting any of its non-neighbors.

Conversely, suppose that Player 0 has a winning strategy, which must be
positional. Consider the vertices of V ′ which are the heads of the out-going arcs
selected in this strategy. We argue that they must be a clique. For contradiction,
suppose that two of them u, v are not connected, and they have colors i1, i2.
Then Player 1 would be able to counter the strategy of Player 0 by alternating
his moves as follows: each time the token arrives at s it is pushed either to
i1 or to i2. In this case, the only vertices visited infinitely often would be
{s, i1, i2, u, v}, which would mean that Player 1 wins.

Acknowledgements

We would like to thank Danupon Nanongkai for suggesting this problem and
for our useful discussions.

References

[1] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdržálek. The
dag-width of directed graphs. J. Comb. Theory, Ser. B, 102(4):900–923,
2012.

[2] D. Berwanger, E. Grädel, L. Kaiser, and R. Rabinovich. Entanglement and
the complexity of directed graphs. Theor. Comput. Sci., 463:2–25, 2012.

[3] H. Bjorklund, S. Sandberg, and S. Vorobyov. On fixed-parameter complex-
ity of infinite games. In K. Sere and M. Waldén, editors, The Nordic Work-
shop on Programming Theory (NWPT’03), number 34 in Åbo Akademi,
Reports on Computer Science and Mathematics, pages 29–31. Citeseer,
2003.

20

[4] H. Björklund, S. Sandberg, and S. G. Vorobyov. Memoryless determinacy
of parity and mean payoff games: a simple proof. Theor. Comput. Sci.,
310(1-3):365–378, 2004.

[5] H. Björklund and S. G. Vorobyov. A combinatorial strongly subexponential
strategy improvement algorithm for mean payoff games. Discrete Applied
Mathematics, 155(2):210–229, 2007.

[6] M. Bojanczyk, C. Dittmann, and S. Kreutzer. Decomposition theorems and
model-checking for the modal µ-calculus. In T. A. Henzinger and D. Miller,
editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, page 17. ACM, 2014.

[7] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An im-
proved algorithm for the evaluation of fixpoint expressions. Theor. Comput.
Sci., 178(1-2):237–255, 1997.

[8] K. Chatterjee and T. A. Henzinger. A survey of stochastic ω-regular games.
J. Comput. Syst. Sci., 78(2):394–413, 2012.

[9] J. Chen, X. Huang, I. A. Kanj, and G. Xia. On the computational hardness
based on linear fpt-reductions. Journal of Combinatorial Optimization,
11(2):231–247, 2006.

[10] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower
bounds via parameterized complexity. Journal of Computer and System
Sciences, 72(8):1346–1367, 2006.

[11] A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–
224, 1992.

[12] C. Dittmann, S. Kreutzer, and A. I. Tomescu. Graph operations on parity
games and polynomial-time algorithms. arXiv preprint arXiv:1208.1640,
2012.

[13] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics
of programs. SIAM J. Comput., 29(1):132–158, 1999.

[14] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001.

[15] F. V. Fomin, M. Liedloff, P. Montealegre-Barba, and I. Todinca. Algo-
rithms parameterized by vertex cover and modular width, through poten-
tial maximal cliques. In R. Ravi and I. L. Gørtz, editors, Algorithm Theory -
SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copenhagen,
Denmark, July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in
Computer Science, pages 182–193. Springer, 2014.

21

[16] J. Gajarský, M. Lampis, and S. Ordyniak. Parameterized algorithms for
modular-width. In G. Gutin and S. Szeider, editors, Parameterized and
Exact Computation - 8th International Symposium, IPEC 2013, Sophia
Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume
8246 of Lecture Notes in Computer Science, pages 163–176. Springer, 2013.

[17] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl sem-
inar, February 2001], volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

[18] M. Habib and C. Paul. A survey of the algorithmic aspects of modular
decomposition. Computer Science Review, 4(1):41–59, 2010.

[19] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions,
games, and orderings. Theor. Comput. Sci., 399(3):206–219, 2008.

[20] M. Jurdzinski. Deciding the winner in parity games is in UP \cap co-up.
Inf. Process. Lett., 68(3):119–124, 1998.

[21] M. Jurdzinski. Small progress measures for solving parity games. In H. Re-
ichel and S. Tison, editors, STACS, volume 1770 of Lecture Notes in Com-
puter Science, pages 290–301. Springer, 2000.

[22] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential
algorithm for solving parity games. SIAM J. Comput., 38(4):1519–1532,
2008.

[23] R. Küsters. Memoryless determinacy of parity games. In Grädel et al. [17],
pages 95–106.

[24] R. McNaughton. Infinite games played on finite graphs. Ann. Pure Appl.
Logic, 65(2):149–184, 1993.

[25] J. Obdržálek. Fast mu-calculus model checking when tree-width is bounded.
In W. A. H. Jr. and F. Somenzi, editors, Computer Aided Verification, 15th
International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003,
Proceedings, volume 2725 of Lecture Notes in Computer Science, pages 80–
92. Springer, 2003.

[26] J. Obdržálek. Clique-width and parity games. In J. Duparc and T. A.
Henzinger, editors, Computer Science Logic, 21st International Workshop,
CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland,
September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Com-
puter Science, pages 54–68. Springer, 2007.

[27] S. Schewe. Solving parity games in big steps. In V. Arvind and S. Prasad,
editors, FSTTCS, volume 4855 of Lecture Notes in Computer Science, pages
449–460. Springer, 2007.

22

[28] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

[29] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theor. Comput. Sci., 158(1&2):343–359, 1996.

23

