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Abstract
In this paper we focus on problems which do not admit a constant-factor approximation in

polynomial time and explore how quickly their approximability improves as the allowed running
time is gradually increased from polynomial to (sub-)exponential.

We tackle a number of problems: For Min Independent Dominating Set, Max Induced
Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio
of r in time roughly rn/r. We show that, for most values of r, if this running time could be
significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a non-
trivial

√
r-approximation in time 2n/r. We match this with a similarly tight result. We also give

a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy
Coloring in time rn/r.

Furthermore, we show that Min Set Cover exhibits a curious behavior in this super-
polynomial setting: for any δ > 0 it admits an mδ-approximation, where m is the number of sets,
in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial
time, the ETH or the Projection Games Conjecture would fail.
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1 Introduction

One of the central questions in combinatorial optimization is how to deal efficiently with
NP-hard problems, with approximation algorithms being one of the most widely accepted
approaches. Unfortunately, for many optimization problems, even approximation has turned
out to be hard to achieve in polynomial time. This has naturally led to a more recent turn
towards super-polynomial and sub-exponential time approximation algorithms. The goal of
this paper is to contribute to a systematization of this line of research, while adding new
positive and negative results for some well-known optimization problems.

For many of the most paradigmatic NP-hard optimization problems the best polynomial-
time approximation algorithm is known (under standard assumptions) to be the trivial
algorithm. In the super-polynomial time domain, these problems exhibit two distinct types
of behavior. On the one hand, APX-complete problems, such as MAX-3SAT, have often
been shown to display a “sharp jump” in their approximability. In other words, the only way
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to obtain any improvement in the approximation ratios for such problems is to accept a fully
exponential running time, unless the Exponential Time Hypothesis (ETH) is false [22].

A second, more interesting, type of behavior is displayed on the other hand by problems
which are traditionally thought to be “very inapproximable”, such as Clique. For such
problems it is sometimes possible to improve upon the (bad) approximation ratios achievable
in polynomial time with algorithms running only in sub-exponential time. In this paper, we
concentrate on such “hard” problems and begin to sketch out the spectrum of trade-offs
between time and approximation that can be achieved for them.

On the algorithmic side, the goal of this paper is to design time-approximation trade-off
schemes. By this, we mean an algorithm which, when given an instance of size n and an
(arbitrary) approximation ratio r > 1 as a target, produces an r-approximate solution in
time T (n, r). The question we want to answer is what is the best function T (n, r), for each
particular value of r. Put more abstractly, we want to sketch out, as accurately as possible, the
Pareto curve that describes the best possible relation between worst-case approximation ratio
and running time for each particular problem. For several of the problems we examine the
best known trade-off algorithm is some simple variation of brute-force search in appropriately
sized sets. For some others, we present trade-off schemes with much better performance,
using ideas from exponential-time and parameterized algorithms, as well as polynomial-time
approximation.

Are the trade-off schemes we present optimal? A naive way to answer this question could
be to look at an extreme, already solved case: set r to a value that makes the running time
polynomial and observe that the approximation ratios of our algorithms generally match
(or come close to) the best-known polynomial-time approximation ratios. However, this
observation does not alone imply satisfactorily the optimality of a trade-off scheme: it leaves
open the possibility that much better performance can be achieved when r is restricted to a
different range of values. Thus, the second, perhaps more interesting, direction of this paper
is to provide lower bound results (almost) matching several of our algorithms for any point
in the trade-off curve. For a number of problems, these results show that the known schemes
are (essentially) the best possible algorithms, everywhere in the domain between polynomial
and exponential running time. We stress that we obtain these much stronger sub-exponential
inapproximability results relying only on standard, appropriately applied, PCP machinery, as
well as the ETH.
Previous work. Moderately exponential and sub-exponential approximation algorithms are
relatively new topics, but most of the standard graph problems have already been considered
in the trade-off setting of this paper. For Max Independent Set and Min Coloring an
r-approximation in time cn/r was given by Bourgeois et al. [5, 3]. For Min Set Cover, a
log r-approximation in time cn/r and an r-approximation in time cm/r, where n,m are the
number of elements and sets respectively, were given by Cygan, Kowalik and Wykurz [8, 4].
For Min Independent Dominating Set an r-approximation in cn log r/r is given in [2]. An
algorithm with similar performance is given for Bandwidth in [9] and for Capacitated
Dominating Set in [10]. In all the results above, c denotes some appropriate constant.

On the hardness side, the direct inspiration of this paper is the recent work of Chalermsook,
Laekhanukit and Nanongkai [6] where the following was proved.

I Theorem 1. [6] For all ε > 0, for all sufficiently large r = O(n1/2−ε), if there exists
an r-approximation for Max Independent Set running in 2n

1−ε/r1+ε then there exists a
randomized sub-exponential algorithm for 3-SAT.

Theorem 1 essentially showed that the very simple approximation scheme of [5] is probably
“optimal”, up to an arbitrarily small constant in the second exponent, for a large range of
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values of r (not just for polynomial time). The hardness results we present in this paper
follow the same spirit and in fact also rely on the technique of appropriately combining
PCP machinery with the ETH, as was done in [6]. To the best of our knowledge, Max
Independent Set and Max Induced Matching (for which similar results are given in [6])
are the only problems for which the trade-off curve has been so accurately bounded. The only
other problem for which the optimality of a trade-off scheme has been investigated is Min
Set Cover. For this problem the work of Moshkovitz [21] and Dinur and Steurer [12] showed
that there is a constant c > 0 such that log r-approximating Min Set Cover requires time
2(n/r)c . It is not yet known if this constant c can be brought arbitrarily close to 1.

Summary of results
In this paper we want to give upper and lower bound results for trade-off schemes that match
as well as the algorithm of [5] and Theorem 1 do for Max Independent Set; we achieve
this for several problems (all of them are defined in Appendix).

For Min Independent Dominating Set, there is no r-approximation in 2n
1−ε/r1+ε

for any r, unless the deterministic ETH fails. This result is achieved with a direct
reduction from a quasi-linear PCP and is stronger than the corresponding result for Max
Independent Set (Theorem 1) in that the reduction is deterministic and works for all
r.
For Max Induced Path, there is no r-approximation in 2o(n/r) for any r < n, unless the
deterministic ETH fails. This is shown with a direct reduction from 3-SAT, which gives
a sharper running time lower bound. For Max Induced Tree and Forest we show
hardness results similar to Theorem 1 by reducing from Max Independent Set.
For Max Minimal Vertex Cover we give a scheme that returns a

√
r-approximation in

time cn/r, for any r > 1. We complement this with a reduction from Max Independent
Set which establishes that a

√
r-approximation in time 2n

1−ε/r1+ε (for any r) would
disprove the randomized ETH.
For Min ATSP we adapt the classical logn-approximation into a log r-approximation in
cn/r. For Max Grundy Coloring we give a simple r-approximation in cn/r. For both
problems membership in APX is still an open problem.
Finally, we consider Min Set Cover. Its approximability in terms of m is poorly
understood, even in polynomial time. With a simple refinement of an argument given
in [23] we show how to obtain for any δ > 0 anmδ-approximation in quasi-polynomial time
2log(1−δ)/δ n. We also observe that, if the ETH and the Projection Games Conjecture [21]
are true, there exists c > 0 such that mc-approximation cannot be achieved in polynomial
time. This would imply that the approximability of Min Set Cover changes dramatically
from polynomial to quasi-polynomial time. The only other problem which we know to
exhibit this behavior is Graph Pricing [6].

2 Preliminaries and Baseline Results

Algorithms
In this paper we consider time-approximation trade-off schemes. Such a scheme is an
algorithm that, given an input of size n and a parameter r, produces an r-approximate
solution (that is, a solution guaranteed to be at most a factor r away from optimal) in
time T (n, r). Sometimes we will overload notation and allow trade-off schemes to have
an approximation ratio that is some other function of r, if this makes the function T (n, r)
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simpler. We begin with an easy, generic, such scheme, that simply checks all subsets of a
certain size.

I Theorem 2. Let Π be an optimization problem on graphs, for which the solution is a set
of vertices and feasibility of a solution can be verified in polynomial time. Suppose that Π
satisfies one of the following sets of conditions:
1. The objective is min and some solution can be produced in polynomial time.
2. The objective is max and for any feasible solution S there exists u ∈ S such that S \ {u}

is also feasible (weak monotonicity).
Then, for any r > 1 (that may depend on the order n of the input) there exists an r-
approximation for Π running in time O∗((er)n/r).

Proof. The algorithm simply tries all sets of vertices of size up to n/r. These are at most
n/r
(
n
r

)
= O∗((er)n/r). Each set is checked for feasibility and the best feasible set is picked. In

the case of minimization problems, either we will find the optimal solution, or all solutions
contain at least n/r vertices, so an arbitrary solution (which can be produced in polynomial
time) is an r-approximation. In the case of maximization, the weak monotonicity condition
ensures that there always exists a feasible solution of size at most n/r. J

Because of Theorem 2, we will treat this kind of qualitative trade-off performance (r
approximation in time exponential in n log r/r) as a “baseline”. It is, however, not trivial if this
performance can be achieved for other types of graph problems (e.g. ordering problems). Let
us also note that, for maximization problems that satisfy strong monotonicity (all subsets of a
feasible solution are feasible) the running time of Theorem 2 can be improved to O∗(2n/r) [5].

Hardness
The Exponential Time Hypothesis (ETH) [16] is the assumption that there is no 2o(n)-
algorithm that decides 3-SAT instances of size n. All of our hardness results rely on the
ETH or the (stronger) randomized ETH, which states the same for randomized algorithms.

For most of our hardness results we also make use of known quasi-linear PCP constructions.
Such constructions reduce 3-SAT instances of size n into CSPs with size n logO(1) n, so that
there is a gap between satisfiable and unsatisfiable instances. Assuming the ETH, these
constructions give a problem that cannot be approximated in time 2o(n/logO(1) n) which we
often prefer to write as 2n1−ε , though this makes the lower bound slightly weaker. We note
that, because of the poly-logarithmic factor added by even the most efficient known PCPs,
current techniques are often unable to distinguish between whether the optimal running time
for r-approximating a problem is, say 2n/r or rn/r. The existence of linear PCPs, which at
the moment is open, could help further our understanding in this direction. To make the
sections of this paper more independent, we will cite the PCP theorems we use as needed.

3 Min Independent Dominating Set

The result of this section is a reduction showing that for Min Independent Dominating
Set, no trade-off scheme can significantly beat the baseline performance of Theorem 2, which
qualitatively matches the best known scheme for this problem [2]. Thus, in a sense Min
Independent Dominating Set is an “inapproximable” problem in sub-exponential time.
Interestingly, Min Independent Dominating Set was among the first problems to be
shown to be inapproximable in both polynomial time [15] and FPT time [13].

To show our hardness result, we will need an almost linear PCP construction with perfect
completeness. Such a PCP was given by Dinur [11].
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I Lemma 3 ([11], Lemma 8.3.). There exist constants c1, c2 > 0 and a polynomial time
reduction that transforms any SAT instance φ on n variables with m = O(n) clauses, into a
constraint graph G = 〈(V,E),Σ, C〉 such that:
|V |+ |E| 6 n(logn)c1 and Σ is of constant size.
If φ is satisfiable, then UNSAT(G) = 0.
If φ is not satisfiable, then UNSAT(G) > 1/(logn)c2 .

Let us recall the relevant definitions from [11]. A constraint graph is a CSP whose variables
are the vertices of G and take values over Σ. All constraints have arity 2 and correspond to
the edges of E; with each constraint Ce we associate a set of satisfying assignments from
Σ2. UNSAT(G) is the fraction of unsatisfied constraints that correspond to the optimal
assignment to V . Observe that we only need here a PCP theorem where UNSAT(G) is at
least inverse poly-logarithmic in n (rather than constant). The important property we need
for our reduction is perfect completeness (that is, UNSAT(G) = 0 in the YES case).

I Theorem 4. Under ETH, for any ε > 0 and r 6 n, an r-approximation for Min
Independent Dominating Set cannot take time O∗(2n

1−ε/r1+ε).

Proof. Let G = 〈(V,E),Σ, C = {Ce : e ∈ E}〉 be the constraint graph obtained from any
SAT formula φ, applying the above lemma. Let s = |Σ|, n = |V | and m = |E|. We define
an instance G′ = (V ′, E′) of Min Independent Dominating Set in the following way.
For each vertex v ∈ V and a ∈ Σ, we add a vertex wv,a in V ′. For each v, the s vertices
wv,1, wv,2, . . . , wv,s are pairwise linked in G′ together with a dummy vertex wv,0 and form
a clique denoted by Cv. The idea would naturally be that taking wv,a in the independent
dominating set corresponds to coloring v by a. For each edge e = uv ∈ E, and for each
satisfying assignment (i, j) ∈ Ce we add an independent set Ie,(i,j) of r′ vertices in V ′ (for
some r′ that will be specified later), we link wu,i to all the vertices of the independent sets
Ie,(i′,j′) where i′ ∈ Σ\{i} (and j′ ∈ Σ), and we link wv,j to all the vertices of the independent
sets Ie,(i′,j′) where (i′, j) ∈ Ce. We finally add, for each edge e = uv, an independent set Ie
of r′ vertices, and we link wu,i to all the vertices of Ie if there is a pair (i, j) ∈ Ce for some
j ∈ Σ.

If φ is satisfiable, then UNSAT(G) = 0, so there is a coloring c : V → Σ satisfying all the
edges. Thus,

⋃
v∈V {wv,c(v)} is an independent dominating set of size n. It is independent

since there is no edge between wv,a and wv′,a′ whenever v 6= v′. It dominates
⋃
v∈V Cv

since one vertex is taken per clique. It also dominates Ie for every edge e, by construction.
We finally have to show that all the independent sets Iuv,(i,j) are dominated. If c(u) 6= i,
then Iuv,(i,j) is dominated by wu,c(u) (since (c(u), c(v)) ∈ Ce). We now assume that c(u) = i.
Then Iuv,(i,j) is dominated by wv,c(v), since (c(u), c(v)) ∈ Ce.

If φ is not satisfiable, then UNSAT(G) > 1/(logn)c2 . Any independent dominating set S
has to take one vertex per clique Cv (to dominate the dummy vertex wv,0). Let A be
S ∩

⋃
v∈V Cv, and let c : V → Σ be the coloring corresponding to A. Coloring c does not

satisfy at least m/(logn)c2 edges. Let E′′ ⊆ E be the set of unsatisfied edges. For each
edge e = uv ∈ E′′, let us show that at least one independent set of the form Iuv,(i,j) is
not dominated by A. We may first observe that Iuv,(i,j) can only be dominated by wu,c(u)
or by wv,c(v). If there is no pair (c(u), j′) ∈ Ce for any j′, then Ie is not dominated by
construction. If there is a pair (c(u), j′) ∈ Ce for some j′, then Ie,(c(u),j′) is not dominated
by wu,c(u) by construction, and is not dominated by wv,c(v) since (c(u), c(v)) /∈ Ce.

The only way of dominating those independent sets is to add to the solution all the
vertices composing them, so a minimum independent dominating set is of size at least
n+ r′m/(logn)c2 > r′n(logn)c1/(logn)c2 = rn setting r′ = r(logn)c2/(logn)c1 .



6 Time-Approximation Trade-offs for Inapproximable Problems

An r′-approximation for Min Independent Dominating Set can therefore decide
the satisfiability of φ. The number of vertices in the instance of Min Independent
Dominating Set is n′ = |V ′| 6 (s+ 1)n+ r′m(s2 + 1) = O(nr′(logn)c1). So, for any ε > 0,
if the r′-approximation algorithm for Min Independent Dominating Set runs in time
O∗(2n

′1−ε/r′1+ε), it contradicts ETH. Renaming r′ by r and n′ by n, an r-approximation
would not be possible in time O∗(2n

1−ε/r1+ε), for any ε > 0 and r 6 n. J

4 Max Minimal Vertex Cover

In this section we deal with the Max Minimal Vertex Cover problem, which is the
dual of Min Independent Dominating Set (which is also known as Minimum Maximal
Independent Set). Interestingly, this turns out to be (so far) the only problem for which
its time-approximation trade-off curve can be well-determined, while being far from the
baseline performance of Theorem 2. To show this result we first present an approximation
scheme that relies on a classic idea from parameterized complexity: the exploitation of a
small vertex cover.

I Theorem 5. For any r such that 1 < r 6
√
n, Max Minimal Vertex Cover is

r-approximable in time O∗(23n/r2).

Proof. Our r-approximation algorithm begins by calculating a maximal matching M of the
input graph. If |M | > n/r then the algorithm simply outputs any arbitrary minimal vertex
cover of G. The solution, being a valid vertex cover, must have size at least |M | > n/r, and
is therefore an r-approximation.

Otherwise, we partition the edges of M into r equal-sized groups arbitrarily. Let Vi, 1 6
i 6 r be the set of vertices matched by the edges in group i. By the bound on the size of M
we have that |Vi| 6 2n/r2. We use L to denote the set of vertices unmatched by M . Note
that L is of course an independent set.

The basic building block of our algorithm is a procedure which, given an independent set
I, builds a minimal vertex cover of G that does not contain any vertices of I. This can be
done in polynomial time by first selecting V \ I as a vertex cover of G, and then repeatedly
removing from the cover redundant vertices one by one, until the solution is minimal. It
is worthy of note here that this procedure guarantees the construction of a minimal vertex
cover with size at least |N(I)|, where N(I) is the set of vertices with a neighbor in I.

The algorithm now proceeds as follows: for each i ∈ {1, . . . , r} we iterate through all
sets S ⊂ Vi such that S is an independent set. For each such S we initially build the set
S′ := S ∪ (L \N(S)). In words, we add to S all its non-neighbors from L to obtain S′, which
is thus also an independent set. The algorithm then builds a minimal vertex cover of size at
least |N(S′)| using the procedure of the previous paragraph. In the end we select the largest
of the covers produced in this way.

The algorithm has the claimed running time. The number of independent sets contained
in Vi is at most 23n/r2 , since G[Vi] has at most 2n/r2 vertices and contains a perfect matching.
Everything else takes polynomial time.

Let us therefore check the approximation ratio. Fix an optimal solution and let Ri, i ∈
{1, . . . , r} be the set of vertices of Vi not selected by this solution. Also, let RL be the vertices
of L not selected by the solution. Observe that R := RL ∪

⋃
16i6r Ri is an independent set,

and the solution has size opt = |N(R)|, because all vertices of the solution must have an
unselected neighbor.

Observe now that there must exist an i ∈ {1, . . . , r} such that |N(Ri ∪ RL)| > |N(R)|/r.
This is a consequence of the fact that for any two sets I1, I2 such that I1∪I2 is independent we
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have N(I1 ∪ I2) = N(I1)∪N(I2). Now, since the algorithm iterated through all independent
sets in Vi, it must have tried the set S := Ri. From this it built the independent set
S′ := Ri ∪ (L \ N(Ri)). Observe that S′ ⊇ Ri ∪ RL, because RL does not contain any
neighbors of Ri. It follows that |N(S′)| > |N(Ri ∪ RL)|. Since the solution produced has
size at least |N(S′)| we get the promised approximation ratio. J

The corresponding hardness result consists of a reduction from the Max Independent Set
instances constructed in Theorem 1.

I Theorem 6. Under randomized ETH, for any ε > 0 and r 6 n1/2−ε, no r-approximation
for Max Minimal Vertex Cover can take time O∗(2n

1−ε/r2+ε).

The reduction is from Max Independent Set. However, we will need to rely on the
structure of the instances produced for Theorem 1 in [6]. We restate here the relevant
theorem:

I Theorem 7 ([6], Theorem 5.2.). For any sufficiently small ε > 0 and any r 6 n1/2−ε, there
is a randomized polynomial reduction, which, from an instance of SAT φ on n variables,
builds a graph G with n1+εr1+ε vertices such that with high probability:

If φ is a YES-instance, then α(G) > n1+εr.
If φ is a NO-instance, then α(G) 6 n1+εr2ε.

Theorem 6. Let φ be any instance of SAT and G = (V,E) be the graph built from φ with
the reduction of Theorem 5.2. in [6]. Keeping the same notation, we add dre pendant vertices
to each vertex of G and we call this new graph G′. The best solution for Max Minimal
Vertex Cover in G′ is to fix a maximum independent set I of G and to take the dre
pendant vertices to each vertices of I, plus the vertices of V \ I. This is true since dre is at
least 1. Let opt be the size of a largest minimal vertex cover.

If φ is a YES-instance, then α(G) > n1+εr, and opt > n1+εr2. If φ is a NO-instance,
then α(G) 6 n1+εr2ε, and opt < n1+εr1+2ε + n1+εr1+ε < 2n1+εr1+2ε. Therefore, an
approximation with ratio r′ = r1−2ε

/2 for Max Minimal Vertex Cover would permit to
solve SAT. Assuming ETH, this cannot take time 2o(n).

As n′ := |V (G′)| = n1+εr2+ε, such an approximation would not be possible in time
2n
′1−ε/r2+ε . Renaming r′ by r and n′ by n, an r-approximation would not be possible in time

O∗(2n
1−ε/r2+6ε). J

5 Induced Path, Tree and Forest

In this section we study the Max Induced Path, Tree and Forest problems, where we
are looking for the largest set of vertices inducing a graph of the respective type. These are
all hard to approximate in polynomial time [17, 20], and we observe that an easy reduction
from Max Independent Set shows that the generic scheme of Theorem 2 is almost tight in
sub-exponential time for the latter two. However, the most interesting result of this section is
a direct reduction we present from 3-SAT to Max Induced Path. This reduction allows us
to establish inapproximability for this problem without the PCP theorem, thus eliminating
the ε from the running time lower bound.

I Theorem 8. Under ETH, for any ε > 0 and sufficiently large r 6 n1/2−ε, an r-
approximation for Max Induced Forest or Max Induced Tree cannot take time
2n

1−ε/r1+ε .
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Figure 1 The graph H1 built for the instance {x1 ∨ ¬x2 ∨ x3, x1 ∨ x2 ∨ ¬x3, ¬x1 ∨ x2 ∨ ¬x4, x2 ∨
¬x3 ∨ x4}. G is obtained by laying end to end r copies of H1. The rectangle boxes are the cliques
Cj

i , and the contradicting edges are not shown. An induced path with 2m vertices is represented in
gray and can be extended into one with 2rm vertices in G (the formula being satisfiable).

Proof. For Max Induced Forest we simply observe that, if α(G) is the size of the largest
independent set of a graph, the largest induced forest has size between α(G) (since an
independent set is a forest) and 2α(G) (since forests are bipartite). The result then follows
from Theorem 1.

For Max Induced Tree, we repeat the same argument, after adding a universal vertex
connected to everything to the instances of Max Independent Set of Theorem 1. J

I Theorem 9. Under ETH, for any ε > 0 and r 6 n1−ε, an r-approximation for Max
Induced Path cannot take time 2o(n/r).

Proof. Let φ be any instance of 3-SAT. For any positive integer r, we build an instance
graph G of Max Induced Path in the following way. For each clause Ci (i ∈ [m]) we add
seven vertices v1

i,1, v
1
i,2, . . . , v

1
i,7 which form a clique C1

i and correspond to the seven partial
assignments of the three literals of Ci satisfying the clause (if there is only two literals,
then there is only three vertices in the clique). We add m vertices v1

1 , v
1
2 , . . . , v

1
m, and for

all i ∈ [2,m], we link v1
i to all the vertices of the cliques C1

i−1 and all the vertices of the
cliques C1

i . Vertex v1
1 is only linked to all the vertices of C1

1 . The graph defined at this
point is called H1. We make r − 1 copies of H1, denoted by H2, . . . , Hr. For each j ∈ [2, r],
the vertices of Hj are analogously denoted by vji,1, v

j
i,2, . . . , v

j
i,7 (vertices in the clique Cji

corresponding to the clause Ci) and vji . For each j ∈ [2, r], we link vertex vj1 to all the
vertices of the clique Cj−1

m , and we add an edge between any two vertices corresponding
to contradicting partial assignments, that is assignments attributing different truth values
to the same variable (even if those vertices are in distinct His). We call such an edge a
contradicting edge. The edges within the cliques Cji can be seen as contradicting edges, but
we will not call them so.

If φ is satisfiable, let τ be a truth assignment. Let S be the set of the rm vertices
in cliques Cji agreeing with τ (exactly one vertex per clique). The graph induced by
P =

⋃
16i6m,16j6r{v

j
i } ∪ S is a path with 2rm vertices. Indeed, ∀i ∈ [2,m], j ∈ [r], the

degree of vji in G[P ] is 2, since |P ∩Cji | = 1 and |P ∩Cji−1| = 1. And, ∀j ∈ [2, r], the degree
of vj1 in G[P ] is 2, since |P ∩ Cj1 | = 1 and |P ∩ Cj−1

m | = 1. Vertex v1
1 has only degree 1 (one

vertex in C1
1 ) and is one endpoint of the path. The degree of the vertices of S in G[P ] is

also 2, since by construction there is no contradicting edge in the graph induced by P . So,
∀i ∈ [1,m− 1], j ∈ [r], the only two neighbors of the unique vertex in S ∩Cji are vji and vji+1.
And, ∀j ∈ [r − 1], the only two neighbors of the unique vertex in S ∩ Cjm are vjm and vj+1

1 .
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The degree in G[P ] of the unique vertex in S ∩ Crm is only 1; it is the other endpoint of the
path.

For each i ∈ [m], we call column Ri the union of the r cliques C1
i , C2

i , . . . , Cri . Assume
there is an induced path G[Q] such that for some column Ri, |Q ∩Ri| > 6. So there are at
least four vertices u1, u2, u3, u4 which are in Q ∩Ri and are not one of the two endpoints of
G[Q]. We set U = {u1, u2, u3, u4}. We say that two vertices in the cliques Cji agree if they
represent non contradicting (or compatible) partial assignment. We observe that two vertices
in the same column Ri agree iff they represent the same partial assignment. First, we can
show that all the vertices in U have to agree with some other vertex. If one vertex u ∈ U
does not agree with any of the other vertices in U , then u has degree at least 3 in G[Q]
(there are three contradicting edges linking u to U \ {u}) which is not possible in a path.
So, any vertex in U should agree with at least one vertex in U \ {u}. The first possibility is
that there are two pairs (u, v) and (w, x) of vertices spanning U , such that the vertices agree
within their pair but the two pairs do not agree. But that would create a cycle uwvx. The
only remaining possibility is that all the vertices in U agree. As those vertices are in the
same column, they even represent the same partial assignment.

Now, we will describe the path induced by Q by necessary conditions and derive that the
formula is satisfiable. Let u5 and u6 be two vertices in (Q ∩Ri) \ U , and W = U ∪ {u5, u6}.
We observe that u5 and u6 should agree with the vertices of U , otherwise their degree in G[Q]
would be at least 4. So, all the vertices in W (pairwise) agree. The vertices of W are in
pairwise distinct copies His. Hence, there are at least 4 copies denoted by Ha1 , Ha2 , Ha3 , Ha4

which contain a vertex of W and do not contain an endpoint of G[Q]. Let va1
i,h be the unique

vertex in W ∩ Ha1 . By the previous remarks, ∀p ∈ {2, 3, 4}, vapi,h is the unique vertex in
W ∩ Hap . For each p ∈ [4], the two neighbors of vapi,h in G[Q] have to be vapi and v

ap
i+1.

Vertex vapi,h cannot incident to a contradicting edge, otherwise it would create a vertex of
degree at least 4 in the path. At its turn, vertex vapi+1 has degree 2 in G[Q], and its second
neighbor has to be in the clique Capi+1 (if its second neighbor was also in C

ap
i , it would

form a triangle). Let wp,i+1 be the unique vertex in Capi+1 ∩Q. By the same arguments as
before, w1,i+1, w2,i+1, w3,i+1, and w4,i+1 should all agree. This way we can extend the four
fragments of paths to column Ri+1 up to Rm. Symmetrically, we can extend the fragments of
paths to column Ri−1 to R1. Now, if we just consider the path induced by Q ∪Ha1 , it goes
through consistent partial assignments for each clause of the instance. The global assignment,
built from all those partial assignments, satisfies all the clauses. So, the contrapositive is,
if φ is not satisfiable, then for all i ∈ [m], |Ri ∩Q| < 6. This implies |Q| < 10m.

The number of vertices of G is 8rm. Recall that, under ETH [16], 3-SAT is not solvable
in 2o(m). Thus, under ETH, any r-approximation for Max Induced Path cannot take time
2o(n/r). J

6 Min ATSP and Grundy Coloring

6.1 Min ATSP
In this section we deal with two problems for which the best known hardness of approximation
bounds are small constants [18, 19], but no constant-factor approximation is known. We
thus only present some algorithmic results.

For Min ATSP, the version of the TSP where we have the triangle inequality but distances
may be asymmetric, the best known approximation algorithm has ratio O(logn/log logn) [1].
Here, we show that a classical, simpler logn-approximation [14] can be adapted into an
approximation scheme matching its performance in polynomial time. Whether the same can
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be done for the more recent, improved, algorithm remains as an interesting question.

I Theorem 10. For any r 6 n, Min ATSP is log r-approximable in time O∗(2n/r).

Proof. We roughly recall the logn-approximation of Min ATSP detailed in [14]. The idea is
to solve the problem of finding a (vertex-)disjoint union of circuits spanning the graph with
minimum weight. This can be expressed as a linear program and therefore it can be solved
in polynomial time. Let the circuits be C1, C2, . . . Ch. We observe that the total length of
the circuits is bounded by opt the optimum value for Min ATSP. We choose arbitrarily a
vertex vi in each Ci and recurse on the graph induced by {v1, v2, . . . , vh}. By the triangle
inequality, we can combine a solution of Min ATSP in G[{v1, v2, . . . , vh}] to the circuits Cis,
and get a solution whose value is bounded by the sum of the lengths of the Cis plus the value
of the solution for G[{v1, v2, . . . , vh}], which would be 2opt if we solve G[{v1, v2, . . . , vh}] to
the optimum. In general, the depth of recursion is a bound on the ratio (see [14]). At each
recursion step, the number of vertices in the remaining graph is at least divided by two. So,
after at most logn recursions the algorithm terminates, hence the ratio.

Now, we can afford some superpolynomial computations. After log r recursions the
number of vertices in the remaining graph is no more than n/2log r = n/r. We solve optimally
this instance by dynamic programming in time O∗(2n/r). The solution that we output has
length smaller than log r · opt. J

6.2 Grundy Coloring
Max Grundy Coloring is the problem of ordering the vertices of a graph so that a
greedy first-fit coloring applied on that order would use as many colors as possible. Unless
NP⊆RP, Max Grundy Coloring admits no PTAS [19], but it is unknown if it can be
o(n)-approximated.

Observe that, since this is not a subgraph problem, it is not a priori obvious that the
baseline trade-off performance of Theorem 2 can be achieved. However, we give a simple
trade-off scheme that does exactly that by reducing the ordering problem to that of finding
an appropriate “witness”, which is a set of vertices.

I Theorem 11. For any r > 1, Max Grundy Coloring can be r-approximated in time
O∗(cn log r/r), for some constant c.

Proof. Let G = (V,E) be any instance of Max Grundy Coloring, and r any real value.
Here, we call minimal witness of G achieving color k, an induced subgraph W of G whose
grundy number is k, such that all the induced subgraphs of W different from W have strictly
smaller grundy numbers.

Let k be the grundy number of G and W be a minimal witness. Let C1 ] C2 ] . . . ] Ck
be a partition of V (W ) corresponding to the color classes in an optimal coloring. Let
A1, A2, . . . , Abk/rc be the bk/rc smallest (in terms of number of vertices) color classes among
the Cis. Let S = A1 ]A2 ] . . . ]Abk/rc. Obviously |V (W )| 6 n, so |S| 6 n/r.

The algorithm exhausts all the subset of n/r vertices. For each subset of vertices, we run
the exact algorithm running in time O∗(2.246n) on the corresponding induced subgraph.
Thus, the algorithm takes time O∗(2n log r/r2.246n/r). As |S| 6 n/r, the algorithm considers at
some point S or a superset of S. We just have to show that the optimal grundy coloring
of S is an r-approximation. Let us re-index the Ajs by increasing values of their index in
the Cis, say B1, B2, . . . , Bbk/rc. Then for each i ∈ [1, bk/rc], we can color Bi with color i and
achieve color bk/rc. J
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7 Set Cover

In this section we focus on the classical Min Set Cover problem, on inputs with n

elements and m sets. In terms of n, a log r-approximation is known in time roughly 2n/r.
Moshkovitz [21] gave a reduction from N -variable 3-SAT which, for any α < 1 produces
instances with universe size n = NO(1/α) and gap (1−α) lnn. Setting α = ln(n/r)/lnn translates
this result to the terminology of our paper, and shows a running time lower bound of 2(n/r)c ,
for some c > 0. Thus, even though the picture for this problem is not as clear as for, say
Max Independent Set, it appears likely that the known trade-off scheme is optimal.

We consider here the complexity of the problem as a function of m. This is a well-
motivated case, since for many applications m is much smaller than n [23]. Eventually, we
would like to investigate whether the known r-approximation in time 2m/r can be improved.
Though we do not resolve this question, we show that the approximability status of this
problem is somewhat unusual.

In polynomial time, the best known approximation algorithm has a guarantee of
√
m [23].

We first observe that the simple argument of this algorithm can be extended to quasi-
polynomial time.

I Theorem 12. For any δ > 0 there is an mδ-approximation algorithm for Min Set Cover
running in time O∗(c(logn)(1−δ)/δ).

Proof. The argument is similar to that of [23]. We distinguish two cases: if mδ > lnn, then
we can run the greedy polynomial time algorithm and return a solution with ratio better
than mδ. So assume that mδ < lnn.

Now, run the r-approximation of [8], setting r = mδ. The running time is (roughly)
2m/r = 2m1−δ . The result follows since m < (lnn)1/δ. J

The above result is somewhat curious, since it implies that in quasi-polynomial time one can
obtain an approximation ratio better than that of the best known polynomial-time algorithm.
This leaves open two possibilities: either

√
m is not in fact the optimal ratio in polynomial

time, or there is a jump in the approximability of Min Set Cover from polynomial to
quasi-polynomial time. We remark that, though this is rare, there is in fact another problem
which displays exactly this behavior: for Graph Pricing the best polynomial-time ratio is
√
n, while nδ can be achieved in time O∗(c(logm)(1−δ)/δ) [6].
We do not settle this question, but observe that a combination of known reductions for

Min Set Cover, the ETH and the Projection Games Conjecture of [21] imply that the
optimal ratio in polynomial time is mc for some c > 0. Thus, Min Set Cover is indeed
likely to behave in a way similar to Graph Pricing. For Theorem 13 we essentially reuse
the combination of reductions used in [7] to obtain FPT inapproximability results for Min
Set Cover.

I Theorem 13. Assume the ETH and the PGC. Then, there exists a c > 0 such that there
is no mc-approximation for Min Set Cover running in polynomial time.

Proof. As mentioned, the proof reuses the reduction of [7], which in turn relies on the ETH,
the PGC and classical reductions for Min Set Cover. To keep the presentation as short
and self-contained as possible we simply recall Theorem 5 of [7], without giving a detailed
proof (or a definition of the PGC).

I Theorem 14. [7] If the Projection Games Conjecture holds, for any r > 1 there exists a
reduction from 3-SAT of size N to Min Set Cover with the following properties:
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YES instances produce Min Set Cover instances where the optimal cover has size β,
NO instances produce Min Set Cover instances where the optimal cover has size at
least rβ.
The size n of the universe is 2O(r)poly(N, r).
The number of sets m is poly(N) · poly(r).
The reduction runs in time polynomial in n,m.

Using the above reduction, we can conclude that there exists some constant c such that
mc-approximation for Min Set Cover is impossible in polynomial time, under the ETH.
The constant c depends on the hidden exponents of the polynomials of the above reduction.
The way to do this is to set r to be some polynomial of N , say r =

√
N . Then, the reduction

runs in time sub-exponential in N (roughly 2
√
N ) and produces a gap that is polynomially

related to m. If in polynomial time we could r-approximate the new instance, this would
give a sub-exponential time algorithm for 3-SAT. J
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A The problems handled in the paper

Max Independent Set: Given a graph G = (V,E), Max Independent Set consists of
finding a set S ⊆ V of maximum size such that for any (u, v) ∈ S × S, (u, v) /∈ E.

Min Set Cover: Given a ground set C of cardinality n and a system S = {S1, . . . , Sm} ⊂ 2C ,
Min Set Cover consists of determining a minimum size subsystem S ′ such that
∪S∈S′S = C.

Min Independent Dominating Set: Given a graph G = (V,E), Min Independent Dom-
inating Set consists of finding the smallest independent set of G that is maximal for
inclusion.

Max Minimal Vertex Cover: Given a graph G = (V,E), Max Minimal Vertex Cover
consists of finding the largest vertex cover of G that is minimal for exclusion.

Min ATSP: This a version of the TSP where we have the triangle inequality but the distance
matrix may be asymmetric.

Max Induced Path, Max Induced Tree, Max Induced Forest: Given a graph G = (V,E),
we are looking for the largest set of vertices inducing a graph of the respective type.

Max Grundy Coloring: Given a graph G = (V,E), Max Grundy Coloring is the problem
of ordering the vertices of a graph so that a greedy first-fit coloring applied on that order
would use as many colors as possible.
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