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Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.
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Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.

“The fox knows many things, but the hedgehog knows one big thing”,

Aesop’s fables



What does the fox say?
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• We use a structural parameter w to measure

how “easy” a graph is. Examples:

• Treewidth w

• Clique-width w

• Forest+w vertices

• Independent set+w vertices

• Arrows indicate “inclusion”.

• E.g. graphs of pathwidth k, also have

treewidth ≤ k.

• We want to measure the complexity as function of input structure.

• More general width → Larger class of instances for each w →

• More generality (good!)

• Problems become more intractable (bad!)
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Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?
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Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?

• Price of Generality

• [Fomin, Golovach, Lokshtanov, Saurabh, SODA’09]

• Showed EDS, MaxCut, Coloring, Hamiltonicity FPT

for tw, W-hard for cw.
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Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

• SAT: [Ordyniak, Paulusma, Szeider, TCS ’13]

• #Matching: [Curticapean, Marx, SODA ’16]
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Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• List Coloring: [Fellows et al. Inf Comp ’11]. First such problem!

• r-DS: [Katsikarelis, L., Paschos, DAM ’19]

• Very few problems here!
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Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• Cap VC/DS: [Dom et al. IWPEC 2008]

• Most problems W[1]-hard for tw are here!
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Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• MCP: [Gutin, Jones, Wahlström, SIDMA ’16]. First of this type!

• Also: Bounded-Length Cut, Geodetic Set, ILP.
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Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

???

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

No natural problem known??
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We are looking for a natural problem which is

• FPT for pathwidth

• W[1]-hard for treewidth

• “artificial” problem may be easy to construct, not so interesting

• Natural: “has been defined in a previous paper” (per M. Wahlström)

• Is no such problem known?

• In full paper we survey dozens of problems W-hard by treewidth

• (Nice compendium for future reference!)

• Most are W-hard for tree-depth

• All are W-hard for pathwidth!!

Main result of this talk:

• Grundy Coloring is such a problem!
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• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

• Grundy Coloring seems to be the first problem of this type!

• Why don’t we know any others??



Let’s recall some basics
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connected.
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to vertices currently on top of a stack.
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• Suppose at each step we add all allowed edges:

• Pathwidth → interval graph with ω(G) = k + 1
• Treewidth → chordal graph with ω(G) = k + 1

• We get the following equivalent definitions:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G
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• Suppose at each step we add all allowed edges:

• Pathwidth → interval graph with ω(G) = k + 1
• Treewidth → chordal graph with ω(G) = k + 1

• We get the following equivalent definitions:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G

• Connection to interval graphs will be useful later.

• What about clique-width?

• Clique-width == treewidth + large bicliques

• If G has treewidth t and no Kc,c subgraph, then G has clique-width

O(ct). [Gurski&Wanke]
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We now need to decide which are the good colorings for the separator

(3, 4, 5, 7).
We consider each good coloring of (3, 4, 5, 6).
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The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

We now need to decide which are the good colorings for the separator

(3, 4, 5, 7).
We consider each good coloring of (3, 4, 5, 6).
We see that (3, 4, 5, 7) is a good coloring.

Important: we know the colors of all neighbors of 7.
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The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

• DP tables have size 3w.

• Things work in similar way for treewidth.

• Perhaps not surprising that complexity is the same for most

problems??

• Big back story we skip: Fast Subset Convolution



Lessons from the fox
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• Sometimes, the reason a problem becomes FPT for a more restricted

parameter is more combinatorial than algorithmic.

• Example:

• Coloring is FPT for tw, W-hard for cw.

• But algorithm runs in ktw. Is this FPT?

• Yes! Because in all graphs χ(G) ≤ tw(G).
• This bound makes all the difference: Coloring is FPT by cw + k.
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• Sometimes, the reason a problem becomes FPT for a more restricted

parameter is more combinatorial than algorithmic.

• Example:

• Coloring is FPT for tw, W-hard for cw.

• But algorithm runs in ktw. Is this FPT?

• Yes! Because in all graphs χ(G) ≤ tw(G).
• This bound makes all the difference: Coloring is FPT by cw + k.

• Example:

• r-Dom Set is FPT for td, W-hard for pw.

• Why W-hard for pw? DP runs in rO(pw). But r could be large!

• Why FPT for td? Graphs of tree-depth t have no simple path of

length > 2t, so r ≤ 2td.

• Again saved by combinatorial bound on optimal!



Hardness for pathwidth and treewidth
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• Typical W-hard problem for tw/pw:

• Basic DP must decide a value in 1 . . . n for each vertex in bag.

• Given ntw algorithm.

• How to prove this is optimal?

• Reduce from k-MC-Clique

• Choice for each vertex in bag ⇔ choice for each color class

• Typical Structure:

• Key fact: k × n grid has both pathwidth and treewidth k.



Let’s nail this problem!
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• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.
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• Γ(G): max Grundy Coloring

• χ(G): chromatic number

• Def1: max # colors used by First-Fit

• Def2: max # colors in proper coloring where

∀i < j, color class i dominates color class j

• Γ(G) ≥ χ(G) for all graphs.

• Γ(G) can be arbitrarily larger than χ(G).
• For Petersen graph χ(G) = 3 and this coloring

shows that Γ(G) ≥ 4
• Is Γ(G) = 4?
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• Γ(G): max Grundy Coloring

• χ(G): chromatic number

• Def1: max # colors used by First-Fit

• Def2: max # colors in proper coloring where

∀i < j, color class i dominates color class j

• Γ(G) ≥ χ(G) for all graphs.

• Γ(G) can be arbitrarily larger than χ(G).
• For Petersen graph χ(G) = 3 and this coloring

shows that Γ(G) ≥ 4
• Is Γ(G) = 4?

Red 1

Green 2

Blue 3

Yellow 4

• In all graphs Γ(G) ≤ ∆+ 1, so Γ(G) = 4 for Petersen.
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• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

• We have Γ(Tk) = k but χ(Tk) = 2.

• |Tk| = 2k−1.

• This is tight: for all trees Γ(T ) ≤ logn.

• More generally: for all graphs Γ(G) ≤ tw(G) logn.
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• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]
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• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]

• The n2k algorithm is based on the existence of a “witness”

• Witness = minimal induced subgraph of Γ = k.

• Worst case: witness is binomial tree → has size 2k.

• We exhaustively look for a witness. . .

• This is optimal!
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• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]

What about treewidth/pathwidth?

• Problem solvable in 2Γtw (next slide)

• Note: not obviously FPT, or even XP!

• On interval graphs, Γ(G) ≤ 8χ(G) = 8ω(G) [Narayanaswamy &

Babu, Order ’08]

• Recall connection interval graphs ↔ pathwidth
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• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Standard Coloring DP: recall color of each vertex in bag

• → ktw

• Problem: for each vertex we need to make sure that it is dominated by

all lower colors

• In this example, this coloring is only valid if 6 takes color Red

• Need to remember for each vertex the subset of colors it has seen in

its neighborhood

• → (2k)tw
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• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Overall running time O∗((k2k)tw).
• Is this XP?

• Yes, if we use that k ≤ tw logn
• Running time: nO(tw2)
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Main results:

• Grundy Coloring is W[1]-hard by treewidth

• Grundy Coloring is FPT by pathwidth

Also:

• Grundy Coloring is NP-h for clique-width= 6
• Grundy Coloring is FPT for modular width

• Key insight: ability to bound Γ(G) is crucial

• For bounded pw we have bounded Γ
• For bounded tw we have Γ ≤ tw log n
• No upper bound on Γ for bounded cw



W-hardness for treewidth
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• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Steps:

• Define more general “Grundy with Targets and Supports”

• Show that GwTS is W[1]-hard parameterized by pathwidth

• Not a typo! More info later. . .

• Use binomial trees to reduce GwTS/pw to Grundy/tw

Some observations:

• Must produce a Grundy instance where tw = f(k) (specifically

tw = O(k2))
• Furthermore, Γ(G) ≤ tw log(|V (G)|) = O(k2 logn).
• However, the new instance must have Γ(G) unbounded as function of

k (otherwise we would get FPT algorithm). So Γ(G) = Θ(k2 logn).
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Definition:

• Given graph G = (V,E)
• For some vertices T ⊆ V given “target” values t : T → N.

• For some vertices S ⊆ V given “support“ sets s : S → 2N.

We are looking for:

• A proper coloring c : V → N of G

• Such that all v ∈ T have c(v) ≥ t(T ) (target achieving)

• For each v ∈ V , s(v) ∪ c−1(N(v)) ⊇ {1, . . . , c(v)− 1}.
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Definition:

• Given graph G = (V,E)
• For some vertices T ⊆ V given “target” values t : T → N.

• For some vertices S ⊆ V given “support“ sets s : S → 2N.

We are looking for:

• A proper coloring c : V → N of G

• Such that all v ∈ T have c(v) ≥ t(T ) (target achieving)

• For each v ∈ V , s(v) ∪ c−1(N(v)) ⊇ {1, . . . , c(v)− 1}.

• Explanation: if v has support s(v), we can assume that v has a

neighbor “pre-colored” with each color in s(v), so we get these

colors “for free”.
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• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.
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• Example of generalized problem instance.
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• Some vertices have a support set: we don’t need to assign them
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• Recall: goal is to prove Grundy W-hard by treewidth

• Also: Grundy FPT by pathwidth

• We have an intermediate problem, and we want to prove that it is

W-hard by pathwidth

• Why?

• If we can reduce this to Grundy, why is Grundy

not W-hard by pathwidth?
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• Recall: goal is to prove Grundy W-hard by treewidth

• Also: Grundy FPT by pathwidth

• We have an intermediate problem, and we want to prove that it is

W-hard by pathwidth

• Why?

• If we can reduce this to Grundy, why is Grundy

not W-hard by pathwidth?

• Reduction will follow standard scheme with k × n grid

• Hence, hardness for both pathwidth and treewidth for Generalized

Grundy

• In GwTS→Grundy, supports will be implemented using binomial trees

• Binomial trees have unbounded pathwidth!

• This breaks the reduction for pathwidth (but not treewidth!)

• This is necessary (as we will see)!
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• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

• Goal: activate
(

k
2

)

checkers.

• Main difficulty: selectors and propagators
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Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.
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Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.
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How is this reduction going?

• Graph will have pathwidth ≈ k

• Propagators are vertices, form separators, bags of decomposition

• Information encoded?

• Bottleneck of DP: must remember set of colors seen

• Encoding of selection: set of colors seen by propagator to its left

• Makes sense!
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• Checker is a path on 4 vertices connected to

two selectors (one on each side).

• Goal: checker represents edge (i, j). A ver-

tex will receive color 2 logn + 3 if and only if

we have selected i, j on selectors.

• S(i): support of all colors in {1, . . . , 2 logn}
missing from left if we encode i.

• To complete the check, we make a super-

checker for each pair (i, j) of color classes

and connect it to all checkers of this pair.

• Super-checker has target 2 logn+4 and sup-

port {1, . . . , 2 logn+ 2}.

• Will achieve target if and only if we se-

lected an edge from this pair.
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• Checker is a path on 4 vertices connected to

two selectors (one on each side).

• Goal: checker represents edge (i, j). A ver-

tex will receive color 2 logn + 3 if and only if

we have selected i, j on selectors.

• S(i): support of all colors in {1, . . . , 2 logn}
missing from left if we encode i.

• To complete the check, we make a super-

checker for each pair (i, j) of color classes

and connect it to all checkers of this pair.

• Super-checker has target 2 logn+4 and sup-

port {1, . . . , 2 logn+ 2}.

• Will achieve target if and only if we se-

lected an edge from this pair.

• That’s it! GwTS is W-hard by pathwidth.
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• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!
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the tree that is supposed to take the same color and merge them.
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• Grundy is W[1]-hard by treewidth

• Reduction shows Grundy with Targets and Supports is W[1]-hard by

pathwidth!

• Key reason why this doesn’t work for regular Grundy: we need

binomial trees

• Binomial trees have large pathwidth (O(logn))

• Reduction leaves a gap in run-time

• Treewidth of final graph: O(k2)

• → no no(
√
tw) algorithm under ETH

• Can probably be improved easily to no no(tw/ log tw) algorithm

• But best algorithm known runs in ntw2
!



FPT for pathwidth
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• We claim: for all G, Γ(G) ≤ 8pw(G).
• Recall: Statement is true for interval graphs.

• If claim is true, we are done:

• DP algorithm runs in 2Γtw

• This becomes 2O(pw2) parameterized by pathwidth.

• We will use the fact that if all bags of a path decomposition are cliques,

then the graph is an interval graph.

• This claim was already proved in [Dujmovic, Joret, Wood SIDMA’12]



Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of
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• We apply two transformations which may only increase Γ and
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• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).
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Rule 2 is safe:

• Coloring remains valid Grundy coloring.

• Path decomposition remains valid, width same.



Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of

G.

• We apply two transformations which may only increase Γ and

decrease pw.

• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).

• Final graph G′ has Γ(G′) ≥ Γ(G) and pw(G′) ≤ pw(G).
• G′ is interval graph, so Γ(G′) ≤ 8pw(G′).
• We get Γ(G) ≤ 8pw(G).
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• Recall: binomial trees “break” reduction for pathwidth.

• Why could we not replace them with something else?

• Besides the fact that the problem is FPT!?!. . .

• Binomial trees = graphs with Γ unbounded but treewidth O(1).
• For a pathwidth reduction we need Γ unbounded but pathwidth O(1).

• Such graphs do not exist!

• This is “why” Grundy is FPT for pathwidth but W-hard for treewidth.



Conclusions
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• Grundy Coloring is first (?) natural problem to be FPT for pathwidth,

W-hard for treewidth

Open questions:
• Other such problems separat-

ing tw/pw?

• Problems separatings them

for other reasons?

• FPT by fvs?

• Gap between no(
√
tw) LB and

ntw2
algorithm?



Thank you!
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Thank you!

Questions?
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