
Grundy Distinguishes Treewidth from

Pathwidth

Michael Lampis
LAMSADE

Université Paris Dauphine

Sep 7th 2020

Acknowledgements

Grundy Distinguishes Treewidth from Pathwidth 2 / 43

This is joint work with:

Rémy Belmonte UEC

Eun Jung Kim LAMSADE

Valia Mitsou IRIF

Yota Otachi Nagoya U

Funded by the bilateral French-Japanese project PARAGA. Work to

appear in ESA 2020.

Full paper available at: https://arxiv.org/abs/2008.07425

What is this talk about?

Grundy Distinguishes Treewidth from Pathwidth 3 / 43

Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.

What is this talk about?

Grundy Distinguishes Treewidth from Pathwidth 3 / 43

Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.

“The fox knows many things, but the hedgehog knows one big thing”,

Aesop’s fables

What does the fox say?

Structural Parameters

Grundy Distinguishes Treewidth from Pathwidth 5 / 43

• We use a structural parameter w to measure

how “easy” a graph is. Examples:

• Treewidth w

• Clique-width w

• Forest+w vertices

• Independent set+w vertices

• Arrows indicate “inclusion”.

• E.g. graphs of pathwidth k, also have

treewidth ≤ k.

• We want to measure the complexity as function of input structure.

• More general width → Larger class of instances for each w →

• More generality (good!)

• Problems become more intractable (bad!)

Price of Generality

Grundy Distinguishes Treewidth from Pathwidth 6 / 43

Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?

Price of Generality

Grundy Distinguishes Treewidth from Pathwidth 6 / 43

Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?

• Price of Generality

• [Fomin, Golovach, Lokshtanov, Saurabh, SODA’09]

• Showed EDS, MaxCut, Coloring, Hamiltonicity FPT

for tw, W-hard for cw.

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples

Clique-width

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

• SAT: [Ordyniak, Paulusma, Szeider, TCS ’13]

• #Matching: [Curticapean, Marx, SODA ’16]

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• List Coloring: [Fellows et al. Inf Comp ’11]. First such problem!

• r-DS: [Katsikarelis, L., Paschos, DAM ’19]

• Very few problems here!

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• Cap VC/DS: [Dom et al. IWPEC 2008]

• Most problems W[1]-hard for tw are here!

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• MCP: [Gutin, Jones, Wahlström, SIDMA ’16]. First of this type!

• Also: Bounded-Length Cut, Geodetic Set, ILP.

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth 7 / 43

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

???

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

No natural problem known??

Between Treewidth and Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 8 / 43

We are looking for a natural problem which is

• FPT for pathwidth

• W[1]-hard for treewidth

Between Treewidth and Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 8 / 43

We are looking for a natural problem which is

• FPT for pathwidth

• W[1]-hard for treewidth

• “artificial” problem may be easy to construct, not so interesting

• Natural: “has been defined in a previous paper” (per M. Wahlström)

Between Treewidth and Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 8 / 43

We are looking for a natural problem which is

• FPT for pathwidth

• W[1]-hard for treewidth

• “artificial” problem may be easy to construct, not so interesting

• Natural: “has been defined in a previous paper” (per M. Wahlström)

• Is no such problem known?

• In full paper we survey dozens of problems W-hard by treewidth

• (Nice compendium for future reference!)

• Most are W-hard for tree-depth

• All are W-hard for pathwidth!!

Between Treewidth and Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 8 / 43

We are looking for a natural problem which is

• FPT for pathwidth

• W[1]-hard for treewidth

• “artificial” problem may be easy to construct, not so interesting

• Natural: “has been defined in a previous paper” (per M. Wahlström)

• Is no such problem known?

• In full paper we survey dozens of problems W-hard by treewidth

• (Nice compendium for future reference!)

• Most are W-hard for tree-depth

• All are W-hard for pathwidth!!

Main result of this talk:

• Grundy Coloring is such a problem!

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

Are you convinced?

Grundy Distinguishes Treewidth from Pathwidth 9 / 43

• How do we know that no such other problem is already known?

• We don’t but. . .

• https://cstheory.stackexchange.com/questions/27590/

• Grundy Coloring seems to be the first problem of this type!

• Why don’t we know any others??

Let’s recall some basics

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Note that this is equivalent to the standard definition of path

decompositions.

Treewidth – Pathwidth

Grundy Distinguishes Treewidth from Pathwidth 11 / 43

Note that this is equivalent to the standard definition of path

decompositions.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth

Grundy Distinguishes Treewidth from Pathwidth 12 / 43

In treewidth we are allowed to branch out, starting from a set of vertices

which are simultaneously on the top of their respective stacks.

Treewidth – Pathwidth – Tree-depth

Grundy Distinguishes Treewidth from Pathwidth 13 / 43

• Suppose at each step we add all allowed edges:

• Pathwidth → interval graph with ω(G) = k + 1
• Treewidth → chordal graph with ω(G) = k + 1

• We get the following equivalent definitions:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G

Treewidth – Pathwidth – Tree-depth

Grundy Distinguishes Treewidth from Pathwidth 13 / 43

• Suppose at each step we add all allowed edges:

• Pathwidth → interval graph with ω(G) = k + 1
• Treewidth → chordal graph with ω(G) = k + 1

• We get the following equivalent definitions:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G

• Connection to interval graphs will be useful later.

Treewidth – Pathwidth – Tree-depth

Grundy Distinguishes Treewidth from Pathwidth 13 / 43

• Suppose at each step we add all allowed edges:

• Pathwidth → interval graph with ω(G) = k + 1
• Treewidth → chordal graph with ω(G) = k + 1

• We get the following equivalent definitions:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G

• Connection to interval graphs will be useful later.

• What about clique-width?

• Clique-width == treewidth + large bicliques

• If G has treewidth t and no Kc,c subgraph, then G has clique-width

O(ct). [Gurski&Wanke]

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;No) because this coloring

does not work

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;Yes) because this coloring

can be extended to the left

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

Separator: {3, 4, 5, 6} includes tuple (3,4,5,6;Yes) because this coloring

can be extended to the left

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

We now need to decide which are the good colorings for the separator

(3, 4, 5, 7).
We consider each good coloring of (3, 4, 5, 6).

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

We now need to decide which are the good colorings for the separator

(3, 4, 5, 7).
We consider each good coloring of (3, 4, 5, 6).
We see that (3, 4, 5, 7) is a good coloring.

Important: we know the colors of all neighbors of 7.

Algorithmic view

Grundy Distinguishes Treewidth from Pathwidth 14 / 43

The reason that tree/path decompositions are useful is that we have a

moving boundary of small separators that “sweeps” the graph.

For 3-COLORING only need to remember information about boundary

Which colorings of the boundary are properly extendible to the left?

• DP tables have size 3w.

• Things work in similar way for treewidth.

• Perhaps not surprising that complexity is the same for most

problems??

• Big back story we skip: Fast Subset Convolution

Lessons from the fox

Price of Generality and Combinatorics

Grundy Distinguishes Treewidth from Pathwidth 16 / 43

• Sometimes, the reason a problem becomes FPT for a more restricted

parameter is more combinatorial than algorithmic.

• Example:

• Coloring is FPT for tw, W-hard for cw.

• But algorithm runs in ktw. Is this FPT?

• Yes! Because in all graphs χ(G) ≤ tw(G).
• This bound makes all the difference: Coloring is FPT by cw + k.

Price of Generality and Combinatorics

Grundy Distinguishes Treewidth from Pathwidth 16 / 43

• Sometimes, the reason a problem becomes FPT for a more restricted

parameter is more combinatorial than algorithmic.

• Example:

• Coloring is FPT for tw, W-hard for cw.

• But algorithm runs in ktw. Is this FPT?

• Yes! Because in all graphs χ(G) ≤ tw(G).
• This bound makes all the difference: Coloring is FPT by cw + k.

• Example:

• r-Dom Set is FPT for td, W-hard for pw.

• Why W-hard for pw? DP runs in rO(pw). But r could be large!

• Why FPT for td? Graphs of tree-depth t have no simple path of

length > 2t, so r ≤ 2td.

• Again saved by combinatorial bound on optimal!

Hardness for pathwidth and treewidth

Grundy Distinguishes Treewidth from Pathwidth 17 / 43

• Typical W-hard problem for tw/pw:

• Basic DP must decide a value in 1 . . . n for each vertex in bag.

• Given ntw algorithm.

• How to prove this is optimal?

• Reduce from k-MC-Clique

• Choice for each vertex in bag ⇔ choice for each color class

• Typical Structure:

• Key fact: k × n grid has both pathwidth and treewidth k.

Let’s nail this problem!

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 19 / 43

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 20 / 43

• Γ(G): max Grundy Coloring

• χ(G): chromatic number

• Def1: max # colors used by First-Fit

• Def2: max # colors in proper coloring where

∀i < j, color class i dominates color class j

• Γ(G) ≥ χ(G) for all graphs.

• Γ(G) can be arbitrarily larger than χ(G).
• For Petersen graph χ(G) = 3 and this coloring

shows that Γ(G) ≥ 4
• Is Γ(G) = 4?

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 20 / 43

• Γ(G): max Grundy Coloring

• χ(G): chromatic number

• Def1: max # colors used by First-Fit

• Def2: max # colors in proper coloring where

∀i < j, color class i dominates color class j

• Γ(G) ≥ χ(G) for all graphs.

• Γ(G) can be arbitrarily larger than χ(G).
• For Petersen graph χ(G) = 3 and this coloring

shows that Γ(G) ≥ 4
• Is Γ(G) = 4?

Red 1

Green 2

Blue 3

Yellow 4

• In all graphs Γ(G) ≤ ∆+ 1, so Γ(G) = 4 for Petersen.

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth 21 / 43

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

• We have Γ(Tk) = k but χ(Tk) = 2.

• |Tk| = 2k−1.

• This is tight: for all trees Γ(T) ≤ logn.

• More generally: for all graphs Γ(G) ≤ tw(G) logn.

Background on Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 22 / 43

• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]

Background on Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 22 / 43

• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]

• The n2k algorithm is based on the existence of a “witness”

• Witness = minimal induced subgraph of Γ = k.

• Worst case: witness is binomial tree → has size 2k.

• We exhaustively look for a witness. . .

• This is optimal!

Background on Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth 22 / 43

• Grundy Coloring is NP-hard (already in Garey&Johnson)

• Even on chordal graphs. . .

• Hard to approximate [Kortsarz DMTCS ’07]

• Solvable in XP time parameterized by Γ(G) [Zaker DAM ’06]

• But W-hard and not solvable in n2o(k) [Aboulker et al. STACS ’20]

What about treewidth/pathwidth?

• Problem solvable in 2Γtw (next slide)

• Note: not obviously FPT, or even XP!

• On interval graphs, Γ(G) ≤ 8χ(G) = 8ω(G) [Narayanaswamy &

Babu, Order ’08]

• Recall connection interval graphs ↔ pathwidth

Algorithm for Grundy and Treewidth

Grundy Distinguishes Treewidth from Pathwidth 23 / 43

• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Standard Coloring DP: recall color of each vertex in bag

• → ktw

• Problem: for each vertex we need to make sure that it is dominated by

all lower colors

• In this example, this coloring is only valid if 6 takes color Red

• Need to remember for each vertex the subset of colors it has seen in

its neighborhood

• → (2k)tw

Algorithm for Grundy and Treewidth

Grundy Distinguishes Treewidth from Pathwidth 23 / 43

• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Overall running time O∗((k2k)tw).
• Is this XP?

• Yes, if we use that k ≤ tw logn
• Running time: nO(tw2)

Our results

Grundy Distinguishes Treewidth from Pathwidth 24 / 43

Main results:

• Grundy Coloring is W[1]-hard by treewidth

• Grundy Coloring is FPT by pathwidth

Also:

• Grundy Coloring is NP-h for clique-width= 6
• Grundy Coloring is FPT for modular width

• Key insight: ability to bound Γ(G) is crucial

• For bounded pw we have bounded Γ
• For bounded tw we have Γ ≤ tw log n
• No upper bound on Γ for bounded cw

W-hardness for treewidth

Proof Outline

Grundy Distinguishes Treewidth from Pathwidth 26 / 43

• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Proof Outline

Grundy Distinguishes Treewidth from Pathwidth 26 / 43

• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Steps:

• Define more general “Grundy with Targets and Supports”

• Show that GwTS is W[1]-hard parameterized by pathwidth

• Not a typo! More info later. . .

• Use binomial trees to reduce GwTS/pw to Grundy/tw

Proof Outline

Grundy Distinguishes Treewidth from Pathwidth 26 / 43

• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Steps:

• Define more general “Grundy with Targets and Supports”

• Show that GwTS is W[1]-hard parameterized by pathwidth

• Not a typo! More info later. . .

• Use binomial trees to reduce GwTS/pw to Grundy/tw

Some observations:

• Must produce a Grundy instance where tw = f(k) (specifically

tw = O(k2))
• Furthermore, Γ(G) ≤ tw log(|V (G)|) = O(k2 logn).
• However, the new instance must have Γ(G) unbounded as function of

k (otherwise we would get FPT algorithm). So Γ(G) = Θ(k2 logn).

Grundy with Supports and Targets

Grundy Distinguishes Treewidth from Pathwidth 27 / 43

Definition:

• Given graph G = (V,E)
• For some vertices T ⊆ V given “target” values t : T → N.

• For some vertices S ⊆ V given “support“ sets s : S → 2N.

We are looking for:

• A proper coloring c : V → N of G

• Such that all v ∈ T have c(v) ≥ t(T) (target achieving)

• For each v ∈ V , s(v) ∪ c−1(N(v)) ⊇ {1, . . . , c(v)− 1}.

Grundy with Supports and Targets

Grundy Distinguishes Treewidth from Pathwidth 27 / 43

Definition:

• Given graph G = (V,E)
• For some vertices T ⊆ V given “target” values t : T → N.

• For some vertices S ⊆ V given “support“ sets s : S → 2N.

We are looking for:

• A proper coloring c : V → N of G

• Such that all v ∈ T have c(v) ≥ t(T) (target achieving)

• For each v ∈ V , s(v) ∪ c−1(N(v)) ⊇ {1, . . . , c(v)− 1}.

• Explanation: if v has support s(v), we can assume that v has a

neighbor “pre-colored” with each color in s(v), so we get these

colors “for free”.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth 28 / 43

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth 28 / 43

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth 28 / 43

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth 28 / 43

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth 28 / 43

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

W-hard by pathwidth?

Grundy Distinguishes Treewidth from Pathwidth 29 / 43

• Recall: goal is to prove Grundy W-hard by treewidth

• Also: Grundy FPT by pathwidth

• We have an intermediate problem, and we want to prove that it is

W-hard by pathwidth

• Why?

• If we can reduce this to Grundy, why is Grundy

not W-hard by pathwidth?

W-hard by pathwidth?

Grundy Distinguishes Treewidth from Pathwidth 29 / 43

• Recall: goal is to prove Grundy W-hard by treewidth

• Also: Grundy FPT by pathwidth

• We have an intermediate problem, and we want to prove that it is

W-hard by pathwidth

• Why?

• If we can reduce this to Grundy, why is Grundy

not W-hard by pathwidth?

• Reduction will follow standard scheme with k × n grid

• Hence, hardness for both pathwidth and treewidth for Generalized

Grundy

• In GwTS→Grundy, supports will be implemented using binomial trees

• Binomial trees have unbounded pathwidth!

• This breaks the reduction for pathwidth (but not treewidth!)

• This is necessary (as we will see)!

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

• Goal: activate
(

k
2

)

checkers.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth 30 / 43

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

• Goal: activate
(

k
2

)

checkers.

• Main difficulty: selectors and propagators

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth 31 / 43

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth 32 / 43

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth 32 / 43

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth 32 / 43

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth 32 / 43

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

We’re on the right track!

Grundy Distinguishes Treewidth from Pathwidth 33 / 43

How is this reduction going?

• Graph will have pathwidth ≈ k

• Propagators are vertices, form separators, bags of decomposition

• Information encoded?

• Bottleneck of DP: must remember set of colors seen

• Encoding of selection: set of colors seen by propagator to its left

• Makes sense!

We’re on the right track!

Grundy Distinguishes Treewidth from Pathwidth 33 / 43

How is this reduction going?

• Graph will have pathwidth ≈ k

• Propagators are vertices, form separators, bags of decomposition

• Information encoded?

• Bottleneck of DP: must remember set of colors seen

• Encoding of selection: set of colors seen by propagator to its left

• Makes sense!

Checkers

Grundy Distinguishes Treewidth from Pathwidth 34 / 43

• Checker is a path on 4 vertices connected to

two selectors (one on each side).

• Goal: checker represents edge (i, j). A ver-

tex will receive color 2 logn + 3 if and only if

we have selected i, j on selectors.

• S(i): support of all colors in {1, . . . , 2 logn}
missing from left if we encode i.

• To complete the check, we make a super-

checker for each pair (i, j) of color classes

and connect it to all checkers of this pair.

• Super-checker has target 2 logn+4 and sup-

port {1, . . . , 2 logn+ 2}.

• Will achieve target if and only if we se-

lected an edge from this pair.

Checkers

Grundy Distinguishes Treewidth from Pathwidth 34 / 43

• Checker is a path on 4 vertices connected to

two selectors (one on each side).

• Goal: checker represents edge (i, j). A ver-

tex will receive color 2 logn + 3 if and only if

we have selected i, j on selectors.

• S(i): support of all colors in {1, . . . , 2 logn}
missing from left if we encode i.

• To complete the check, we make a super-

checker for each pair (i, j) of color classes

and connect it to all checkers of this pair.

• Super-checker has target 2 logn+4 and sup-

port {1, . . . , 2 logn+ 2}.

• Will achieve target if and only if we se-

lected an edge from this pair.

• That’s it! GwTS is W-hard by pathwidth.

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth 35 / 43

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth 35 / 43

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth 35 / 43

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth 35 / 43

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Summary

Grundy Distinguishes Treewidth from Pathwidth 36 / 43

• Grundy is W[1]-hard by treewidth

• Reduction shows Grundy with Targets and Supports is W[1]-hard by

pathwidth!

• Key reason why this doesn’t work for regular Grundy: we need

binomial trees

• Binomial trees have large pathwidth (O(logn))

• Reduction leaves a gap in run-time

• Treewidth of final graph: O(k2)

• → no no(
√
tw) algorithm under ETH

• Can probably be improved easily to no no(tw/ log tw) algorithm

• But best algorithm known runs in ntw2
!

FPT for pathwidth

A combinatorial bound

Grundy Distinguishes Treewidth from Pathwidth 38 / 43

• We claim: for all G, Γ(G) ≤ 8pw(G).

A combinatorial bound

Grundy Distinguishes Treewidth from Pathwidth 38 / 43

• We claim: for all G, Γ(G) ≤ 8pw(G).
• Recall: Statement is true for interval graphs.

A combinatorial bound

Grundy Distinguishes Treewidth from Pathwidth 38 / 43

• We claim: for all G, Γ(G) ≤ 8pw(G).
• Recall: Statement is true for interval graphs.

• If claim is true, we are done:

• DP algorithm runs in 2Γtw

• This becomes 2O(pw2) parameterized by pathwidth.

A combinatorial bound

Grundy Distinguishes Treewidth from Pathwidth 38 / 43

• We claim: for all G, Γ(G) ≤ 8pw(G).
• Recall: Statement is true for interval graphs.

• If claim is true, we are done:

• DP algorithm runs in 2Γtw

• This becomes 2O(pw2) parameterized by pathwidth.

• We will use the fact that if all bags of a path decomposition are cliques,

then the graph is an interval graph.

• This claim was already proved in [Dujmovic, Joret, Wood SIDMA’12]

Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of

G.

• We apply two transformations which may only increase Γ and

decrease pw.

• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).

Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of

G.

• We apply two transformations which may only increase Γ and

decrease pw.

• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).

Rule 1 is safe:

• Coloring remains valid Grundy coloring.

• Path decomposition remains valid, width may only decrease.

Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of

G.

• We apply two transformations which may only increase Γ and

decrease pw.

• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).

Rule 2 is safe:

• Coloring remains valid Grundy coloring.

• Path decomposition remains valid, width same.

Reducing to Interval Graphs

Grundy Distinguishes Treewidth from Pathwidth 39 / 43

Claim: Γ(G) ≤ 8pw(G)

• Take an optimal Grundy coloring and an optimal path decomposition of

G.

• We apply two transformations which may only increase Γ and

decrease pw.

• In the end G becomes interval graph, so we get our bound.

Transformations:

1. If u, v in the same bag, have the same color, merge u, v.

2. If u, v in the same bag, have different color, add edge (u, v).

• Final graph G′ has Γ(G′) ≥ Γ(G) and pw(G′) ≤ pw(G).
• G′ is interval graph, so Γ(G′) ≤ 8pw(G′).
• We get Γ(G) ≤ 8pw(G).

Comparison with treewidth

Grundy Distinguishes Treewidth from Pathwidth 40 / 43

• Recall: binomial trees “break” reduction for pathwidth.

• Why could we not replace them with something else?

• Besides the fact that the problem is FPT!?!. . .

• Binomial trees = graphs with Γ unbounded but treewidth O(1).
• For a pathwidth reduction we need Γ unbounded but pathwidth O(1).

• Such graphs do not exist!

• This is “why” Grundy is FPT for pathwidth but W-hard for treewidth.

Conclusions

Conclusions – Open Questions

Grundy Distinguishes Treewidth from Pathwidth 42 / 43

• Grundy Coloring is first (?) natural problem to be FPT for pathwidth,

W-hard for treewidth

Open questions:
• Other such problems separat-

ing tw/pw?

• Problems separatings them

for other reasons?

• FPT by fvs?

• Gap between no(
√
tw) LB and

ntw2
algorithm?

Thank you!

Grundy Distinguishes Treewidth from Pathwidth 43 / 43

Thank you!

Questions?

	Acknowledgements
	What is this talk about?
	What does the fox say?[height=2cm]fox
	Structural Parameters
	Price of Generality
	Price of Generality Continued
	Between Treewidth and Pathwidth
	Are you convinced?

	Let's recall some basics[height=2cm]fox
	Treewidth – Pathwidth
	Treewidth
	Treewidth – Pathwidth – Tree-depth
	Algorithmic view

	Lessons from the fox[height=2cm]fox
	Price of Generality and Combinatorics
	Hardness for pathwidth and treewidth

	Let's nail this problem![height=2cm]hedgehog
	Grundy Coloring
	Grundy Coloring
	Binomial Trees
	Background on Grundy Coloring
	Algorithm for Grundy and Treewidth
	Our results

	W-hardness for treewidth[height=2cm]hedgehog
	Proof Outline
	Grundy with Supports and Targets
	Grundy with Supports and Targets – Example
	W-hard by pathwidth?
	Outline of hardness for GwTS
	Selector Gadget
	Propagator Gadget
	We're on the right track!
	Checkers
	Regular Grundy
	Summary

	FPT for pathwidth[height=2cm]hedgehog
	A combinatorial bound
	Reducing to Interval Graphs
	Comparison with treewidth

	Conclusions[height=2cm]fox[height=2cm]hedgehog
	Conclusions – Open Questions
	Thank you!

