Grundy Distinguishes Treewidth from Pathwidth

Michael Lampis LAMSADE Université Paris Dauphine

ESA 2020

Acknowledgements

This is joint work with:

Rémy Belmonte

Eun Jung Kim

Valia Mitsou

Yota Otachi

Nagoya U

LAMSADE

UEC

IRIF

Funded by the bilateral French-Japanese project PARAGA.

Full paper available at: https://arxiv.org/abs/2008.07425

Two ways to look at this work

A talk about structural parameters A talk about Grundy Coloring

- Treewidth
- Pathwidth
- Treedepth, Cliquewidth, ...
- Price of Generality
 - Which problems are "easy" for pathwidth but "hard" for treewidth?

- Well-known optimization problem
- MaxMin variant of Coloring
 - Find a proper coloring that uses the **max** number of colors but the color of no vertex can be decreased.

Two ways to look at this work

A talk about structural parameters A talk about Grundy Coloring

- Treewidth
- Pathwidth
- Treedepth, Cliquewidth, ...
- Price of Generality
 - Which problems are "easy" for pathwidth but "hard" for treewidth?

- Well-known optimization problem
- MaxMin variant of Coloring
 - Find a proper coloring that uses the **max** number of colors but the color of no vertex can be decreased.

"The fox knows many things, but the hedgehog knows one big thing", Aesop's fables

What does the fox say?

Price of Generality – Structural Parameters

Each problem/parameter pair is typically either:

- FPT: solvable in $f(w)n^{O(1)}$
- XP and W-hard: solvable in $n^{g(w)}$, not FPT
- paraNP-hard: NP-hard for w = O(1)
- Tractability propagates "downwards", hardness "upwards"
- Big Picture Question: Which problems do we "lose" when we transition between parameters?
- Price of Generality
 - [Fomin, Golovach, Lokshtanov, Saurabh, SODA'09]
 - Showed EDS, MaxCut, Coloring, Hamiltonicity FPT for tw, W-hard for cw.

Each problem/parameter pair is typically either:

- FPT: solvable in $f(w)n^{O(1)}$
- XP and W-hard: solvable in $n^{g(w)}$, not FPT
- paraNP-hard: NP-hard for w = O(1)
- Tractability propagates "downwards", hardness "upwards"
- Big Picture Question: Which problems do we "lose" when we transition between parameters?
- Price of Generality
 - [Fomin, Golovach, Lokshtanov, Saurabh, SODA'09]
 - Showed EDS, MaxCut, Coloring, Hamiltonicity FPT for tw, W-hard for cw.

C 144	Price of Generality Examples	
	Clique-width	
tŵ 1	Treewidth	
pw ♠	Pathwidth	
td	Tree-depth	
Т vc	Vertex Cover	
Comments		

	Price of Generality Examples		
CW FPT		All MSO ₁ , Dominating Set, Vertex Cover	
	Clique-width		
tw			
^	Treewidth		
	Pathwidth		
tđ	Tree-depth		
\wedge			
I	Vertex Cover		
VC			
Comments			

	Price of Generality Examples		
	All MSO ₁ , Dominating Set, Vertex Cover		
	Clique-width		
tw FPT	Coloring, EDS, SAT, #Matching		
^	Treewidth		
pw ▲	Pathwidth		
td	Tree-depth		
$\mathbf{\Lambda}$			
I	Vertex Cover		
VC			

Comments

- SAT: [Ordyniak, Paulusma, Szeider, TCS '13]
- #Matching: [Curticapean, Marx, SODA '16]

	Price of Generality Examples		
CW		All MSO_1 , Dominating Set, Vertex Cover	
	Clique-width		
tŵ		Coloring, EDS, SAT, #Matching	
	Treewidth		
µw ▲	Pathwidth		
tđ	Tree-depth		
$\mathbf{\Lambda}$			
Vc W-h	Vertex Cover		
		List Coloring, r-Dom Set, d-Ind Set	

Comments

- List Coloring: [Fellows et al. Inf Comp '11]. First such problem!
- *r*-DS: [Katsikarelis, L., Paschos, DAM '19]
- Very few problems here!

	Price of Generality Examples		
cw		All MSO ₁ , Dominating Set, Vertex Cover	
	Clique-width		
tŵ		Coloring, EDS, SAT, #Matching	
^	Treewidth		
ρw ▲	Pathwidth		
tđ	Tree-depth		
		Capacitated DS/VC, BDD,	
	Vertex Cover		
VL		List Coloring, <i>r</i> -Dom Set, <i>d</i> -Ind Set	

Comments

- Cap VC/DS: [Dom et al. IWPEC 2008]
- Most problems W[1]-hard for tw are here!

	Price of Generality Examples		
CW	All MSO ₁ , Dominating Set, Vertex Cover		
/ <u> </u> \ 	Clique-width		
tw	Coloring, EDS, SAT, #Matching		
^	Treewidth		
ρw ★W-h	Pathwidth		
	Mixed Chinese Postman, r-DS		
td FPT	Tree-depth		
$\mathbf{\Lambda}$	Capacitated DS/VC, BDD,		
	Vertex Cover		
VC	List Coloring, r-Dom Set, d-Ind Set		

Comments

- MCP: [Gutin, Jones, Wahlström, SIDMA '16]. First of this type!
- Also: Bounded-Length Cut, Geodetic Set, ILP.

	Price of Generality Examples		
cw		All MSO ₁ , Dominating Set, Vertex Cover	
	Clique-width		
tŵ		Coloring, EDS, SAT, #Matching	
∧ W-h	Treewidth		
FPT		???	
pw ▲	Pathwidth		
T		Mixed Chinese Postman, r-DS	
td	Tree-depth		
▲		Capacitated DS/VC, BDD,	
	Vertex Cover		
VC		List Coloring, <i>r</i> -Dom Set, <i>d</i> -Ind Set	
Comments			

UNIVERSITÉ PARIS

No **natural** problem known??

	Price of Generality Examples		
cw		All MSO ₁ , Dominating Set, Vertex Cover	
/ ₁ \ I	Clique-width		
tw		Coloring, EDS, SAT, #Matching	
∱ W-h	Treewidth		
FPT		Grundy Coloring!	
pw ▲	Pathwidth		
		Mixed Chinese Postman, r-DS	
td	Tree-depth		
^		Capacitated DS/VC, BDD,	
I	Vertex Cover		
VC		List Coloring, r-Dom Set Jund Set	

Comments

Main result of this talk:

Grundy Coloring is such a problem!

A Lesson from the fox

Price of Generality and Combinatorics

- Sometimes, the reason a problem becomes FPT for a more restricted parameter is more combinatorial than algorithmic.
- Example:
 - Coloring is FPT for tw, W-hard for cw.
 - But algorithm runs in k^{tw} . Is this FPT?
 - Yes! Because in all graphs $\chi(G) \leq tw(G)$.
 - This bound makes all the difference: Coloring is FPT by cw + k.
- Example:
 - *r*-Dom Set is FPT for td, W-hard for pw.
 - Why W-hard for pw? DP runs in $r^{O(pw)}$. But r could be large!
 - Why FPT for td? Graphs of tree-depth t have no simple path of length $> 2^t$, so $r \le 2^{td}$.
 - Again saved by combinatorial bound on optimal!

Let's nail this problem!

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is **maximized**.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is maximized.

Red	1
Green	2
Blue	3
Yellow	4

Grundy Coloring

- Input: Graph G = (V, E) on n vertices
- Repeat *n* times
 - Select an uncolored vertex u of G
 - Assign u the smallest color that is not currently used in any of its neighbors (First-Fit)
- Goal: Order the vertices in such a way that number of colors used is **maximized**.

Red	1
Green	2
Blue	3
Yellow	4

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

• T_k is formed by connecting two copies of T_{k-1}

• The Binomial Tree T_k has a Grundy Coloring which assigns color k to the root

- Two recursive constructions
- T_1 is a vertex.
- T_k is a new root connected to $T_{k-1}, T_{k-2}, \ldots, T_1$.

Or

- T_k is formed by connecting two copies of T_{k-1}
- We have $\Gamma(T_k) = k$ but $\chi(T_k) = 2$.
- $|T_k| = 2^{k-1}$.
- This is tight: for all trees $\Gamma(T) \leq \log n$.
- More generally: for all graphs $\Gamma(G) \leq tw(G) \log n$.

Algorithm for Grundy and Treewidth

• XP algorithm due to [Telle&Proskurowski SIDMA'97]

- Standard Coloring DP: recall color of each vertex in bag
- Reminder: Bags are separators
- Only need to remember which colorings of the bag can be extended to the left.
 - Complexity: $\rightarrow k^{tw}$

Algorithm for Grundy and Treewidth

• XP algorithm due to [Telle&Proskurowski SIDMA'97]

- Grundy: for each vertex we also need to make sure that it is dominated by **all** lower colors
 - In this example, this coloring is only valid if 6 takes color Red
- Need to remember for each vertex the subset of colors it has seen in its neighborhood

•
$$\rightarrow (2^k)^{tw}$$

Algorithm for Grundy and Treewidth

• XP algorithm due to [Telle&Proskurowski SIDMA'97]

- Overall running time $O^*((k2^k)^{tw})$.
- Is this XP?
- Yes, if we use that $k \leq tw \log n$
- Running time: $n^{O(tw^2)}$

Main results:

- Grundy Coloring is W[1]-hard by treewidth
- Grundy Coloring is FPT by pathwidth

Also:

- Grundy Coloring is NP-h for clique-width= 6
- Grundy Coloring is FPT for modular width
- Key insight: ability to bound $\Gamma(G)$ is crucial
 - For bounded pw we have bounded Γ
 - For bounded tw we have $\Gamma \leq tw \log n$
 - No upper bound on Γ for bounded cw

W-hardness for treewidth

Proof Outline

- Desired result: Grundy Coloring is W[1]-hard by treewidth
- Proof: Reduction from *k*-MCC
 - *k*-MCC: given properly *k*-colored graph, decide if exists *k*-Clique.

Proof Outline

- Desired result: Grundy Coloring is W[1]-hard by treewidth
- Proof: Reduction from *k*-MCC
 - k-MCC: given properly k-colored graph, decide if exists k-Clique.

Steps:

- Define more general "Grundy with Targets and Supports"
- Show that GwTS is W[1]-hard parameterized by **pathwidth**
 - Not a typo! More info later...
- Use binomial trees to reduce GwTS/pw to Grundy/tw

- Example of generalized problem instance.
- Two vertices have a target we want to achieve.
- Some vertices have a support set: we don't need to assign them neighbors of these colors to obtain a higher color.

- Example of generalized problem instance.
- Two vertices have a target we want to achieve.
- Some vertices have a support set: we don't need to assign them neighbors of these colors to obtain a higher color.

- Example of generalized problem instance.
- Two vertices have a target we want to achieve.
- Some vertices have a support set: we don't need to assign them neighbors of these colors to obtain a higher color.

- Example of generalized problem instance.
- Two vertices have a target we want to achieve.
- Some vertices have a support set: we don't need to assign them neighbors of these colors to obtain a higher color.

- Example of generalized problem instance.
- Two vertices have a target we want to achieve.
- Some vertices have a support set: we don't need to assign them neighbors of these colors to obtain a higher color.

• $k \times m$ "grid" where each row represents a color class

- $k \times m$ "grid" where each row represents a color class
- Selector gadget: has *n* "reasonable" Grundy colorings. Each encodes a selection of a vertex in original *k*-MCC instance.

- $k \times m$ "grid" where each row represents a color class
- Selector gadget: has *n* "reasonable" Grundy colorings. Each encodes a selection of a vertex in original *k*-MCC instance.
- Propagator gadget: makes sure consecutive selectors encode same vertex.

- $k \times m$ "grid" where each row represents a color class
- Selector gadget: has *n* "reasonable" Grundy colorings. Each encodes a selection of a vertex in original *k*-MCC instance.
- Propagator gadget: makes sure consecutive selectors encode same vertex.
- Checker gadget: one for each edge of G. Connected to two selectors, is activated if we encode the endpoints of this edge.

- $k \times m$ "grid" where each row represents a color class
- Selector gadget: has *n* "reasonable" Grundy colorings. Each encodes a selection of a vertex in original *k*-MCC instance.
- Propagator gadget: makes sure consecutive selectors encode same vertex.
- Checker gadget: one for each edge of G. Connected to two selectors, is activated if we encode the endpoints of this edge.
- Goal: activate $\binom{k}{2}$ checkers.

- $k \times m$ "grid" where each row represents a color class
- Selector gadget: has *n* "reasonable" Grundy colorings. Each encodes a selection of a vertex in original *k*-MCC instance.
- Propagator gadget: makes sure consecutive selectors encode same vertex.
- Checker gadget: one for each edge of *G*. Connected to two selectors, is activated if we encode the endpoints of this edge.
- Goal: activate $\binom{k}{2}$ checkers.
- Main difficulty: selectors and propagators

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Selector Gadget

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Selector Gadget

Intuition:

- We construct $\log n$ independent edges, numbered $1 \dots \log n$.
- Endpoints of edge i get support $[1 \dots 2i 2]$.
- \rightarrow they can be colored with 2i 1, 2i.
- For each edge we have a choice to put the larger color left or right.
- $2^{\log n} = n$ choices can be encoded.

Intuition:

- A propagator is a vertex with target $2 \log n + 1$ connected to different sides of consecutive selectors.
- Its neighborhood must cover all colors in $\{1, \ldots, 2 \log n\}$.
- For each (starting from largest) colors 2i 1, 2i can only be found on *i*-th edge.
- Therefore, assignment must remain consistent.

Intuition:

- A propagator is a vertex with target $2 \log n + 1$ connected to different sides of consecutive selectors.
- Its neighborhood must cover all colors in $\{1, \ldots, 2 \log n\}$.
- For each (starting from largest) colors 2i 1, 2i can only be found on *i*-th edge.
- Therefore, assignment must remain consistent.

UNIVERSITÉ PARIS

Intuition:

- A propagator is a vertex with target $2 \log n + 1$ connected to different sides of consecutive selectors.
- Its neighborhood must cover all colors in $\{1, \ldots, 2 \log n\}$.
- For each (starting from largest) colors 2i 1, 2i can only be found on *i*-th edge.
- Therefore, assignment must remain consistent.

Intuition:

- A propagator is a vertex with target $2 \log n + 1$ connected to different sides of consecutive selectors.
- Its neighborhood must cover all colors in $\{1, \ldots, 2 \log n\}$.
- For each (starting from largest) colors 2i 1, 2i can only be found on *i*-th edge.
- Therefore, assignment must remain consistent.

UNIVERSITÉ PARIS

We're on the right track!

How is this reduction going?

- Graph will have pathwidth $\approx k$
 - Propagators are vertices, form separators, bags of decomposition
- Information encoded?
 - Bottleneck of DP: must remember set of colors seen
 - Encoding of selection: set of colors seen by propagator to its left
 - Makes sense!

We're on the right track!

How is this reduction going?

- Graph will have pathwidth $\approx k$
 - Propagators are vertices, form separators, bags of decomposition
- Information encoded?
 - Bottleneck of DP: must remember set of colors seen
 - Encoding of selection: set of colors seen by propagator to its left
 - Makes sense!

- To implement supports we attach binomial trees to supported vertices.
 - Does not increase treewidth.
 - Crucial: all supports are $O(\log n)$, so binomial trees have polynomial size.
- To implement targets we add a huge binomial tree $T_{10 \log n}$.
- For each vertex with target $\leq 2 \log n + 4$ we find an internal vertex of the tree that is supposed to take the same color and merge them.
- Must be done carefully to keep treewidth low!

- To implement supports we attach binomial trees to supported vertices.
 - Does not increase treewidth.
 - Crucial: all supports are $O(\log n)$, so binomial trees have polynomial size.
- To implement targets we add a huge binomial tree $T_{10\log n}$.
- For each vertex with target $\leq 2 \log n + 4$ we find an internal vertex of the tree that is supposed to take the same color and merge them.
- Must be done carefully to keep treewidth low!

- To implement supports we attach binomial trees to supported vertices.
 - Does not increase treewidth.
 - Crucial: all supports are $O(\log n)$, so binomial trees have polynomial size.
- To implement targets we add a huge binomial tree $T_{10 \log n}$.
- For each vertex with target $\leq 2 \log n + 4$ we find an internal vertex of the tree that is supposed to take the same color and merge them.
- Must be done carefully to keep treewidth low!

- To implement supports we attach binomial trees to supported vertices.
 - Does not increase treewidth.
 - Crucial: all supports are $O(\log n)$, so binomial trees have polynomial size.
- To implement targets we add a huge binomial tree $T_{10 \log n}$.
- For each vertex with target $\leq 2 \log n + 4$ we find an internal vertex of the tree that is supposed to take the same color and merge them.
- Must be done carefully to keep treewidth low!

Interesting Trick: Graph of pathwidth k + Tree \Rightarrow Graph of treewidth k

Summary

- Grundy is W[1]-hard by treewidth
- Reduction shows Grundy with Targets and Supports is W[1]-hard by pathwidth!
- Key reason why this doesn't work for regular Grundy: we need binomial trees
- Binomial trees have large pathwidth ($\Theta(\log n)$)

FPT for pathwidth

Cmbinatorics to Algorithms

Two ingredients for FPT algorithm by pathwidth:

- DP algorithm running in $2^{k \cdot tw}$ we saw
- A combinatorial bound: for all G, $\Gamma(G) \leq 8pw(G)$
 - Shown in [Dujmovic, Joret, Wood SIDMA'12]
 - Uses connection pathwidth↔interval graphs

Cmbinatorics to Algorithms

Two ingredients for FPT algorithm by pathwidth:

- DP algorithm running in $2^{k \cdot tw}$ we saw
- A combinatorial bound: for all G, $\Gamma(G) \leq 8pw(G)$
 - Shown in [Dujmovic, Joret, Wood SIDMA'12]
 - Uses connection pathwidth↔interval graphs
- Plugging in the bound and using $tw \le pw$ we get

Thm: Grundy Coloring can be solved in $O^*(2^{O(pw^2)})$

Conclusions

Conclusions – Open Questions

 Grundy Coloring is first (?) natural problem to be FPT for pathwidth, W-hard for treewidth

Open questions:

- Other such problems separating tw/pw?
- Problems separatings them for other reasons?

- FPT by fvs?
- Gap between $n^{o(\sqrt{tw})}$ LB and n^{tw^2} algorithm?

Thank you!

Thank you! Questions?

