
Grundy Distinguishes Treewidth from

Pathwidth

Michael Lampis
LAMSADE

Université Paris Dauphine

ESA 2020

Acknowledgements

Grundy Distinguishes Treewidth from Pathwidth

This is joint work with:

Rémy Belmonte UEC

Eun Jung Kim LAMSADE

Valia Mitsou IRIF

Yota Otachi Nagoya U

Funded by the bilateral French-Japanese project PARAGA.

Full paper available at: https://arxiv.org/abs/2008.07425

What is this talk about?

Grundy Distinguishes Treewidth from Pathwidth

Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.

What is this talk about?

Grundy Distinguishes Treewidth from Pathwidth

Two ways to look at this work
A talk about structural parameters

• Treewidth

• Pathwidth

• Treedepth, Cliquewidth, . . .

• Price of Generality

• Which problems are “easy”

for pathwidth but “hard” for

treewidth?

A talk about Grundy Coloring

• Well-known optimization

problem

• MaxMin variant of Coloring

• Find a proper coloring that

uses the max number of

colors but the color of no

vertex can be decreased.

“The fox knows many things, but the hedgehog knows one big thing”,

Aesop’s fables

What does the fox say?

Price of Generality – Structural Parameters

Grundy Distinguishes Treewidth from Pathwidth

Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?

• Price of Generality

• [Fomin, Golovach, Lokshtanov, Saurabh, SODA’09]

• Showed EDS, MaxCut, Coloring, Hamiltonicity FPT

for tw, W-hard for cw.

Price of Generality – Structural Parameters

Grundy Distinguishes Treewidth from Pathwidth

Each problem/parameter pair is typically either:

• FPT: solvable in f(w)nO(1)

• XP and W-hard: solvable in ng(w), not FPT

• paraNP-hard: NP-hard for w = O(1)

• Tractability propagates “downwards”, hard-

ness “upwards”

• Big Picture Question: Which problems do we

“lose” when we transition between parame-

ters?

• Price of Generality

• [Fomin, Golovach, Lokshtanov, Saurabh, SODA’09]

• Showed EDS, MaxCut, Coloring, Hamiltonicity FPT

for tw, W-hard for cw.

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples

Clique-width

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

Comments

• SAT: [Ordyniak, Paulusma, Szeider, TCS ’13]

• #Matching: [Curticapean, Marx, SODA ’16]

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• List Coloring: [Fellows et al. Inf Comp ’11]. First such problem!

• r-DS: [Katsikarelis, L., Paschos, DAM ’19]

• Very few problems here!

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• Cap VC/DS: [Dom et al. IWPEC 2008]

• Most problems W[1]-hard for tw are here!

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

• MCP: [Gutin, Jones, Wahlström, SIDMA ’16]. First of this type!

• Also: Bounded-Length Cut, Geodetic Set, ILP.

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

???

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

No natural problem known??

Price of Generality Continued

Grundy Distinguishes Treewidth from Pathwidth

Price of Generality Examples
All MSO1, Dominating Set, Vertex Cover

Clique-width

Coloring, EDS, SAT, #Matching

Treewidth

Grundy Coloring!

Pathwidth

Mixed Chinese Postman, r-DS

Tree-depth

Capacitated DS/VC, BDD,. . .

Vertex Cover

List Coloring, r-Dom Set, d-Ind Set

Comments

Main result of this talk:

Grundy Coloring is such a problem!

A Lesson from the fox

Price of Generality and Combinatorics

Grundy Distinguishes Treewidth from Pathwidth

• Sometimes, the reason a problem becomes FPT for a more restricted

parameter is more combinatorial than algorithmic.

• Example:

• Coloring is FPT for tw, W-hard for cw.

• But algorithm runs in ktw. Is this FPT?

• Yes! Because in all graphs χ(G) ≤ tw(G).
• This bound makes all the difference: Coloring is FPT by cw + k.

• Example:

• r-Dom Set is FPT for td, W-hard for pw.

• Why W-hard for pw? DP runs in rO(pw). But r could be large!

• Why FPT for td? Graphs of tree-depth t have no simple path of

length > 2t, so r ≤ 2td.

• Again saved by combinatorial bound on optimal!

Let’s nail this problem!

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Grundy Coloring

Grundy Distinguishes Treewidth from Pathwidth

• Input: Graph G = (V,E) on n vertices

• Repeat n times

• Select an uncolored vertex u of G

• Assign u the smallest color that is not currently used in any of its

neighbors (First-Fit)

• Goal: Order the vertices in such a way that number of colors used is

maximized.

Red 1

Green 2

Blue 3

Yellow 4

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

Binomial Trees

Grundy Distinguishes Treewidth from Pathwidth

• The Binomial Tree Tk has a Grundy Coloring which assigns color k to

the root

• Two recursive constructions

• T1 is a vertex.

• Tk is a new root connected to

Tk−1, Tk−2, . . . , T1.

Or

• Tk is formed by connecting two copies

of Tk−1

• We have Γ(Tk) = k but χ(Tk) = 2.

• |Tk| = 2k−1.

• This is tight: for all trees Γ(T) ≤ logn.

• More generally: for all graphs Γ(G) ≤ tw(G) logn.

Algorithm for Grundy and Treewidth

Grundy Distinguishes Treewidth from Pathwidth

• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Standard Coloring DP: recall color of each vertex in bag

• Reminder: Bags are separators

• Only need to remember which colorings of the bag can be extended to

the left.

• Complexity: → ktw

Algorithm for Grundy and Treewidth

Grundy Distinguishes Treewidth from Pathwidth

• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Grundy: for each vertex we also need to make sure that it is

dominated by all lower colors

• In this example, this coloring is only valid if 6 takes color Red

• Need to remember for each vertex the subset of colors it has seen in

its neighborhood

• → (2k)tw

Algorithm for Grundy and Treewidth

Grundy Distinguishes Treewidth from Pathwidth

• XP algorithm due to [Telle&Proskurowski SIDMA’97]

• Overall running time O∗((k2k)tw).
• Is this XP?

• Yes, if we use that k ≤ tw logn
• Running time: nO(tw2)

Our results

Grundy Distinguishes Treewidth from Pathwidth

Main results:

• Grundy Coloring is W[1]-hard by treewidth

• Grundy Coloring is FPT by pathwidth

Also:

• Grundy Coloring is NP-h for clique-width= 6
• Grundy Coloring is FPT for modular width

• Key insight: ability to bound Γ(G) is crucial

• For bounded pw we have bounded Γ
• For bounded tw we have Γ ≤ tw log n
• No upper bound on Γ for bounded cw

W-hardness for treewidth

Proof Outline

Grundy Distinguishes Treewidth from Pathwidth

• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Proof Outline

Grundy Distinguishes Treewidth from Pathwidth

• Desired result: Grundy Coloring is W[1]-hard by treewidth

• Proof: Reduction from k-MCC

• k-MCC: given properly k-colored graph, decide if exists k-Clique.

Steps:

• Define more general “Grundy with Targets and Supports”

• Show that GwTS is W[1]-hard parameterized by pathwidth

• Not a typo! More info later. . .

• Use binomial trees to reduce GwTS/pw to Grundy/tw

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Grundy with Supports and Targets – Example

Grundy Distinguishes Treewidth from Pathwidth

• Example of generalized problem instance.

• Two vertices have a target we want to achieve.

• Some vertices have a support set: we don’t need to assign them

neighbors of these colors to obtain a higher color.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

• Goal: activate
(

k
2

)

checkers.

Outline of hardness for GwTS

Grundy Distinguishes Treewidth from Pathwidth

• k ×m “grid” where each row represents a color class

• Selector gadget: has n “reasonable” Grundy colorings. Each encodes

a selection of a vertex in original k-MCC instance.

• Propagator gadget: makes sure consecutive selectors encode same

vertex.

• Checker gadget: one for each edge of G. Connected to two selectors,

is activated if we encode the endpoints of this edge.

• Goal: activate
(

k
2

)

checkers.

• Main difficulty: selectors and propagators

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Selector Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• We construct log n independent edges, numbered 1 . . . logn.

• Endpoints of edge i get support [1 . . . 2i− 2].
• → they can be colored with 2i− 1, 2i.
• For each edge we have a choice to put the larger color left or right.

• 2logn = n choices can be encoded.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

Propagator Gadget

Grundy Distinguishes Treewidth from Pathwidth

Intuition:

• A propagator is a vertex with target 2 logn+ 1 connected to different

sides of consecutive selectors.

• Its neighborhood must cover all colors in {1, . . . , 2 logn}.

• For each (starting from largest) colors 2i− 1, 2i can only be found on

i-th edge.

• Therefore, assignment must remain consistent.

We’re on the right track!

Grundy Distinguishes Treewidth from Pathwidth

How is this reduction going?

• Graph will have pathwidth ≈ k

• Propagators are vertices, form separators, bags of decomposition

• Information encoded?

• Bottleneck of DP: must remember set of colors seen

• Encoding of selection: set of colors seen by propagator to its left

• Makes sense!

We’re on the right track!

Grundy Distinguishes Treewidth from Pathwidth

How is this reduction going?

• Graph will have pathwidth ≈ k

• Propagators are vertices, form separators, bags of decomposition

• Information encoded?

• Bottleneck of DP: must remember set of colors seen

• Encoding of selection: set of colors seen by propagator to its left

• Makes sense!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Regular Grundy

Grundy Distinguishes Treewidth from Pathwidth

• To implement supports we attach binomial trees to supported vertices.

• Does not increase treewidth.

• Crucial: all supports are O(logn), so binomial trees have

polynomial size.

• To implement targets we add a huge binomial tree T10 logn.

• For each vertex with target ≤ 2 log n+ 4 we find an internal vertex of

the tree that is supposed to take the same color and merge them.

• Must be done carefully to keep treewidth low!

Interesting Trick:

Graph of pathwidth k + Tree

⇒
Graph of treewidth k

Summary

Grundy Distinguishes Treewidth from Pathwidth

• Grundy is W[1]-hard by treewidth

• Reduction shows Grundy with Targets and Supports is W[1]-hard by

pathwidth!

• Key reason why this doesn’t work for regular Grundy: we need

binomial trees

• Binomial trees have large pathwidth (Θ(logn))

FPT for pathwidth

Cmbinatorics to Algorithms

Grundy Distinguishes Treewidth from Pathwidth

Two ingredients for FPT algorithm by pathwidth:

• DP algorithm running in 2k·tw we saw

• A combinatorial bound: for all G, Γ(G) ≤ 8pw(G)

• Shown in [Dujmovic, Joret, Wood SIDMA’12]

• Uses connection pathwidth↔interval graphs

Cmbinatorics to Algorithms

Grundy Distinguishes Treewidth from Pathwidth

Two ingredients for FPT algorithm by pathwidth:

• DP algorithm running in 2k·tw we saw

• A combinatorial bound: for all G, Γ(G) ≤ 8pw(G)

• Shown in [Dujmovic, Joret, Wood SIDMA’12]

• Uses connection pathwidth↔interval graphs

• Plugging in the bound and using tw ≤ pw we get

Thm: Grundy Coloring can be solved in O∗(2O(pw2))

Conclusions

Conclusions – Open Questions

Grundy Distinguishes Treewidth from Pathwidth

• Grundy Coloring is first (?) natural problem to be FPT for pathwidth,

W-hard for treewidth

Open questions:
• Other such problems separat-

ing tw/pw?

• Problems separatings them

for other reasons?

• FPT by fvs?

• Gap between no(
√
tw) LB and

ntw2

algorithm?

Thank you!

Grundy Distinguishes Treewidth from Pathwidth

Thank you!

Questions?

	Acknowledgements
	What is this talk about?
	What does the fox say?[height=2cm]fox
	Price of Generality – Structural Parameters
	Price of Generality Continued

	A Lesson from the fox[height=2cm]fox
	Price of Generality and Combinatorics

	Let's nail this problem![height=2cm]hedgehog
	Grundy Coloring
	Binomial Trees
	Algorithm for Grundy and Treewidth
	Our results

	W-hardness for treewidth[height=2cm]hedgehog
	Proof Outline
	Grundy with Supports and Targets – Example
	Outline of hardness for GwTS
	Selector Gadget
	Propagator Gadget
	We're on the right track!
	Regular Grundy
	Summary

	FPT for pathwidth[height=2cm]hedgehog
	Cmbinatorics to Algorithms

	Conclusions[height=2cm]fox[height=2cm]hedgehog
	Conclusions – Open Questions
	Thank you!

