
Quantifier Alternations and Graph Widths

Michael Lampis
LAMSADE

July 10th 2023 – GWP



What this talk is about

Quantifier Alternations and Graph Widths 2 / 34

An interesting phenomenon:

• Adding quantifiers costs a level of exponentiation for treewidth.

Two points of view:

Concrete Problems

• SAT with quantifiers

• Σp
2, PH, . . .

Meta-Theorems

• Treewidth/Pathwidth (Courcelle)

• Vertex Cover, Vertex Integrity,. . .



Graph widths in this talk

Quantifier Alternations and Graph Widths 3 / 34

• Tree-depth

td(G) = min
S⊆V (G)

{

|S|+ max
S′∈cc(G−S)

td(S′)

}

• Select small separator S so that all components have

small tree-depth

• (Base case: K1 has tree-depth 1)



Graph widths in this talk

Quantifier Alternations and Graph Widths 3 / 34

• Vertex Integrity

vi(G) = min
S⊆V (G)

{

|S|+ max
S′∈cc(G−S)

|S′|

}

• Select small separator S so that all components have

small size



Graph widths in this talk

Quantifier Alternations and Graph Widths 3 / 34

• Vertex Cover

vc(G) = min
S⊆V (G)∧G−S stable

{|S|}

• Select small separator S so that all components are

singletons.



Graph widths in this talk

Quantifier Alternations and Graph Widths 3 / 34

• Inclusions are strict!

• Small vertex integrity, large vertex cover



Graph widths in this talk

Quantifier Alternations and Graph Widths 3 / 34

• Inclusions are strict!

• Large vertex integrity, small tree-depth



A Textbook Problem



Quantified SAT

Quantifier Alternations and Graph Widths 5 / 34

∃∀-SAT definition:

Input: ∃x∀yφ(x, y)

• φ in DNF (why not CNF?)

Example:

(x1 ∧ y1) ∨ (x2 ∧ ¬y1 ∧ y2) ∨ (¬x2 ∧ y1 ∧ ¬y2) ∨ (¬y2)



Quantified SAT

Quantifier Alternations and Graph Widths 5 / 34

∃∀-SAT definition:

Input: ∃x∀yφ(x, y)

• φ in DNF (why not CNF?)

Example:

(x1 ∧ y1) ∨ (x2 ∧ ¬y1 ∧ y2) ∨ (¬x2 ∧ y1 ∧ ¬y2) ∨ (¬y2)

Graph structure:

x1y1

y2

x2

x1

y1

y2

x2

Primal graph Incidence graph

(Note: for tw/pw incidence is more general than primal.)



Quantified SAT

Quantifier Alternations and Graph Widths 5 / 34

∃∀-SAT definition:

Input: ∃x∀yφ(x, y)

• φ in DNF (why not CNF?)

Example:

(x1 ∧ y1) ∨ (x2 ∧ ¬y1 ∧ y2) ∨ (¬x2 ∧ y1 ∧ ¬y2) ∨ (¬y2)

Double-exponential 22
tw
nO(1) algorithm

• Two assignments to ∃ variables are equivalent if:

• They agree on variables of the bag (2tw classes)

• They “defeat” the same assignments of the universal player (22
tw

classes)



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

• If we could solve ∃∀-SAT in 22
o(tw)

this would given 2o(n) algorithm for

3-SAT.



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Intuition:

• CNFSAT has an implied quantifier alternation:

∃ assignment ∀ clause satisfied.

• logm new universal variables will encode the m clauses in binary.



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Example:

ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x4)

x1

x2

x3

x4

C0

C1

C2

C3

x1

x2

x3

x4

y1

y2

T00
T01
T02
T10
T11
T20
T21
T30
T31

Incidence graph of  Incidence graph of φ



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Example:

ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x4)

Gives the following DNF terms
C0 C1 C2 C3

(x1 ∧ ¬y1 ∧ ¬y2) (x1 ∧ ¬y1 ∧ y2) (x2 ∧ y1 ∧ ¬y2) (¬x2 ∧ y1 ∧ y2)
(x2 ∧ ¬y1 ∧ ¬y2) (x4 ∧ ¬y1 ∧ y2) (x3 ∧ y1 ∧ ¬y2) (x4 ∧ y1 ∧ y2)
(¬x3 ∧ ¬y1 ∧ ¬y2)



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Example:

ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x4)

Gives the following DNF terms
C0 C1 C2 C3

(x1 ∧ ¬y1 ∧ ¬y2) (x1 ∧ ¬y1 ∧ y2) (x2 ∧ y1 ∧ ¬y2) (¬x2 ∧ y1 ∧ y2)
(x2 ∧ ¬y1 ∧ ¬y2) (x4 ∧ ¬y1 ∧ y2) (x3 ∧ y1 ∧ ¬y2) (x4 ∧ y1 ∧ y2)
(¬x3 ∧ ¬y1 ∧ ¬y2)

Key fact: No two existential variables appear together!

⇒ the O(logn) variables y form a vertex cover of the primal graph.



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Construction:

• Start with a SAT formula ∃xψ, where x = {x1, x2, . . . , xn},

ψ = C0 ∧ C1 . . . ∧ Cm−1 and m is a power of 2.

• Construct ∃x∀yφ, where y = {y1, y2, . . . , ylogm} are fresh universal

variables.

• For each clause Ci we construct |Ci| terms Tij in φ. Each Tij has:

• literal lj = (¬)xj of Ci and

• a binary combination B(i,y) of positive and negative appearances

of y, unique for i.



Quantified SAT reduction

Quantifier Alternations and Graph Widths 6 / 34

Strategy:

• Reduce 3-SAT on an n-variable formula ψ to ∃∀-SAT on a formula φ
with tw(φ) = O(logn).

Example:

ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x4)

x1

x2

x3

x4

C0

C1

C2

C3

x1

x2

x3

x4

y1

y2

T00
T01
T02
T10
T11
T20
T21
T30
T31

Incidence graph of  Incidence graph of φ



Known results about Quantified SAT

Quantifier Alternations and Graph Widths 7 / 34

• SAT with k quantifiers complete for Σp
k

• Each extra quantifier costs at most one level of exponentiation

• [ Chen ECAI 2004 ]

• Each extra quantifier costs at least one level of exponentiation

• [ Pan and Vardi LICS 2006 ] – odd number of quantifiers

• [ L. and Mitsou IPEC 2017 ] – two quantifiers

• [ Fichte, Hecher, Pflander LICS 2020 ] – any number of quantifiers



Known results about Quantified SAT

Quantifier Alternations and Graph Widths 7 / 34

• SAT with k quantifiers complete for Σp
k

• Each extra quantifier costs at most one level of exponentiation

• [ Chen ECAI 2004 ]

• Each extra quantifier costs at least one level of exponentiation

• [ Pan and Vardi LICS 2006 ] – odd number of quantifiers

• [ L. and Mitsou IPEC 2017 ] – two quantifiers

• [ Fichte, Hecher, Pflander LICS 2020 ] – any number of quantifiers

Extensions:

• Double-exponential lower bound extends to

• Bounded term size

• Bounded variable occurrences

• ∃k∀-SAT, ∃∀k-SAT



Meta-Theorems



Meta-Theorems and Courcelle’s Theorem

Quantifier Alternations and Graph Widths 9 / 34

• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”



Meta-Theorems and Courcelle’s Theorem

Quantifier Alternations and Graph Widths 9 / 34

• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by

treewidth.



Meta-Theorems and Courcelle’s Theorem

Quantifier Alternations and Graph Widths 9 / 34

• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by

treewidth.

• Notice that since this applies to treewidth, it applies to pathwidth, and

tree-depth.



FO and MSO logic reminder

Quantifier Alternations and Graph Widths 10 / 34

FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

Standard Example: 2-Dominating set

∃x1∃x2∀x3 (x1 = x3 ∨ x2 = x3 ∨ x1 ∼ x3 ∨ x2 ∼ x3)



FO and MSO logic reminder

Quantifier Alternations and Graph Widths 10 / 34

FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

∃X1∃X2∃X3

(

∀x1 (x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧

∀x2 (x1 ∼ x2 → (¬(x1 ∈ X1 ∧ x2 ∈ X1)) ∧

(¬(x1 ∈ X2 ∧ x2 ∈ X2)) ∧

(¬(x1 ∈ X3 ∧ x2 ∈ X3)))
)



FO and MSO logic reminder

Quantifier Alternations and Graph Widths 10 / 34

FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

Brute-force Complexity:

• FO: nq

• MSO: 2nq

Question:For which classes, which f , can we solve FO in time f(q)nO(1)?



A Closer Look

Quantifier Alternations and Graph Widths 11 / 34

• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|



A Closer Look

Quantifier Alternations and Graph Widths 11 / 34

• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|

• Problem: f is approximately 22
2
. .

.
2tw

, where the height of the tower is

upper-bounded by the number of quantifier alternations in φ.



A Closer Look

Quantifier Alternations and Graph Widths 11 / 34

• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|

• Problem: f is approximately 22
2
. .

.
2tw

, where the height of the tower is

upper-bounded by the number of quantifier alternations in φ.

• Serious Problem: This tower of exponentials cannot be avoided1

even for FO logic on trees!

• “The complexity of first-order and monadic second-order logic

revisited”, [Frick and Grohe, APAL 2004].

1Assuming P 6=NP or FPT6=W[1].



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Gentle definition of pathwidth k:

• We have k stacks. Initially each contains a vertex. They are arbitrarily

connected.

• At each step we add a vertex to the top of a stack. It can be connected

to vertices currently on top of a stack.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Note that this is equivalent to the standard definition of path

decompositions.



Treewidth – Pathwidth

Quantifier Alternations and Graph Widths 12 / 34

Note that this is equivalent to the standard definition of path

decompositions.



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.
Vertex 5 6 7 8 9

Character (1, 1010) (2, 1010) (2, 1100) (3, 0101) (1, 1010)



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.
Vertex 5 6 7 8 9

Character (1, 1010) (2, 1010) (2, 1100) (3, 0101) (1, 1010)

MSO logic on Strings:

• ∃x means there exists a character x. . .

• Vocabulary: x � y (x is to the left of y), unary predicates for Σ.



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.
Vertex 5 6 7 8 9

Character (1, 1010) (2, 1010) (2, 1100) (3, 0101) (1, 1010)

Idea: Adjacency in G can be expressed in MSO logic in the string!

x ∼ y iff

• x � y.

• 6 ∃z s.t. x � z � y and z is on same stack as x.

• Check (p bits of) symbol of y and stack number of x.



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.
Vertex 5 6 7 8 9

Character (1, 1010) (2, 1010) (2, 1100) (3, 0101) (1, 1010)

Idea: Translate MSO question on graph to MSO question on string.

Theorem: MSO logic on Strings ≡ regular languages [Büchi 1960].

Consequence: Linear-time algorithm for MSO logic on bounded

pathwidth graphs.



Courcelle’s Theorem and Automata

Quantifier Alternations and Graph Widths 13 / 34

Courcelle’s Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size p · 2p.
Vertex 5 6 7 8 9

Character (1, 1010) (2, 1010) (2, 1100) (3, 0101) (1, 1010)
Intuition:

• Quantifier Alternations force us to make the automaton deterministic.

• Consequence: each alternation gives a level of exponentiation.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

• Given a graph with vertex cover

vc = 5
• we want to check an FO property

φ with q = 3 variables.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

x1

• Sentence has form ∃x1ψ(x1)
• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

x1

• Sentence has form ∃x1ψ(x1)
• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

x1

• Sentence has form ∃x1ψ(x1)
• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

Same • We observe that some vertices

of the independent set have the

same neighbors.

• These vertices should be equiva-

lent.



Vertex Cover Meta-Theorem

Quantifier Alternations and Graph Widths 14 / 34

Vertex Cover

Independent Set

Same
Size ≤ q

• We observe that some vertices

of the independent set have the

same neighbors.

• These vertices should be equiva-

lent.

• Key idea: if a group has > q ver-

tices, we can simply remove one!



Vertex Cover and FO logic

Quantifier Alternations and Graph Widths 15 / 34

Summary of previous argument:

• Partition graph into 2vc + vc sets of equivalent vertices.

• If a set has > q vertices, delete one, repeat.

• If not, |V (G)| ≤ q2O(vc).

• Trivial algorithm now runs in 2O(vc·q)qq.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.



Vertex Cover and FO logic

Quantifier Alternations and Graph Widths 15 / 34

Summary of previous argument:

• Partition graph into 2vc + vc sets of equivalent vertices.

• If a set has > q vertices, delete one, repeat.

• If not, |V (G)| ≤ q2O(vc).

• Trivial algorithm now runs in 2O(vc·q)qq.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

What about MSO?



MSO and Vertex Cover

Quantifier Alternations and Graph Widths 16 / 34

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

Proof by induction:

• Want to prove, if set has size > 2q, can delete one vertex.

• Suppose OK for up to q − 1 quantifiers.

• Want to check if ∃X1ψ(X1), where ψ has q − 1 quantifiers.

X1



MSO and Vertex Cover

Quantifier Alternations and Graph Widths 16 / 34

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

Proof by induction:

• Want to prove, if set has size > 2q, can delete one vertex.

• Suppose OK for up to q − 1 quantifiers.

• Want to check if ∃X1ψ(X1), where ψ has q − 1 quantifiers.

X1

• For any choice of X1 a set of 2q−1 identical vertices remains.

• Apply inductive hypothesis.



MSO and Vertex Cover

Quantifier Alternations and Graph Widths 16 / 34

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

• Graph has 2vc sets of equivalent vertices.

• While one has size > 2q, delete a vertex.

• Otherwise, |V (G)| ≤ 2vc+q.

• Brute force:

2nq ≤ 22
vc+qq = 22

O(vc+q)



Back to Quantified SAT



QBF parameterized by vertex cover

Quantifier Alternations and Graph Widths 18 / 34

QBF: ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn)

Thm: QBF can be solved in time 23
vc
nO(1) [L. and Mitsou IPEC 2017]



QBF parameterized by vertex cover

Quantifier Alternations and Graph Widths 18 / 34

QBF: ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn)

Thm: QBF can be solved in time 23
vc
nO(1) [L. and Mitsou IPEC 2017]

(Referring to primal vertex cover. Incidence vc is easy. . . )



QBF parameterized by vertex cover

Quantifier Alternations and Graph Widths 18 / 34

QBF: ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn)

Thm: QBF can be solved in time 23
vc
nO(1) [L. and Mitsou IPEC 2017]

Algorithm:

• If x1 only appears positive (or negative) easy to set.

• If a clause C1 is contained in a clause C2, remove C2.

• Otherwise, branch on both values of x1.



QBF parameterized by vertex cover

Quantifier Alternations and Graph Widths 18 / 34

QBF: ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn)

Thm: QBF can be solved in time 23
vc
nO(1) [L. and Mitsou IPEC 2017]

Algorithm:

• If x1 only appears positive (or negative) easy to set.

• If a clause C1 is contained in a clause C2, remove C2.

• Otherwise, branch on both values of x1.

Proof of running time:

• If x1 part of vertex cover, great!

• If not, we have a clause (x1 ∨ C1) and a clause (¬x1 ∨ C2)
• → new instances have a new clause C1 or C2 contained in the vertex

cover.

• Cannot construct more than 3vc such clauses!



QBF parameterized by vertex cover

Quantifier Alternations and Graph Widths 18 / 34

QBF: ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn)

Thm: QBF can be solved in time 23
vc
nO(1) [L. and Mitsou IPEC 2017]

Algorithm:

• If x1 only appears positive (or negative) easy to set.

• If a clause C1 is contained in a clause C2, remove C2.

• Otherwise, branch on both values of x1.

Success!



More Meta-Theorems



Meta-Theorems to SAT algorithms?

Quantifier Alternations and Graph Widths 20 / 34

Meta-theorem for vertex cover → QBF/vc worked well!

Other elementary meta-theorems to try

• Vertex Integrity [L. and Mitsou, ISAAC 2021]

• Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]

• Pathwidth



Meta-Theorems to SAT algorithms?

Quantifier Alternations and Graph Widths 20 / 34

Meta-theorem for vertex cover → QBF/vc worked well!

Other elementary meta-theorems to try

• Vertex Integrity [L. and Mitsou, ISAAC 2021]

• Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]

• Pathwidth (this ICALP!! please come to my talk!!)



Vertex Integrity

Quantifier Alternations and Graph Widths 21 / 34

What is different now?

Separator S

• Main idea: some components of

G− S are the same.

• The same internally.

• The same with respect to S.

• More precisely:

• Two components C1, C2 of G−
S are “the same” if there ex-

ists an automorphism ofG that

maps C1 to C2.



Vertex Integrity

Quantifier Alternations and Graph Widths 21 / 34

What is different now?

Separator S

• Main idea: some components of

G− S are the same.

• The same internally.

• The same with respect to S.

• More precisely:

• Two components C1, C2 of G−
S are “the same” if there ex-

ists an automorphism ofG that

maps C1 to C2.



Vertex Integrity

Quantifier Alternations and Graph Widths 21 / 34

What is different now?

Separator S

• Main idea: some components of

G− S are the same.

• The same internally.

• The same with respect to S.

• More precisely:

• Two components C1, C2 of G−
S are “the same” if there ex-

ists an automorphism ofG that

maps C1 to C2.



How many types of components?

Quantifier Alternations and Graph Widths 22 / 34

Separator S

• Equivalent components of G − S
are

• The same internally.

• The same with respect to S.

• How many choices?

• Recall, components of G−S have

size ≤ vi

• At most 2vi
2

different internal

structures.

• At most 2vi
2

different connec-

tions to S.

• All in all, 2O(vi2) possible types.



Counting Power – FO

Quantifier Alternations and Graph Widths 23 / 34

How many identical components can we distinguish with q FO quantifiers?

x1

Claim: if we have > q components, we can delete one.

Induction:

• Suppose true for q − 1 quantifiers.

• We have a formula ∃x1ψ(x1), where ψ has q − 1 quantifiers.

• Mapping it to any component is the same.

• We have > q − 1 identical components left.

• By induction, we can delete one.



Counting Power – FO

Quantifier Alternations and Graph Widths 23 / 34

How many identical components can we distinguish with q FO quantifiers?

x1

Claim: if we have > q components, we can delete one.

Induction:

• Suppose true for q − 1 quantifiers.

• We have a formula ∃x1ψ(x1), where ψ has q − 1 quantifiers.

• Mapping it to any component is the same.

• We have > q − 1 identical components left.

• By induction, we can delete one.



Counting Power – FO

Quantifier Alternations and Graph Widths 23 / 34

How many identical components can we distinguish with q FO quantifiers?

x1

Claim: if we have > q components, we can delete one.

Induction:

• Suppose true for q − 1 quantifiers.

• We have a formula ∃x1ψ(x1), where ψ has q − 1 quantifiers.

• Mapping it to any component is the same.

• We have > q − 1 identical components left.

• By induction, we can delete one.



Counting Power – MSO

Quantifier Alternations and Graph Widths 24 / 34

How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > ?? components, we can delete one.

Problem:

• When we select a set X1 this may distinguish many components.

• Intuitively: if X1 interacts with two previously identical components in

different ways, these components are not identical any more!

• What to do?



Counting Power – MSO

Quantifier Alternations and Graph Widths 24 / 34

How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > ?? components, we can delete one.

Problem:

• When we select a set X1 this may distinguish many components.

• Intuitively: if X1 interacts with two previously identical components in

different ways, these components are not identical any more!

• What to do?



Counting Power – MSO (cont’d)

Quantifier Alternations and Graph Widths 25 / 34

How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > 2vi·q components, we can delete one.

Solution:

• Our components have size ≤ vi.
• There are at most 2vi intersections of X1 with each component.

• If we have > 2vi·q identical components initially. . .

• . . . by PHP one intersection type appears > 2vi·q/2vi = 2vi(q−1) times.

• These components are identical, use inductive hypothesis!



Putting things together

Quantifier Alternations and Graph Widths 26 / 34

• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.



Putting things together

Quantifier Alternations and Graph Widths 26 / 34

• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.

• For FO logic

• Reduced graph has size q2vi
2
.

• Trivial algorithm runs in 2q·vi
2
qq.



Putting things together

Quantifier Alternations and Graph Widths 26 / 34

• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.

• For FO logic

• Reduced graph has size q2vi
2
.

• Trivial algorithm runs in 2q·vi
2
qq.

• For MSO logic

• Reduced graph has size 2vi
2+vi·q.

• Trivial algorithm runs in 22
vi2+vi·q

.

• Are these meta-theorems optimal?



Putting things together

Quantifier Alternations and Graph Widths 26 / 34

• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.

• For FO logic

• Reduced graph has size q2vi
2
.

• Trivial algorithm runs in 2q·vi
2
qq.

• For MSO logic

• Reduced graph has size 2vi
2+vi·q.

• Trivial algorithm runs in 22
vi2+vi·q

.

• Are these meta-theorems optimal?

Yes!! (under ETH) – details skipped



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

Any fool can come up with an exponential-time algorithm. . .



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

Any fool can come up with an exponential-time algorithm. . .

but to come up with a tower of exponentials, you have to really know

what you’re doing!

(Daniel Marx)



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1

d

. . .

. . . . . . . . .

. . .
. . .

We have a rooted tree with d layers (d fixed)



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1
d

. . .

. . . . . . . . .

. . .
. . .

> q?

Apply the previous argument to the bottom layer (leaves)



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1

d

. . .

. . . . . . . . .

. . .

≤ q

deg≤ q

Apply the previous argument to the bottom layer (leaves)



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1
d

. . .

. . . . . . . . .

deg≤ q

. . . > q?

Key intuition: same argument can be applied to level 2, deleting identical

sub-trees.



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1

d

. . .

. . . . . . . . .

deg≤ q

≤ q

types≤ q

types≤ qq

Key intuition: same argument can be applied to level 2, deleting identical

sub-trees.



Tree-depth Meta-theorem

Quantifier Alternations and Graph Widths 27 / 34

0

1

2

d− 1

d

. . .

. . . . . . . . .

deg≤ q

≤ q

types≤ q

types≤ qq

types≤ qq
q

. . .

There are qq different “types” of vertices at level 2. Applying the same

argument to level 3, there are qq
q

types of vertices of level 3. . . .

In the end graph has bounded size!2

2bounded by a tower of exponentials of height d.



SAT again?



Meta-Theorems to QBF-SAT?

Quantifier Alternations and Graph Widths 29 / 34

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth

MSO logic & tree-depth

MSO logic & vertex integrity



Meta-Theorems to QBF-SAT?

Quantifier Alternations and Graph Widths 29 / 34

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth

MSO logic & vertex integrity



Meta-Theorems to QBF-SAT?

Quantifier Alternations and Graph Widths 29 / 34

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth ???

MSO logic & vertex integrity



Meta-Theorems to QBF-SAT?

Quantifier Alternations and Graph Widths 29 / 34

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth ???

MSO logic & vertex integrity ???



Meta-Theorems to QBF-SAT?

Quantifier Alternations and Graph Widths 29 / 34

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth ???

MSO logic & vertex integrity ???

• Complexity of QBF for these parameters is OPEN!

• Intuitive difficulty: graph does not capture order of quantification of

variables.



Typical Hard Problems



Where is this useful?

Quantifier Alternations and Graph Widths 31 / 34

• Typical example problems are complete for Σp
2 or higher levels of PH.



Where is this useful?

Quantifier Alternations and Graph Widths 31 / 34

• Typical example problems are complete for Σp
2 or higher levels of PH.

• This is not a rule! (cf. Esther’s talk)

• This is not even true for ∃∀-SAT instances we saw!



Where is this useful?

Quantifier Alternations and Graph Widths 31 / 34

• Typical example problems are complete for Σp
2 or higher levels of PH.

• Applications:

• Reduce ∃∀-SAT to your problem to get double-exponential lower

bound.

• Reduce your problem to ∃∀-SAT to get double-exponential upper

bound. [L., Mengel, Mitsou, SAT 2018]

Examples:

• k-Choosability (easier proof than [Marx, Mitsou, ICALP 2016])

• Stability in Hedonic games (ongoing work with Tesshu Hanaka and

Noleen Köhler)



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

15

-3



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

15

-3

−∞

−∞

5

-1

7

-3



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

15

-3

−∞

−∞

5

-1

7

-3



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

Question: Does a Nash-stable partition exist?

• “Correct” complexity is (∆tw)O(∆tw) [Hanaka, L. ESA 2022]



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

Question: Does a Nash-stable partition exist?

• “Correct” complexity is (∆tw)O(∆tw) [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

• Partition that resists any coalition of diverging agents.

• Σp
2-complete for constant ∆

• Σp
2-complete for constant vc



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

Question: Does a Nash-stable partition exist?

• “Correct” complexity is (∆tw)O(∆tw) [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

• Partition that resists any coalition of diverging agents.

• Σp
2-complete for constant ∆

• Σp
2-complete for constant vc



Hedonic games

Quantifier Alternations and Graph Widths 32 / 34

Question: Does a Nash-stable partition exist?

• “Correct” complexity is (∆tw)O(∆tw) [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

• Partition that resists any coalition of diverging agents.

• Σp
2-complete for constant ∆

• Σp
2-complete for constant vc

• Correct complexity is double-exponential in tw +∆
• Upper bound: reduce to ∃∀-SAT

• Lower bound: run existing Σ2-completeness proof from ∃∀-SAT

instance with bounded ∆ and tw = O(logn).



Conclusions



Conclusions

Quantifier Alternations and Graph Widths 34 / 34

• Quantifier alternations might give extra levels of exponentiation

• Even poly-time computable quantifier alternations can do this! (cf.

Esther’s talk)

• Σp
2-complete problems are more likely candidates for this

• Reductions from ∃∀-SAT may give easy double-exponential lower

bounds!



Conclusions

Quantifier Alternations and Graph Widths 34 / 34

• Quantifier alternations might give extra levels of exponentiation

• Even poly-time computable quantifier alternations can do this! (cf.

Esther’s talk)

• Σp
2-complete problems are more likely candidates for this

• Reductions from ∃∀-SAT may give easy double-exponential lower

bounds!

Open questions:

• Complexity of QBF parameterized by tree-depth/vertex integrity?

• QBF parameterized by vertex cover has 2vc
k

running time for k-CNF.

Optimal?



Conclusions

Quantifier Alternations and Graph Widths 34 / 34

• Quantifier alternations might give extra levels of exponentiation

• Even poly-time computable quantifier alternations can do this! (cf.

Esther’s talk)

• Σp
2-complete problems are more likely candidates for this

• Reductions from ∃∀-SAT may give easy double-exponential lower

bounds!

Open questions:

• Complexity of QBF parameterized by tree-depth/vertex integrity?

• QBF parameterized by vertex cover has 2vc
k

running time for k-CNF.

Optimal?

Thank you!


	What this talk is about
	Graph widths in this talk
	A Textbook Problem  [height=0.25]figures/Scully.eps 
	Quantified SAT
	Quantified SAT reduction
	Known results about Quantified SAT

	Meta-Theorems [height=0.25]figures/Mulder.eps
	Meta-Theorems and Courcelle's Theorem
	FO and MSO logic reminder
	A Closer Look
	Treewidth – Pathwidth
	Courcelle's Theorem and Automata
	Vertex Cover Meta-Theorem
	Vertex Cover and FO logic
	MSO and Vertex Cover

	Back to Quantified SAT  [height=0.25]figures/Scully.eps
	QBF parameterized by vertex cover

	More Meta-Theorems [height=0.25]figures/Mulder.eps
	Meta-Theorems to SAT algorithms?
	Vertex Integrity
	How many types of components?
	Counting Power – FO
	Counting Power – MSO
	Counting Power – MSO (cont'd)
	Putting things together
	Tree-depth Meta-theorem

	SAT again?  [height=0.25]figures/Scully.eps
	Meta-Theorems to QBF-SAT?

	Typical Hard Problems  [height=0.25]figures/Scully.eps
	Where is this useful?
	Hedonic games

	Conclusions  [height=0.3]ms
	Conclusions


