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What this talk is about

An interesting phenomenon:

e Adding quantifiers costs a level of exponentiation for treewidth.

Two points of view:

Concrete Problems Meta-Theorems
e SAT with quantifiers e Treewidth/Pathwidth (Courcelle)
e XL, PH, ... o \ertex Cover, Vertex Integrity,. ..
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Graph widths in this talk
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e Select small separator S so that all components have
small tree-depth
e (Base case: K has tree-depth 1) T
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Graph widths in this talk

cw
A
tw
e \Vertex Integrity ,I\
vi(G) = min {|S|—|— max |S’\} PwW
SCV(QG) S’'ecc(G-S)

e Select small separator S so that all components have td
small size

VC
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Graph widths in this talk

CW

A

tw

e Vertex Cover ,I\
ve(G) = min {15} pw

B SCV (G)NG—S stable

e Select small separator S so that all components are td
singletons. 'T‘

Vi
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Graph widths in this talk

Cw
| | A

e Inclusions are strict! .
tw
pw

td

e Small vertex integrity, large vertex cover Vi
VC
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A Textbook Problem




Quantified SAT

JV-SAT definition:
Input: IxVyo(x,y)

e ¢ in DNF (why not CNF?)

Example:

(x1 Ay1) V(z2 A=y1 Ay2) V (mxz2 Ayr A —y2) V (—y2)
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Quantified SAT

IV-SAT definition:
Input: IxVyo(x,y)
e ¢ in DNF (why not CNF?)

Example:
(x1 Ay1) V(z2 A=y1 Ay2) V (mxz2 Ayr A —y2) V (—y2)

Graph structure:

@)
@‘@@

Primal graph Incidence graph
(Note: for tw/pw incidence is more general than primal.)
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Quantified SAT

IV-SAT definition:
Input: IxVyo(x,y)
e ¢ in DNF (why not CNF?)

Example:
(x1 Ay1) V(z2 A=y1 Ay2) V (mxz2 Ayr A —y2) V (—y2)

Double-exponential 22" n°() algorithm
e Two assignments to J variables are equivalent if:

e They agree on variables of the bag (2'V classes)
e They “defeat” the same assignments of the universal player (22"
classes)
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

o If we could solve 3v-SAT in 22°™ this would given 2°( algorithm for
3-SAT.
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Intuition:

e CNFSAT has an implied quantifier alternation:
4 assignment V clause satisfied.
e logm new universal variables will encode the m clauses in binary.
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Example:

@D:(Zlfl\/xg\/—lilfg)/\(xl\/ilfgl)/\(

I1 CO I1
L2 Ch L2
I3 02 I3
T4 03 L4
Incidence graph of v Incidence graph of ¢
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Example:

Y = (x1VaraV-x3)A(x1Vag) A(xeVars) A(—xeVay)

Gives the following DNF terms
Oy C C, Cs
1 A=yt Ay2) | (@ Ay Ay2) | (T2 Ay Ay2) | (Cxe Ay Ay2)

(
(2 A—y1 A—y2) | (aA-y1 Ay2) | (@3 Ay A—y2) | (24 Ay Ayz)
(mz3 A —y1 A o)

Pauphine | PSL

UNIVERSITE PARIS 6 / 34

Quantifier Alternations and Graph Widths



Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Example:

Y = (x1VaraV-x3)A(x1Vag) A(xeVars) A(—xeVay)

Gives the following DNF terms
Co C1 Co Cs
(T1 A—yr A=) | (@ A—yr Ay2) | (@2 Ayt A—ya) | (5x2 Ay A ye)
(L2 A=yt A=y2) | (a Ay Aye) | (23 Ayt A—y2) | (Ta Ay Ay2)
(mx3 A —y1 A )

Key fact: No two existential variables appear together!
= the O(logn) variables y form a vertex cover of the primal graph.
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Construction:

e Start with a SAT formula 3x, where x = {x1,x2,...,z,},
Yv=CyNCi...\NCp_1and m is a power of 2.

e Construct 3xVy¢, wherey = {y1,v2, ..., yiogm | are fresh universal
variables.

e [or each clause C; we construct |C;| terms 7;; in ¢. Each T;; has:

o literal [; = (—)x; of C; and
e a binary combination B(i,y) of positive and negative appearances
of y, unique for <.
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Quantified SAT reduction

Strategy:

e Reduce 3-SAT on an n-variable formula ¢ to 3V-SAT on a formula ¢
with tw(¢) = O(logn).

Example:

@D:(Zlfl\/xg\/—lilfg)/\(xl\/ilfgl)/\(

I1 CO I1
L2 Ch L2
I3 02 I3
T4 03 L4
Incidence graph of v Incidence graph of ¢
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Known results about Quantified SAT

e SAT with k£ quantifiers complete for X7
e Each extra quantifier costs at most one level of exponentiation

e [Chen ECAI 2004 ]
e Each extra quantifier costs at least one level of exponentiation

e [Pan and Vardi LICS 2006 ] — odd number of quantifiers
e [L.and Mitsou IPEC 2017 ] —two quantifiers
e [ Fichte, Hecher, Pflander LICS 2020 ] — any number of quantifiers

Pauphine | PSL

UNIVERSITE PARIS 7 / 34

Quantifier Alternations and Graph Widths



Known results about Quantified SAT

e SAT with k£ quantifiers complete for X7
e Each extra quantifier costs at most one level of exponentiation

e [Chen ECAI 2004 ]
e Each extra quantifier costs at least one level of exponentiation

e [Pan and Vardi LICS 2006 ] — odd number of quantifiers
e [L.and Mitsou IPEC 2017 ] —two quantifiers
e [ Fichte, Hecher, Pflander LICS 2020 ] — any number of quantifiers

Extensions:

e Double-exponential lower bound extends to

e Bounded term size
e Bounded variable occurrences

o d,V-SAI, dV,-SAT Ask Me
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Meta-Theorems
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Meta-Theorems and Courcelle’s Theorem

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”
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Meta-Theorems and Courcelle’s Theorem

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by
treewidth.
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Meta-Theorems and Courcelle’s Theorem

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by
treewidth.

e Notice that since this applies to treewidth, it applies to pathwidth, and
tree-depth.
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FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)
e (Quantified) Variables 1, zo, ... represent vertices
e Standard boolean connectives (V, A, =, —)

Standard Example: 2-Dominating set

35613562\7563 (SE‘l — X3 V L9 — X3 V L1 ~ X3 V X9 r~ 5133)
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FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)

e (Quantified) Variables =1, xo, . .. represent vertices

e Standard boolean connectives (V, A, =, —)

MSO logic: FO logic plus the following

e c relation

e (Quantified) Set Variables X, X, ... represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

3X,3X,3X; (Va:l (t1 € X1V € Xo Vi € X3) A
Vo (561 ~ X9 — (—1(5131 e X1 N\ xo EXl))/\
(—(x1 € Xo Ax2 € X2)) A
(

—I(le‘l € X3 Axo € Xg))) )
Pauphine | PSL
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FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)
e (Quantified) Variables 1, zo, ... represent vertices
e Standard boolean connectives (V, A, =, —)

MSO logic: FO logic plus the following
e c relation
e (Quantified) Set Variables X, X, ... represent sets of vertices

Standard Examples: 3-Coloring, Connectivity
Brute-force Complexity:

o FO:n
e MSQO: 2™4

Question:For which classes, which f, can we solve FO in time f(q)n®M?
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A Closer Look

e Courcelle: If G has treewidth tw, we can check if it satisfies an MSO
property ¢ in time
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A Closer Look

e Courcelle: If G has treewidth tw, we can check if it satisfies an MSO
property ¢ in time

2tw

e Problem: f is approximately 22° , where the height of the tower is
upper-bounded by the number of quantifier alternations in ¢.

Pauphine | PSL

UNIVERSITE PARIS 11 /34

Quantifier Alternations and Graph Widths



A Closer Look

e Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property ¢ in time

2tw

e Problem: f is approximately 22° , where the height of the tower is
upper-bounded by the number of quantifier alternations in ¢.

e Serious Problem: This tower of exponentials cannot be avoided’
even for FO logic on trees!

“The complexity of first-order and monadic second-order logic
revisited”, [Frick and Grohe, APAL 2004].

Assuming P#NP or FPTAW[1]. E)quphine | PSL (e
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Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.
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Treewidth — Pathwidth

Gentle definition of pathwidth &:
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connected.
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to vertices currently on top of a stack.

Pauphine | PSL

UNIVERSITE PARIS 1 2 / 34

Quantifier Alternations and Graph Widths



Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.

— — — — — — — — e— e— e— e— e— e— oe— e— e— e— e— — —
— — — — — — — — — — — — — — — — — — — — — —

—  — e—— — e— e e— e— e— e— e— e— e— e— e— e— e—— e—— e— e— m— om— m— m— —
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Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.

— — b — e— e— e— e— e— e— e— e— e—— e— — e— om— m— m—

— — — —— — — — — — — — — — — — — — — — —

e | — — o e e — e e e ,— e e e e e e e e e e e m— —
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Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.

_—  —  —_— e e e—_—  e—_—  —_—  e— e e e e e— e— — —

— — —— — — p— — — — — — — — — — — — — —

e e e e e — _— e e e— e e e e e e e e e e— e— e— e— —
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Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.

—_— —  —_— e e e e e—  e—  e—  e— e—m e— e— — —
[— _— — — [— [— —_— —_— — J— [— —_— —_—

_— — e e e e —_—  —_—  —_—  — — — — — —
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Treewidth — Pathwidth

Gentle definition of pathwidth &:

e We have k stacks. Initially each contains a vertex. They are arbitrarily
connected.

e At each step we add a vertex to the top of a stack. It can be connected
to vertices currently on top of a stack.
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Treewidth — Pathwidth

Note that this is equivalent to the standard definition of path
decomposmons
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Treewidth — Pathwidth

Note that this is equivalent to the standard definition of path
decomposmons
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.
Vertex | 5 6 7 8 9

Character | (1,1010) (2,1010) (2,1100) (3,0101) (1, 1010)
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.
Vertex | 5 6 7 8 9

Character \ (1,1010) (2,1010) (2,1100) (3,0101) (1,1010)
MSO logic on Strings:

e Jx means there exists a character z. ..
e Vocabulary: z < y (z Is to the left of y), unary predicates for ..
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.
Vertex | 5 6 7 8 9

Character | (1,1010) (2,1010) (2,1100) (3,0101) (1, 1010)

ldea: Adjacency in G can be expressed in MSO logic in the string!

z ~ g iff

o I =uy.
e Azs.t x<z=<yandzisonsame stack as =.
e Check (p bits of) symbol of y and stack number of .
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.
Vertex | 5 6 7 8 9

Character | (1, 1010) (2, 1010) (2, 1100) (3,0101) (1, 1010)
ldea: Translate MSO question on graph to MSO question on string.

Theorem: MSO logic on Strings = regular languages [Blchi 1960].

Consequence: Linear-time algorithm for MSO logic on bounded
pathwidth graphs.
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Courcelle’s Theorem and Automata

Courcelle S Theorem for PathW|dth

Can be expressed as a string over an alphabet of size p - 2P.

Vertex 5 6 7 8 9
Character | (1, 1010) (2, 1010) (2, 1100) (3,0101) (1, 1010)
Intuition:

e Quantifier Alternations force us to make the automaton deterministic.
e Consequence: each alternation gives a level of exponentiation.
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Vertex Cover Meta-Theorem

e Given a graph with vertex cover
Ve =D

e we want to check an FO property
¢ with ¢ = 3 variables.

Independent Set
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Vertex Cover Meta-Theorem

\

KX
N '//,‘»‘ o Sentence has form 3z (x1)
/5;’“ e We must “place” x1 somewhere in
(K ~@
<>‘ the graph q
Q<\‘ e If we try all cases we get n? run-
A <>\ X\ ning time.

Vertex Cover

1

O
Independent Set
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Vertex Cover Meta-Theorem

Sentence has form Jx¢(xq)

e We must “place” x1 somewhere in
the graph

e If we try all cases we get n? run-

ning time.

Independent Set
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Vertex Cover Meta-Theorem

Sentence has form Jx¢(xq)

e We must “place” x1 somewhere in
the graph

e If we try all cases we get n? run-

ning time.

Independent Set
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Vertex Cover Meta-Theorem

Same e We observe that some vertices
of the independent set have the
same neighbors.

e These vertices should be equiva-
lent.

Independent Set

Quantifier Alternations and Graph Widths Da U ph ine | PS L
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Vertex Cover Meta-Theorem

e \We observe that some vertices
of the independent set have the

Same |
Size < ¢ same neighbors.
e These vertices should be equiva-
lent.

e Key idea: if a group has > ¢ ver-
tices, we can simply remove one!

Vertex Cover

Independent Set

Pauphine | PSL
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Vertex Cover and FO logic

Summary of previous argument:

e Partition graph into 2¥¢ 4 vc sets of equivalent vertices.
e If a set has > ¢ vertices, delete one, repeat.

e lfnot, |[V(G)| < ¢q200.
e Trivial algorithm now runs in 20(ved) 44,

Key idea:
FO logic with ¢ quantifiers can distinguish sets of size at most g.
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Vertex Cover and FO logic

Summary of previous argument:

Partition graph into 2V¢ + vc sets of equivalent vertices.
If a set has > ¢ vertices, delete one, repeat.

If not, |V(G)| < ¢2°00).

Trivial algorithm now runs in 20(ved) g4

Key idea:
FO logic with ¢ quantifiers can distinguish sets of size at most g.

What about MSQO?
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MSO and Vertex Cover

Key idea:
MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Proof by induction:

e Want to prove, if set has size > 29, can delete one vertex.
e Suppose OK for up to ¢ — 1 quantifiers.
e Want to check if 3.Xv¢(X;), where ¢ has ¢ — 1 quantifiers.

X1
/ \

ONONONONONONONONONONONO

Pauphine | PSL

Quantifier Alternations and Graph Widths UNIVERSITE PARIS 16/ 34



MSO and Vertex Cover

Key idea:

MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Proof by induction:

e Want to prove, if set has size > 29, can delete one vertex.
e Suppose OK for up to ¢ — 1 quantifiers.
e Want to check if 3.Xv¢(X;), where ¢ has ¢ — 1 quantifiers.

X1
/ \

000000000000

e For any choice of X; a set of 2¢~! identical vertices remains.
e Apply inductive hypothesis.
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MSO and Vertex Cover

Key idea:
MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Graph has 2V¢ sets of equivalent vertices.
While one has size > 29, delete a vertex.
Otherwise, |V (G)| < 2veta.

Brute force:

an < 22vc—|—qq _ 22O(Vc—|—q)
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Back to Quantified SAT




QBF parameterized by vertex cover

QBF: 3z1Vaodzs ... Qupd(x, ..., x,)
Thm: QBF can be solved in time 23" »°W [L. and Mitsou IPEC 2017]
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QBF parameterized by vertex cover

QBF: 3z1Vaodzs ... Qupd(x, ..., x,)
Thm: QBF can be solved in time 23" »°W [L. and Mitsou IPEC 2017]

(Referring to primal vertex cover. Incidence vc is easy...)
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QBF parameterized by vertex cover

QBF: 3z1Vaodzs ... Qupd(x, ..., x,)
Thm: QBF can be solved in time 23" »°W [L. and Mitsou IPEC 2017]
Algorithm:

e If z1 only appears positive (or negative) easy to set.
e |f aclause C is contained in a clause C5, remove (.
e Otherwise, branch on both values of ;.
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QBF parameterized by vertex cover

QBF: 3z1Vaodzs ... Qupd(x, ..., x,)
Thm: QBF can be solved in time 23" »°W [L. and Mitsou IPEC 2017]
Algorithm:

e If z1 only appears positive (or negative) easy to set.
e |f aclause C is contained in a clause C5, remove (.
e Otherwise, branch on both values of ;.

Proof of running time:

e If 21 part of vertex cover, great!

e If not, we have a clause (z; v C'1) and a clause (—z; vV C5)

e — new instances have a new clause C; or Cy contained in the vertex
cover.

e (Cannot construct more than 3¢ such clauses!
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QBF parameterized by vertex cover

QBF: 3z1Vaodzs ... Qupd(x, ..., x,)
Thm: QBF can be solved in time 23" »°W [L. and Mitsou IPEC 2017]
Algorithm:

e If z1 only appears positive (or negative) easy to set.
e |f aclause C is contained in a clause C5, remove (.
e Otherwise, branch on both values of ;.

Success!

il

T
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More Meta-Theorems

C
v

. &
yd



Meta-Theorems to SAT algorithms?

Meta-theorem for vertex cover — QBF/vc worked well!

Other elementary meta-theorems to try

e \Vertex Integrity [L. and Mitsou, ISAAC 2021]
e Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
e Pathwidth
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Meta-Theorems to SAT algorithms?

Meta-theorem for vertex cover — QBF/vc worked well!

Other elementary meta-theorems to try

e \Vertex Integrity [L. and Mitsou, ISAAC 2021]
e Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
e Pathwidth (this ICALP!! please come to my talk!!)
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Vertex Integrity

What is different now?

,'.
)’ & e Main idea: some components of
O G — S are the same.

\
:\}

e The same internally.
e The same with respect to S.

0 ¢
X
\
\

() O

AW/AWA NV
A
)
O

e More precisely:

',,.
N

e Two components C;,Cs of G—
S are “the same” if there ex-
Ists an automorphism of G that
maps C to Cs.

¥

Separator S
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Vertex Integrity

What is different now?

\

e Main idea: some components of
G — S are the same.

e The same internally.
e The same with respect to S.

-
A

-@
/2D e More precisely:
D> ‘!. e Two components C;,Cy of G—
ib\\ S are “the same” if there ex-
UK Ists an automorphism of G that

/

maps C to Cs.
Separator S
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Vertex Integrity

What is different now?

'®
o e Main idea: some components of
/ @ G — S are the same.
O<= @ e The same internally.
i ) — LT e The same with respect to S.
O 7z / @ Y |
/ < e More precisely:
.<' P y
' e Two components C;,C5 of G—
s \ S are “the same” if there ex-
.4> <\

O
O
\\0 ists an automorphism of G that
® maps C to Cs.
O
@
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How many types of components?

Separator S

Quantifier Alternations and Graph Widths

Equivalent components of G — S
are

e The same internally.
e The same with respect to S.

How many choices?
Recall, components of G — S have
size < vi

e At most 2¥" different internal
structures.

e At most 2V different connec-
tions to S.

All in all, 200 possible types.
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Counting Power — FO

How many identical components can we distinguish with ¢ FO quantifiers?
L1

a— T
BRGNS & NS

Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.
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How many identical components can we distinguish with ¢ FO quantifiers?
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Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.
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Counting Power — FO

How many identical components can we distinguish with ¢ FO quantifiers?
L1

a— T
APV PV 0 VG v

Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.
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Counting Power — MSO

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
AN AP VIS A AV AV i

Claim: if we have > ?? components, we can delete one.

Problem:

e When we select a set X; this may distinguish many components.
e Intuitively: if X; interacts with two previously identical components in
different ways, these components are not identical any more!

e Whatto do?
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Counting Power — MSO

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
NN N R N

Claim: if we have > ?? components, we can delete one.

Problem:

e When we select a set X; this may distinguish many components.
e Intuitively: if X; interacts with two previously identical components in
different ways, these components are not identical any more!

e Whatto do?
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Counting Power — MSO (cont’d)

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
NN N R N

Claim: if we have > 24 components, we can delete one.

Solution:

e QOur components have size < vi.

e There are at most 2" intersections of X; with each component.

e If we have > 2V"¢ identical components initially. . .

e ...by PHP one intersection type appears > 2V7/2v1 = 2Vila—1) times.
e These components are identical, use inductive hypothesis!
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Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
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Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
e For FO logic

e Reduced graph has size ¢2"".
o Trivial algorithm runs in 241" ¢4.
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Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
e For FO logic
e Reduced graph has size ¢2"".
o Trivial algorithm runs in 241" ¢4.
e For MSO logic
e Reduced graph has size 2vi"tvia,
e Trivial algorithm runs in 22" .

e Are these meta-theorems optimal?
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Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
e For FO logic
e Reduced graph has size ¢2"".
o Trivial algorithm runs in 241" ¢4.
e For MSO logic
e Reduced graph has size 2vi"tvia,
e Trivial algorithm runs in 22" .

e Are these meta-theorems optimal?

Yes!! (under ETH) — details skipped
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Tree-depth Meta-theorem

Any fool can come up with an exponential-time algorithm. ..
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Tree-depth Meta-theorem

Any fool can come up with an exponential-time algorithm. ...
but to come up with a tower of exponentials, you have to really know
what you're doing!
(Daniel Marx)
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Tree-depth Meta-theorem

We have a rooted tree with d layers (d fixed)
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Tree-depth Meta-theorem

> Y

Apply the previous argument to the bottom layer (leaves)
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Tree-depth Meta-theorem

deg< ¢ 1

Apply the previous argument to the bottom layer (leaves)
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Tree-depth Meta-theorem

Key intuition: same argument can be applied to level 2, deleting identical
sub-trees.
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Tree-depth Meta-theorem

types< ¢* 2
types< ¢ deg< ¢ 1
<q 0

Key intuition: same argument can be applied to level 2, deleting identical
sub-trees.
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Tree-depth Meta-theorem

types< qqq

types< ¢ 2

types< q deg<¢q 1
<q 0

There are ¢? different “types” of vertices at level 2. Applying the same
argument to level 3, there are ¢?" types of vertices of level 3. ...

In the end graph has bounded size!?

’bounded by a tower of exponentials of height d.
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SAT again?




Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems
FO logic & pathwidth

MSO logic & tree-depth

MSO logic & vertex integrity

Paup
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Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]
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Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth 77?7
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Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems
FO logic & pathwidth

No! [Atserias and Oliva JCSS 2014]

MSO logic & tree-depth 77?7
MSO logic & vertex integrity 7?7
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Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?

Elementary dependence meta-theorems

FO logic & pathwidth No! [Atserias and Oliva JCSS 2014]
MSO logic & tree-depth 77?7
MSO logic & vertex integrity 7?7

e Complexity of QBF for these parameters is OPEN!
e Intuitive difficulty: graph does not capture order of quantification of
variables.
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Typical Hard Problems




Where is this useful?

e Typical example problems are complete for X% or higher levels of PH.
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Where is this useful?

e Typical example problems are complete for X% or higher levels of PH.

e Thisis not arule! (cf. Esther’s talk)
e Thisis not even true for 3V-SAT instances we saw!
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Where is this useful?

e Typical example problems are complete for X% or higher levels of PH.
e Applications:

e Reduce 3V-SAT to your problem to get double-exponential lower
bound.

e Reduce your problem to 3V-SAT to get double-exponential upper
bound. [L., Mengel, Mitsou, SAT 2018]

Examples:

e k-Choosability (easier proof than [Marx, Mitsou, ICALP 2016])
e Stability in Hedonic games (ongoing work with Tesshu Hanaka and
Noleen Kohler)
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Hedonic games

Pauphine | PSL

Quantifier Alternations and Graph Widths UNIVERSITE PARIS 32/34



Hedonic games
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Hedonic games
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Hedonic games
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Question: Does a Nash-stable partition exist?
o “Correct” complexity is (Atw)?(A*™) [Hanaka, L. ESA 2022]
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Question: Does a Nash-stable partition exist?
o “Correct” complexity is (Atw)?(A*™) [Hanaka, L. ESA 2022]
Question: Does a Core-stable partition exist?

e Partition that resists any coalition of diverging agents.
o X!-complete for constant A
e Y!-complete for constant vec
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Question: Does a Nash-stable partition exist?
o “Correct” complexity is (Atw)?(A*™) [Hanaka, L. ESA 2022]
Question: Does a Core-stable partition exist?

e Partition that resists any coalition of diverging agents.
o X!-complete for constant A
e Y!-complete for constant vec
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Question: Does a Nash-stable partition exist?
o “Correct” complexity is (Atw)?(A*™) [Hanaka, L. ESA 2022]
Question: Does a Core-stable partition exist?

e Partition that resists any coalition of diverging agents.
o X!-complete for constant A
e Y!-complete for constant vec

e (Correct complexity is double-exponential in tw + A

e Upper bound: reduce to 3v-SAT

e Lower bound: run existing ¥,-completeness proof from 3IV-SAT
instance with bounded A and tw = O(logn).
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Conclusions




Conclusions

e Quantifier alternations might give extra levels of exponentiation

e Even poly-time computable quantifier alternations can do this! (cf.
Esther’s talk)

e Y!-complete problems are more likely candidates for this

e Reductions from 3V-SAT may give easy double-exponential lower
bounds!
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Conclusions

e Quantifier alternations might give extra levels of exponentiation

e Even poly-time computable quantifier alternations can do this! (cf.
Esther’s talk)

e Y!-complete problems are more likely candidates for this

e Reductions from 3V-SAT may give easy double-exponential lower
bounds!

Open questions:

e Complexity of QBF parameterized by tree-depth/vertex integrity?
e QBF parameterized by vertex cover has 2¥¢" running time for k-CNF.
Optimal?
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Conclusions

e Quantifier alternations might give extra levels of exponentiation

e Even poly-time computable quantifier alternations can do this! (cf.
Esther’s talk)

e Y!-complete problems are more likely candidates for this

e Reductions from 3V-SAT may give easy double-exponential lower
bounds!

Open questions:

e Complexity of QBF parameterized by tree-depth/vertex integrity?
e QBF parameterized by vertex cover has 2¥¢" running time for k-CNF.
Optimal?

Thank you!
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