Quantifier Alternations and Graph Widths

Michael Lampis
LAMSADE

Dauphine I PSL*

July 10th 2023 - GWP

What this talk is about

An interesting phenomenon:

- Adding quantifiers costs a level of exponentiation for treewidth.

Two points of view:

Concrete Problems

- SAT with quantifiers
- $\Sigma_{2}^{p}, \mathrm{PH}, \ldots$

Meta-Theorems

- Treewidth/Pathwidth (Courcelle)
- Vertex Cover, Vertex Integrity,...

Graph widths in this talk

- Tree-depth

$$
\operatorname{td}(G)=\min _{S \subseteq V(G)}\left\{|S|+\max _{S^{\prime} \in \operatorname{cc}(G-S)} \operatorname{td}\left(S^{\prime}\right)\right\}
$$

- Select small separator S so that all components have small tree-depth
- (Base case: K_{1} has tree-depth 1)

Graph widths in this talk

- Vertex Integrity

$$
\operatorname{vi}(G)=\min _{S \subseteq V(G)}\left\{|S|+\max _{S^{\prime} \in \operatorname{cc}(G-S)}\left|S^{\prime}\right|\right\}
$$

- Select small separator S so that all components have small size

Graph widths in this talk

- Vertex Cover

$$
\operatorname{vc}(G)=\min _{S \subseteq V(G) \wedge G-S \text { stable }}\{|S|\}
$$

- Select small separator S so that all components are singletons.

3 / 34

Graph widths in this talk

- Inclusions are strict!

- Small vertex integrity, large vertex cover

Graph widths in this talk

- Inclusions are strict!

- Large vertex integrity, small tree-depth

A Textbook Problem

Quantified SAT

$\exists \forall$-SAT definition:
Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

- ϕ in DNF (why not CNF?)

Example:

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge \neg y_{1} \wedge y_{2}\right) \vee\left(\neg x_{2} \wedge y_{1} \wedge \neg y_{2}\right) \vee\left(\neg y_{2}\right)
$$

Quantified SAT

$\exists \forall$-SAT definition:
Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

- ϕ in DNF (why not CNF?)

Example:

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge \neg y_{1} \wedge y_{2}\right) \vee\left(\neg x_{2} \wedge y_{1} \wedge \neg y_{2}\right) \vee\left(\neg y_{2}\right)
$$

Graph structure:

Primal graph

> Incidence graph
(Note: for tw/pw incidence is more general than primal.)

Quantified SAT

$\exists \forall$-SAT definition:
Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

- ϕ in DNF (why not CNF?)

Example:

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge \neg y_{1} \wedge y_{2}\right) \vee\left(\neg x_{2} \wedge y_{1} \wedge \neg y_{2}\right) \vee\left(\neg y_{2}\right)
$$

Double-exponential $2^{2{ }^{\text {tw }}} n^{O(1)}$ algorithm

- Two assignments to \exists variables are equivalent if:
- They agree on variables of the bag (2^{tw} classes)
- They "defeat" the same assignments of the universal player ($2^{2^{\mathrm{tw}}}$ classes)

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

6 / 34

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.
- If we could solve $\exists \forall$-SAT in $2^{2^{o(t w)}}$ this would given $2^{o(n)}$ algorithm for 3-SAT.

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Intuition:

- CNFSAT has an implied quantifier alternation:
\exists assignment \forall clause satisfied.
- $\log m$ new universal variables will encode the m clauses in binary.

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Example:

$$
\psi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)
$$

Incidence graph of ψ
Incidence graph of ϕ

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Example:

$$
\psi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)
$$

Gives the following DNF terms

C_{0}	C_{1}	C_{2}	C_{3}
$\left(x_{1} \wedge \neg y_{1} \wedge \neg y_{2}\right)$	$\left(x_{1} \wedge \neg y_{1} \wedge y_{2}\right)$	$\left(x_{2} \wedge y_{1} \wedge \neg y_{2}\right)$	$\left(\neg x_{2} \wedge y_{1} \wedge y_{2}\right)$
$\left(x_{2} \wedge \neg y_{1} \wedge \neg y_{2}\right)$	$\left(x_{4} \wedge \neg y_{1} \wedge y_{2}\right)$	$\left(x_{3} \wedge y_{1} \wedge \neg y_{2}\right)$	$\left(x_{4} \wedge y_{1} \wedge y_{2}\right)$
$\left(\neg x_{3} \wedge \neg y_{1} \wedge \neg y_{2}\right)$			

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Example:

$$
\psi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)
$$

Gives the following DNF terms

C_{0}	C_{1}	C_{2}	C_{3}
$\left(x_{1} \wedge \neg y_{1} \wedge \neg y_{2}\right)$	$\left(x_{1} \wedge \neg y_{1} \wedge y_{2}\right)$	$\left(x_{2} \wedge y_{1} \wedge \neg y_{2}\right)$	$\left(\neg x_{2} \wedge y_{1} \wedge y_{2}\right)$
$\left(x_{2} \wedge \neg y_{1} \wedge \neg y_{2}\right)$	$\left(x_{4} \wedge \neg y_{1} \wedge y_{2}\right)$	$\left(x_{3} \wedge y_{1} \wedge \neg y_{2}\right)$	$\left(x_{4} \wedge y_{1} \wedge y_{2}\right)$
$\left(\neg x_{3} \wedge \neg y_{1} \wedge \neg y_{2}\right)$			

Key fact: No two existential variables appear together!
\Rightarrow the $O(\log n)$ variables y form a vertex cover of the primal graph.

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Construction:

- Start with a SAT formula $\exists \mathbf{x} \psi$, where $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, $\psi=C_{0} \wedge C_{1} \ldots \wedge C_{m-1}$ and m is a power of 2 .
- Construct $\exists \mathbf{x} \forall \mathbf{y} \phi$, where $\mathbf{y}=\left\{y_{1}, y_{2}, \ldots, y_{\log m}\right\}$ are fresh universal variables.
- For each clause C_{i} we construct $\left|C_{i}\right|$ terms $T_{i j}$ in ϕ. Each $T_{i j}$ has:
- literal $l_{j}=(\neg) x_{j}$ of C_{i} and
- a binary combination $\mathcal{B}(i, y)$ of positive and negative appearances of \mathbf{y}, unique for i.

Quantified SAT reduction

Strategy:

- Reduce 3-SAT on an n-variable formula ψ to $\exists \forall$-SAT on a formula ϕ with $\operatorname{tw}(\phi)=O(\log n)$.

Example:

$$
\psi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)
$$

Incidence graph of ψ
Incidence graph of ϕ

Known results about Quantified SAT

- SAT with k quantifiers complete for Σ_{k}^{p}
- Each extra quantifier costs at most one level of exponentiation
- [Chen ECAI 2004]
- Each extra quantifier costs at least one level of exponentiation
- [Pan and Vardi LICS 2006] - odd number of quantifiers
- [L. and Mitsou IPEC 2017] - two quantifiers
- [Fichte, Hecher, Pflander LICS 2020] - any number of quantifiers

Known results about Quantified SAT

- SAT with k quantifiers complete for Σ_{k}^{p}
- Each extra quantifier costs at most one level of exponentiation
- [Chen ECAI 2004]
- Each extra quantifier costs at least one level of exponentiation
- [Pan and Vardi LICS 2006] - odd number of quantifiers
- [L. and Mitsou IPEC 2017] - two quantifiers
- [Fichte, Hecher, Pflander LICS 2020] - any number of quantifiers

Extensions:

- Double-exponential lower bound extends to
- Bounded term size
- Bounded variable occurrences
- $\exists_{k} \forall$-SAT, $\exists \forall_{k}$-SAT

Ask Me

Meta-Theorems

Meta-Theorems and Courcelle's Theorem

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Meta-Theorems and Courcelle's Theorem

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:
All problems expressible in MSO logic are FPT parameterized by treewidth.

Meta-Theorems and Courcelle's Theorem

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:
All problems expressible in MSO logic are FPT parameterized by treewidth.

- Notice that since this applies to treewidth, it applies to pathwidth, and tree-depth.

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$
\exists x_{1} \exists x_{2} \forall x_{3}\left(x_{1}=x_{3} \vee x_{2}=x_{3} \vee x_{1} \sim x_{3} \vee x_{2} \sim x_{3}\right)
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$
\begin{aligned}
\exists X_{1} \exists X_{2} \exists X_{3} \quad & \left(\forall x_{1}\right. \\
\forall x_{2} \quad & \left(x _ { 1 } \sim X _ { 1 } \vee x _ { 1 } \in x _ { 2 } \vee \left(\neg\left(x_{1} \in x_{1} \wedge X_{3}\right) \wedge\right.\right. \\
& \left(\neg\left(x_{1} \in x_{2} \wedge X_{2}\right)\right) \wedge \\
& \left.\left.\left(\neg\left(x_{1} \in X_{3} \wedge x_{2} \in X_{3}\right)\right)\right)\right)
\end{aligned}
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity
Brute-force Complexity:

- FO: n^{q}
- MSO: $2^{n q}$

Question:For which classes, which f, can we solve FO in time $f(q) n^{O(1)}$?

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

- Problem: f is approximately $2^{2^{2^{*}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

- Problem: f is approximately $2^{2^{2^{*}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.
- Serious Problem: This tower of exponentials cannot be avoided ${ }^{1}$ even for FO logic on trees!
- "The complexity of first-order and monadic second-order logic revisited", [Frick and Grohe, APAL 2004].

[^0]
Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Treewidth - Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Vertex	5	6	7	8	9
Character	$(1,1010)$	$(2,1010)$	$(2,1100)$	$(3,0101)$	$(1,1010)$

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Vertex	5	6	7	8	9
Character	$(1,1010)$	$(2,1010)$	$(2,1100)$	$(3,0101)$	$(1,1010)$

MSO logic on Strings:

- $\exists x$ means there exists a character $x \ldots$
- Vocabulary: $x \preceq y$ (x is to the left of y), unary predicates for Σ.

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Vertex	5	6	7	8	9
Character	$(1,1010)$	$(2,1010)$	$(2,1100)$	$(3,0101)$	$(1,1010)$

$x \sim y$ iff

- $x \preceq y$.
- $\nexists z$ s.t. $x \preceq z \preceq y$ and z is on same stack as x.
- Check (p bits of) symbol of y and stack number of x.

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Vertex	5	6	7	8	9
Character	$(1,1010)$	$(2,1010)$	$(2,1100)$	$(3,0101)$	$(1,1010)$

Theorem: MSO logic on Strings \equiv regular languages [Büchi 1960].
Consequence: Linear-time algorithm for MSO logic on bounded pathwidth graphs.

Courcelle's Theorem and Automata

Courcelle's Theorem for Pathwidth:

Can be expressed as a string over an alphabet of size $p \cdot 2^{p}$.

Vertex	5	6	7	8	9
Character	$(1,1010)$	$(2,1010)$	$(2,1100)$	$(3,0101)$	$(1,1010)$

- Quantifier Alternations force us to make the automaton deterministic.
- Consequence: each alternation gives a level of exponentiation.

Vertex Cover Meta-Theorem

Independent Set

Vertex Cover Meta-Theorem

Independent Set

Vertex Cover Meta-Theorem

Independent Set

Vertex Cover Meta-Theorem

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

Vertex Cover Meta-Theorem

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has $>q$ vertices, we can simply remove one!

Vertex Cover and FO logic

Summary of previous argument:

- Partition graph into $2^{\mathrm{vc}}+\mathrm{vc}$ sets of equivalent vertices.
- If a set has $>q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q 2^{O(v c)}$.
- Trivial algorithm now runs in $2^{O(\mathrm{vc} \cdot q)} q^{q}$.

Key idea:
FO logic with q quantifiers can distinguish sets of size at most q.

Vertex Cover and FO logic

Summary of previous argument:

- Partition graph into $2^{\mathrm{vc}}+\mathrm{vc}$ sets of equivalent vertices.
- If a set has $>q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\mathrm{vc} \cdot q)} q^{q}$.

Key idea:
FO logic with q quantifiers can distinguish sets of size at most q.
What about MSO?

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.
Proof by induction:

- Want to prove, if set has size $>2^{q}$, can delete one vertex.
- Suppose OK for up to $q-1$ quantifiers.
- Want to check if $\exists X_{1} \psi\left(X_{1}\right)$, where ψ has $q-1$ quantifiers.

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.
Proof by induction:

- Want to prove, if set has size $>2^{q}$, can delete one vertex.
- Suppose OK for up to $q-1$ quantifiers.
- Want to check if $\exists X_{1} \psi\left(X_{1}\right)$, where ψ has $q-1$ quantifiers.

- For any choice of X_{1} a set of 2^{q-1} identical vertices remains.
- Apply inductive hypothesis.

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.

- Graph has $2^{\text {vc }}$ sets of equivalent vertices.
- While one has size $>2^{q}$, delete a vertex.
- Otherwise, $|V(G)| \leq 2^{\mathrm{vc}+q}$.
- Brute force:

$$
2^{n q} \leq 2^{2^{\mathrm{vc}+q} q}=2^{2^{O(\mathrm{vc}+q)}}
$$

Back to Quantified SAT

QBF parameterized by vertex cover

QBF: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$

QBF parameterized by vertex cover

QBF: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$
Thm: QBF can be solved in time $2^{3^{\mathrm{cc}} n^{O(1)}}$ [L. and Mitsou IPEC 2017]
(Referring to primal vertex cover. Incidence vc is easy...)

QBF parameterized by vertex cover

QBF: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$
Thm: QBF can be solved in time $2^{3^{\mathrm{cc}}} n^{O(1)}$ [L. and Mitsou IPEC 2017]
Algorithm:

- If x_{1} only appears positive (or negative) easy to set.
- If a clause C_{1} is contained in a clause C_{2}, remove C_{2}.
- Otherwise, branch on both values of x_{1}.

QBF parameterized by vertex cover

QBF: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$
Thm: QBF can be solved in time $2^{3^{\mathrm{vc}}} n^{O(1)}$ [L. and Mitsou IPEC 2017]
Algorithm:

- If x_{1} only appears positive (or negative) easy to set.
- If a clause C_{1} is contained in a clause C_{2}, remove C_{2}.
- Otherwise, branch on both values of x_{1}.

Proof of running time:

- If x_{1} part of vertex cover, great!
- If not, we have a clause ($x_{1} \vee C_{1}$) and a clause $\left(\neg x_{1} \vee C_{2}\right)$
- \rightarrow new instances have a new clause C_{1} or C_{2} contained in the vertex cover.
- Cannot construct more than $3^{\text {vc }}$ such clauses!

QBF parameterized by vertex cover

QBF: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$

Algorithm:

- If x_{1} only appears positive (or negative) easy to set.
- If a clause C_{1} is contained in a clause C_{2}, remove C_{2}.
- Otherwise, branch on both values of x_{1}.

Success!

More Meta-Theorems

Meta-Theorems to SAT algorithms?

Meta-theorem for vertex cover \rightarrow QBF/vc worked well!
Other elementary meta-theorems to try

- Vertex Integrity [L. and Mitsou, ISAAC 2021]
- Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
- Pathwidth

Meta-Theorems to SAT algorithms?

Meta-theorem for vertex cover \rightarrow QBF/vc worked well!
Other elementary meta-theorems to try

- Vertex Integrity [L. and Mitsou, ISAAC 2021]
- Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
- Pathwidth (this ICALP!! please come to my talk!!)

Vertex Integrity

What is different now?

Vertex Integrity

What is different now?

- Main idea: some components of $G-S$ are the same.
- The same internally.
- The same with respect to S.
- More precisely:
- Two components C_{1}, C_{2} of G S are "the same" if there exists an automorphism of G that maps C_{1} to C_{2}.

Vertex Integrity

What is different now?

- Main idea: some components of $G-S$ are the same.
- The same internally.
- The same with respect to S.
- More precisely:
- Two components C_{1}, C_{2} of G S are "the same" if there exists an automorphism of G that maps C_{1} to C_{2}.

How many types of components?

- Equivalent components of $G-S$ are
- The same internally.
- The same with respect to S.
- How many choices?
- Recall, components of $G-S$ have size \leq vi
- At most $2^{\text {vi }}{ }^{2}$ different internal structures.
- At most $2^{\text {vi }}{ }^{2}$ different connections to S.
- All in all, $2^{O\left(\mathrm{vi}^{2}\right)}$ possible types.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.
Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.
Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.
Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.
Problem:

- When we select a set X_{1} this may distinguish many components.
- Intuitively: if X_{1} interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power - MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.
Problem:

- When we select a set X_{1} this may distinguish many components.
- Intuitively: if X_{1} interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power - MSO (cont’d)

How many components can we distinguish with q MSO quantifiers?

Claim: if we have $>2^{\text {vi. } q}$ components, we can delete one.
Solution:

- Our components have size \leq vi.
- There are at most 2^{vi} intersections of X_{1} with each component.
- If we have $>2^{\text {vi. } q}$ identical components initially...
- \ldots by PHP one intersection type appears $>2^{\mathrm{vi} \cdot q} / 2^{\mathrm{vi}}=2^{\mathrm{vi}(q-1)}$ times.
- These components are identical, use inductive hypothesis!

Putting things together

- There are at most $2^{\mathrm{vi}{ }^{2}}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\text {vi } \cdot q}$ for MSO logic.

Putting things together

- There are at most $2^{\text {vi }}{ }^{2}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\text {vi } \cdot q}$ for MSO logic.
- For FO logic
- Reduced graph has size $q 2^{\mathrm{vi}^{2}}$.
- Trivial algorithm runs in $2^{q \cdot \mathrm{vi}^{2}} q^{q}$.

Putting things together

- There are at most $2^{\mathrm{vi}}{ }^{2}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\mathrm{vi} \cdot q}$ for MSO logic.
- For FO logic
- Reduced graph has size $q 2^{\mathrm{vi}^{2}}$.
- Trivial algorithm runs in $2^{q \cdot v \mathrm{vi}^{2}} q^{q}$.
- For MSO logic
- Reduced graph has size $2^{\text {vi }{ }^{2}+\mathrm{vi} \cdot q}$.
- Trivial algorithm runs in $2^{2 v^{2}+\mathrm{vi} \cdot q}$.
- Are these meta-theorems optimal?

Putting things together

- There are at most $2^{\mathrm{vi}}{ }^{2}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\mathrm{vi} \cdot q}$ for MSO logic.
- For FO logic
- Reduced graph has size $q 2^{\mathrm{vi}^{2}}$.
- Trivial algorithm runs in $2^{q \cdot v \mathrm{vi}^{2}} q^{q}$.
- For MSO logic
- Reduced graph has size $2^{\text {vi }{ }^{2}+\mathrm{vi} \cdot q}$.
- Trivial algorithm runs in $2^{2 v^{2}+\mathrm{vi} \cdot q}$.
- Are these meta-theorems optimal?

Yes!! (under ETH) - details skipped

Tree-depth Meta-theorem

Any fool can come up with an exponential-time algorithm...

Tree-depth Meta-theorem

Any fool can come up with an exponential-time algorithm... but to come up with a tower of exponentials, you have to really know what you're doing!
(Daniel Marx)

Tree-depth Meta-theorem

We have a rooted tree with d layers (d fixed)

Tree-depth Meta-theorem

Apply the previous argument to the bottom layer (leaves)

Tree-depth Meta-theorem

Apply the previous argument to the bottom layer (leaves)

Tree-depth Meta-theorem

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Tree-depth Meta-theorem

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Tree-depth Meta-theorem

There are q^{q} different "types" of vertices at level 2. Applying the same argument to level 3 , there are $q^{q^{q}}$ types of vertices of level $3 . \ldots$
In the end graph has bounded size! ${ }^{2}$

[^1]
SAT again?

Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?
Elementary dependence meta-theorems
FO logic \& pathwidth
MSO logic \& tree-depth
MSO logic \& vertex integrity

Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?
Elementary dependence meta-theorems

FO logic \& pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic \& tree-depth	
MSO logic \& vertex integrity	

Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?
Elementary dependence meta-theorems

FO logic \& pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic \& tree-depth	???
MSO logic \& vertex integrity	

Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?
Elementary dependence meta-theorems

FO logic \& pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic \& tree-depth	$? ? ?$
MSO logic \& vertex integrity	$? ? ?$

Meta-Theorems to QBF-SAT?

Intuition: elementary meta-theorem should give FPT algorithm for QBF?
Elementary dependence meta-theorems

FO logic \& pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic \& tree-depth	???
MSO logic \& vertex integrity	$? ? ?$

- Complexity of QBF for these parameters is OPEN!
- Intuitive difficulty: graph does not capture order of quantification of variables.

Typical Hard Problems

Where is this useful?

- Typical example problems are complete for Σ_{2}^{p} or higher levels of PH.

Where is this useful?

- Typical example problems are complete for Σ_{2}^{p} or higher levels of PH.
- This is not a rule! (cf. Esther's talk)
- This is not even true for $\exists \forall$-SAT instances we saw!

Where is this useful?

- Typical example problems are complete for Σ_{2}^{p} or higher levels of PH.
- Applications:
- Reduce $\exists \forall$-SAT to your problem to get double-exponential lower bound.
- Reduce your problem to $\exists \forall$-SAT to get double-exponential upper bound. [L., Mengel, Mitsou, SAT 2018]

Examples:

- k-Choosability (easier proof than [Marx, Mitsou, ICALP 2016])
- Stability in Hedonic games (ongoing work with Tesshu Hanaka and Noleen Köhler)

Hedonic games

Hedonic games

Hedonic games

Hedonic games

Hedonic games

Question: Does a Nash-stable partition exist?

- "Correct" complexity is $(\Delta \mathrm{tw})^{O(\Delta t w)}$ [Hanaka, L. ESA 2022]

Hedonic games

Question: Does a Nash-stable partition exist?

- "Correct" complexity is $(\Delta \mathrm{tw})^{O(\Delta t w)}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_{2}^{p}-complete for constant Δ
- Σ_{2}^{p}-complete for constant vc

Hedonic games

Question: Does a Nash-stable partition exist?

- "Correct" complexity is $(\Delta \mathrm{tw})^{O(\Delta t w)}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_{2}^{p}-complete for constant Δ
- Σ_{2}^{p}-complete for constant vc

Hedonic games

Question: Does a Nash-stable partition exist?

- "Correct" complexity is $(\Delta \mathrm{tw})^{O(\Delta \mathrm{tw})}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_{2}^{p}-complete for constant Δ
- Σ_{2}^{p}-complete for constant vc
- Correct complexity is double-exponential in tw $+\Delta$
- Upper bound: reduce to $\exists \forall$-SAT
- Lower bound: run existing Σ_{2}-completeness proof from $\exists \forall$-SAT instance with bounded Δ and tw $=O(\log n)$.

Conclusions

Conclusions

- Quantifier alternations might give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- Σ_{2}^{p}-complete problems are more likely candidates for this
- Reductions from $\exists \forall$-SAT may give easy double-exponential lower bounds!

Conclusions

- Quantifier alternations might give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- Σ_{2}^{p}-complete problems are more likely candidates for this
- Reductions from $\exists \forall$-SAT may give easy double-exponential lower bounds!

Open questions:

- Complexity of QBF parameterized by tree-depth/vertex integrity?
- QBF parameterized by vertex cover has $2^{\mathrm{vc}^{k}}$ running time for k-CNF. Optimal?

Conclusions

- Quantifier alternations might give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- $\quad \Sigma_{2}^{p}$-complete problems are more likely candidates for this
- Reductions from $\exists \forall$-SAT may give easy double-exponential lower bounds!

Open questions:

- Complexity of QBF parameterized by tree-depth/vertex integrity?
- QBF parameterized by vertex cover has $2^{\mathrm{vc}^{k}}$ running time for k-CNF. Optimal?

Thank you!

[^0]: ${ }^{1}$ Assuming $\mathrm{P} \neq \mathrm{NP}$ or $\mathrm{FPT} \neq \mathrm{W}[1]$.

[^1]: ${ }^{2}$ bounded by a tower of exponentials of height d.

