Quantifier Alternations and Graph Widths

Michael Lampis LAMSADE

July 10th 2023 - GWP

What this talk is about

An interesting phenomenon:

• Adding quantifiers costs a level of exponentiation for treewidth.

Two points of view:

Concrete Problems

- SAT with quantifiers
- Σ_2^p , PH, ...

Meta-Theorems

- Treewidth/Pathwidth (Courcelle)
- Vertex Cover, Vertex Integrity,...

Graph widths in this talk

• Tree-depth

$$\operatorname{td}(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \operatorname{cc}(G-S)} \operatorname{td}(S') \right\}$$

- Select small separator S so that all components have small tree-depth
- (Base case: K_1 has tree-depth 1)

CW tw pw tđ VC

• Vertex Integrity

$$\operatorname{vi}(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \operatorname{cc}(G-S)} |S'| \right\}$$

- Select small separator ${\cal S}$ so that all components have small size

$$\operatorname{vc}(G) = \min_{S \subseteq V(G) \land G - S \text{ stable}} \left\{ |S| \right\}$$

• Select small separator S so that all components **are** singletons.

Dauphine | PSL 😿

CW

tw

pw

td

VC

Graph widths in this talk

• Small vertex integrity, large vertex cover

CW tw pw td VC

Graph widths in this talk

• Large vertex integrity, small tree-depth

CW tw pw td VC

A Textbook Problem

Quantified SAT

 $\exists \forall$ -SAT definition: Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

• ϕ in DNF (why not CNF?)

Example:

$$(x_1 \land y_1) \lor (x_2 \land \neg y_1 \land y_2) \lor (\neg x_2 \land y_1 \land \neg y_2) \lor (\neg y_2)$$

Quantified SAT

 $\exists \forall$ -SAT definition: Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

 ϕ in DNF (why not CNF?)

Example:

$$(x_1 \land y_1) \lor (x_2 \land \neg y_1 \land y_2) \lor (\neg x_2 \land y_1 \land \neg y_2) \lor (\neg y_2)$$

Graph structure:

Primal graph

Incidence graph

(Note: for tw/pw incidence is more general than primal.)

5/34

Quantified SAT

 $\exists \forall$ -SAT definition: Input: $\exists \mathbf{x} \forall \mathbf{y} \phi(x, y)$

• ϕ in DNF (why not CNF?)

Example:

$$(x_1 \land y_1) \lor (x_2 \land \neg y_1 \land y_2) \lor (\neg x_2 \land y_1 \land \neg y_2) \lor (\neg y_2)$$

Double-exponential $2^{2^{tw}} n^{O(1)}$ algorithm

- Two assignments to \exists variables are **equivalent** if:
 - They agree on variables of the bag $(2^{tw} classes)$
 - They "defeat" the same assignments of the universal player (2^{2^{tw}} classes)

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

- Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.
- If we could solve ∃∀-SAT in 2^{2^{o(tw)}} this would given 2^{o(n)} algorithm for 3-SAT.

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Intuition:

- CNFSAT has an implied quantifier alternation:
 ∃ assignment ∀ clause satisfied.
- $\log m$ new universal variables will encode the m clauses in binary.

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Example:

$$\psi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (\neg x_2 \lor x_4)$$

PSL

UNIVERSITÉ PARIS

6/34

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Example:

$$\psi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (\neg x_2 \lor x_4)$$

Gives the following DNF terms

C_0	C_1	C_2	C_3
$(x_1 \land \neg y_1 \land \neg y_2)$	$(x_1 \land \neg y_1 \land y_2)$	$(x_2 \land y_1 \land \neg y_2)$	$(\neg x_2 \land y_1 \land y_2)$
$(x_2 \land \neg y_1 \land \neg y_2)$	$(x_4 \land \neg y_1 \land y_2)$	$(x_3 \wedge y_1 \wedge \neg y_2)$	$(x_4 \wedge y_1 \wedge y_2)$
$(\neg x_3 \land \neg y_1 \land \neg y_2)$			

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Example:

$$\psi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (\neg x_2 \lor x_4)$$

Gives the following DNF terms

Key fact: No two existential variables appear together! \Rightarrow the $O(\log n)$ variables y form a vertex cover of the primal graph.

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Construction:

- Start with a SAT formula $\exists \mathbf{x}\psi$, where $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$, $\psi = C_0 \wedge C_1 \dots \wedge C_{m-1}$ and *m* is a power of 2.
- Construct $\exists x \forall y \phi$, where $y = \{y_1, y_2, \dots, y_{\log m}\}$ are fresh universal variables.
- For each clause C_i we construct $|C_i|$ terms T_{ij} in ϕ . Each T_{ij} has:
 - literal $l_j = (\neg) x_j$ of C_i and
 - a binary combination B(i, y) of positive and negative appearances of y, unique for i.

• Reduce 3-SAT on an *n*-variable formula ψ to $\exists \forall$ -SAT on a formula ϕ with $tw(\phi) = O(\log n)$.

Example:

$$\psi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (\neg x_2 \lor x_4)$$

PSL

UNIVERSITÉ PARIS

6/34

Known results about Quantified SAT

- SAT with k quantifiers complete for Σ_k^p
- Each extra quantifier costs at most one level of exponentiation
 - [Chen ECAI 2004]
- Each extra quantifier costs **at least** one level of exponentiation
 - [Pan and Vardi LICS 2006] odd number of quantifiers
 - [L. and Mitsou IPEC 2017] two quantifiers
 - [Fichte, Hecher, Pflander LICS 2020] any number of quantifiers

Known results about Quantified SAT

- SAT with k quantifiers complete for Σ_k^p
- Each extra quantifier costs at most one level of exponentiation
 - [Chen ECAI 2004]
- Each extra quantifier costs **at least** one level of exponentiation
 - [Pan and Vardi LICS 2006] odd number of quantifiers
 - [L. and Mitsou IPEC 2017] two quantifiers
 - [Fichte, Hecher, Pflander LICS 2020] any number of quantifiers

Extensions:

- Double-exponential lower bound extends to
 - Bounded term size
 - Bounded variable occurrences
 - $\exists_k \forall$ -SAT, $\exists \forall_k$ -SAT

Meta-Theorems

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

 Notice that since this applies to treewidth, it applies to pathwidth, and tree-depth.

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$\exists x_1 \exists x_2 \forall x_3 \, (x_1 = x_3 \lor x_2 = x_3 \lor x_1 \sim x_3 \lor x_2 \sim x_3)$$

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$\exists X_1 \exists X_2 \exists X_3 \quad \left(\forall x_1 \quad (x_1 \in X_1 \lor x_1 \in X_2 \lor x_1 \in X_3) \land \\ \forall x_2 \quad (x_1 \sim x_2 \rightarrow (\neg (x_1 \in X_1 \land x_2 \in X_1)) \land \\ (\neg (x_1 \in X_2 \land x_2 \in X_2)) \land \\ (\neg (x_1 \in X_3 \land x_2 \in X_3))) \right)$$
ernations and Graph Widths

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity Brute-force Complexity:

- FO: n^q
- MSO: 2^{nq}

Question: For which classes, which f, can we solve FO in time $f(q)n^{O(1)}$?

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

- 2^{tw}
- Problem: *f* is approximately $2^{2^{2^{-1}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .

• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

 $f(\mathbf{tw}, \phi) \cdot |G|$

- 2^{tw}
- Problem: *f* is approximately $2^{2^{-1}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .
- Serious Problem: This tower of exponentials cannot be avoided¹ even for FO logic on trees!
 - "The complexity of first-order and monadic second-order logic **revisited**", [Frick and Grohe, APAL 2004].

¹Assuming $P \neq NP$ or $FPT \neq W[1]$.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth – Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Treewidth – Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Can be expressed as a **string** over an alphabet of size $p \cdot 2^p$.

Can be expressed as a string over an alphabet of size $p \cdot 2^p$.Vertex56789Character(1, 1010)(2, 1010)(2, 1100)(3, 0101)(1, 1010)

Can be expressed as a string over an alphabet of size $p \cdot 2^p$.Vertex56789Character(1, 1010)(2, 1010)(2, 1100)(3, 0101)(1, 1010)

MSO logic on Strings:

- $\exists x \text{ means there exists a character } x...$
- Vocabulary: $x \leq y$ (x is to the left of y), unary predicates for Σ .

Can be expressed as a string over an alphabet of size $p \cdot 2^p$.Vertex56789Character(1, 1010)(2, 1010)(2, 1100)(3, 0101)(1, 1010)Idea: Adjacency in G can be expressed in MSO logic in the string!

 $x\sim y \text{ iff }$

- $x \preceq y$.
- $\exists z \text{ s.t. } x \preceq z \preceq y \text{ and } z \text{ is on same stack as } x.$
- Check (p bits of) symbol of y and stack number of x.

Can be expressed as a string over an alphabet of size $p \cdot 2^p$.Vertex56789Character(1, 1010)(2, 1010)(2, 1100)(3, 0101)(1, 1010)Idea: Translate MSO question on graph to MSO question on string.

Theorem: MSO logic on Strings \equiv **regular** languages [Büchi 1960].

Consequence: Linear-time algorithm for MSO logic on bounded pathwidth graphs.

Can be expressed as a string over an alphabet of size $p \cdot 2^p$.Vertex56789Character(1, 1010)(2, 1010)(2, 1100)(3, 0101)(1, 1010)Intuition:

- Quantifier Alternations force us to make the automaton deterministic.
- **Consequence**: each alternation gives a level of exponentiation.

Daup

ne | PSL 😿

- Given a graph with vertex cover vc = 5
- we want to check an FO property ϕ with q = 3 variables.

- Sentence has form $\exists x_1\psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1\psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1\psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has > q vertices, we can simply remove one!

Summary of previous argument:

- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has > q vertices, delete one, repeat.
- If not, $|V(G)| \le q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\text{vc}\cdot q)}q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

Summary of previous argument:

- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has > q vertices, delete one, repeat.
- If not, $|V(G)| \le q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\text{vc}\cdot q)}q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

What about MSO?

MSO and Vertex Cover

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to q-1 quantifiers.
- Want to check if $\exists X_1\psi(X_1)$, where ψ has q-1 quantifiers.

MSO and Vertex Cover

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to q 1 quantifiers.
- Want to check if $\exists X_1\psi(X_1)$, where ψ has q-1 quantifiers.

- For any choice of X_1 a set of 2^{q-1} identical vertices remains.
- Apply inductive hypothesis.

MSO and Vertex Cover

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

- Graph has 2^{vc} sets of equivalent vertices.
- While one has size $> 2^q$, delete a vertex.
- Otherwise, $|V(G)| \leq 2^{\mathrm{vc}+q}$.
- Brute force:

$$2^{nq} \le 2^{2^{vc+q}q} = 2^{2^{O(vc+q)}}$$

Back to Quantified SAT

Thm: QBF can be solved in time $2^{3^{vc}}n^{O(1)}$ [L. and Mitsou IPEC 2017]

Thm: QBF can be solved in time $2^{3^{vc}}n^{O(1)}$ [L. and Mitsou IPEC 2017] (Referring to **primal** vertex cover. Incidence vc is easy...)

Thm: QBF can be solved in time $2^{3^{vc}}n^{O(1)}$ [L. and Mitsou IPEC 2017] Algorithm:

- If x_1 only appears positive (or negative) easy to set.
- If a clause C_1 is contained in a clause C_2 , remove C_2 .
- Otherwise, branch on both values of x_1 .

Thm: QBF can be solved in time $2^{3^{vc}}n^{O(1)}$ [L. and Mitsou IPEC 2017] Algorithm:

- If x_1 only appears positive (or negative) easy to set.
- If a clause C_1 is contained in a clause C_2 , remove C_2 .
- Otherwise, branch on both values of x_1 .

Proof of running time:

- If x_1 part of vertex cover, great!
- If not, we have a clause $(x_1 \lor C_1)$ and a clause $(\neg x_1 \lor C_2)$
- \rightarrow new instances have a new clause C_1 or C_2 contained in the vertex cover.
- Cannot construct more than 3^{vc} such clauses!

Thm: QBF can be solved in time $2^{3^{vc}}n^{O(1)}$ [L. and Mitsou IPEC 2017] Algorithm:

- If x_1 only appears positive (or negative) easy to set.
- If a clause C_1 is contained in a clause C_2 , remove C_2 .
- Otherwise, branch on both values of x_1 .

Success!

More Meta-Theorems

Meta-theorem for vertex cover \rightarrow QBF/vc worked well!

Other elementary meta-theorems to try

- Vertex Integrity [L. and Mitsou, ISAAC 2021]
- Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
- Pathwidth

Meta-theorem for vertex cover \rightarrow QBF/vc worked well!

Other elementary meta-theorems to try

- Vertex Integrity [L. and Mitsou, ISAAC 2021]
- Tree-depth [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]
- Pathwidth (this ICALP!! please come to my talk!!)

Vertex Integrity

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

Vertex Integrity

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

Vertex Integrity

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

How many types of components?

- Equivalent components of G S are
 - The same internally.
 - The same with respect to S.
- How many choices?
- Recall, components of G-S have size $\leq vi$
 - At most 2^{vi²} different internal structures.
 - At most 2^{vi^2} different connections to S.
- All in all, $2^{O(vi^2)}$ possible types.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.

Problem:

- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power – MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.

Problem:

- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power – MSO (cont'd)

How many components can we distinguish with q MSO quantifiers?

Claim: if we have $> 2^{vi \cdot q}$ components, we can delete one.

Solution:

- Our components have size \leq vi.
- There are at most 2^{vi} intersections of X_1 with each component.
- If we have $> 2^{vi \cdot q}$ identical components initially...
- ... by PHP one intersection type appears $> 2^{vi \cdot q}/2^{vi} = 2^{vi(q-1)}$ times.
- These components are identical, use inductive hypothesis!

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\mathrm{vi} \cdot q}$ for MSO logic.

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\operatorname{vi} \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\mathrm{vi} \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.
- For MSO logic
 - Reduced graph has size $2^{vi^2 + vi \cdot q}$.
 - Trivial algorithm runs in $2^{2^{vi^2 + vi \cdot q}}$.
- Are these meta-theorems optimal?

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\operatorname{vi} \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.
- For MSO logic
 - Reduced graph has size $2^{vi^2 + vi \cdot q}$.
 - Trivial algorithm runs in $2^{2^{vi^2 + vi \cdot q}}$.
- Are these meta-theorems optimal?

Yes!! (under ETH) – details skipped

Any fool can come up with an exponential-time algorithm...

Any fool can come up with an exponential-time algorithm... but to come up with a tower of exponentials, **you have to really know what you're doing!**

(Daniel Marx)

We have a rooted tree with d layers (d fixed)

Apply the previous argument to the bottom layer (leaves)

Apply the previous argument to the bottom layer (leaves)

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

There are q^q different "types" of vertices at level 2. Applying the same argument to level 3, there are q^{q^q} types of vertices of level 3....

In the end graph has bounded size!²

²bounded by a tower of exponentials of height d. Quantifier Alternations and Graph Widths

SAT again?

Elementary dependence meta-theorems

FO logic & pathwidth	
MSO logic & tree-depth	
MSO logic & vertex integrity	

Elementary dependence meta-theorems

FO logic & pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic & tree-depth	
MSO logic & vertex integrity	

Elementary dependence meta-theorems

FO logic & pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic & tree-depth	???
MSO logic & vertex integrity	

Elementary dependence meta-theorems

FO logic & pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic & tree-depth	???
MSO logic & vertex integrity	???

Elementary dependence meta-theorems

FO logic & pathwidth	No! [Atserias and Oliva JCSS 2014]
MSO logic & tree-depth	???
MSO logic & vertex integrity	???

- Complexity of QBF for these parameters is **OPEN!**
- Intuitive difficulty: graph does not capture order of quantification of variables.

Typical Hard Problems

Where is this useful?

• Typical example problems are complete for Σ_2^p or higher levels of PH.

Where is this useful?

- Typical example problems are complete for Σ_2^p or higher levels of PH.
 - This is not a rule! (cf. Esther's talk)
 - This is not even true for $\exists \forall$ -SAT instances we saw!

Where is this useful?

- Typical example problems are complete for Σ_2^p or higher levels of PH.
- Applications:
 - Reduce ∃∀-SAT to your problem to get double-exponential lower bound.
 - Reduce your problem to ∃∀-SAT to get double-exponential upper bound. [L., Mengel, Mitsou, SAT 2018]

Examples:

- *k*-Choosability (easier proof than [Marx, Mitsou, ICALP 2016])
- Stability in Hedonic games (ongoing work with Tesshu Hanaka and Noleen Köhler)

Dauphine | PSL 🔀

32/34

Question: Does a Nash-stable partition exist?

• "Correct" complexity is $(\Delta tw)^{O(\Delta tw)}$ [Hanaka, L. ESA 2022]

Question: Does a Nash-stable partition exist?

• "Correct" complexity is $(\Delta tw)^{O(\Delta tw)}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_2^p -complete for constant Δ
- Σ_2^p -complete for constant vc

Hedonic games

Question: Does a Nash-stable partition exist?

• "Correct" complexity is $(\Delta tw)^{O(\Delta tw)}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_2^p -complete for constant Δ
- Σ_2^p -complete for constant vc

Quantifier Alternations and Graph Widths

Hedonic games

Question: Does a Nash-stable partition exist?

• "Correct" complexity is $(\Delta tw)^{O(\Delta tw)}$ [Hanaka, L. ESA 2022]

Question: Does a Core-stable partition exist?

- Partition that resists any coalition of diverging agents.
- Σ_2^p -complete for constant Δ
- Σ_2^p -complete for constant vc
- Correct complexity is **double-exponential** in $tw + \Delta$
- Upper bound: reduce to ∃∀-SAT
- Lower bound: run existing Σ_2 -completeness proof from $\exists \forall$ -SAT instance with bounded Δ and tw = $O(\log n)$.

- Quantifier alternations **might** give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- Σ_2^p -complete problems are more likely candidates for this
- Reductions from ∃∀-SAT may give easy double-exponential lower bounds!

- Quantifier alternations **might** give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- Σ_2^p -complete problems are more likely candidates for this
- Reductions from ∃∀-SAT may give easy double-exponential lower bounds!

Open questions:

- Complexity of QBF parameterized by tree-depth/vertex integrity?
- QBF parameterized by vertex cover has 2^{vc^k} running time for k-CNF.
 Optimal?

- Quantifier alternations **might** give extra levels of exponentiation
- Even poly-time computable quantifier alternations can do this! (cf. Esther's talk)
- Σ_2^p -complete problems are more likely candidates for this
- Reductions from ∃∀-SAT may give easy double-exponential lower bounds!

Open questions:

- Complexity of QBF parameterized by tree-depth/vertex integrity?
- QBF parameterized by vertex cover has 2^{vc^k} running time for k-CNF.
 Optimal?

Thank you!

