First Order Logic on Pathwidth Revisited

Michael Lampis LAMSADE

July 12th 2023 – ICALP Track B

Fun Fact: I couldn't sleep at night when I thought of this question!

Normal people: This question makes me sleepy!

Necessary Background:

- Treewidth, Pathwidth, Parameterized Complexity
- Meta-Theorems, Courcelle's Theorem, Non-elementary dependence
- Meta-Theorems with elementary dependence

Background I: Graph Widths and Parameterized Complexity

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth – Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Treewidth – Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Treewidth – Pathwidth – Tree-depth

A connection to graph classes:

Treewidth – Pathwidth – Tree-depth

A connection to graph classes:

Corresponding interval graph:

Treewidth – Pathwidth – Tree-depth

Corresponding interval graph:

Treewidth(G)nPathwidth(G)nTreedepth(G)n

 $\min \omega(G')$ $\min \omega(G')$ $\min \omega(G')$

where G' is chordal supergraph of Gwhere G' is interval supergraph of Gwhere G' is trivially perfect supergraph of G

Treewidth vs Pathwidth

- Treewidth k is a much wider class than Pathwidth k.
- But most problems have same complexity for both parameters!
 - IND. SET, DOM. SET, STEINER TREE, COLORING,...
 - (HAMILTONICITY?)
- In particular, **almost all** natural problems which are FPT for pathwidth, are FPT for treewidth.

Exception: GRUNDY COLORING

Theorem: GRUNDY COLORING is FPT parameterized by pathwidth but W[1]-hard parameterized by treewidth. [Belmonte, Kim, L., Mitsou, Otachi, ESA 2020 SIDMA 2022].

Background II: Meta-Theorems

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$\exists x_1 \exists x_2 \forall x_3 \, (x_1 = x_3 \lor x_2 = x_3 \lor x_1 \sim x_3 \lor x_2 \sim x_3)$$

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$\exists X_1 \exists X_2 \exists X_3 \quad \left(\forall x_1 \quad (x_1 \in X_1 \lor x_1 \in X_2 \lor x_1 \in X_3) \land \\ \forall x_2 \quad (x_1 \sim x_2 \rightarrow (\neg (x_1 \in X_1 \land x_2 \in X_1)) \land \\ (\neg (x_1 \in X_2 \land x_2 \in X_2)) \land \\ (\neg (x_1 \in X_3 \land x_2 \in X_3))) \right)$$

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

- 2^{tw}
- Problem: *f* is approximately $2^{2^{2^{-1}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .

• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

 $f(\mathbf{tw}, \phi) \cdot |G|$

2^{tw}

- Problem: *f* is approximately $2^{2^{2^{-1}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .
- Serious Problem: This tower of exponentials cannot be avoided¹ even for FO logic on trees!
 - "The complexity of first-order and monadic second-order logic **revisited**", [Frick and Grohe, APAL 2004].
- **Question**: Does *f* become nicer if we consider more restricted parameters?

¹Assuming $P \neq NP$ or $FPT \neq W[1]$.

Known Fine-Grained Meta-Theorems

• Vertex Cover

- MSO with q quantifiers can be decided in $2^{2^{O(vc+q)}}$
- FO with q quantifiers can be decided in $2^{O(\text{vc} \cdot q)}q^{O(q)}$
- These are **optimal under ETH**.
 - There exists fixed MSO formula which cannot be decided in $2^{2^{o(\mathrm{vc})}}$.
- "Algorithmic Meta-Theorems for Restrictions Treewidth", [L. ESA 2010, Algorithmica 2012].

CW

of

Known Fine-Grained Meta-Theorems (cont'd)

CW Tree-depth MSO/FO with q quantifiers can be decided by an tw $_{2}$ td+q algorithm running in time 2^2 \dots where height of tower is at most td (even for pw large q) This is **optimal under ETH**. • "Kernelizing MSO Properties of Trees of Fixed Height," td and Some Consequences", [Gajarsky and Hlineny, MFCS 2012, LMCS 2015]. "Model-Checking Lower Bounds for Simple Graphs", [L. ICALP 2013, LMCS 2014]. e | PSL 🕱 Da

```
12 / 24
```

- For treewidth we can solve MSO in $f(tw, \phi) \cdot n$
 - But *f* is **non-elementary**!
 - Inevitable even for tw = 1 and FO logic!
- For tree-depth we can solve MSO in $f(td, \phi) \cdot n$
 - For each **fixed** value of td, f is an **elementary** function of ϕ .
- Can the same be done for pathwidth?
- (For MSO logic \rightarrow **No** [Frick and Grohe, APAL 2004])

CW pw VC

- For treewidth we can solve MSO in $f(tw, \phi) \cdot n$
 - But *f* is **non-elementary**!
 - Inevitable even for tw = 1 and FO logic!
- For tree-depth we can solve MSO in $f(td, \phi) \cdot n$
 - For each **fixed** value of td, f is an **elementary** function of ϕ .
- Can the same be done for pathwidth?
- (For MSO logic \rightarrow **No** [Frick and Grohe, APAL 2004])

CW VC

Background III: Techniques

Vertex Cover Meta-Theorem – Reminder

- Given a graph with vertex cover vc = 5
- we want to check an FO property ϕ with q = 3 variables.

- Sentence has form $\exists x_1 \psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1 \psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1 \psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has > q vertices, we can simply remove one!

We have a rooted tree with d layers (d fixed)

Apply the previous argument to the bottom layer (leaves)

Apply the previous argument to the bottom layer (leaves)

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

There are q^q different "types" of vertices at level 2. Applying the same argument to level 3, there are q^{q^q} types of vertices of level 3....

In the end graph has bounded size!²

²bounded by a tower of exponentials of height *d*. FO Logic and Pathwidth

16/24

Classical Example:

FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!

Classical Example:

FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!

Classical Example:

FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!

Classical Example:

FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!

The Algorithm

Parameter	FO	MSO
Treewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwidth		Non-elementary on Caterpillars [FrickG04]
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

Parameter	FO	MSO
Treewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwidth	Elementary	Non-elementary on Caterpillars [FrickG04]
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

- Last missing case where it was not known if dependence is elementary.
- Complexity different for pathwidth/treewidth (!!)
- Complexity different for FO/MSO (cf. tree-depth)

To obtain algorithm will use:

- A **ranked** version of path decompositions that will make graph hierarchical (like tree-depth).
- A generalized version of the "delete identical parts" argument.
- To find identical parts: a **surgical** operation that relies on the locality of FO logic.

Da

td VC

PSL

CW

tw

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

 -

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most f(i,q).
- Process color i + 1:
 - Find q + 1 identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i+1,q)$, (which is $> 2^{f(i,q)}$).
- End result: bounded-degree graph.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most f(i,q).
- Process color i + 1:
 - Find q + 1 identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i+1,q)$, (which is $> 2^{f(i,q)}$).
- End result: bounded-degree graph.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most f(i,q).
- Process color i + 1:
 - Find q + 1 identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i+1,q)$, (which is $> 2^{f(i,q)}$).
- End result: bounded-degree graph.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most f(i,q).
- Process color i + 1:
 - Find q + 1 identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i+1,q)$, (which is $> 2^{f(i,q)}$).
- End result: bounded-degree graph.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most f(i,q).
- Process color i + 1:
 - Find q + 1 identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i+1,q)$, (which is $> 2^{f(i,q)}$).
- End result: bounded-degree graph.

Conclusions

Conclusions

- FO model-checking is **elementary** for graphs of bounded pathwidth.
 - Surprising because tw/pw are usually similar.
 - Surprising that this was not known!

Open problems:

- Extension to dense graphs?
 - Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- **Realistic** meta-theorems?

Conclusions

- FO model-checking is **elementary** for graphs of bounded pathwidth.
 - Surprising because tw/pw are usually similar.
 - Surprising that this was not known!

Open problems:

- Extension to dense graphs?
 - Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- **Realistic** meta-theorems?

Thank you!

