First Order Logic on Pathwidth Revisited

Michael Lampis
LAMSADE

DaUPhine | PSL*

July 12th 2023 - ICALP Track B

One-Slide Summary

Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a path decomposition of G of width p, and a FO formula ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an elementary function of ϕ.

One-Slide Summary

Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a path decomposition of G of width p, and a FO formula ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an elementary function of ϕ.

Fun Fact: I couldn't sleep at night when I thought of this question!

One-Slide Summary

Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a path decomposition of G of width p, and a FO formula ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an elementary function of ϕ.

Normal people: This question makes me sleepy!

One-Slide Summary

Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a path decomposition of G of width p, and a FO formula ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an elementary function of ϕ.

Necessary Background:

- Treewidth, Pathwidth, Parameterized Complexity
- Meta-Theorems, Courcelle's Theorem, Non-elementary dependence
- Meta-Theorems with elementary dependence

Background I: Graph Widths and

Parameterized Complexity

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Gentle definition of pathwidth k :

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.

Treewidth - Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

Treewidth - Pathwidth

Note that this is equivalent to the standard definition of path decompositions.

$$
\left.\left.\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
2 \\
3 \\
4 \\
1
\end{array}\right) \quad\left(\begin{array}{l}
5 \\
6 \\
3 \\
4 \\
2
\end{array}\right) \quad\left(\begin{array}{l}
5 \\
7 \\
3 \\
4 \\
6
\end{array}\right) \quad\left(\begin{array}{l}
5 \\
7 \\
8 \\
4 \\
3
\end{array}\right) \quad\left(\begin{array}{c}
9 \\
7 \\
8 \\
4 \\
5
\end{array}\right) \quad \begin{array}{c}
9 \\
7 \\
8 \\
10 \\
4
\end{array}\right) \quad\left(\begin{array}{c}
11 \\
7 \\
8 \\
10 \\
9
\end{array}\right) \quad \begin{array}{c}
11 \\
7 \\
8 \\
12 \\
10
\end{array}\right)
$$

Treewidth - Pathwidth - Tree-depth

A connection to graph classes:

Treewidth - Pathwidth - Tree-depth

A connection to graph classes:

Corresponding interval graph:

Treewidth - Pathwidth - Tree-depth

A connection to graph classes:

Corresponding interval graph:

Treewidth $(G) \quad \min \omega\left(G^{\prime}\right) \quad$ where G^{\prime} is chordal supergraph of G
Pathwidth $(G) \quad \min \omega\left(G^{\prime}\right) \quad$ where G^{\prime} is interval supergraph of G
Treedepth $(G) \quad \min \omega\left(G^{\prime}\right) \quad$ where G^{\prime} is trivially perfect supergraph of G

Treewidth vs Pathwidth

- Treewidth k is a much wider class than Pathwidth k.
- But most problems have same complexity for both parameters!
- Ind. Set, Dom. Set, Steiner Tree, Coloring,...
- (HAMILTONICITY?)
- In particular, almost all natural problems which are FPT for pathwidth, are FPT for treewidth.

Exception: Grundy Coloring
Theorem: Grundy Coloring is FPT parameterized by pathwidth but W[1]-hard parameterized by treewidth. [Belmonte, Kim, L., Mitsou, Otachi, ESA 2020 SIDMA 2022].

Background II:
 Meta-Theorems

Meta-Theorems and Courcelle's Theorem

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Meta-Theorems and Courcelle's Theorem

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:
All problems expressible in MSO logic are FPT parameterized by treewidth.

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$
\exists x_{1} \exists x_{2} \forall x_{3}\left(x_{1}=x_{3} \vee x_{2}=x_{3} \vee x_{1} \sim x_{3} \vee x_{2} \sim x_{3}\right)
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$
\begin{aligned}
\exists X_{1} \exists X_{2} \exists X_{3} \quad & \left(\forall x_{1}\right. \\
\forall x_{2} \quad & \left(x_{1} \in X_{1} \vee x_{1} \in X_{2} \vee x_{1} \in X_{3}\right) \wedge \\
& \left(\neg\left(x_{1} \in X_{1} \wedge x_{2} \in X_{1}\right)\right) \wedge \\
& \left.\left.\left(\neg\left(x_{1} \in X_{3} \wedge x_{2} \in x_{3}\right)\right)\right)\right)
\end{aligned}
$$

Dauphine I PSL*

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

- Problem: f is approximately $2^{2^{2^{*}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

- Problem: f is approximately $2^{2^{2^{*}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.
- Serious Problem: This tower of exponentials cannot be avoided ${ }^{1}$ even for FO logic on trees!
- "The complexity of first-order and monadic second-order logic revisited", [Frick and Grohe, APAL 2004].
- Question: Does f become nicer if we consider more restricted parameters?

[^0]
Known Fine-Grained Meta-Theorems

- Vertex Cover
- MSO with q quantifiers can be decided in $2^{2^{O(v c+q)}}$ tw'
- FO with q quantifiers can be decided in $2^{O(\mathrm{vc} \cdot q)} q^{O(q)}$
- These are optimal under ETH.
- There exists fixed MSO formula which cannot be decided in $2^{2^{\text {o(vc) }}}$.

Known Fine-Grained Meta-Theorems (cont'd)

- Tree-depth
- MSO/FO with q quantifiers can be decided by an $2^{\mathrm{td}+q}$

Summary

- For treewidth we can solve MSO in $f(\mathrm{tw}, \phi) \cdot n$
- But f is non-elementary!
- Inevitable even for $\mathrm{tw}=1$ and FO logic!
- For tree-depth we can solve MSO in $f(\mathrm{td}, \phi) \cdot n$
- For each fixed value of td, f is an elementary function of ϕ.
- Can the same be done for pathwidth?
- (For MSO logic \rightarrow No [Frick and Grohe, APAL 2004])

Summary

- For treewidth we can solve MSO in $f(\mathrm{tw}, \phi) \cdot n$ - But f is non-elementary!
- Inevitable even for $\mathrm{tw}=1$ and FO logic!
- For tree-depth we can solve MSO in $f(\operatorname{td}, \phi) \cdot n$
- For each fixed value of td, f is an elementary function of ϕ.
- Can the same be done for pathwidth?
- (For MSO logic \rightarrow No [Frick and Grohe, APAL 2004])

Background III: Techniques

Vertex Cover Meta-Theorem - Reminder

Independent Set

- Given a graph with vertex cover $\mathrm{vc}=5$
- we want to check an FO property ϕ with $q=3$ variables.

Vertex Cover Meta-Theorem - Reminder

Independent Set

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem - Reminder

Independent Set

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem - Reminder

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Independent Set

Vertex Cover Meta-Theorem - Reminder

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

Vertex Cover Meta-Theorem - Reminder

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has $>q$ vertices, we can simply remove one!

Independent Set

Tree-depth Meta-theorem - Reminder

Tree-depth Meta-theorem - Reminder

Tree-depth Meta-theorem - Reminder

$$
\begin{aligned}
& 2 \\
& 1 \\
& 0
\end{aligned}
$$

We have a rooted tree with d layers (d fixed)

Tree-depth Meta-theorem - Reminder

Apply the previous argument to the bottom layer (leaves)

Tree-depth Meta-theorem - Reminder

Apply the previous argument to the bottom layer (leaves)

Tree-depth Meta-theorem - Reminder

$$
\operatorname{deg} \leq q \begin{array}{ll}
& 2 \\
1 \\
0
\end{array}
$$

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Tree-depth Meta-theorem - Reminder

Key intuition: same argument can be applied to level 2, deleting identical sub-trees.

Tree-depth Meta-theorem - Reminder

There are q^{q} different "types" of vertices at level 2. Applying the same argument to level 3 , there are $q^{q^{q}}$ types of vertices of level $3 . \ldots$ In the end graph has bounded size! ${ }^{\text {? }}$

[^1]
FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^{q}) path, and a union of a path and a cycle.

Connectivity cannot be expressed in FO logic!

FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^{q}) path, and a union of a path and a cycle.

Connectivity cannot be expressed in FO logic!

FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^{q}) path, and a union of a path and a cycle.

Connectivity cannot be expressed in FO logic!

FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^{q}) path, and a union of a path and a cycle.

Connectivity cannot be expressed in FO logic!

The Algorithm

Where we are

Parameter	FO	MSO
Treewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwwidth	Non-elementary on Caterpillars [FrickG04]	
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

Where we are

Parameter	FO	MSO
Trewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwidth	Elementary	Nonelementary on Cateriillars [FrickG04]
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

- Last missing case where it was not known if dependence is elementary.
- Complexity different for pathwidth/treewidth (!!)
- Complexity different for FO/MSO (cf. tree-depth)

To obtain algorithm will use:

- A ranked version of path decompositions that will make graph hierarchical (like tree-depth).
- A generalized version of the "delete identical parts" argument.
- To find identical parts: a surgical operation that relies on the locality of FO logic.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1 , there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1 , there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A Surgical Operation - Motivation

- Intuition: try to delete identical parts on lower levels.
- Works well for level 1 , there are only $2^{O(\mathrm{pw})}$ types.
- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully cut out parts to make sure formula validity is not affected.

A surgical operation

Idea: Path \leftrightarrow Path + Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path + Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.

Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i+1$:
- Find $q+1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i+1, q)$, (which is $\left.>2^{f(i, q)}\right)$.
- End result: bounded-degree graph.

Putting it all together

G_{1}	G_{2}	G_{1}	G_{3}	G_{4}	G_{1}	G_{2}	G_{1}	G_{3}

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i+1$:
- Find $q+1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i+1, q)$, (which is $\left.>2^{f(i, q)}\right)$.
- End result: bounded-degree graph.

Putting it all together

G_{1}	G_{2}	G_{1}	G_{3}	G_{4}	G_{1}	G_{2}	G_{1}	G_{3}

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i+1$:
- Find $q+1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i+1, q)$, (which is $\left.>2^{f(i, q)}\right)$.
- End result: bounded-degree graph.

Putting it all together

| \vdots | G_{1} | G_{2} | G_{1} | G_{3} | G_{4} | G_{1} | G_{2} | G_{1} | G_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i+1$:
- Find $q+1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i+1, q)$, $\left(\right.$ which is $\left.>2^{f(i, q)}\right)$.
- End result: bounded-degree graph.

Putting it all together

${ }^{\prime} G_{1}$!	G_{2}	${ }^{\prime} G_{1}{ }^{\prime}$	G_{3}	G_{4}	${ }_{1} G_{1}$	G_{2}	$\xrightarrow{\leftrightarrow}$	G_{3}

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i+1$:
- Find $q+1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i+1, q)$, (which is $\left.>2^{f(i, q)}\right)$.
- End result: bounded-degree graph.

Conclusions

Conclusions

- FO model-checking is elementary for graphs of bounded pathwidth.
- Surprising because tw/pw are usually similar.
- Surprising that this was not known!

Open problems:

- Extension to dense graphs?
- Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- Realistic meta-theorems?

Conclusions

- FO model-checking is elementary for graphs of bounded pathwidth.
- Surprising because tw/pw are usually similar.
- Surprising that this was not known!

Open problems:

- Extension to dense graphs?
- Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- Realistic meta-theorems?

Thank you!

[^0]: ${ }^{1}$ Assuming $\mathrm{P} \neq \mathrm{NP}$ or $\mathrm{FPT} \neq \mathrm{W}[1]$.

[^1]: ${ }^{2}$ bounded by a tower of exponentials of height d.

