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Theorem: Fix a positive integer p. Then, there is an algorithm that

takes as input a graph G, a path decomposition of G of width p, and

a FO formula φ, and decides if G |= φ in time f(φ)|G|O(1), where f is

an elementary function of φ.
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Theorem: Fix a positive integer p. Then, there is an algorithm that

takes as input a graph G, a path decomposition of G of width p, and

a FO formula φ, and decides if G |= φ in time f(φ)|G|O(1), where f is

an elementary function of φ.

Necessary Background:

• Treewidth, Pathwidth, Parameterized Complexity

• Meta-Theorems, Courcelle’s Theorem, Non-elementary dependence

• Meta-Theorems with elementary dependence



Background I:

Graph Widths

and

Parameterized Complexity
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A connection to graph classes:

Corresponding interval graph:

Treewidth(G) minω(G′) where G′ is chordal supergraph of G

Pathwidth(G) minω(G′) where G′ is interval supergraph of G

Treedepth(G) minω(G′) where G′ is trivially perfect supergraph of G
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• Treewidth k is a much wider class than Pathwidth k.

• But most problems have same complexity for both parameters!

• IND. SET, DOM. SET, STEINER TREE, COLORING,. . .

• (HAMILTONICITY?)

• In particular, almost all natural problems which are FPT for pathwidth,

are FPT for treewidth.

Exception: GRUNDY COLORING

Theorem: GRUNDY COLORING is FPT parameterized by pathwidth but

W[1]-hard parameterized by treewidth. [Belmonte, Kim, L., Mitsou, Otachi,

ESA 2020 SIDMA 2022].
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Meta-Theorems
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“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”
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• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by

treewidth.
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

Standard Example: 2-Dominating set

∃x1∃x2∀x3 (x1 = x3 ∨ x2 = x3 ∨ x1 ∼ x3 ∨ x2 ∼ x3)
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

∃X1∃X2∃X3

(

∀x1 (x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧

∀x2 (x1 ∼ x2 → (¬(x1 ∈ X1 ∧ x2 ∈ X1)) ∧

(¬(x1 ∈ X2 ∧ x2 ∈ X2)) ∧

(¬(x1 ∈ X3 ∧ x2 ∈ X3)))
)
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• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|

• Problem: f is approximately 22
2
. .

.
2tw

, where the height of the tower is

upper-bounded by the number of quantifier alternations in φ.

• Serious Problem: This tower of exponentials cannot be avoided1

even for FO logic on trees!

• “The complexity of first-order and monadic second-order logic

revisited”, [Frick and Grohe, APAL 2004].

• Question: Does f become nicer if we consider more restricted

parameters?

1Assuming P 6=NP or FPT6=W[1].
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• Vertex Cover

• MSO with q quantifiers can be decided in 22
O(vc+q)

• FO with q quantifiers can be decided in 2O(vc·q)qO(q)

• These are optimal under ETH.

• There exists fixed MSO formula which cannot

be decided in 22
o(vc)

.

• “Algorithmic Meta-Theorems for Restrictions of

Treewidth”, [L. ESA 2010, Algorithmica 2012].
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• Tree-depth

• MSO/FO with q quantifiers can be decided by an

algorithm running in time 22
. .

.
2td+q

• . . . where height of tower is at most td (even for

large q)

• This is optimal under ETH.

• “Kernelizing MSO Properties of Trees of Fixed Height,

and Some Consequences”, [Gajarsky and Hlineny,

MFCS 2012, LMCS 2015].

• “Model-Checking Lower Bounds for Simple Graphs”,

[L. ICALP 2013, LMCS 2014].
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• For treewidth we can solve MSO in f(tw, φ) · n

• But f is non-elementary!

• Inevitable even for tw = 1 and FO logic!

• For tree-depth we can solve MSO in f(td, φ) · n

• For each fixed value of td, f is an elementary func-

tion of φ.

• Can the same be done for pathwidth?

• (For MSO logic → No [Frick and Grohe, APAL 2004])
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Vertex Cover

Independent Set

• Given a graph with vertex cover

vc = 5
• we want to check an FO property

φ with q = 3 variables.
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• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.
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Vertex Cover

Independent Set

Same
Size ≤ q

• We observe that some vertices

of the independent set have the

same neighbors.

• These vertices should be equiva-

lent.

• Key idea: if a group has > q ver-

tices, we can simply remove one!
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. . .

. . . . . . . . .

. . .
. . .

We have a rooted tree with d layers (d fixed)
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0

1

2

d− 1

d

. . .

. . . . . . . . .

deg≤ q

≤ q

types≤ q

types≤ qq

types≤ qq
q

. . .

There are qq different “types” of vertices at level 2. Applying the same

argument to level 3, there are qq
q

types of vertices of level 3. . . .

In the end graph has bounded size!2

2bounded by a tower of exponentials of height d.



FO logic is local

FO Logic and Pathwidth 17 / 24

Classical Example:

FO logic with q quantifiers cannot distinguish a long (say 4q) path, and a

union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!
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Parameter FO MSO

Treewidth Non-elementary on Trees [FrickG04] Non-elementary on Trees [FrickG04]
Pathwidth Non-elementary on Caterpillars [FrickG04]
Tree-depth Elementary [GajarskyH15] Elementary [GajarskyH15]
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Parameter FO MSO

Treewidth Non-elementary on Trees [FrickG04] Non-elementary on Trees [FrickG04]
Pathwidth Elementary Non-elementary on Caterpillars [FrickG04]
Tree-depth Elementary [GajarskyH15] Elementary [GajarskyH15]

• Last missing case where it was not known if depen-

dence is elementary.

• Complexity different for pathwidth/treewidth (!!)

• Complexity different for FO/MSO (cf. tree-depth)

To obtain algorithm will use:

• A ranked version of path decompositions that will

make graph hierarchical (like tree-depth).

• A generalized version of the “delete identical parts” ar-

gument.

• To find identical parts: a surgical operation that relies

on the locality of FO logic.
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3

4

5

• Intuition: try to delete identical parts on lower levels.

• Works well for level 1, there are only 2O(pw) types.

• Strategy breaks down at level 2.

• No twins are guaranteed to exist.

• Deleting something makes locally detectable changes to graph.

• Must carefully cut out parts to make sure formula validity is not

affected.
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Idea: Path ↔ Path+Ring transformation.

• Identify two areas where for a large radius things are similar.

• Cut graph in middle of each area.

• Paste into a main path and a ring.

• Appropriately chosen radius → area around each vertex the same →
FO-equivalent graphs.
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• Inductive Hypothesis: intervals of color ≤ i→ length at most f(i, q).
• Process color i+ 1:

• Find q + 1 identical blocks where surgical operation applies

• Argue that one can be shortened.

• → interval has length ≤ f(i+ 1, q), (which is > 2f(i,q)).

• End result: bounded-degree graph.
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• FO model-checking is elementary for graphs of bounded pathwidth.

• Surprising because tw/pw are usually similar.

• Surprising that this was not known!

Open problems:

• Extension to dense graphs?

• Extension to linear clique-width impossible due to hardness for

threshold graphs.

• Other graph classes with elementary model-checking?

• Realistic meta-theorems?
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• FO model-checking is elementary for graphs of bounded pathwidth.

• Surprising because tw/pw are usually similar.

• Surprising that this was not known!

Open problems:

• Extension to dense graphs?

• Extension to linear clique-width impossible due to hardness for

threshold graphs.

• Other graph classes with elementary model-checking?

• Realistic meta-theorems?

Thank you!
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