Fine-Grained Meta-Theorems for Vertex Integrity

Michael Lampis LAMSADE Valia Mitsou IRIF

Oct 14th 2021

Vertex Integrity

- k measures how "easy" a graph is
- Many ways to measure this.
- Algorithmically important:
 - A problem can be FPT (solvable in $f(k)n^{O(1)}$) or not.
 - The function f(k) may be different.

• Price of Generality

- Sometimes two parameters have a clear inclusion relation.
- Algorithmically, this means one is more general, the other "easier".
- Want to understand algorithmic cost of generality.

CW tw pw td VC

- This talk: Vertex Integrity
 - Want to understand relations between:
 - 1. Tree-depth
 - 2. Vertex Integrity
 - 3. Vertex Cover
 - How does complexity increase as we climb up?

Parameters Review

 Graph Structure Parameter 	S:
---	----

- Clique-width
- Treewidth
- Pathwidth
- Tree-depth
- Vertex Integrity
- Vertex Cover
- Arrows indicate Generalization
 - If G has pathwidth k, it has treewidth $\leq k$.
 - (Relation trickier for clique-width/treewidth).
- Algorithms propagate **down**.
- Hardness propagates **up**.

- Treewidth measures "tree-likeness"
- Complicated definition through tree decompositions.
- Pathwidth: restriction where decomposition is a path.
- Trees have treewidth 1 (but pathwidth up to $\log n$).
- Caterpillars have pathwidth 1.
- HUGE number of problems FPT by tw.
- BUT in some cases too general...

• Tree-depth

$$\operatorname{td}(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \operatorname{cc}(G-S)} \operatorname{td}(S') \right\}$$

- Select small separator S so that all components have small tree-depth
- (Base case: K_1 has tree-depth 1)

• Vertex Integrity

$$\operatorname{vi}(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \operatorname{cc}(G-S)} |S'| \right\}$$

- Select small separator ${\cal S}$ so that all components have small size

CW

• Vertex Cover

$$vc(G) = \min_{S \subseteq V(G) \land G - S \text{ stable}} \{|S|\}$$

• Select small separator S so that all components **are singletons**.

- Will focus on tree-depth, vertex integrity, vertex cover
- Measure "complexity" as size of a small separator such that:
 - Each component is recursively defined as simple (tree-depth).
 - Each component is small, therefore simple (vertex integrity).
 - Each component is one vertex, therefore simple.

CW tw pw td VC

Dauphi

• Small vertex integrity, large vertex cover

CW tw pw td VC

• Inclusions are strict!

• Large vertex integrity, small tree-depth

CW tw pw td VC

- Generality: gap is huge between tree-depth and vertex integrity
 - If we fix k there are only polynomially many graphs of order n with vc, vi at most k
 - But exponentially many graphs with $td \le k$.
- Intuitively problems should become harder in this gap.
- Intuitively this gap should not be so important.
 - This is (more or less) the message of this talk.

CW

tw

pw

td

How to measure algorithmic cost?

- Look at many individual problems
 - For vc → vi → td cf.
 "Exploring the Gap Between Treedepth and Vertex pw Cover Through Vertex Integrity", Gima et al. CIAC 102021
 Main measure (communicately)
 - Main message (approximately): "Problems hard for td but easy for vc are usually" easy for vi"

CW

tw

Fine-Grained Meta-Theorems for Vertex Integrity

- Consider categories of problems expressible in a certain logic
 - \rightarrow Meta-Theorems
- Measure complexity using ETH
 - \rightarrow Fine-Grained
- Main message: Vertex Integrity is a little harder than vertex cover and a lot easier than tree-depth.

CW

tw

pw

tc

Meta-Theorems

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

- Statements of the form:
 "Every problem in family *F* is *tractable*"
 - Family \mathcal{F} : often "expressible in FO/MSO or other logic"
 - Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

• Notice that since this applies to treewidth, it applies to pathwidth, tree-depth, vertex integrity, vertex cover!

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$\exists x_1 \exists x_2 \forall x_3 \, (x_1 = x_3 \lor x_2 = x_3 \lor x_1 \sim x_3 \lor x_2 \sim x_3)$$

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$\exists X_1 \exists X_2 \exists X_3 \quad \left(\forall x_1 \quad (x_1 \in X_1 \lor x_1 \in X_2 \lor x_1 \in X_3) \land \\ \forall x_2 \quad (x_1 \sim x_2 \rightarrow (\neg (x_1 \in X_1 \land x_2 \in X_1)) \land \\ (\neg (x_1 \in X_2 \land x_2 \in X_2)) \land \\ (\neg (x_1 \in X_3 \land x_2 \in X_3))) \right)$$

Dauphine | PSL 😿

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$\forall X_1 \qquad ((\exists x_1 \exists x_2 \ x_1 \in X_1 \land x_2 \notin X_1) \rightarrow \\ \exists x_3 \exists x_4 \ (x_3 \in X_1 \land x_4 \notin X_1 \land x_3 \sim x_4))$$

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives $(\lor, \land, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity Brute-force Complexity:

- FO: n^q
- MSO: 2^{nq}

Note: MSO=MSO₁. No edge set quantifiers in this talk.

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

- 2^{tw}
- Problem: *f* is approximately $2^{2^{2^{-1}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property φ in time

 $f(\mathrm{tw},\phi)\cdot|G|$

2^{tw}

- Problem: *f* is approximately $2^{2^{-1}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ .
- Serious Problem: This tower of exponentials cannot be avoided¹ even for FO logic on trees!
 - "The complexity of first-order and monadic second-order logic revisited", Frick and Grohe, APAL 2004.
- **Question**: Does *f* become nicer if we go lower in our parameter map?

Known Fine-Grained Meta-Theorems

• Vertex Cover

- MSO with q quantifiers can be decided in $2^{2^{O(vc+q)}}$
- FO with q quantifiers can be decided in $2^{O(\text{vc} \cdot q)}q^{O(q)}$
- These are **optimal under ETH**.
 - There exists fixed MSO formula which cannot be decided in $2^{2^{o(vc)}}$.
- "Algorithmic Meta-Theorems for Restrictions of Treewidth", L. Algorithmica 2012.

tŵ pw td

CW

Known Fine-Grained Meta-Theorems (cont'd)

This talk

•	Vertex Integrity	CW
	• FO can be done in: $2^{O(vi^2q)}q^{O(q)}$	Â
	• MSO can be done in: $2^{2^{O(vi^2 + vi \cdot q)}}$	tw
	 Both of these results are optimal under the ETH. 	
•	Comparison:	pw
	$\bullet~$ For vc we have similar complexity, without the	
	square. MSO in $2^{2^{O(vc+q)}}$, FO in $2^{O(vc \cdot q)}$.	td
	• For td we have tower of exps.	Y
•	Conclusion:	vi
	• Complexity of vi much closer to vc , slightly worse.	本
		vc

14 / 33

Meta-Theorems for Vertex Integrity

High-level Idea

- Algorithm idea similar to meta-theorems for vertex cover and tree-depth.
- Kernelization argument.
 - If graph too large, we can delete something without affecting whether given property is satisfied.
- Brute-force.
 - Once previous argument does not apply, size of graph can be bounded by function of parameter and q.
 - Run trivial algorithm on this kernel.
- Main Kernelization Trick:
 - If we have many copies of the same thing, we can delete some.
 - (cf. What is the counting power of FO and MSO logic?)

- Given a graph with vertex cover vc = 5
- we want to check an FO property ϕ with q = 3 variables.

- Sentence has form $\exists x_1 \psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1 \psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- Sentence has form $\exists x_1\psi(x_1)$
- We must "place" x_1 somewhere in the graph
- If we try all cases we get n^q running time.

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

Vertex Cover Meta-Theorem – Reminder

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has > q vertices, we can simply remove one!

Summary of previous argument:

- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has > q vertices, delete one, repeat.
- If not, $|V(G)| \le q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\text{vc}\cdot q)}q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

We need at least 5 quantifiers to construct a formula that is true on exactly one of these graphs.

Summary of previous argument:

- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has > q vertices, delete one, repeat.
- If not, $|V(G)| \le q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\text{vc} \cdot q)}q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

What about MSO?

MSO and Vertex Cover

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to q 1 quantifiers.
- Want to check if $\exists X_1\psi(X_1)$, where ψ has q-1 quantifiers.

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to q 1 quantifiers.
- Want to check if $\exists X_1\psi(X_1)$, where ψ has q-1 quantifiers.

- For any choice of X_1 a set of 2^{q-1} identical vertices remains.
- Apply inductive hypothesis.

MSO and Vertex Cover

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q .

- Graph has 2^{vc} sets of equivalent vertices.
- While one has size $> 2^q$, delete a vertex.
- Otherwise, $|V(G)| \leq 2^{\operatorname{vc}+q}$.
- Brute force:

$$2^{nq} \le 2^{2^{vc+q}q} = 2^{2^{O(vc+q)}}$$

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

- Main idea: some components of G S are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of G S are "the same" if there exists an automorphism of G that maps C_1 to C_2 .

- Previously:
 - We defined "equivalence" for vertices.
 - We showed that if we have many equivalent vertices, we can delete one.
 - We counted how many equivalence types there are.
- Now:
 - We defined "equivalence" for components of G S.

- Previously:
 - We defined "equivalence" for vertices.
 - We showed that if we have many equivalent vertices, we can delete one.
 - We counted how many equivalence types there are.
- Now:
 - We defined "equivalence" for components of G S.

What do we need now?

- Understand counting power of FO/MSO for collections of identical components.
- Count number of possible component types.

How many types of components?

- Equivalent components of G S are
 - The same internally.
 - The same with respect to S.
- How many choices?
- Recall, components of G-S have size $\leq vi$
 - At most 2^{vi²} different internal structures.
 - At most 2^{vi^2} different connections to S.
- All in all, $2^{O(vi^2)}$ possible types.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have > q components, we can delete one.

Induction:

- Suppose true for q-1 quantifiers.
- We have a formula $\exists x_1\psi(x_1)$, where ψ has q-1 quantifiers.
- Mapping it to any component is the same.
- We have > q 1 identical components left.
- By induction, we can delete one.

Counting Power – MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.

Problem:

- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power – MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.

Problem:

- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power – MSO (cont'd)

How many components can we distinguish with q MSO quantifiers?

Claim: if we have $> 2^{vi \cdot q}$ components, we can delete one.

Solution:

- Our components have size \leq vi.
- There are at most 2^{vi} intersections of X_1 with each component.
- If we have $> 2^{vi \cdot q}$ identical components initially...
- ... by PHP one intersection type appears $> 2^{vi \cdot q}/2^{vi} = 2^{vi(q-1)}$ times.
- These components are identical, use inductive hypothesis!

Putting things together

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\operatorname{vi} \cdot q}$ for MSO logic.

Putting things together

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\operatorname{vi} \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.

Putting things together

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{\mathrm{vi} \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.
- For MSO logic
 - Reduced graph has size $2^{vi^2 + vi \cdot q}$.
 - Trivial algorithm runs in $2^{2^{vi^2 + vi \cdot q}}$.
- Are these meta-theorems optimal?

Fine-Grained Lower Bounds

Fine-Grained Lower Bounds

High-Level Idea

- We claim that we need time at least
 - $2^{\operatorname{vi}^2 \cdot q}$ for FO $2^{2^{\operatorname{vi}^2}}$ for MSO

Strategy:

- Take an arbitrary n-vertex graph G
- Encode it into a graph H with the following properties:
 - $\operatorname{vi}(H) = \sqrt{\log n}$
 - Whether $uv \in E(G)$ can be tested with a simple FO formula on H
- Translate questions about G into questions about H.
 - G has k-clique? \rightarrow FO on H with q = k
 - G is 3-colorable? \rightarrow MSO on H with q = O(1)

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 🔀

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to *S* encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to *S* encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to *S* encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 😿

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of H − S made up of two cliques of size √log n.
- Connections from the cliques to S encode indices.

Dauphine | PSL 😿

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Putting Things Together

- Can translate *G* to *H* so that:
 - $\operatorname{vi}(H) = O(\sqrt{\log n})$
 - Can "read" G in H.
- Is G 3-colorable?
 - Do there exist three sets of vertices partitioning *H* that represent independent sets in *G*?
 - MSO-expressible with q = O(1).
 - If $2^{2^{o(vi^2)}}$ algorithm we have $2^{o(n)}$ algorithm for 3-COLORING!!
- Does *G* have *k*-Ind. Set?
 - Do there exist k vertices of H belonging to cliques that represent an independent set of G?
 - FO-expressible with q = O(k).
 - If $2^{o(vi^2 \cdot q)}$ algorithm we have $2^{o(\log n \cdot k)} = n^{o(k)}$ algorithm for k-CLIQUE!!

Conclusions – Open Problems

Conclusions

- Vertex Integrity "between" vertex cover and tree-depth.
- "(Double-)Exponential in the square" behavior is natural and optimal.

Questions:

- What about MSO₂?
- Other widths between vertex integrity and tree-depth?

Conclusions

- Vertex Integrity "between" vertex cover and tree-depth.
- "(Double-)Exponential in the square" behavior is natural and optimal.

Questions:

- What about MSO₂?
- Other widths between vertex integrity and tree-depth?

Thank you!

