Fine-Grained Meta-Theorems for Vertex Integrity

Michael Lampis
LAMSADE

Valia Mitsou
IRIF

Oct 14th 2021
Vertex Integrity
Graph Structure Parameters:
- k measures how “easy” a graph is.
- Many ways to measure this.
- Algorithmically important:
 - A problem can be FPT (solvable in $f(k)n^{O(1)}$) or not.
 - The function $f(k)$ may be different.
Price of Generality

- Sometimes two parameters have a clear inclusion relation.
- Algorithmically, this means one is more general, the other "easier".
- Want to understand algorithmic cost of generality.
- **This talk**: Vertex Integrity
 - Want to understand relations between:
 1. Tree-depth
 2. Vertex Integrity
 3. Vertex Cover
 - How does complexity increase as we climb up?
Parameters Review

- Graph Structure Parameters:
 - Clique-width
 - Treewidth
 - Pathwidth
 - Tree-depth
 - Vertex Integrity
 - Vertex Cover

- Arrows indicate Generalization
 - If G has pathwidth k, it has treewidth $\leq k$.
 - (Relation trickier for clique-width/treewidth).

- Algorithms propagate down.
- Hardness propagates up.
- Treewidth measures “tree-likeness”
- **Complicated** definition through **tree decompositions**.
- Pathwidth: restriction where decomposition is a path.
- Trees have treewidth 1 (but pathwidth up to $\log n$).
- Caterpillars have pathwidth 1.
- **HUGE** number of problems FPT by tw.
- **BUT** in some cases too general...
- Tree-depth

\[td(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \text{cc}(G - S)} td(S') \right\} \]

- Select small separator \(S \) so that all components have small **tree-depth**
- (Base case: \(K_1 \) has tree-depth 1)
Parameters Review

- Vertex Integrity

\[\text{vi}(G) = \min_{S \subseteq V(G)} \left\{ |S| + \max_{S' \in \text{cc}(G-S)} |S'| \right\} \]

- Select small separator \(S \) so that all components have small size
- **Vertex Cover**

 \[vc(G) = \min_{S \subseteq V(G) \land G - S \text{ stable}} \{|S|\} \]

- **Select small separator** \(S \) so that all components are **singletons**.
A Closer Look

- Will focus on tree-depth, vertex integrity, vertex cover
- Measure “complexity” as size of a small separator such that:
 - Each component is recursively defined as simple (tree-depth).
 - Each component is small, therefore simple (vertex integrity).
 - Each component is one vertex, therefore simple.
A Closer Look

- Inclusions are strict!

- Small vertex integrity, large vertex cover
A Closer Look

- Inclusions are strict!
- Large vertex integrity, small tree-depth
• Generality: gap is **huge** between tree-depth and vertex integrity
 • If we fix k there are only polynomially many graphs of order n with $vc, vi \leq k$
 • But exponentially many graphs with $td \leq k$.
• **Intuitively** problems should become harder in this gap.
• **Intuitively** this gap should not be so important.
 • This is (more or less) the message of this talk.
How to measure algorithmic cost?

- Look at many individual problems
 - For $\text{vc} \rightarrow \text{vi} \rightarrow \text{td}$ cf. “Exploring the Gap Between Treedepth and Vertex Cover Through Vertex Integrity”, Gima et al. CIAC 2021
 - Main message (approximately):
 “Problems hard for td but easy for vc are usually easy for vi”
Consider **categories** of problems expressible in a certain logic

- **Meta-Theorems**

- Measure complexity using ETH

- **Fine-Grained**

Main message: Vertex Integrity is **a little** harder than vertex cover and **a lot** easier than tree-depth.
Meta-Theorems
Meta-Theorems Reminder

- Statements of the form:
 “Every problem in family \mathcal{F} is tractable”
 - Family \mathcal{F}: often “expressible in FO/MSO or other logic”
 - Tractable: often “FPT parameterized by some parameter”
Statements of the form:
“Every problem in family \mathcal{F} is tractable”

- Family \mathcal{F}: often “expressible in FO/MSO or other logic”
- Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.
Meta-Theorems Reminder

• Statements of the form:
 “Every problem in family \(\mathcal{F} \) is tractable”

 • Family \(\mathcal{F} \): often “expressible in FO/MSO or other logic”
 • Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.

• Notice that since this applies to treewidth, it applies to pathwidth, tree-depth, vertex integrity, vertex cover!
FO and MSO logic reminder

FO logic:
- Two relations: $=$ and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives ($\lor, \land, \neg, \rightarrow$)

Standard Example: 2-Dominating set

$$
\exists x_1 \exists x_2 \forall x_3 (x_1 = x_3 \lor x_2 = x_3 \lor x_1 \sim x_3 \lor x_2 \sim x_3)
$$
FO and MSO logic reminder

FO logic:
- Two relations: $= \text{ and } \sim$ (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives (\lor, \land, \neg, \to)

MSO logic: FO logic plus the following
- \in relation
- (Quantified) **Set** Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$\exists X_1 \exists X_2 \exists X_3 \left(\forall x_1 \ (x_1 \in X_1 \lor x_1 \in X_2 \lor x_1 \in X_3) \land \\
\forall x_2 \ (x_1 \sim x_2 \to (\neg(x_1 \in X_1 \land x_2 \in X_1)) \land \\
(\neg(x_1 \in X_2 \land x_2 \in X_2)) \land \\
(\neg(x_1 \in X_3 \land x_2 \in X_3))) \right)$$
FO and MSO logic reminder

FO logic:

- Two relations: = and \(\sim \) (equality, adjacency)
- (Quantified) Variables \(x_1, x_2, \ldots \) represent vertices
- Standard boolean connectives \((\lor, \land, \neg, \rightarrow) \)

MSO logic: FO logic plus the following

- Elements relation
- (Quantified) Set Variables \(X_1, X_2, \ldots \) represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

\[
\forall X_1 \quad ((\exists x_1 \exists x_2 \ x_1 \in X_1 \land x_2 \notin X_1) \rightarrow \\
\exists x_3 \exists x_4 \ (x_3 \in X_1 \land x_4 \notin X_1 \land x_3 \sim x_4))
\]
FO and MSO logic reminder

FO logic:
- Two relations: $=$ and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives ($\lor, \land, \neg, \rightarrow$)

MSO logic: FO logic plus the following
- \in relation
- (Quantified) Set Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

Brute-force Complexity:
- FO: n^q
- MSO: 2^{nq}

Note: MSO=MSO$_1$. No edge set quantifiers in this talk.
Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$f(tw, \phi) \cdot |G|$$

Problem: f is approximately $2^{2^{\cdots^{2^{tw}}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ.
• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$f(tw, \phi) \cdot |G|$$

Problem: f is approximately $2^{2^{2^{\cdots^{2^{tw}}}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.

Serious Problem: This tower of exponentials cannot be avoided\(^1\) even for FO logic on trees!

Question: Does f become nicer if we go lower in our parameter map?

\(^1\)Assuming P≠NP
Known Fine-Grained Meta-Theorems

- Vertex Cover
 - MSO with q quantifiers can be decided in $2^{2^{O(vc+q)}}$
 - FO with q quantifiers can be decided in $2^{O(vc \cdot q)} q^{O(q)}$
 - These are optimal under ETH.
 - There exists fixed MSO formula which cannot be decided in $2^{2^{o(vc)}}$.
Known Fine-Grained Meta-Theorems (cont’d)

- Tree-depth
 - MSO/FO with q quantifiers can be decided by an algorithm running in time $2^{2^{td+q}}$
 - …where height of tower is at most td (even for large q)
 - This is optimal under ETH.
This talk

- **Vertex Integrity**
 - FO can be done in: $2^{O(vi^2q)}q^{O(q)}$
 - MSO can be done in: $2^{2^{O(vi^2+vi\cdot q)}}$
 - Both of these results are optimal under the ETH.

- **Comparison:**
 - For vc we have similar complexity, without the square.
 MSO in $2^{2^{O(vc+q)}}$, FO in $2^{O(vc\cdot q)}$.
 - For td we have tower of exps.

- **Conclusion:**
 - Complexity of vi much closer to vc, slightly worse.
Meta-Theorems for Vertex Integrity
High-level Idea

- Algorithm idea similar to meta-theorems for **vertex cover** and **tree-depth**.
- Kernelization argument.
 - If graph too large, we can delete something without affecting whether given property is satisfied.
- Brute-force.
 - Once previous argument does not apply, size of graph can be bounded by function of parameter and q.
 - Run trivial algorithm on this kernel.
- Main Kernelization Trick:
 - If we have many copies of the same thing, we can delete some.
 - (cf. What is the counting power of FO and MSO logic?)
Vertex Cover Meta-Theorem – Reminder

- Given a graph with vertex cover $\text{vc} = 5$
- we want to check an FO property ϕ with $q = 3$ variables.
Sentence has form $\exists x_1 \psi(x_1)$

- We must “place” x_1 somewhere in the graph
- If we try all cases we get n^q running time.
Sentence has form $\exists x_1 \psi(x_1)$

We must “place” x_1 somewhere in the graph

If we try all cases we get n^q running time.
Sentence has form $\exists x_1 \psi(x_1)$

We must “place” x_1 somewhere in the graph

If we try all cases we get n^q running time.
We observe that some vertices of the independent set have the same neighbors.

These vertices should be equivalent.
We observe that some vertices of the independent set have the same neighbors.

These vertices should be equivalent.

Key idea: if a group has $> q$ vertices, we can simply remove one!
Summary of previous argument:
- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has $> q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q2^{O(vc)}$.
- Trivial algorithm now runs in $2^{O(vc \cdot q)} q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

We need at least 5 quantifiers to construct a formula that is true on exactly one of these graphs.
Summary of previous argument:

- Partition graph into $2^{vc} + vc$ sets of equivalent vertices.
- If a set has $> q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q2^{O(vc)}$.
- Trivial algorithm now runs in $2^{O(vc \cdot q)}q^q$.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

What about MSO?
Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q.

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to $q - 1$ quantifiers.
- Want to check if $\exists X_1 \psi(X_1)$, where ψ has $q - 1$ quantifiers.
Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2^q.

Proof by induction:

- Want to prove, if set has size $> 2^q$, can delete one vertex.
- Suppose OK for up to $q - 1$ quantifiers.
- Want to check if $\exists X_1 \psi(X_1)$, where ψ has $q - 1$ quantifiers.

For any choice of X_1 a set of 2^{q-1} identical vertices remains.
- Apply inductive hypothesis.
Key idea:

MSO logic with \(q \) quantifiers can distinguish sets of size at most \(2^q \).

- Graph has \(2^{\text{vc}} \) sets of equivalent vertices.
- While one has size \(> 2^q \), delete a vertex.
- Otherwise, \(|V(G')| \leq 2^{\text{vc}+q} \).
- Brute force:
 \[
 2^{nq} \leq 2^{2^{\text{vc}+q}q} = 2^{2^{O(\text{vc}+q)}}
 \]
Main idea: some components of $G - S$ are the same.
- The same internally.
- The same with respect to S.

More precisely:
- Two components C_1, C_2 of $G - S$ are “the same” if there exists an automorphism of G that maps C_1 to C_2.
What is different now?

- Main idea: some components of $G - S$ are the same.
 - The same internally.
 - The same with respect to S.
- More precisely:
 - Two components C_1, C_2 of $G - S$ are “the same” if there exists an automorphism of G that maps C_1 to C_2.
What is different now?

• Main idea: some components of $G - S$ are the same.
 • The same internally.
 • The same with respect to S.
• More precisely:
 • Two components C_1, C_2 of $G - S$ are “the same” if there exists an automorphism of G that maps C_1 to C_2.
Previously:
- We defined “equivalence” for vertices.
- We showed that if we have many equivalent vertices, we can delete one.
- We counted how many equivalence types there are.

Now:
- We defined “equivalence” for components of $G - S$.
Vertex Integrity

- Previously:
 - We defined “equivalence” for vertices.
 - We showed that if we have many equivalent vertices, we can delete one.
 - We counted how many equivalence types there are.

- Now:
 - We defined “equivalence” for components of $G - S$.

What do we need now?
- Understand counting power of FO/MSO for collections of identical components.
- Count number of possible component types.
How many types of components?

- Equivalent components of $G - S$ are
 - The same internally.
 - The same with respect to S.

- How many choices?
- Recall, components of $G - S$ have size $\leq v_i$
 - At most $2^{v_i^2}$ different internal structures.
 - At most $2^{v_i^2}$ different connections to S.

- All in all, $2^{O(v_i^2)}$ possible types.
How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.

Induction:

- Suppose true for $q - 1$ quantifiers.
- We have a formula $\exists x_1 \psi(x_1)$, where ψ has $q - 1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q - 1$ identical components left.
- By induction, we can delete one.
How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $> q$ components, we can delete one.

Induction:

- Suppose true for $q - 1$ quantifiers.
- We have a formula $\exists x_1 \psi(x_1)$, where ψ has $q - 1$ quantifiers.
- Mapping it to any component is the same.
- We have $> q - 1$ identical components left.
- By induction, we can delete one.
How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $> q$ components, we can delete one.

Induction:

- Suppose true for $q - 1$ quantifiers.
- We have a formula $\exists x_1 \psi(x_1)$, where ψ has $q - 1$ quantifiers.
- Mapping it to any component is the same.
- We have $> q - 1$ identical components left.
- By induction, we can delete one.
How many components can we distinguish with q MSO quantifiers?

Claim: if we have $ \geq ??$ components, we can delete one.

Problem:

- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?
How many components can we distinguish with q MSO quantifiers?

Claim: if we have $\geq ??$ components, we can delete one.

Problem:
- When we select a set X_1 this may distinguish many components.
- Intuitively: if X_1 interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?
How many components can we distinguish with q MSO quantifiers?

Claim: if we have $> 2^{vi \cdot q}$ components, we can delete one.

Solution:

- Our components have size $\leq vi$.
- There are at most 2^{vi} intersections of X_1 with each component.
- If we have $> 2^{vi \cdot q}$ identical components initially...
- ...by PHP one intersection type appears $> 2^{vi \cdot q} / 2^{vi} = 2^{vi(q-1)}$ times.
- These components are identical, use inductive hypothesis!
Putting things together

- There are at most $2^{v_i^2}$ types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{v_i \cdot q}$ for MSO logic.
Putting things together

- There are at most 2^{vi^2} types of components.
- Maximum number of same components in reduced graph is
 - q for FO logic.
 - $2^{vi \cdot q}$ for MSO logic.
- For FO logic
 - Reduced graph has size $q2^{vi^2}$.
 - Trivial algorithm runs in $2^{q \cdot vi^2} q^q$.
Putting things together

- There are at most \(2^{vi^2}\) types of components.
- Maximum number of same components in reduced graph is
 - \(q\) for FO logic.
 - \(2^{vi \cdot q}\) for MSO logic.
- For FO logic
 - Reduced graph has size \(q 2^{vi^2}\).
 - Trivial algorithm runs in \(2^{q \cdot vi^2} q^q\).
- For MSO logic
 - Reduced graph has size \(2^{vi^2 + vi \cdot q}\).
 - Trivial algorithm runs in \(2^{2^{vi^2 + vi \cdot q}}\).
- Are these meta-theorems optimal?
Fine-Grained Lower Bounds
Fine-Grained Lower Bounds

High-Level Idea
- We claim that we need time at least
 - $2^{vi^2} \cdot q$ for FO
 - 2^{2vi^2} for MSO

Strategy:
- Take an arbitrary n-vertex graph G
- Encode it into a graph H with the following properties:
 - $vi(H) = \sqrt{\log n}$
 - Whether $uv \in E(G)$ can be tested with a simple FO formula on H
- Translate questions about G into questions about H.
 - G has k-clique? \rightarrow FO on H with $q = k$
 - G is 3-colorable? \rightarrow MSO on H with $q = O(1)$
Separator has $2\sqrt{\log n}$ vertices.

Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.

Connections from the cliques to S encode indices.
Separator has $2\sqrt{\log n}$ vertices.

Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.

Connections from the cliques to S encode indices.
Separator has $2\sqrt{\log n}$ vertices.
Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.
Connections from the cliques to S encode indices.
Encoding graphs with simple graphs

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

$n = 512 = 2^9$
$\sqrt{\log n} = 3$

Symmetry Breakers

Bits

204 = 011 001 100
261 = 100 000 101
25 = 000 011 001

204 = 100 000 101
261 = 011 001 100
25 = 000 011 001
Separator has \(2\sqrt{\log n}\) vertices.

Each edge of \(G\) is represented by a component of \(H - S\) made up of two cliques of size \(\sqrt{\log n}\).

Connections from the cliques to \(S\) encode indices.
Separator has $2\sqrt{\log n}$ vertices.
Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.
Connections from the cliques to S encode indices.
Separator has $2\sqrt{\log n}$ vertices.
Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.
Connections from the cliques to S encode indices.
Encoding graphs with simple graphs

- Separator has $2\sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

$n = 512 = 2^9$

$\sqrt{\log n} = 3$

Bits

Symmetry Breakers

204 = 011 001 100
261 = 100 000 101
25 = 000 011 001
Separator has $2\sqrt{\log n}$ vertices.

Each edge of G is represented by a component of $H - S$ made up of two cliques of size $\sqrt{\log n}$.

Connections from the cliques to S encode indices.
Symmetry Breakers

Bits

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in \mathcal{S}.

\[
204 = 011\ 001\ 100 \\
261 = 100\ 000\ 101 \\
25 = 000\ 011\ 001
\]
Goal: a simple FO formula that states: these two edges have a common endpoint.

Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Symmetry Breakers

Bits

204 = 011 001 100
261 = 100 000 101
25 = 000 011 001
Goal: a simple FO formula that states: these two edges have a common endpoint.
Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.
Goal: a simple FO formula that states: these two edges have a common endpoint.

Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.
Encoding graphs with simple graphs (cont’d)

Symmetry Breakers

Bits

204 = 011 001 100
261 = 100 000 101
25 = 000 011 001

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.
Symmetry Breakers

Bits

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.
Goal: a simple FO formula that states: these two edges have a common endpoint.

Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Symmetry Breakers

Bits

$204 = 011\ 001\ 100$

$261 = 100\ 000\ 101$

$25 = 000\ 011\ 001$
Putting Things Together

• Can translate G to H so that:
 - $v_1(H) = O(\sqrt{\log n})$
 - Can “read” G in H.

• Is G 3-colorable?
 - Do there exist three sets of vertices partitioning H that represent independent sets in G?
 - MSO-expressible with $q = O(1)$.
 - If $2^{2^{o(v_1^2)}}$ algorithm we have $2^{o(n)}$ algorithm for 3-COLORING!!

• Does G have k-Ind. Set?
 - Do there exist k vertices of H belonging to cliques that represent an independent set of G?
 - FO-expressible with $q = O(k)$.
 - If $2^{o(v_1^2 \cdot q)}$ algorithm we have $2^{o(\log n \cdot k)} = n^{o(k)}$ algorithm for k-CLIQUE!!
Conclusions – Open Problems
Conclusions

- Vertex Integrity “between” vertex cover and tree-depth.
- “(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

- What about MSO$_2$?
- Other widths between vertex integrity and tree-depth?
Conclusions

- Vertex Integrity “between” vertex cover and tree-depth.
- “(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

- What about MSO$_2$?
- Other widths between vertex integrity and tree-depth?

Thank you!