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A Map of Parameters
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• Graph Structure Parameters:

• k measures how “easy” a graph is

• Many ways to measure this.

• Algorithmically important:

• A problem can be FPT (solvable in f(k)nO(1)) or

not.

• The function f(k) may be different.
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• Price of Generality

• Sometimes two parameters have a clear inclusion

relation.

• Algorithmically, this means one is more general, the

other “easier”.

• Want to understand algorithmic cost of generality.
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• This talk: Vertex Integrity

• Want to understand relations between:

1. Tree-depth

2. Vertex Integrity

3. Vertex Cover

• How does complexity increase as we climb up?
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• Graph Structure Parameters:

• Clique-width

• Treewidth

• Pathwidth

• Tree-depth

• Vertex Integrity

• Vertex Cover

• Arrows indicate Generalization

• If G has pathwidth k, it has treewidth ≤ k.

• (Relation trickier for clique-width/treewidth).

• Algorithms propagate down.

• Hardness propagates up.
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• Treewidth measures “tree-likeness”

• Complicated definition through tree decompositions.

• Pathwidth: restriction where decomposition is a path.

• Trees have treewidth 1 (but pathwidth up to logn).

• Caterpillars have pathwidth 1.

• HUGE number of problems FPT by tw.

• BUT in some cases too general. . .
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• Tree-depth

td(G) = min
S⊆V (G)

{

|S|+ max
S′∈cc(G−S)

td(S′)

}

• Select small separator S so that all components have

small tree-depth

• (Base case: K1 has tree-depth 1)
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• Vertex Integrity

vi(G) = min
S⊆V (G)

{

|S|+ max
S′∈cc(G−S)

|S′|
}

• Select small separator S so that all components have

small size
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• Vertex Cover

vc(G) = min
S⊆V (G)∧G−S stable

{|S|}

• Select small separator S so that all components are

singletons.



A Closer Look
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• Will focus on tree-depth, vertex integrity, vertex cover

• Measure “complexity” as size of a small separator such

that:

• Each component is recursively defined as simple

(tree-depth).

• Each component is small, therefore simple (vertex

integrity).

• Each component is one vertex, therefore simple.
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• Inclusions are strict!

• Small vertex integrity, large vertex cover
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• Inclusions are strict!

• Large vertex integrity, small tree-depth
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• Generality: gap is huge between tree-depth and vertex

integrity

• If we fix k there are only polynomially many graphs

of order n with vc, vi at most k
• But exponentially many graphs with td ≤ k.

• Intuitively problems should become harder in this gap.

• Intuitively this gap should not be so important.

• This is (more or less) the message of this talk.



Price of Generality
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How to measure algorithmic cost?

• Look at many individual problems

• For vc → vi → td cf.

“Exploring the Gap Between Treedepth and Vertex

Cover Through Vertex Integrity”, Gima et al. CIAC

2021

• Main message (approximately):

“Problems hard for td but easy for vc are usually

easy for vi”



Fine-Grained Meta-Theorems for Vertex Integrity
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• Consider categories of problems expressible in a cer-

tain logic

• → Meta-Theorems

• Measure complexity using ETH

• → Fine-Grained

• Main message:

Vertex Integrity is a little harder than vertex cover and

a lot easier than tree-depth.



Meta-Theorems
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• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”
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Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by

treewidth.
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• Statements of the form:

“Every problem in family F is tractable”

• Family F : often “expressible in FO/MSO or other logic”

• Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by

treewidth.

• Notice that since this applies to treewidth, it applies to pathwidth,

tree-depth, vertex integrity, vertex cover!
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

Standard Example: 2-Dominating set

∃x1∃x2∀x3 (x1 = x3 ∨ x2 = x3 ∨ x1 ∼ x3 ∨ x2 ∼ x3)
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

∃X1∃X2∃X3

(

∀x1 (x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧
∀x2 (x1 ∼ x2 → (¬(x1 ∈ X1 ∧ x2 ∈ X1)) ∧

(¬(x1 ∈ X2 ∧ x2 ∈ X2)) ∧
(¬(x1 ∈ X3 ∧ x2 ∈ X3)))

)
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

∀X1 ((∃x1∃x2 x1 ∈ X1 ∧ x2 6∈ X1) →
∃x3∃x4 (x3 ∈ X1 ∧ x4 6∈ X1 ∧ x3 ∼ x4))



FO and MSO logic reminder
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FO logic:

• Two relations: = and ∼ (equality, adjacency)

• (Quantified) Variables x1, x2, . . . represent vertices

• Standard boolean connectives (∨,∧,¬,→)

MSO logic: FO logic plus the following

• ∈ relation

• (Quantified) Set Variables X1, X2, . . . represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

Brute-force Complexity:

• FO: nq

• MSO: 2nq

Note: MSO=MSO1. No edge set quantifiers in this talk.
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• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|

• Problem: f is approximately 22
2
. .

.
2tw

, where the height of the tower is

upper-bounded by the number of quantifier alternations in φ.
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• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO

property φ in time

f(tw, φ) · |G|

• Problem: f is approximately 22
2
. .

.
2tw

, where the height of the tower is

upper-bounded by the number of quantifier alternations in φ.

• Serious Problem: This tower of exponentials cannot be avoided1

even for FO logic on trees!

• “The complexity of first-order and monadic second-order logic

revisited”, Frick and Grohe, APAL 2004.

• Question: Does f become nicer if we go lower in our parameter map?

1Assuming P 6=NP
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• Vertex Cover

• MSO with q quantifiers can be decided in 22
O(vc+q)

• FO with q quantifiers can be decided in 2O(vc·q)qO(q)

• These are optimal under ETH.

• There exists fixed MSO formula which cannot

be decided in 22
o(vc)

.

• “Algorithmic Meta-Theorems for Restrictions of

Treewidth”, L. Algorithmica 2012.



Known Fine-Grained Meta-Theorems (cont’d)
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• Tree-depth

• MSO/FO with q quantifiers can be decided by an

algorithm running in time 22
. .

.
2td+q

• . . . where height of tower is at most td (even for

large q)
• This is optimal under ETH.

• “Kernelizing MSO Properties of Trees of Fixed Height,

and Some Consequences”, Gajarsky and Hlineny,

LMCS 2015.

• “Model-Checking Lower Bounds for Simple Graphs”, L.

LMCS 2014.



This talk
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• Vertex Integrity

• FO can be done in: 2O(vi2q)qO(q)

• MSO can be done in: 22
O(vi2+vi·q)

• Both of these results are optimal under the ETH.

• Comparison:

• For vc we have similar complexity, without the

square.

MSO in 22
O(vc+q)

, FO in 2O(vc·q).

• For td we have tower of exps.

• Conclusion:

• Complexity of vi much closer to vc, slightly worse.



Meta-Theorems for Vertex Integrity



High-level Idea
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• Algorithm idea similar to meta-theorems for vertex cover and

tree-depth.

• Kernelization argument.

• If graph too large, we can delete something without affecting

whether given property is satisfied.

• Brute-force.

• Once previous argument does not apply, size of graph can be

bounded by function of parameter and q.
• Run trivial algorithm on this kernel.

• Main Kernelization Trick:

• If we have many copies of the same thing, we can delete some.

• (cf. What is the counting power of FO and MSO logic?)



Vertex Cover Meta-Theorem – Reminder
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Vertex Cover

Independent Set

• Given a graph with vertex cover

vc = 5
• we want to check an FO property

φ with q = 3 variables.
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Vertex Cover

Independent Set

x1

• Sentence has form ∃x1ψ(x1)
• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.
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Vertex Cover

Independent Set

x1

• Sentence has form ∃x1ψ(x1)
• We must “place” x1 somewhere in

the graph

• If we try all cases we get nq run-

ning time.
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Vertex Cover

Independent Set

Same • We observe that some vertices

of the independent set have the

same neighbors.

• These vertices should be equiva-

lent.
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Vertex Cover

Independent Set

Same
Size ≤ q

• We observe that some vertices

of the independent set have the

same neighbors.

• These vertices should be equiva-

lent.

• Key idea: if a group has > q ver-

tices, we can simply remove one!



Vertex Cover and FO logic
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Summary of previous argument:

• Partition graph into 2vc + vc sets of equivalent vertices.

• If a set has > q vertices, delete one, repeat.

• If not, |V (G)| ≤ q2O(vc).

• Trivial algorithm now runs in 2O(vc·q)qq.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

?
≡q

We need at least 5 quantifiers to construct a formula that is true on exactly

one of these graphs.
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Summary of previous argument:

• Partition graph into 2vc + vc sets of equivalent vertices.

• If a set has > q vertices, delete one, repeat.

• If not, |V (G)| ≤ q2O(vc).

• Trivial algorithm now runs in 2O(vc·q)qq.

Key idea:

FO logic with q quantifiers can distinguish sets of size at most q.

What about MSO?



MSO and Vertex Cover
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Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

Proof by induction:

• Want to prove, if set has size > 2q, can delete one vertex.

• Suppose OK for up to q − 1 quantifiers.

• Want to check if ∃X1ψ(X1), where ψ has q − 1 quantifiers.

X1



MSO and Vertex Cover

ISAAC 2021 19 / 33

Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

Proof by induction:

• Want to prove, if set has size > 2q, can delete one vertex.

• Suppose OK for up to q − 1 quantifiers.

• Want to check if ∃X1ψ(X1), where ψ has q − 1 quantifiers.

X1

• For any choice of X1 a set of 2q−1 identical vertices remains.

• Apply inductive hypothesis.



MSO and Vertex Cover
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Key idea:

MSO logic with q quantifiers can distinguish sets of size at most 2q.

• Graph has 2vc sets of equivalent vertices.

• While one has size > 2q, delete a vertex.

• Otherwise, |V (G)| ≤ 2vc+q.

• Brute force:

2nq ≤ 22
vc+qq = 22

O(vc+q)



Vertex Integrity
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What is different now?

Separator S

• Main idea: some components of

G− S are the same.

• The same internally.

• The same with respect to S.

• More precisely:

• Two components C1, C2 of G−
S are “the same” if there ex-

ists an automorphism ofG that

maps C1 to C2.
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What is different now?

Separator S

• Main idea: some components of

G− S are the same.

• The same internally.

• The same with respect to S.

• More precisely:

• Two components C1, C2 of G−
S are “the same” if there ex-

ists an automorphism ofG that

maps C1 to C2.
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• Previously:

• We defined “equivalence” for vertices.

• We showed that if we have many equivalent vertices, we can

delete one.

• We counted how many equivalence types there are.

• Now:

• We defined “equivalence” for components of G− S.
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• Previously:

• We defined “equivalence” for vertices.

• We showed that if we have many equivalent vertices, we can

delete one.

• We counted how many equivalence types there are.

• Now:

• We defined “equivalence” for components of G− S.

What do we need now?

• Understand counting power of FO/MSO for collections of identical

components.

• Count number of possible component types.



How many types of components?
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Separator S

• Equivalent components of G − S
are

• The same internally.

• The same with respect to S.

• How many choices?

• Recall, components of G−S have

size ≤ vi

• At most 2vi
2

different internal

structures.

• At most 2vi
2

different connec-

tions to S.

• All in all, 2O(vi2) possible types.



Counting Power – FO
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How many identical components can we distinguish with q FO quantifiers?

x1

Claim: if we have > q components, we can delete one.

Induction:

• Suppose true for q − 1 quantifiers.

• We have a formula ∃x1ψ(x1), where ψ has q − 1 quantifiers.

• Mapping it to any component is the same.

• We have > q − 1 identical components left.

• By induction, we can delete one.
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How many identical components can we distinguish with q FO quantifiers?

x1

Claim: if we have > q components, we can delete one.

Induction:

• Suppose true for q − 1 quantifiers.

• We have a formula ∃x1ψ(x1), where ψ has q − 1 quantifiers.

• Mapping it to any component is the same.

• We have > q − 1 identical components left.

• By induction, we can delete one.
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How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > ?? components, we can delete one.

Problem:

• When we select a set X1 this may distinguish many components.

• Intuitively: if X1 interacts with two previously identical components in

different ways, these components are not identical any more!

• What to do?
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How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > ?? components, we can delete one.

Problem:

• When we select a set X1 this may distinguish many components.

• Intuitively: if X1 interacts with two previously identical components in

different ways, these components are not identical any more!

• What to do?



Counting Power – MSO (cont’d)
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How many components can we distinguish with q MSO quantifiers?

X1

Claim: if we have > 2vi·q components, we can delete one.

Solution:

• Our components have size ≤ vi.
• There are at most 2vi intersections of X1 with each component.

• If we have > 2vi·q identical components initially. . .

• . . . by PHP one intersection type appears > 2vi·q/2vi = 2vi(q−1) times.

• These components are identical, use inductive hypothesis!



Putting things together
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• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.
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• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.

• For FO logic

• Reduced graph has size q2vi
2
.

• Trivial algorithm runs in 2q·vi
2
qq.
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• There are at most 2vi
2

types of components.

• Maximum number of same components in reduced graph is

• q for FO logic.

• 2vi·q for MSO logic.

• For FO logic

• Reduced graph has size q2vi
2
.

• Trivial algorithm runs in 2q·vi
2
qq.

• For MSO logic

• Reduced graph has size 2vi
2+vi·q.

• Trivial algorithm runs in 22
vi2+vi·q

.

• Are these meta-theorems optimal?



Fine-Grained Lower Bounds



Fine-Grained Lower Bounds
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High-Level Idea

• We claim that we need time at least

• 2vi
2·q for FO

• 22
vi2

for MSO

Strategy:

• Take an arbitrary n-vertex graph G
• Encode it into a graph H with the following properties:

• vi(H) =
√
logn

• Whether uv ∈ E(G) can be tested with a simple FO formula on H

• Translate questions about G into questions about H.

• G has k-clique? → FO on H with q = k
• G is 3-colorable? → MSO on H with q = O(1)



Encoding graphs with simple graphs
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n = 512 = 29

√

log n = 3

Symmetry Breakers Bits

204 261

25

204 = 011 001 100

261 = 100 000 101

25 = 000 011 001

• Separator has 2
√
logn vertices.

• Each edge of G is represented by a component of H − S made up of

two cliques of size
√
logn.

• Connections from the cliques to S encode indices.
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n = 512 = 29

√

log n = 3

Symmetry Breakers Bits

204 261

25

204 = 011 001 100

261 = 100 000 101

25 = 000 011 001
261 25

• Separator has 2
√
logn vertices.

• Each edge of G is represented by a component of H − S made up of

two cliques of size
√
logn.

• Connections from the cliques to S encode indices.
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Symmetry Breakers Bits

204 = 011 001 100

261 = 100 000 101

25 = 000 011 001

261 25 261 204

• Goal: a simple FO formula that states: these two edges have a

common endpoint.

• Equivalently: these cliques of size
√
logn have isomorphic neighbors

in S.
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261 25 261 204

• Goal: a simple FO formula that states: these two edges have a

common endpoint.

• Equivalently: these cliques of size
√
logn have isomorphic neighbors

in S.



Putting Things Together

ISAAC 2021 31 / 33

• Can translate G to H so that:

• vi(H) = O(
√
logn)

• Can “read” G in H.

• Is G 3-colorable?

• Do there exist three sets of vertices partitioning H that represent

independent sets in G?

• MSO-expressible with q = O(1).

• If 22
o(vi2)

algorithm we have 2o(n) algorithm for 3-COLORING!!

• Does G have k-Ind. Set?

• Do there exist k vertices of H belonging to cliques that represent

an independent set of G?

• FO-expressible with q = O(k).
• If 2o(vi

2·q) algorithm we have 2o(logn·k) = no(k) algorithm for

k-CLIQUE!!
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• Vertex Integrity “between” vertex cover and tree-depth.

• “(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

• What about MSO2?

• Other widths between vertex integrity and tree-depth?
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• Vertex Integrity “between” vertex cover and tree-depth.

• “(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

• What about MSO2?

• Other widths between vertex integrity and tree-depth?

Thank you!
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