Fine-Grained Meta-Theorems for

Vertex Integrity
Michael Lampis Valia Mitsou
LAMSADE IRIF

Pauphine | PSL*

UNIVERSITE PARIS

Oct 14th 2021

Vertex Integrity

A Map of Parameters

CwW
A
|
e Graph Structure Parameters: tw
e Lk measures how “easy” a graph is /T\
pw

e Many ways to measure this.
e Algorithmically important:

e A problem can be FPT (solvable in f(k)n®W) or
not.
e The function f(k) may be different.

!
!

DCIUphine | PSL% ISAAC 2021 3/33

IIIIIIIIIIIIIII

A Map of Parameters

CW
A
1
|
tw
e Price of Generality ,T\
e Sometimes two parameters have a clear inclusion
relation.
e Algorithmically, this means one is more general, the

other “easier”.
e Want to understand algorithmic cost of generality.

!
!

DCIUphine | PSL% ISAAC 2021 3/33

IIIIIIIIIIIIIII

A Map of Parameters

CWwW
A
1
: . tw

e This talk: Vertex Integrity
e Want to understand relations between: IT\
pw

1. Tree-depth
2. \Vertex Integrity
3. Vertex Cover td

e How does complexity increase as we climb up?

VC

Pauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

3/33

Parameters Review

e Graph Structure Parameters:

Clique-width
Treewidth
Pathwidth
Tree-depth
Vertex Integrity
Vertex Cover

e Arrows indicate Generalization
e |If G has pathwidth k, it has treewidth < k.

e (Relation trickier for clique-width/treewidth).

e Algorithms propagate down.
e Hardness propagates up.

Bauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

Ccw
A
tw
4
PW
td
1
VI
A
VC

4 /33

Parameters Review

CW

A

e [reewidth measures “tree-likeness”
e Complicated definition through tree decompositions.

e Pathwidth: restriction where decomposition is a path.

e T[rees have treewidth 1 (but pathwidth up to logn).
e Caterpillars have pathwidth 1.

e HUGE number of problems FPT by tw.
e BUT in some cases too general. ..

!
!

Pauphine | PSL% ISAAC 2021

IIIIIIIIIIIIIII

4 /33

Parameters Review

Ccw

A

1

e Tree-depth tw
td(G) = mi S td (S’ lT\

(@) Sg%/l?a){l |+S'e£%(£g<—5) ()} pw

small tree-depth

e Select small separator S so that all components have a
e (Base case: K has tree-depth 1) T

Vi

4

VC

Bauphine | PSL% ISAAC 2021

IIIIIIIIIIIIIII

4 /33

Parameters Review

cw
A
tw
e \Vertex Integrity ,I\
vi(G) = min {|S|—|— max |S’\} pw
SCV(QG) S’'ecc(G-S)

e Select small separator S so that all components have td
small size

VC

Pauphine | PSL% ISAAC 2021 4/33

IIIIIIIIIIIIIII

Parameters Review

CW

A

tw

e Vertex Cover ,I\
ve(G) = min {15} pw

B SCV (G)NG—S stable

e Select small separator S so that all components are td
singletons. 'T‘

Vi

Pauphine | PSL% ISAAC 2021 4/33

IIIIIIIIIIIIIII

A Closer Look

CW

A

|
e Will focus on tree-depth, vertex integrity, vertex cover tw
e Measure “complexity” as size of a small separator such ,T\
that:

e Each component is recursively defined as simple
(tree-depth).
e Each component is small, therefore simple (vertex td

pw

Integrity).
e Each component is one vertex, therefore simple. 'T‘
Vi
VC

DCIUphine | PSL% ISAAC 2021 5/33

IIIIIIIIIIIIIII

A Closer Look

e Inclusions are strict!

—>2—> 2-->2

e Small vertex integrity, large vertex cover

S=>s=—>=8

DQUphine | PSL% ISAAC 2021 5/33

IIIIIIIIIIIIIII

A Closer Look

Cw
]] A

e Inclusions are strict! .
tw
pw

td

e Large vertex integrity, small tree-depth Vi
VC

DQUphine | PSL% ISAAC 2021 5/33

IIIIIIIIIIIIIII

A Closer Look

Cw
A

e Generality: gap is huge between tree-depth and vertex :
integrity tw

e If we fix k there are only polynomially many graphs /T\
of order n with vc, vi at most &

W
e But exponentially many graphs with td < k. p

e Intuitively problems should become harder in this gap.

d
o Intuitively this gap should not be so important. \1\

e Thisis (more or less) the message of this talk.

Bauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

5/33

Price of Generality

Cw
A
How to measure algorithmic cost? t\;v
e Look at many individual problems
e Forvec— vi— tdcf. lT\
“Exploring the Gap Between Treedepth and Vertex PW
Cover Through Vertex Integrity”, Gima et al. CIAC
2021 d
e Main message (approximately): BN t S
“Problems hard for td but easy for vc are usually -’

easy for vi”

DQUphlne | PSLi ISAAC 2021 6/33

IIIIIIIIIIIIIII

Fine-Grained Meta-Theorems for Vertex Integrity

CW
A
e Consider categories of problems expressible in a cer- " '
tain logic w
e — Meta-Theorems ,T\
e Measure complexity using ETH pw

e — Fine-Grained

e Main message: . p

Vertex Integrity is a little harder than vertex cover and ~ ~p-
a lot easier than tree-depth.

DCIUphine | PSL% ISAAC 2021 7 /33

IIIIIIIIIIIIIII

Meta-Theorems

Meta-Theorems Reminder

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”

DQUphine | PSL% ISAAC 2021 9/33

IIIIIIIIIIIIIII

Meta-Theorems Reminder

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by
treewidth.

Bauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

9/33

Meta-Theorems Reminder

e Statements of the form:
“Every problem in family F is tractable’

e Family F: often “expressible in FO/MSO or other logic”
e Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by
treewidth.

e Notice that since this applies to treewidth, it applies to pathwidth,
tree-depth, vertex integrity, vertex cover!

Pauphine | PSL% ISAAC 2021

IIIIIIIIIIIIIII

9/33

FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)
e (Quantified) Variables 1, zo, ... represent vertices
e Standard boolean connectives (V, A, =, —)

Standard Example: 2-Dominating set

35613562\7563 (SE‘l — X3 V L9 — X3 V L1 ~ X3 V X9 r~ 5133)

DCIUphIne | PSL% ISAAC 2021 10/ 33

IIIIIIIIIIIIIII

FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)

e (Quantified) Variables =1, xo, . .. represent vertices

e Standard boolean connectives (V, A, =, —)

MSO logic: FO logic plus the following

e c relation

e (Quantified) Set Variables X, X, ... represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

3X,3X,3X; (Va:l (z1€ X1V € XoVap € X3) A
Ve (w1 ~x9 = (0(x1 € X1 Ax2 € X7)) A
(—(x1 € Xo Ax2 € X2)) A
(~(x1 € X3 A5 € X3))))
Bauphine | PSL* ISAAC 2021 10/33

IIIIIIIIIIIIIII

FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)

e (Quantified) Variables =1, xo, . .. represent vertices

e Standard boolean connectives (V, A, =, —)

MSO logic: FO logic plus the following

e c relation

e (Quantified) Set Variables X, X, ... represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

VX4 ((3:13135132 x1 € X1 Nxo & X1) —
drsdxy (:Ug e X1 Nxg & X1 Nxg ~ :U4))

DCIUphIne | PSL% ISAAC 2021 10/ 33

IIIIIIIIIIIIIII

FO and MSO logic reminder

FO logic:

e Two relations: = and ~ (equality, adjacency)
e (Quantified) Variables 1, zo, ... represent vertices
e Standard boolean connectives (V, A, =, —)

MSO logic: FO logic plus the following

e c relation

e (Quantified) Set Variables X, X, ... represent sets of vertices
Standard Examples: 3-Coloring, Connectivity

Brute-force Complexity:

e FO:nt

e MSO: 2™

Note: MSO=MSO;. No edge set quantifiers in this talk.

DCIUphIne | PSL% ISAAC 2021 10/ 33

IIIIIIIIIIIIIII

A Closer Look

e Courcelle: If G has treewidth tw, we can check if it satisfies an MSO
property ¢ in time

2tw

e Problem: f is approximately 22° , where the height of the tower is
upper-bounded by the number of quantifier alternations in ¢.

Bauphine | PSL* ISAAC 2021 11/33

IIIIIIIIIIIIIII

A Closer Look

Courcelle: If G has treewidth tw, we can check if it satisfies an MSO
property ¢ in time

2tw

Problem: f is approximately 22, where the height of the tower is
upper-bounded by the number of quantifier alternations in ¢.

Serious Problem: This tower of exponentials cannot be avoided’
even for FO logic on trees!

“The complexity of first-order and monadic second-order logic
revisited”, Frick and Grohe, APAL 2004.

Question: Does f become nicer if we go lower in our parameter map?

"Assuming P#£NP

Pauphine | PSL#* ISAAC 2021 11/33

Known Fine-Grained Meta-Theorems

e Vertex Cover :

e MSO with ¢ quantifiers can be decided in 227" tw

e FO with g quantifiers can be decided in 20(v¢-4) gO(a) II\

. o
e These are optimal under ETH.
e There exists fixed MSO formula which cannot
be decided in 22°" . td
o “Algorithmic Meta-Theorems for Restrictions of ,T\
Treewidth”, L. Algorithmica 2012. Vi
Bauphine I PSL* ISAAC 2021 12/33

Known Fine-Grained Meta-Theorems (cont’d)

Ccw

e Tree-depth A
e MSO/FO with ¢ quantifiers can be decided by an !
otd+gq tW

algorithm running in time 22° IT\

e ...where height of tower is at most td (even for iy
large q) P

e This is optimal under ETH.

e “Kernelizing MSO Properties of Trees of Fixed Height, @
and Some Consequences”, Gajarsky and Hlineny,
LMCS 2015.

e “Model-Checking Lower Bounds for Simple Graphs”, L. VI
LMCS 2014.

DCIUphIne | PSL% ISAAC 2021 13/33

IIIIIIIIIIIIIII

This talk

e Vertex Integrity Cw
e FO can be done in; 20(vi*9) 40(9) '?\
) q
e MSO can be done in; 227" "7 EW
e Both of these results are optimal under the ETH. 'T‘
e Comparison: pwW

e For vc we have similar complexity, without the

square.
MSQ in 22°%*" FQ in 2009, @

e For td we have tower of exps.
|

e Conclusion: Vi

A

e Complexity of vi much closer to vc, slightly worse. @

Bauphine | PSL* ISAAC 2021 14/33

IIIIIIIIIIIIIII

Meta- Theorems for Vertex Integrity

High-level Idea

e Algorithm idea similar to meta-theorems for vertex cover and
tree-depth.
e Kernelization argument.

e If graph too large, we can delete something without affecting
whether given property is satisfied.

e Brute-force.

e Once previous argument does not apply, size of graph can be
bounded by function of parameter and q.
e Run trivial algorithm on this kernel.

e Main Kernelization Trick:

e If we have many copies of the same thing, we can delete some.
e (cf. What is the counting power of FO and MSO logic?)

Bauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

16/ 33

Vertex Cover Meta-Theorem — Reminder

Given a graph with vertex cover
Ve =D

e we want to check an FO property
¢ with ¢ = 3 variables.

Independent Set

Dduphine | PSL% ISAAC 2021 17 /33

IIIIIIIIIIIIIII

Vertex Cover Meta-Theorem — Reminder

\

KX~
e Sentence has form dx1¢(x;

/2 e SEMEMED [ES forf ey ()

/5;"‘ o We must “place” x; somewhere in
(O ~@

<>‘ the graph q
Q<\‘ e If we try all cases we get n? run-
‘<>\ <N\ ning time.

Vertex Cover

1

O
Independent Set

DCIUphIne | PSL% ISAAC 2021 17 /33

IIIIIIIIIIIIIII

Vertex Cover Meta-Theorem — Reminder

Sentence has form Jx (1)
e We must “place” x1 somewhere in

the graph
e If we try all cases we get n? run-
ning time.
Independent Set
Bauphine | PSL% ISAAC 2021 17/33

Vertex Cover Meta-Theorem — Reminder

Sentence has form Jx (1)
e We must “place” x1 somewhere in

the graph
e If we try all cases we get n? run-
ning time.
Independent Set
Bauphine | PSL% ISAAC 2021 17/33

Vertex Cover Meta-Theorem — Reminder

Same e We observe that some vertices
of the independent set have the
same neighbors.

e These vertices should be equiva-
lent.

Independent Set

............... ISAAC 2021 17 /33

Vertex Cover Meta-Theorem — Reminder

e \We observe that some vertices
of the independent set have the

Same |
Size < ¢ same neighbors.
e These vertices should be equiva-
lent.

e Key idea: if a group has > ¢ ver-
tices, we can simply remove one!

Vertex Cover

Independent Set

............... ISAAC 2021 17 /33

Vertex Cover and FO logic

Summary of previous argument:

e Partition graph into 2¥¢ 4 vc sets of equivalent vertices.
e If a set has > ¢ vertices, delete one, repeat.

e lfnot, |[V(G)| < ¢q200.
e Trivial algorithm now runs in 20(ved) 44,

Key idea:
FO logic with ¢ quantifiers can distinguish sets of size at most g.

00000
s
0000

We need at least 5 quantifiers to construct a formula that is true on exactly
one of these graphs.

DCIUphIne | PSL% ISAAC 2021 18 /33

IIIIIIIIIIIIIII

Vertex Cover and FO logic

Summary of previous argument:

Partition graph into 2V¢ + vc sets of equivalent vertices.
If a set has > ¢ vertices, delete one, repeat.

If not, |V(G)| < ¢2°00).

Trivial algorithm now runs in 20(ved) g4

Key idea:
FO logic with ¢ quantifiers can distinguish sets of size at most g.

What about MSQO?

Pauphine | PSL#* ISAAC 2021

18 /33

MSO and Vertex Cover

Key idea:
MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Proof by induction:

e Want to prove, if set has size > 29, can delete one vertex.
e Suppose OK for up to ¢ — 1 quantifiers.
e Want to check if 3.Xv¢(X;), where ¢ has ¢ — 1 quantifiers.

X1
/ \

ONONONONONONONONONONONO

DCIUphIne | PSL% ISAAC 2021 19/33

IIIIIIIIIIIIIII

MSO and Vertex Cover

Key idea:
MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Proof by induction:

e Want to prove, if set has size > 29, can delete one vertex.
e Suppose OK for up to ¢ — 1 quantifiers.
e Want to check if 3.Xv¢(X;), where ¢ has ¢ — 1 quantifiers.

X1
/ \

000000000000

e For any choice of X; a set of 2¢~! identical vertices remains.
e Apply inductive hypothesis.

DCIUphIne | PSL% ISAAC 2021 19/33

IIIIIIIIIIIIIII

MSO and Vertex Cover

Key idea:
MSO logic with ¢ quantifiers can distinguish sets of size at most 29.

Graph has 2V¢ sets of equivalent vertices.
While one has size > 29, delete a vertex.
Otherwise, |V (G)| < 2veta.

Brute force:

an < 22vc—|—qq _ 22O(Vc—|—q)

DQUphine | PSL% ISAAC 2021 19/33

IIIIIIIIIIIIIII

Vertex Integrity

What is different now?

,'.
)’ & e Main idea: some components of
O G — S are the same.

\
:\}

e The same internally.
e The same with respect to S.

0 ¢
X
\
\

() O

AW/AWA NV
A
)
O

e More precisely:

',,.
N

e Two components C;,Cs of G—
S are “the same” if there ex-
Ists an automorphism of G that
maps C to Cs.

¥

Separator S

DCIUphIne | PSL% ISAAC 2021 20/ 33

IIIIIIIIIIIIIII

Vertex Integrity

What is different now?

\

e Main idea: some components of
G — S are the same.

e The same internally.
e The same with respect to S.

Vil
ﬁ'{ \

More precisely:

3
y y
6'!"0

D> N e Two components C;,Cy of G—
ib\\ S are “the same” if there ex-
@< Ists an automorphism of G that

/

maps C to Cs.
Separator S

DCIUphIne | PSL% ISAAC 2021 20/ 33

IIIIIIIIIIIIIII

Vertex Integrity

What is different now?

'®
o e Main idea: some components of
/ @ G — S are the same.
O<= @ e The same internally.
i) — LT e The same with respect to S.
O 7z / @ Y |
/ < e More precisely:
.<' P y
' e Two components C;,C5 of G—
s \ S are “the same” if there ex-
.4> <\

O
O
\\0 ists an automorphism of G that
® maps C to Cs.
O
@

DCIUphIne | PSL% ISAAC 2021 20/ 33

IIIIIIIIIIIIIII

Vertex Integrity

e Previously:

e We defined “equivalence” for vertices.
e We showed that if we have many equivalent vertices, we can

delete one.
e We counted how many equivalence types there are.

e Now:
e We defined “equivalence” for components of G — S.

DQUphine | PSL% ISAAC 2021 21/33

IIIIIIIIIIIIIII

Vertex Integrity

e Previously:

e We defined “equivalence” for vertices.

e We showed that if we have many equivalent vertices, we can
delete one.

e We counted how many equivalence types there are.

e Now:
e We defined “equivalence” for components of G — S.

What do we need now?

e Understand counting power of FO/MSQO for collections of identical
components.
e Count number of possible component types.

DCIUphIne | PSL% ISAAC 2021 21/33

IIIIIIIIIIIIIII

How many types of components?

e Equivalent components of G — S
are

e The same internally.
e The same with respect to S.

e How many choices?
e Recall, components of G—.5 have
size < vi

e At most 2¥" different internal
structures.

e At most 2V different connec-
tions to S.

Separator S
e Allin all, 200 possible types.

DCIUphIne | PSL% ISAAC 2021 22 /33

IIIIIIIIIIIIIII

Counting Power — FO

How many identical components can we distinguish with ¢ FO quantifiers?
L1

a— T
BRGNS & NS

Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.

Dduphine | PSL% ISAAC 2021 23 /33

IIIIIIIIIIIIIII

Counting Power — FO

How many identical components can we distinguish with ¢ FO quantifiers?
L1

a— T
NN RS & NS

Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.

Dduphine | PSL% ISAAC 2021 23 /33

IIIIIIIIIIIIIII

Counting Power — FO

How many identical components can we distinguish with ¢ FO quantifiers?
L1

a— T
APV PV 0 VG v

Claim: if we have > ¢ components, we can delete one.

Induction:

Suppose true for ¢ — 1 quantifiers.

We have a formula 3z (x1), where ¢ has ¢ — 1 quantifiers.
Mapping it to any component is the same.

We have > ¢ — 1 identical components left.

By induction, we can delete one.

Dduphine | PSL% ISAAC 2021 23 /33

IIIIIIIIIIIIIII

Counting Power — MSO

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
AN AP VIS A AV AV i

Claim: if we have > ?? components, we can delete one.

Problem:

e When we select a set X; this may distinguish many components.
e Intuitively: if X; interacts with two previously identical components in
different ways, these components are not identical any more!

e Whatto do?

Bauphine | PSL* ISAAC 2021 24/33

IIIIIIIIIIIIIII

Counting Power — MSO

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
NN N R N

Claim: if we have > ?? components, we can delete one.

Problem:

e When we select a set X; this may distinguish many components.
e Intuitively: if X; interacts with two previously identical components in
different ways, these components are not identical any more!

e Whatto do?

Bauphine | PSL* ISAAC 2021 24/33

IIIIIIIIIIIIIII

Counting Power — MSO (cont’d)

How many components can we distinguish with ¢ MSO quantifiers?

a— - T
NN N R N

Claim: if we have > 24 components, we can delete one.

Solution:

e QOur components have size < vi.

e There are at most 2" intersections of X; with each component.

e If we have > 2V"¢ identical components initially. . .

e ...by PHP one intersection type appears > 2V7/2v1 = 2Vila—1) times.
e These components are identical, use inductive hypothesis!

Dduphine | PSL% ISAAC 2021 25/ 33

IIIIIIIIIIIIIII

Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.

............... ISAAC 2021 26/ 33

Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
e For FO logic

e Reduced graph has size ¢2"".
o Trivial algorithm runs in 241" ¢4.

Bauphine | PSL* ISAAC 2021

IIIIIIIIIIIIIII

26 / 33

Putting things together

e There are at most 2"" types of components.
e Maximum number of same components in reduced graph is

e ¢ for FO logic.
o 2Vi¢ for MSO logic.
e For FO logic
e Reduced graph has size ¢2"".
o Trivial algorithm runs in 241" ¢4.
e For MSO logic
e Reduced graph has size 2vi"tvia,
e Trivial algorithm runs in 22" .

e Are these meta-theorems optimal?

DCIUphine | PSL% ISAAC 2021 26 /33

IIIIIIIIIIIIIII

Fine-Grained Lower Bounds

Fine-Grained Lower Bounds

High-Level Idea
e We claim that we need time at least

° 2Vi1q for FO
o 22" for MSO

Strategy:
e Take an arbitrary n-vertex graph G
e Encode it into a graph H with the following properties:

o vi(H) = logn

e Whether uv € E(G) can be tested with a simple FO formula on H
e Translate questions about G into questions about H.

e (G has k-clique? — FO on H with ¢ = &
e (is 3-colorable? — MSO on H with ¢ = O(1)

DCIUphine | PSL% ISAAC 2021 28 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261 Jogi = 3
Symmetry Breakers Bits
2 OO0 OO0

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

[-)Cluphlne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261 Jogi = 3
Symmetry Breakers Bits
2 OO0 OO0

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

[-)Cluphlne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261 Jogi = 3
Symmetry Breakers Bits
2 OO0 OO0

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

Q=00

261

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

[-)Cluphlne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
; 000] [000

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

[-)Cluphlne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
; 000| Joo

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

DCIUphIne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
; 000| Joo

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261 204

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

DCIUphIne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
; 000Q| Joo

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261 204

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

DCIUphIne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
25 Q Q Q 7

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261 204

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

DCIUphIne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs

n =512 = 29
204 261
Viegn =3
Symmetry Breakers Bits
25 Q Q Q 7

204 = 011 001 100
261 = 100 000 101
25 =000 011 001

261 o5

e Separator has 2+/log n vertices.

e Each edge of GG is represented by a component of H — .S made up of
two cligues of size +/log n.

e Connections from the cliques to S encode indices.

DCIUphIne | PSL% ISAAC 2021 29 /33

IIIIIIIIIIIIIII

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

OO0 OO0

261 Ei 25 261 Ei 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

OO0 OO0

261 Ej 25 961 Ei 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

OO0 OO0

261 Ej 25 961 Ei 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

OO0 OO0

261 Ej 25 961 Ei 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

000 000

261 Ej 25 961 Ei 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

00 Q] 00

YAl 25

261 261 204

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Encoding graphs with simple graphs (cont’d)

204 = 011 001 100
261 = 100 000 101

Symmetry Breakers Bits 25 = 000 011 001

00Q. O

261 25 261 904

e Goal: a simple FO formula that states: these two edges have a
common endpoint.

e Equivalently: these cliques of size y/logn have isomorphic neighbors
in S.

............... ISAAC 2021 30/ 33

Putting Things Together

e (Can translate GG to H so that:

e vi(H)=0O(y/logn)
e Can“read” G in H.

e Is (G 3-colorable?

e Do there exist three sets of vertices partitioning H that represent
independent sets in G?
e MSO-expressible with ¢ = O(1).

o If 220 algorithm we have 2°(") algorithm for 3-COLORING!!
e Does G have k-Ind. Set?

e Do there exist k vertices of H belonging to cliques that represent
an independent set of G?

e FO-expressible with ¢ = O(k).

o If 200v*9) glgorithm we have 20(0g k) — no(k) glgorithm for
k-CLIQUE!!

DCIUphine | PSL% ISAAC 2021 31/33

IIIIIIIIIIIIIII

Conclusions — Open Problems

Conclusions

e \ertex Integrity “between” vertex cover and tree-depth.
“(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

e What about MSO,?
e Other widths between vertex integrity and tree-depth?

DCIUphIne | PSL% ISAAC 2021 33/33

IIIIIIIIIIIIIII

Conclusions

e \ertex Integrity “between” vertex cover and tree-depth.
“(Double-)Exponential in the square” behavior is natural and optimal.

Questions:

e What about MSO,?
e Other widths between vertex integrity and tree-depth?

Thank you!

DCIUphIne | PSL% ISAAC 2021 33/33

IIIIIIIIIIIIIII

	Vertex Integrity
	A Map of Parameters
	Parameters Review
	A Closer Look
	Price of Generality
	Fine-Grained Meta-Theorems for Vertex Integrity

	Meta-Theorems
	Meta-Theorems Reminder
	FO and MSO logic reminder
	A Closer Look
	Known Fine-Grained Meta-Theorems
	Known Fine-Grained Meta-Theorems (cont'd)
	This talk

	Meta-Theorems for Vertex Integrity
	High-level Idea
	Vertex Cover Meta-Theorem – Reminder
	Vertex Cover and FO logic
	MSO and Vertex Cover
	Vertex Integrity
	Vertex Integrity
	How many types of components?
	Counting Power – FO
	Counting Power – MSO
	Counting Power – MSO (cont'd)
	Putting things together

	Fine-Grained Lower Bounds
	Fine-Grained Lower Bounds
	Encoding graphs with simple graphs
	Encoding graphs with simple graphs (cont'd)
	Putting Things Together

	Conclusions – Open Problems
	Conclusions

