Fine-Grained Meta-Theorems for Vertex Integrity

Michael Lampis
LAMSADE

Valia Mitsou

IRIF
Dauphine I PSL*

Oct 14th 2021

Vertex Integrity

A Map of Parameters

- Graph Structure Parameters:
- k measures how "easy" a graph is
- Many ways to measure this.
- Algorithmically important:
- A problem can be FPT (solvable in $f(k) n^{O(1)}$) or not.
- The function $f(k)$ may be different.

A Map of Parameters

- Price of Generality
- Sometimes two parameters have a clear inclusion relation.
- Algorithmically, this means one is more general, the other "easier".

A Map of Parameters

- This talk: Vertex Integrity
- Want to understand relations between:

1. Tree-depth
2. Vertex Integrity
3. Vertex Cover

Parameters Review

- Graph Structure Parameters:
- Clique-width
- Treewidth
- Pathwidth
- Tree-depth
- Vertex Integrity
- Vertex Cover
- Arrows indicate Generalization
- If G has pathwidth k, it has treewidth $\leq k$.
- (Relation trickier for clique-width/treewidth).
- Algorithms propagate down.
- Hardness propagates up.

Parameters Review

- Treewidth measures "tree-likeness"
- Complicated definition through tree decompositions.
- Pathwidth: restriction where decomposition is a path.
- Trees have treewidth 1 (but pathwidth up to $\log n$).
- Caterpillars have pathwidth 1.

Parameters Review

- Tree-depth

$$
\operatorname{td}(G)=\min _{S \subseteq V(G)}\left\{|S|+\max _{S^{\prime} \in \operatorname{cc}(G-S)} \operatorname{td}\left(S^{\prime}\right)\right\}
$$

- Select small separator S so that all components have small tree-depth
- (Base case: K_{1} has tree-depth 1)

Parameters Review

- Vertex Integrity

$$
\operatorname{vi}(G)=\min _{S \subseteq V(G)}\left\{|S|+\max _{S^{\prime} \in \operatorname{cc}(G-S)}\left|S^{\prime}\right|\right\}
$$

- Select small separator S so that all components have small size

Parameters Review

- Vertex Cover

$$
\operatorname{vc}(G)=\min _{S \subseteq V(G) \wedge G-S \text { stable }}\{|S|\}
$$

- Select small separator S so that all components are singletons.

A Closer Look

- Will focus on tree-depth, vertex integrity, vertex cover
- Measure "complexity" as size of a small separator such that:
- Each component is recursively defined as simple (tree-depth).
- Each component is small, therefore simple (vertex integrity).
- Each component is one vertex, therefore simple.

A Closer Look

- Inclusions are strict!

- Small vertex integrity, large vertex cover

A Closer Look

- Inclusions are strict!

- Large vertex integrity, small tree-depth

A Closer Look

- Generality: gap is huge between tree-depth and vertex integrity

Price of Generality

How to measure algorithmic cost?

- Look at many individual problems
- For vc $\rightarrow \mathrm{vi} \rightarrow \mathrm{td}$ cf. "Exploring the Gap Between Treedepth and Vertex Cover Through Vertex Integrity", Gima et al. CIAC 2021
- Main message (approximately): "Problems hard for td but easy for vc are usually easy for vi"

Fine-Grained Meta-Theorems for Vertex Integrity

- Consider categories of problems expressible in a certain logic

Meta-Theorems

Meta-Theorems Reminder

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Meta-Theorems Reminder

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:
All problems expressible in MSO logic are FPT parameterized by treewidth.

Meta-Theorems Reminder

- Statements of the form:
"Every problem in family \mathcal{F} is tractable"
- Family \mathcal{F} : often "expressible in FO/MSO or other logic"
- Tractable: often "FPT parameterized by some parameter"

Courcelle's famous meta-theorem:
All problems expressible in MSO logic are FPT parameterized by treewidth.

- Notice that since this applies to treewidth, it applies to pathwidth, tree-depth, vertex integrity, vertex cover!

FO and MSO logic reminder

FO logic:

- Two relations: $=$ and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

Standard Example: 2-Dominating set

$$
\exists x_{1} \exists x_{2} \forall x_{3}\left(x_{1}=x_{3} \vee x_{2}=x_{3} \vee x_{1} \sim x_{3} \vee x_{2} \sim x_{3}\right)
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$
\begin{aligned}
& \exists X_{1} \exists X_{2} \exists X_{3} \quad\left(\forall x_{1} \quad\right. \\
& \quad\left(x_{1} \in X_{1} \vee x_{1} \in X_{2} \vee x_{1} \in X_{3}\right) \wedge \\
& \forall x_{2} \quad\left(x_{1} \sim x_{2} \rightarrow\left(\neg\left(x_{1} \in X_{1} \wedge x_{2} \in X_{1}\right)\right) \wedge\right. \\
&\left(\neg\left(x_{1} \in X_{2} \wedge x_{2} \in X_{2}\right)\right) \wedge \\
&\left.\left.\left(\neg\left(x_{1} \in X_{3} \wedge x_{2} \in X_{3}\right)\right)\right)\right)
\end{aligned}
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$
\begin{aligned}
\forall X_{1} \quad & \left(\left(\exists x_{1} \exists x_{2} x_{1} \in X_{1} \wedge x_{2} \notin X_{1}\right) \rightarrow\right. \\
& \left.\exists x_{3} \exists x_{4}\left(x_{3} \in X_{1} \wedge x_{4} \notin X_{1} \wedge x_{3} \sim x_{4}\right)\right)
\end{aligned}
$$

FO and MSO logic reminder

FO logic:

- Two relations: = and \sim (equality, adjacency)
- (Quantified) Variables x_{1}, x_{2}, \ldots represent vertices
- Standard boolean connectives $(\vee, \wedge, \neg, \rightarrow)$

MSO logic: FO logic plus the following

- \in relation
- (Quantified) Set Variables X_{1}, X_{2}, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity Brute-force Complexity:

- FO: n^{q}
- MSO: $2^{n q}$

Note: $\mathrm{MSO}=\mathrm{MSO}_{1}$. No edge set quantifiers in this talk.

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

$2^{\text {tw }}$

- Problem: f is approximately $2^{2^{2^{*}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.

A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$
f(\mathrm{tw}, \phi) \cdot|G|
$$

- Problem: f is approximately $2^{2^{2}} \quad$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.
- Serious Problem: This tower of exponentials cannot be avoided ${ }^{1}$ even for FO logic on trees!
- "The complexity of first-order and monadic second-order logic revisited", Frick and Grohe, APAL 2004.
- Question: Does f become nicer if we go lower in our parameter map?

Known Fine-Grained Meta-Theorems

- Vertex Cover
- MSO with q quantifiers can be decided in $2^{2^{O(v c+q)}} \quad$ tw'
- FO with q quantifiers can be decided in $2^{O(\mathrm{vc} \cdot q)} q^{O(q)}$
- These are optimal under ETH.
- There exists fixed MSO formula which cannot be decided in $2^{2^{\text {o(vc) }}}$.

Known Fine-Grained Meta-Theorems (cont'd)

- Tree-depth
- MSO/FO with q quantifiers can be decided by an $2^{\text {td }+q}$ algorithm running in time 2^{2}
- ...where height of tower is at most td (even for large q)
- This is optimal under ETH.
- "Kernelizing MSO Properties of Trees of Fixed Height, td and Some Consequences", Gajarsky and Hlineny, LMCS 2015.
- "Model-Checking Lower Bounds for Simple Graphs", L. LMCS 2014.

This talk

- Vertex Integrity
- FO can be done in: $2^{O\left(\mathrm{vi}^{2} q\right)} q^{O(q)}$
- MSO can be done in: $2^{2 O\left(v i^{2}+v i \cdot q\right)}$
- Both of these results are optimal under the ETH.
- Comparison:
- For vc we have similar complexity, without the square. MSO in $2^{2^{O(v c+q)}}$, FO in $2^{O(\mathrm{vc} \cdot q)}$.
- For td we have tower of exps.
- Conclusion:
- Complexity of vi much closer to vc, slightly worse.

Meta-Theorems for Vertex Integrity

High-level Idea

- Algorithm idea similar to meta-theorems for vertex cover and tree-depth.
- Kernelization argument.
- If graph too large, we can delete something without affecting whether given property is satisfied.
- Brute-force.
- Once previous argument does not apply, size of graph can be bounded by function of parameter and q.
- Run trivial algorithm on this kernel.
- Main Kernelization Trick:
- If we have many copies of the same thing, we can delete some.
- (cf. What is the counting power of FO and MSO logic?)

Vertex Cover Meta-Theorem - Reminder

- Given a graph with vertex cover $\mathrm{vc}=5$
- we want to check an FO property ϕ with $q=3$ variables.

Independent Set

Vertex Cover Meta-Theorem - Reminder

Independent Set

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem - Reminder

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem - Reminder

- Sentence has form $\exists x_{1} \psi\left(x_{1}\right)$
- We must "place" x_{1} somewhere in the graph
- If we try all cases we get n^{q} running time.

Vertex Cover Meta-Theorem - Reminder

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.

Independent Set

Vertex Cover Meta-Theorem - Reminder

- We observe that some vertices of the independent set have the same neighbors.
- These vertices should be equivalent.
- Key idea: if a group has $>q$ vertices, we can simply remove one!

Vertex Cover and FO logic

Summary of previous argument:

- Partition graph into $2^{\mathrm{vc}}+\mathrm{vc}$ sets of equivalent vertices.
- If a set has $>q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q 2^{O(\mathrm{vc})}$.
- Trivial algorithm now runs in $2^{O(\mathrm{vc} \cdot q)} q^{q}$.

Key idea:
FO logic with q quantifiers can distinguish sets of size at most q.

0		0
0		0
0	$\stackrel{亏}{*}_{q}$	O
0		O
0		

We need at least 5 quantifiers to construct a formula that is true on exactly one of these graphs.

Vertex Cover and FO logic

Summary of previous argument:

- Partition graph into $2^{\mathrm{vc}}+\mathrm{vc}$ sets of equivalent vertices.
- If a set has $>q$ vertices, delete one, repeat.
- If not, $|V(G)| \leq q 2^{O(v c)}$.
- Trivial algorithm now runs in $2^{O(\mathrm{vc} \cdot q)} q^{q}$.

Key idea:
FO logic with q quantifiers can distinguish sets of size at most q.
What about MSO?

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.
Proof by induction:

- Want to prove, if set has size $>2^{q}$, can delete one vertex.
- Suppose OK for up to $q-1$ quantifiers.
- Want to check if $\exists X_{1} \psi\left(X_{1}\right)$, where ψ has $q-1$ quantifiers.

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.
Proof by induction:

- Want to prove, if set has size $>2^{q}$, can delete one vertex.
- Suppose OK for up to $q-1$ quantifiers.
- Want to check if $\exists X_{1} \psi\left(X_{1}\right)$, where ψ has $q-1$ quantifiers.

- For any choice of X_{1} a set of 2^{q-1} identical vertices remains.
- Apply inductive hypothesis.

MSO and Vertex Cover

Key idea:
MSO logic with q quantifiers can distinguish sets of size at most 2^{q}.

- Graph has 2^{vc} sets of equivalent vertices.
- While one has size $>2^{q}$, delete a vertex.
- Otherwise, $|V(G)| \leq 2^{\text {vc }+q}$.
- Brute force:

$$
2^{n q} \leq 2^{2^{\mathrm{vc}+q} q}=2^{2^{O(\mathrm{vc}+q)}}
$$

Vertex Integrity

What is different now?

- Main idea: some components of $G-S$ are the same.
- The same internally.
- The same with respect to S.
- More precisely:
- Two components C_{1}, C_{2} of G S are "the same" if there exists an automorphism of G that maps C_{1} to C_{2}.

Vertex Integrity

What is different now?

- Main idea: some components of $G-S$ are the same.
- The same internally.
- The same with respect to S.
- More precisely:
- Two components C_{1}, C_{2} of G S are "the same" if there exists an automorphism of G that maps C_{1} to C_{2}.

Vertex Integrity

What is different now?

- Main idea: some components of $G-S$ are the same.
- The same internally.
- The same with respect to S.
- More precisely:
- Two components C_{1}, C_{2} of G S are "the same" if there exists an automorphism of G that maps C_{1} to C_{2}.

Vertex Integrity

- Previously:
- We defined "equivalence" for vertices.
- We showed that if we have many equivalent vertices, we can delete one.
- We counted how many equivalence types there are.
- Now:
- We defined "equivalence" for components of $G-S$.

Vertex Integrity

- Previously:
- We defined "equivalence" for vertices.
- We showed that if we have many equivalent vertices, we can delete one.
- We counted how many equivalence types there are.
- Now:
- We defined "equivalence" for components of $G-S$.

What do we need now?

- Understand counting power of FO/MSO for collections of identical components.
- Count number of possible component types.

How many types of components?

- Equivalent components of $G-S$ are
- The same internally.
- The same with respect to S.
- How many choices?
- Recall, components of $G-S$ have size \leq vi
- At most $2^{\text {vi }}{ }^{2}$ different internal structures.
- At most $2^{\text {vi }}$ different connections to S.
- All in all, $2^{O\left(\mathrm{vi}^{2}\right)}$ possible types.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.

Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.
Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - FO

How many identical components can we distinguish with q FO quantifiers?

Claim: if we have $>q$ components, we can delete one.
Induction:

- Suppose true for $q-1$ quantifiers.
- We have a formula $\exists x_{1} \psi\left(x_{1}\right)$, where ψ has $q-1$ quantifiers.
- Mapping it to any component is the same.
- We have $>q-1$ identical components left.
- By induction, we can delete one.

Counting Power - MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.
Problem:

- When we select a set X_{1} this may distinguish many components.
- Intuitively: if X_{1} interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power - MSO

How many components can we distinguish with q MSO quantifiers?

Claim: if we have > ?? components, we can delete one.
Problem:

- When we select a set X_{1} this may distinguish many components.
- Intuitively: if X_{1} interacts with two previously identical components in different ways, these components are not identical any more!
- What to do?

Counting Power - MSO (cont’d)

How many components can we distinguish with q MSO quantifiers?

Claim: if we have $>2^{\text {vi. } \cdot}$ components, we can delete one.
Solution:

- Our components have size \leq vi.
- There are at most $2^{\text {vi }}$ intersections of X_{1} with each component.
- If we have $>2^{\text {vi. } q}$ identical components initially...
- \ldots by PHP one intersection type appears $>2^{\mathrm{vi} \cdot q} / 2^{\mathrm{vi}}=2^{\mathrm{vi}(q-1)}$ times.
- These components are identical, use inductive hypothesis!

Putting things together

- There are at most $2^{\mathrm{vi}^{2}}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\text {vi } \cdot q}$ for MSO logic.

Putting things together

- There are at most $2^{\text {vi }}{ }^{2}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\text {vi } \cdot q}$ for MSO logic.
- For FO logic
- Reduced graph has size $q 2^{\mathrm{vi}^{2}}$.
- Trivial algorithm runs in $2^{q \cdot \mathrm{vi}^{2}} q^{q}$.

Putting things together

- There are at most $2^{\mathrm{vi}}{ }^{2}$ types of components.
- Maximum number of same components in reduced graph is
- q for FO logic.
- $2^{\text {vi } \cdot q}$ for MSO logic.
- For FO logic
- Reduced graph has size $q 2^{\mathrm{vi}^{2}}$.
- Trivial algorithm runs in $2^{q \cdot v \mathrm{vi}^{2}} q^{q}$.
- For MSO logic
- Reduced graph has size $2^{\text {vi }{ }^{2}+\mathrm{vi} \cdot q}$.
- Trivial algorithm runs in $2^{2 i^{2}+\mathrm{vi} \cdot q}$.
- Are these meta-theorems optimal?

Fine-Grained Lower Bounds

Fine-Grained Lower Bounds

High-Level Idea

- We claim that we need time at least
- $2^{\mathrm{vi}^{2} \cdot q}$ for FO
- $2^{2^{\mathrm{vi}}{ }^{2}}$ for MSO

Strategy:

- Take an arbitrary n-vertex graph G
- Encode it into a graph H with the following properties:
- $\mathrm{vi}(H)=\sqrt{\log n}$
- Whether $u v \in E(G)$ can be tested with a simple FO formula on H
- Translate questions about G into questions about H.
- G has k-clique? \rightarrow FO on H with $q=k$
- G is 3 -colorable? $\rightarrow \mathrm{MSO}$ on H with $q=O(1)$

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs

- Separator has $2 \sqrt{\log n}$ vertices.
- Each edge of G is represented by a component of $H-S$ made up of two cliques of size $\sqrt{\log n}$.
- Connections from the cliques to S encode indices.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Encoding graphs with simple graphs (cont'd)

- Goal: a simple FO formula that states: these two edges have a common endpoint.
- Equivalently: these cliques of size $\sqrt{\log n}$ have isomorphic neighbors in S.

Putting Things Together

- Can translate G to H so that:
- $\operatorname{vi}(H)=O(\sqrt{\log n})$
- Can "read" G in H.
- Is G 3-colorable?
- Do there exist three sets of vertices partitioning H that represent independent sets in G ?
- MSO-expressible with $q=O(1)$.
- If $2^{2^{o\left(v i{ }^{2}\right)}}$ algorithm we have $2^{o(n)}$ algorithm for 3-COLORING!!
- Does G have k-Ind. Set?
- Do there exist k vertices of H belonging to cliques that represent an independent set of G ?
- FO-expressible with $q=O(k)$.
- If $2^{o\left(\mathrm{vi}^{2} \cdot q\right)}$ algorithm we have $2^{o(\log n \cdot k)}=n^{o(k)}$ algorithm for k-Clique!!

Conclusions - Open Problems

Conclusions

- Vertex Integrity "between" vertex cover and tree-depth.
- "(Double-)Exponential in the square" behavior is natural and optimal.

Questions:

- What about MSO_{2} ?
- Other widths between vertex integrity and tree-depth?

Conclusions

- Vertex Integrity "between" vertex cover and tree-depth.
- "(Double-)Exponential in the square" behavior is natural and optimal.

Questions:

- What about MSO_{2} ?
- Other widths between vertex integrity and tree-depth?

Thank you!

