Deciding a Slater Winner is Complete for Parallel Access to NP

Michael Lampis LAMSADE

STACS 2022 Mar 16th 2022

One-Slide Summary

- Context: complexity of voting rules
 - How to pick "most popular" out of *n* candidates?
 - Hard to define for $n \ge 3!$
 - Many voting rules have been proposed.
- In this talk: Slater Rule
 - Def: *c* is winner if number of head-to-head matchups that need to be reversed to make *c* best is minimum.
- Question: Determine complexity of following
 - Given list of voter preferences and candidate *c*, is *c* a Slater winner?
- Previous bounds: NP-hard, in Θ_2^p .
- **This talk**: Problem is Θ_2^p -complete.

Thanks

Many thanks to Jérôme Lang for suggesting this problem and guessing the correct solution!

The Slater Rule

Angela

Boris

Angela

Boris

Christine

Angela

Angela

Boris

Christine

Donald

_

Angela

Boris

Christine

Donald

Angela

Boris

Christine

Donald

Emmanuel

ł

Three voters with distinct preferences

Christine

Donald

Emmanuel

.

.

Three voters with distinct preferences

Three voters with distinct preferences

These results contain contradictions!

Can be repaired by flipping two arcs.

Angela's Slater score is 2.

Input:

- n candidates and m voters.
- For each voter a total ranking of all candidates.

Head-to-Head Graph

- A vertex for each candidate.
- Arc $u \to v$ if u beats v.

Slater Score of u:

• Minimum number of arcs that need to be reversed so that *u* is winner and ranking is globally consistent.

Slater Winner:

• Candidate with minimum Slater score.

Angela has a score of 2.

Angela has a score of 2.

Boris also has a score of 2.

Boris also has a score of 2.

2 is best possible, so they are both Slater winners.

Basic Decision Problem:

- Is v a Slater winner?
- If odd number of voters \rightarrow graph is a **Tournament**.
- Problem seems at least as hard as FAST.
- Is it in NP?
- How do we prove someone's score = k?
- How do we prove no one has a better score?

Some Problems

Consider following variations of the problem:

- Input: T, v, k. Is v's score $\leq k$?
- Input: T, v, k. Is v's score $\geq k$?
- Input: T, v, k. Is v's score = k?
- Input: T, v, u, k. Is v's score $\leq u$'s score?
- Input: T, v, k. Is v's score \leq everyone else's?

Some Problems

Consider following variations of the problem:

- Input: T, v, k. Is v's score $\leq k$?
- Input: T, v, k. Is v's score $\geq k$?
- Input: T, v, k. Is v's score = k?
- Input: T, v, u, k. Is v's score $\leq u$'s score?
- Input: T, v, k. Is v's score \leq everyone else's?
- Problems kind of poly-time equivalent.
 - If one is in P, others are in P.
- Are they **really** equivalent?
 - Can I transform an instance of one into an equivalent instance of the other? (Karp reduction)

• Reminder of some classes

- Reminder of some classes
- NP: Problems with a Yes certificate
- Example: 3-Coloring
- Example: is Slater score of *u* at most *k*?

- Reminder of some classes
- **coNP**: Problems with a No certificate
- Example: Formula Equivalence
- Example: is Slater score of *u* at least *k*?

- Reminder of some classes
- What about: is Slater score of *u* **exactly** *k*?
- **DP**: Intersection of a problem in NP with a problem in coNP.
- Essentially: P with two calls to an NP oracle.

- Reminder of some classes
- Problem: Is Slater score of $u \leq$ Slater score of v?
- How many calls to NP oracle needed?
- Note: problem is in $P^{\rm NP}$.
- Actually: problem is in Θ_2^p .

Parallel Access to NP

The class Θ_2^p

- $\mathsf{P}^{\operatorname{NP}[\log n]}$
 - P with $\log n$ calls to an NP oracle
- $\mathsf{P}^{\mathrm{NP}}_{||}$
 - P with $n^{O(1)}$ **non-adaptive** calls to an NP oracle
- L^{NP}
 - L with $n^{O(1)}$ calls to an NP oracle

- Many election systems are **complete** for Θ_2^p
 - Dodgson [Hemaspaandra, Hemaspaandra, Rothe, J.ACM'97]
 - Young [Rothe, Spakowski, Vogel, TCS'03]
 - Kemeny [Hemaspaandra, Spakowski, Vogel, TCS'05]

Slater Winner $\in \Theta_2^p$

- Compute Angela's score, best score with binary search (O(log n)) oracle calls)
- Compute everyone's score with $n^{O(1)}$ non-adaptive calls.

SLATER WINNER is NP-hard (under Turing reductions)

• If we could find Slater winner in P, we could solve FAST.

Main Result: SLATER WINNER is Θ_2^p -complete.

Reductions

Not so FAST!

Background: FEEDBACK ARC SET ON TOURNAMENTS

- Problem with interesting history.
- FAS is easily NP-complete (from $VC \rightarrow FVS$).
- Whether still NP-complete on **Tournaments** open for a long time!
 - Conjectured NP-complete by [Bang-Jensen, Thomassen, SIDMA'92]
 - **Almost** proved (via randomized reduction) by [Ailon, Charikar, Newman, STOC'05]
 - **Proved** (derandomized) by [Alon SIDMA'06] and [Charbit, Thomassé, Yeo Comb. Prob. Comp. '06]

Not so FAST!

Background: FEEDBACK ARC SET ON TOURNAMENTS

- Problem with interesting history.
- FAS is easily NP-complete (from VC \rightarrow FVS).
- Whether still NP-complete on **Tournaments** open for a long time!
 - Conjectured NP-complete by [Bang-Jensen, Thomassen, SIDMA'92]
 - Almost proved (via randomized reduction) by [Ailon, Charikar, Newman, STOC'05]
 - **Proved** (derandomized) by [Alon SIDMA'06] and [Charbit, Thomassé, Yeo Comb. Prob. Comp. '06]
- Reproved from scratch by [Conitzer AAAI'06]!

- Start from a 3-SAT formula with *n* variables.
- Make six **large** groups for each variable.

- Start from a 3-SAT formula with *n* variables.
- Make six **large** groups for each variable.

- Order variable groups linearly.
- Now we only have a choice **inside** each group.

- Order variable groups linearly.
- Now we only have a choice **inside** each group.

- Three reasonable choices.
 - $D \to E \to F$
 - $E \to F \to D$
 - $F \to D \to E$

- Three reasonable choices.
 - $D \to E \to F$
 - $E \to F \to D$
 - $F \to D \to E$

- Three reasonable choices.
 - $D \to E \to F$
 - $E \to F \to D$
 - $F \to D \to E$

- Convention:
 - $D \rightarrow E \rightarrow F$: Variable is True
 - $E \to F \to D$: Variable is False

- Convention:
 - $D \rightarrow E \rightarrow F$: Variable is True
 - $E \to F \to D$: Variable is False

- Represent each clause with a vertex T_i
- Encode variable incidence via arcs to gadget
- Variable doesn't appear in clause
- Better to keep T_j before or after gadget.

- Represent each clause with a vertex T_i
- Encode variable incidence via arcs to gadget
- Variable appears **positive** in clause
- Better to keep T_j inside gadget right before F, assuming F is last.

- Represent each clause with a vertex T_i
- Encode variable incidence via arcs to gadget
- Variable appears **negative** in clause
- Better to keep T_j inside gadget right before D, assuming D is last.

- Represent each clause with a vertex T_i
- Encode variable incidence via arcs to gadget

Remaining ideas:

- Variable groups are so large that:
 - Must respect variable structure.
 - Clause ordering is irrelevant. Only clause satisfaction matters.
- Formula satisfiable \Leftrightarrow FAST $\leq k$

This reduction

New ideas to obtain Θ_2^p -completeness for SLATER WINNER

- Start reduction from MAX MODEL:
 - Input: CNF formula ϕ with a distinguished variable x_n
 - Question: Is there a **Maximum Weight** satisfying assignment of ϕ that sets x_n to True?
 - Prototypical Θ_2^p -complete problem.

This reduction

New ideas to obtain Θ_2^p -completeness for SLATER WINNER

- Start reduction from MAX MODEL:
 - Input: CNF formula ϕ with a distinguished variable x_n
 - Question: Is there a **Maximum Weight** satisfying assignment of ϕ that sets x_n to True?
 - Prototypical Θ_2^p -complete problem.
- Modify reduction so that:
 - Assignment weight is taken into account. More True variables \Rightarrow smaller FAS
 - Setting x_n to True is more important than setting another variable to True...
 - ... but less important than setting **two** other variables to True.

This reduction continued

- Main idea: add 2 vertices to group E_i
 - Arc $F \rightarrow D$ is now less heavy than $D \rightarrow E$ and $E \rightarrow F$
 - \Rightarrow slightly better FAS if we order $D \rightarrow E \rightarrow F$
 - This corresponds to x_i set to True

This reduction continued

- Main idea: add 2 vertices to group E_i
- For the group of x_n add 3 vertices to E_n
 - Setting x_n to True is more important than one other variable, less important than two others.
- Optimal FAS \Leftrightarrow Max Weight Sat assignment which sets x_n to True if possible.
- Slater winner reflected in configuration for x_n .

This reduction continued

- Main idea: add 2 vertices to group E_i
- For the group of x_n add 3 vertices to E_n
 - Setting x_n to than one oth tant than two
- Optimal FAS ⇔ ment which sets
- Slater winner ref x_n .

Conclusions

Conclusions

- Slater is **another** election system complete for Θ_2^p
 - This class seems to nicely capture key ideas in social choice!
- Strengthening: still Θ_2^p -complete for 7 voters!
 - Following ideas of [Bachmeier et al. JCSS'19]
- Open problem:
 - What about 3 or 5 voters?

Conclusions

- Slater is **another** election system complete for Θ_2^p
 - This class seems to nicely capture key ideas in social choice!
- Strengthening: still Θ_2^p -complete for 7 voters!
 - Following ideas of [Bachmeier et al. JCSS'19]
- Open problem:
 - What about 3 or 5 voters?

Thank you!

