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• Context: complexity of voting rules

• How to pick “most popular” out of n candidates?

• Hard to define for n ≥ 3!

• Many voting rules have been proposed.

• In this talk: Slater Rule

• Def: c is winner if number of head-to-head matchups that need to

be reversed to make c best is minimum.

• Question: Determine complexity of following

• Given list of voter preferences and candidate c, is c a Slater

winner?

• Previous bounds: NP-hard, in Θp
2.

• This talk: Problem is Θp
2-complete.
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Many thanks to Jérôme Lang for suggesting this problem and guessing

the correct solution!



The Slater Rule
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Angela’s Slater score is 2.
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Input:

• n candidates and m voters.

• For each voter a total ranking of all candidates.

Head-to-Head Graph

• A vertex for each candidate.

• Arc u → v if u beats v.

Slater Score of u:

• Minimum number of arcs that need to be reversed so that u is winner

and ranking is globally consistent.

Slater Winner:

• Candidate with minimum Slater score.
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Boris
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2 is best possible, so they are both Slater winners.
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Basic Decision Problem:

• Is v a Slater winner?

• If odd number of voters → graph is a Tournament.

• Problem seems at least as hard as FAST.

• Is it in NP?

• How do we prove someone’s score= k?

• How do we prove no one has a better score?



Complexity Classes



Some Problems

10 / 21

Consider following variations of the problem:

• Input: T , v, k. Is v’s score ≤ k?

• Input: T , v, k. Is v’s score ≥ k?

• Input: T , v, k. Is v’s score = k?

• Input: T , v, u, k. Is v’s score ≤ u’s score?

• Input: T , v, k. Is v’s score ≤ everyone else’s?
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Consider following variations of the problem:

• Input: T , v, k. Is v’s score ≤ k?

• Input: T , v, k. Is v’s score ≥ k?

• Input: T , v, k. Is v’s score = k?

• Input: T , v, u, k. Is v’s score ≤ u’s score?

• Input: T , v, k. Is v’s score ≤ everyone else’s?

• Problems kind of poly-time equivalent.

• If one is in P, others are in P.

• Are they really equivalent?

• Can I transform an instance of one into an equivalent instance of

the other? (Karp reduction)
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• Reminder of some classes

P

NP coNP

DP = BH2

BH=PNP[O(1)]

Θ
p
2

PNP
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• Reminder of some classes

• NP: Problems with a Yes certificate

• Example: 3-Coloring

• Example: is Slater score of u at most k?

P

NP coNP

DP = BH2

BH=PNP[O(1)]

Θ
p
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PNP
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• Reminder of some classes

• coNP: Problems with a No certificate

• Example: Formula Equivalence

• Example: is Slater score of u at least k?

P

NP coNP

DP = BH2

BH=PNP[O(1)]

Θ
p
2

PNP
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• Reminder of some classes

• What about: is Slater score of u exactly

k?

• DP: Intersection of a problem in NP with

a problem in coNP.

• Essentially: P with two calls to an NP or-

acle.

P

NP coNP

DP = BH2

BH=PNP[O(1)]

Θ
p
2

PNP
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• Reminder of some classes

• Problem: Is Slater score of u ≤ Slater

score of v?

• How many calls to NP oracle needed?

• Note: problem is in PNP.

• Actually: problem is in Θp
2.

P

NP coNP

DP = BH2

BH=PNP[O(1)]

Θ
p
2

PNP
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The class Θp
2

• PNP[logn]

• P with logn calls to an NP oracle

• PNP
||

• P with nO(1) non-adaptive calls to an NP oracle

• LNP

• L with nO(1) calls to an NP oracle



Parallel Access to NP and Elections
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• Many election systems are complete for Θp
2

• Dodgson [Hemaspaandra, Hemaspaandra, Rothe, J.ACM’97]

• Young [Rothe, Spakowski, Vogel, TCS’03]

• Kemeny [Hemaspaandra, Spakowski, Vogel, TCS’05]

SLATER WINNER∈ Θp
2

• Compute Angela’s score, best score with binary search (O(logn))
oracle calls)

• Compute everyone’s score with nO(1) non-adaptive calls.

SLATER WINNER is NP-hard (under Turing reductions)

• If we could find Slater winner in P, we could solve FAST.

Main Result: SLATER WINNER is Θp
2-complete.



Reductions
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Background: FEEDBACK ARC SET ON TOURNAMENTS

• Problem with interesting history.

• FAS is easily NP-complete (from VC→FVS).

• Whether still NP-complete on Tournaments open for a long time!

• Conjectured NP-complete by [Bang-Jensen, Thomassen,

SIDMA’92]

• Almost proved (via randomized reduction) by [Ailon, Charikar,

Newman, STOC’05]

• Proved (derandomized) by [Alon SIDMA’06] and [Charbit,

Thomassé, Yeo Comb. Prob. Comp. ’06]
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• Problem with interesting history.

• FAS is easily NP-complete (from VC→FVS).

• Whether still NP-complete on Tournaments open for a long time!

• Conjectured NP-complete by [Bang-Jensen, Thomassen,

SIDMA’92]

• Almost proved (via randomized reduction) by [Ailon, Charikar,

Newman, STOC’05]

• Proved (derandomized) by [Alon SIDMA’06] and [Charbit,

Thomassé, Yeo Comb. Prob. Comp. ’06]

• Reproved from scratch by [Conitzer AAAI’06]!
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• Start from a 3-SAT formula with n variables.

• Make six large groups for each variable.
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• Now we only have a choice inside each group.
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• Three reasonable choices.

• D → E → F

• E → F → D

• F → D → E
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x3 is False

• Convention:

• D → E → F : Variable is True

• E → F → D: Variable is False
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x3 is False

x2 is True

• Convention:

• D → E → F : Variable is True

• E → F → D: Variable is False
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• Represent each clause with a vertex Tj

• Encode variable incidence via arcs to

gadget

• Variable doesn’t appear in clause

• Better to keep Tj before or after gadget.

Ai

Bi

Ci

Di

Ei

Fi

Tj
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• Better to keep Tj inside gadget right be-
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• Represent each clause with a vertex Tj
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• Better to keep Tj inside gadget right be-
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• Represent each clause with a vertex Tj

• Encode variable incidence via arcs to

gadget

Remaining ideas:

• Variable groups are so large that:

• Must respect variable structure.

• Clause ordering is irrelevant. Only

clause satisfaction matters.

• Formula satisfiable ⇔ FAST≤ k

Ai

Bi

Ci

Di

Ei

Fi

Tj
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New ideas to obtain Θp
2-completeness for SLATER WINNER

• Start reduction from MAX MODEL:

• Input: CNF formula φ with a distinguished variable xn
• Question: Is there a Maximum Weight satisfying assignment of φ

that sets xn to True?

• Prototypical Θp
2-complete problem.
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New ideas to obtain Θp
2-completeness for SLATER WINNER

• Start reduction from MAX MODEL:

• Input: CNF formula φ with a distinguished variable xn
• Question: Is there a Maximum Weight satisfying assignment of φ

that sets xn to True?

• Prototypical Θp
2-complete problem.

• Modify reduction so that:

• Assignment weight is taken into account. More True variables ⇒

smaller FAS

• Setting xn to True is more important than setting another variable

to True. . .

• . . . but less important than setting two other variables to True.
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• Main idea: add 2 vertices to group Ei

• Arc F → D is now less heavy than

D → E and E → F

• ⇒ slightly better FAS if we order D →

E → F

• This corresponds to xi set to True

Ai

Bi

Ci

Di

Ei

Fi

Tj
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• Main idea: add 2 vertices to group Ei

• For the group of xn add 3 vertices to En

• Setting xn to True is more important

than one other variable, less impor-

tant than two others.

• Optimal FAS ⇔ Max Weight Sat assign-

ment which sets xn to True if possible.

• Slater winner reflected in configuration for

xn.

Ai

Bi

Ci

Di

Ei

Fi

Tj
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• Slater is another election system complete for Θp
2

• This class seems to nicely capture key ideas in social choice!

• Strengthening: still Θp
2-complete for 7 voters!

• Following ideas of [Bachmeier et al. JCSS’19]

• Open problem:

• What about 3 or 5 voters?
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• Slater is another election system complete for Θp
2

• This class seems to nicely capture key ideas in social choice!

• Strengthening: still Θp
2-complete for 7 voters!

• Following ideas of [Bachmeier et al. JCSS’19]

• Open problem:

• What about 3 or 5 voters?

Thank you!
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