Deciding a Slater Winner is Complete for Parallel Access to NP

Michael Lampis
LAMSADE

DaUphine | PSL*

STACS 2022
Mar 16th 2022

One-Slide Summary

- Context: complexity of voting rules
- How to pick "most popular" out of n candidates?
- Hard to define for $n \geq 3$!
- Many voting rules have been proposed.
- In this talk: Slater Rule
- Def: c is winner if number of head-to-head matchups that need to be reversed to make c best is minimum.
- Question: Determine complexity of following
- Given list of voter preferences and candidate c, is c a Slater winner?
- Previous bounds: NP-hard, in Θ_{2}^{p}.
- This talk: Problem is Θ_{2}^{p}-complete.

Thanks

Many thanks to Jérôme Lang for suggesting this problem and guessing the correct solution!

The Slater Rule

An example

Angela

Five candidates for President of STACS

An example

Five candidates for President of STACS

An example

Five candidates for President of STACS

An example

Five candidates for President of STACS

An example

Five candidates for President of STACS

An example

Three voters with distinct preferences

An example

Three voters with distinct preferences

An example

Three voters with distinct preferences

An example

Head-to-Head results

An example

These results contain contradictions!

An example

Can be repaired by flipping two arcs.

An example

Angela's Slater score is 2.

The Slater Rule

Input:

- $\quad n$ candidates and m voters.
- For each voter a total ranking of all candidates.

Head-to-Head Graph

- A vertex for each candidate.
- Arc $u \rightarrow v$ if u beats v.

Slater Score of u :

- Minimum number of arcs that need to be reversed so that u is winner and ranking is globally consistent.

Slater Winner:

- Candidate with minimum Slater score.

Back to example

Angela has a score of 2.

Back to example

Angela has a score of 2.

Back to example

Boris also has a score of 2.

Back to example

Boris also has a score of 2.

Back to example

2 is best possible, so they are both Slater winners.

Complexity Considerations

Basic Decision Problem:

- Is v a Slater winner?
- If odd number of voters \rightarrow graph is a Tournament.
- Problem seems at least as hard as FAST.
- Is it in NP?
- How do we prove someone's score $=k$?
- How do we prove no one has a better score?

Complexity Classes

Some Problems

Consider following variations of the problem:

- Input: T, v, k. Is v 's score $\leq k$?
- Input: T, v, k. Is v 's score $\geq k$?
- Input: T, v, k. Is v 's score $=k$?
- Input: T, v, u, k. Is v 's score $\leq u$'s score?
- Input: T, v, k. Is v 's score \leq everyone else's?

Some Problems

Consider following variations of the problem:

- Input: T, v, k. Is v 's score $\leq k$?
- Input: T, v, k. Is v 's score $\geq k$?
- Input: T, v, k. Is v 's score $=k$?
- Input: T, v, u, k. Is v 's score $\leq u$'s score?
- Input: T, v, k. Is v 's score \leq everyone else's?
- Problems kind of poly-time equivalent.
- If one is in P, others are in P.
- Are they really equivalent?
- Can I transform an instance of one into an equivalent instance of the other? (Karp reduction)

Complexity Classes

- Reminder of some classes

Complexity Classes

- Reminder of some classes
- NP: Problems with a Yes certificate
- Example: 3-Coloring
- Example: is Slater score of u at most k ?

Complexity Classes

- Reminder of some classes
- coNP: Problems with a No certificate
- Example: Formula Equivalence
- Example: is Slater score of u at least k ?

Complexity Classes

- Reminder of some classes
- What about: is Slater score of u exactly k ?
- DP: Intersection of a problem in NP with a problem in coNP.
- Essentially: P with two calls to an NP oracle.

Complexity Classes

- Reminder of some classes
- Problem: Is Slater score of $u \leq$ Slater score of v ?
- How many calls to NP oracle needed?
- Note: problem is in P^{NP}.
- Actually: problem is in Θ_{2}^{p}.

Parallel Access to NP

The class Θ_{2}^{p}

- $\mathbf{P}^{\mathrm{NP}[\log n]}$
- P with $\log n$ calls to an NP oracle
- $P_{\|}^{\text {NP }}$
- P with $n^{O(1)}$ non-adaptive calls to an NP oracle
- $L^{N P}$
- L with $n^{O(1)}$ calls to an NP oracle

Parallel Access to NP and Elections

- Many election systems are complete for Θ_{2}^{p}
- Dodgson [Hemaspaandra, Hemaspaandra, Rothe, J.ACM'97]
- Young [Rothe, Spakowski, Vogel, TCS’03]
- Kemeny [Hemaspaandra, Spakowski, Vogel, TCS'05]

Slater Winner $\in \Theta_{2}^{p}$

- Compute Angela's score, best score with binary search $(O(\log n))$ oracle calls)
- Compute everyone's score with $n^{O(1)}$ non-adaptive calls.

Slater Winner is NP-hard (under Turing reductions)

- If we could find Slater winner in P, we could solve FAST.

Main Result: Slater Winner is Θ_{2}^{p}-complete.

Reductions

Not so FAST!

Background: Feedback Arc Set on Tournaments

- Problem with interesting history.
- FAS is easily NP-complete (from VC \rightarrow FVS).
- Whether still NP-complete on Tournaments open for a long time!
- Conjectured NP-complete by [Bang-Jensen, Thomassen, SIDMA'92]
- Almost proved (via randomized reduction) by [Ailon, Charikar, Newman, STOC'05]
- Proved (derandomized) by [Alon SIDMA'06] and [Charbit, Thomassé, Yeo Comb. Prob. Comp. '06]

Not so FAST!

Background: Feedback Arc Set on Tournaments

- Problem with interesting history.
- FAS is easily NP-complete (from VC \rightarrow FVS).
- Whether still NP-complete on Tournaments open for a long time!
- Conjectured NP-complete by [Bang-Jensen, Thomassen, SIDMA'92]
- Almost proved (via randomized reduction) by [Ailon, Charikar, Newman, STOC'05]
- Proved (derandomized) by [Alon SIDMA'06] and [Charbit, Thomassé, Yeo Comb. Prob. Comp. '06]
- Reproved from scratch by [Conitzer AAAl'06]!

Conitzer's reduction - Setup

- Start from a 3-SAT formula with n variables.
- Make six large groups for each variable.

Conitzer's reduction - Setup

- Start from a 3-SAT formula with n variables.
- Make six large groups for each variable.

Conitzer's reduction - Setup

- Order variable groups linearly.
- Now we only have a choice inside each group.

Conitzer's reduction - Setup

- Order variable groups linearly.
- Now we only have a choice inside each group.

Conitzer's reduction - Setup

- Three reasonable choices.
- $D \rightarrow E \rightarrow F$
- $E \rightarrow F \rightarrow D$
- $F \rightarrow D \rightarrow E$

Conitzer's reduction - Setup

- Three reasonable choices.
- $D \rightarrow E \rightarrow F$
- $E \rightarrow F \rightarrow D$
- $F \rightarrow D \rightarrow E$

Conitzer's reduction - Setup

- Three reasonable choices.
- $D \rightarrow E \rightarrow F$
- $E \rightarrow F \rightarrow D$
- $F \rightarrow D \rightarrow E$

Conitzer's reduction - Setup

- Convention:
- $D \rightarrow E \rightarrow F$: Variable is True
- $E \rightarrow F \rightarrow D$: Variable is False

Conitzer's reduction - Setup

- Convention:
- $D \rightarrow E \rightarrow F$: Variable is True
- $E \rightarrow F \rightarrow D$: Variable is False

Conitzer's reduction - Validation

- Represent each clause with a vertex T_{j}
- Encode variable incidence via arcs to gadget
- Variable doesn't appear in clause
- Better to keep T_{j} before or after gadget.

Conitzer's reduction - Validation

- Represent each clause with a vertex T_{j}
- Encode variable incidence via arcs to gadget
- Variable appears positive in clause
- Better to keep T_{j} inside gadget right before F, assuming F is last.

Conitzer's reduction - Validation

- Represent each clause with a vertex T_{j}
- Encode variable incidence via arcs to gadget
- Variable appears negative in clause
- Better to keep T_{j} inside gadget right before D, assuming D is last.

Conitzer's reduction - Validation

- Represent each clause with a vertex T_{j}
- Encode variable incidence via arcs to gadget

Remaining ideas:

- Variable groups are so large that:
- Must respect variable structure.
- Clause ordering is irrelevant. Only clause satisfaction matters.
- Formula satisfiable $\Leftrightarrow \mathrm{FAST} \leq k$

This reduction

New ideas to obtain Θ_{2}^{p}-completeness for SLATER WINNER

- Start reduction from Max Model:
- Input: CNF formula ϕ with a distinguished variable x_{n}
- Question: Is there a Maximum Weight satisfying assignment of ϕ that sets x_{n} to True?
- Prototypical Θ_{2}^{p}-complete problem.

This reduction

New ideas to obtain Θ_{2}^{p}-completeness for SLATER WINNER

- Start reduction from Max Model:
- Input: CNF formula ϕ with a distinguished variable x_{n}
- Question: Is there a Maximum Weight satisfying assignment of ϕ that sets x_{n} to True?
- Prototypical Θ_{2}^{p}-complete problem.
- Modify reduction so that:
- Assignment weight is taken into account. More True variables \Rightarrow smaller FAS
- Setting x_{n} to True is more important than setting another variable to True...
- ... but less important than setting two other variables to True.

This reduction continued

- Main idea: add 2 vertices to group E_{i}
- Arc $F \rightarrow D$ is now less heavy than $D \rightarrow E$ and $E \rightarrow F$
- \Rightarrow slightly better FAS if we order $D \rightarrow$ $E \rightarrow F$
- This corresponds to x_{i} set to True

This reduction continued

- Main idea: add 2 vertices to group E_{i}
- For the group of x_{n} add 3 vertices to E_{n}
- Setting x_{n} to True is more important than one other variable, less important than two others.
- Optimal FAS \Leftrightarrow Max Weight Sat assignment which sets x_{n} to True if possible.
- Slater winner reflected in configuration for x_{n}.

This reduction continued

- Main idea: add 2 vertices to group E_{i}
- For the group of x_{n} add 3 vertices to E_{n}
- Setting x_{n} to than one oth tant than two
- Optimal FAS \Leftrightarrow ment which sets
- Slater winner ref x_{n}.

Conclusions

Conclusions

- Slater is another election system complete for Θ_{2}^{p}
- This class seems to nicely capture key ideas in social choice!
- Strengthening: still Θ_{2}^{p}-complete for 7 voters!
- Following ideas of [Bachmeier et al. JCSS'19]
- Open problem:
- What about 3 or 5 voters?

Conclusions

- Slater is another election system complete for Θ_{2}^{p}
- This class seems to nicely capture key ideas in social choice!
- Strengthening: still Θ_{2}^{p}-complete for 7 voters!
- Following ideas of [Bachmeier et al. JCSS'19]
- Open problem:
- What about 3 or 5 voters?

Thank you!

