
On cooperative connection situations where the players are

located at the edges

Stefano Moretti?

Université Paris-Dauphine, PSL Research University, CNRS, UMR [7243], 75016 Paris, France.

stefano.moretti@dauphine.fr

Abstract. In classical cooperative connection situations, the agents are located at some

nodes of a network and the cost of a coalition is based on the problem of �nding a network

of minimum cost connecting all the members of the coalition to a source.

In this paper we study a di�erent connection situation with no source and where the agents

are the edges, and yet the optimal network associated to each coalition (of edges) is not �xed

and follows a cost-optimization procedure. The proposed model shares some similarities with

classical minimum cost spanning tree games, but also substantial di�erences, speci�cally on

the appropriate way to share the costs among the agents located at the edges. We show that

the core of these particular cooperative games is always non-empty and some core allocations

can be easily computed.

Keywords: coalitional games, connection situations, cost allocation protocols, core.

1 Introduction

This paper deals with an alternative class of cooperative cost games de�ned on minimum cost

spanning tree (mcst) situations. A (classical) mcst situation arises in the presence of a group of

agents that are willing to be connected as cheap as possible to a source (e.g., a supplier of a service,

if the agents are computers, or a water puri�er, if the agents represent farms in a drainage system).

Since links are costly, agents evaluate the opportunity of cooperating in order to reduce costs: if a

group of agents decides to cooperate, a spanning network minimizing the total cost of connection

of all the agents in the group with the source (i.e., a mcst) is constructed, and the total cost of the

mcst must be shared among the agents of the group. The problem of �nding an mcst can be easily

solved by means of alternative algorithms proposed in the literature (e.g., the Kruskal algorithm

[9] or the Prim algorithm [14]). However, �nding an mcst does not guarantee that it is going to be

really implemented: the agents must agree on the way the cost of the mcst must be shared, and

then a cost allocation problem must be addressed. This cost allocation problem was introduced in

[5] and has been studied with the aid of cooperative game theory since the basic paper [3]. After

? This work bene�ted from the support of the French National Research Agency (ANR) projects

NETLEARN (grant no. ANR-13-INFR-004) and CoCoRICo-CoDec (grant no. ANR-14-CE24-0007).

this seminal paper, many cost allocation methods have been proposed in the literature on mcst

games (see, for instance, [2,4,6,7,10,18]).

More recently, alternative connection situations have been introduced where the focus of interest

of rational agents are the edges of a network. For instance, in [8], the agents demand a connection

between certain nodes of a network, using a single link or via longer paths, and it is assumed

that the set of implemented edges is exogenously �xed and may be �redundant� (see also [11] for

an alternative approach considering redundant links). A still di�erent class of games has been

studied in [1], where the players are the edges of a graph and a coalition of edges gets value one

if it is a connected component in the graph, and zero otherwise. All the aforementioned models

deal with coalitional games where the cost of a coalition is �xed, or its computation is based

on a structural property of the graph. In this paper, we investigate a particular subclass of the

family of games introduced in [12], where the complexity of solutions for cooperative games de�ned

on matroids has been extensively investigated. In our framework, the players are the edges of a

weighted undirected graph, and the cost associated to each coalition (of edges) is the one of an

optimal network connecting the endpoints of the edges in the coalition. The model we study in this

paper is quite natural in a context where di�erent service providers wish to satisfy a demand of

economic exchange between pairs of nodes of a network (e.g., an airline network, a content delivery

network on the web, a telecommunication network, etc.). For example, a very common strategic

problem for airlines participating in pooled �ights is to decide how to allocate joint revenues and

costs. Consider, for instance, three airports 1, 2 and 3 which are connected to each other by three

di�erent �ight operators, each providing an air transport service on a di�erent single connection

between two airports: an operator over the link 1 − 2, another one over the link 1 − 3 and a still

di�erent one over 2 − 3 (see Figure 1 for a graphical representation of this connection situation).

Clearly, implementing each �ight connection between two airports need not be the best strategy. In

fact, the implementation of only two links would be su�cient to guarantee the connection among

the three airports at a lower cost (provided that the capacity constraints imposed by the �ight

vectors satisfy the demand for the service). Consequently, the decision of the �ight operators on

whether to cooperate for the implementation of an optimal airline network, also depends on the

allocation method used to share the monetary savings generated by this cooperation.

The structure of the paper is as follows. We start in the next section with some basic de�nitions

on cooperative games and graphs. Then, in Section 3 we introduce the proposed model, namely,

a Link Connection (LC) situation, and the associated (coalitional) LC game, and we study their

properties. In Section 4 we study a procedure to decompose an LC game as a positive linear

combination of �simple� LC games, which are de�ned on weighted networks with weights equal to

0 or 1. Section 5 deals with the problem of �nding allocations in the core of an LC game. Section

6 concludes with some research directions.

2

2 Preliminaries and notations

A coalitional cost game (or, shortly, a cost game) is a pair (N, c), where N = {1, . . . , n} denotes

the set of players and c : 2N → R is the characteristic function, (by convention, c(∅) = 0). A group

of players S ⊆ N is called coalition and c(S) is the cost incurred by coalition S. If the set N of

players is �xed, we identify a cost game (N, c) with its characteristic function c and we denote as

CGN the class of all cost games with N as the set of players. For a coalition S ⊆ N , we shall denote

by s or |S| its cardinality.

A cost game (N, c) is said to be subadditive if it holds that c(S ∪ T) ≤ c(S) + c(T) for all

S, T ⊆ N such that S ∩ T = ∅. Moreover, a game (N, c) is said to be concave or submodular if it

holds that c(S ∪ T) + c(S ∩ T) ≤ c(S) + c(T) for all S, T ⊆ N . Equivalently, a game (N, c) is said

to be concave if it holds that mc
i (S) ≥ mc

i (T) for all i ∈ N and all S ⊆ T ⊆ N \ {i}, and where

mc
i (S) = c(S ∪ {i}) − c(S) is the marginal contribution of player i to S ∪ {i}. Given a cost game

c, an allocation is a vector x ∈ RN such that the e�ciency condition
∑
i∈N xi = c(N) is satis�ed.

An important subset of allocations is the core, which represents a classical �solution set� for

TU-games. The core of game (N, c) is de�ned as the set of allocation vectors for which no coalition

has an incentive to leave the grand coalition N , precisely,

Core(c) = {x ∈ RN :
∑
i∈N

xi = c(N),
∑
i∈S

xi ≤ c(S) ∀S ⊂ N}.

A (one-point) solution for cost games in CGN is a map ψ : CGN → RN assigning to each

cost game c in CGN an |N |-vector of real numbers. The Shapley value [15] φ is a special solution

assigning to each cost game (N, c) an |N |-vector computed according to the following formula:

φi(c) =
∑

S∈2N\{i}
psm

c
i (S) (1)

for each i ∈ N and with ps = 1

n(n−1
s)

for each s = 0, . . . , |N | − 1.

We provide now some notations about graphs. An undirected graph or network is a pair 〈V,E〉,

where V is a �nite set of vertices or nodes and E is a set of edges e of the form {i, j} with i, j ∈ V ,

i 6= j. Given a graph 〈V,E〉, let V (E) =
⋃
{i,j}⊆E{i, j} be the set of vertices (of the edges) in E.

A path between i and j in a graph 〈V,E〉 is a sequence of nodes (i0, i1, . . . , ik), where i = i0 and

j = ik, k ≥ 1, such that {it, it+1} ∈ E for each t ∈ {0, . . . , k − 1} and such that all these edges

are distinct. Two nodes i, j ∈ V are said to be connected in 〈V,E〉 if i = j or there exists a path

between i and j in 〈V,E〉. A component of 〈V,E〉 is a maximal subset of V with the property that

any two nodes in this subset are connected. The set PE of all components in 〈V,E〉 is a partition

of V . A graph 〈V,E〉 is connected if for each i, j ∈ V with i 6= j there exists a path between i and

j in 〈V,E〉. A cycle in 〈V,E〉 is a path from i to i for some i ∈ V . A path (i0, i1, . . . , ik) is without

cycles if there do not exist a, b ∈ {0, 1, . . . , k}, a 6= b, such that ia = ib. A graph where all paths

are without cycles is called forest, and a forest that is also connected is called tree.

3

3 Link games

A link connection (LC) situation is de�ned as a triple L = 〈V,E,w〉, where 〈V,E〉 is an undirected

graph and w : E → [0,∞) is a weight function, that is a map assigning to each edge {i, j} ∈ E a

non-negative number w({i, j}) (in order to simplify our notation, an edge {i, j} will be also denoted

as ij, whenever no confusion can arise). Each edge {i, j} ∈ E identi�es an economic entity (e.g., a

service provider) aimed to satisfy a demand of connection between nodes i and j for the fruition of

a service (e.g., a communication channel in a telecommunication network, an on-line service on the

web, a �ight in an airlines network, etc.). A service connection between i and j can be implemented

directly at a cost w({i, j}), or indirectly, via a path between i and j in 〈V,E〉 using edges whose

connection is already activated. Di�erently stated, once a connection between two nodes {i, j} ∈ E

is activated (at a cost w({i, j})), the same connection can be exploited to implement the delivery of

other services with no extra-costs. Each service provider {i, j} ∈ E may decide whether to directly

satisfy the request between i and j (at the cost w({i, j})) or, in alternative, to cooperate with

other service providers in order to exploit the connection already implemented.

In the following, the cost of a network 〈V,L〉 in an LC situation L = 〈V,E,w〉 and with L ⊆ E

is denoted by w(L) =
∑
e∈L w(e). Given an LC situation L = 〈V,E,w〉, it is possible to determine

at least one minimum cost spanning forest (mcsf) 〈V, Γ 〉 for L, i.e. a network without cycles of

minimum cost with Γ ⊆ E and such that i and j are connected in 〈V,E〉 if and only if they are

connected in 〈V, Γ 〉, for each i, j ∈ V . So, the set of components PΓ in 〈V, Γ 〉 coincides with the set

of components PE in 〈V,E〉. If 〈V,E〉 is a connected graph, then a mcsf 〈V, Γ 〉 for L is a tree and

it is called minimum cost spanning tree (mcst) for L. In the following we will also use the notation

L|S = 〈V (S), S, w|S〉 to denote the (sub-) LC situation such that w|S : S → R with w|S(e) = w(e)

for each e ∈ S (here V (S) :=
⋃
e∈S e is the set of vertices of the edges belonging to S).

De�nition 1. Given an LC situation L = 〈V,E,w〉, the corresponding LC game is de�ned as

the cost game (E, c), where E is the set of players (service providers, located at the edges of the

network) and the cost c(S) of each coalition S ∈ 2N \ {∅}, is as follows:

c(S) = min{w(Γ)|〈V, Γ 〉 is a spanning forest for 〈V (S), S, w|S〉}.

Remark 1. In De�nition 1, and in the remaining of this paper, we are motivated to study a cooper-

ative situation where the cost of coalition S ⊆ N does not depend on the actions adopted by service

providers in N \ S. Therefore we make the assumption that the service providers of a coalition S

can only implement the services over the edges in S, and are not allowed to use connections in the

complementary coalition.

Example 1. Consider the LC situation depicted in Figure 1. The corresponding LC game (E =

{12, 13, 23}, c) is such that c({12}) = 4, c({13}) = 2, c({23}) = 3, c({12, 23}) = 7, c({12, 13}) = 6,

c({13, 23}) = 5 and c({12, 13, 23}) = 5. Notice that the core of the game (E, c) is Core(c) = {x ∈

RE :
∑
i∈E xi = 5, 4 ≥ x12 ≥ 0, 2 ≥ x13 ≥ −2, 3 ≥ x23 ≥ −1}.

4

2

1 3
2

4 3

2

1 3
2

3

Fig. 1. An LC situation L = 〈V,E,w〉, with V = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}}, w(1, 2) = 4,

w(1, 3) = 2, w(2, 3) = 3 (left side) and the corresponding mcst (right side).

Proposition 1. Let L = 〈V,E,w〉 be an LC situation. The corresponding LC game (E, c) is

subadditive.

Proof. The proof is straightforward and therefore is omitted. ut

It is well known that concave games have a non-empty core, which also contains the Shapley value

[16]. The following example shows that, in general, LC games are not concave, so we cannot use

the concavity argument to guarantee that the core of LC games is non-empty.

Example 2 (LC games are not necessarily concave). Consider the LC situation L = 〈V,E,w〉

depicted in Figure 2, with E = {12, 13, 23, 24, 34}. Clearly, the cost of many coalitions of edges

2

1 3 4
1

1 8 2

4

Fig. 2. An LC situation whose corresponding LC game is not concave.

is simply the sum of the costs of the individual edges (e.g., c(13, 24) = 3). For other coalitions,

the construction of spanning forests determine some extra monetary savings (e.g., the spanning

tree Γ = {12, 13, 24} is the optimal con�guration which guarantees the connection of the adjacent

nodes of all possible links in the graph at a total cost of 4). Notice that the corresponding LC game

Table 1. The LC game coresponding to the LC situation of Figure 2. All omitted coalitions have an

additive cost, that is c(S) =
∑
e∈S w(e).

S 12, 13, 23 23, 24, 34 12, 13, 24, 24 12, 13, 23, 34 12, 13, 23, 24 23, 24, 34, 13 23, 24, 34, 12 E

c(S) 2 6 4 6 4 7 7 4

5

is not concave. Consider the coalitions S = {23, 34} and T = {12, 13, 23, 34}. Then, c(S ∪ 24) = 6

, c(T ∪ 24) = 4, and c(S) = 12, c(T) = 6. So, mc
24(S) = −6 and mc

24(T) = −2. Notice also that,

according to relation (1), the Shapley value of game (E, c) is (φ12(c), φ13(c), φ24(c), φ34(c), φ23(c)) =

(− 16
15 ,−

16
15 ,−

1
15 ,

29
15 ,

64
15), which is not an element of Core(c), since φ24(c) + φ34(c) + φ23(c) > 6 =

c(24, 34, 23).

Consider an LC situation L = 〈V,E,w〉. Nodes i, j ∈ V are called L-connected if i = j or if there

exists a path (i0, . . . , ik) from i to j in 〈V,E〉, with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}.

A L-component of L is a maximal subset of V with the property that any two nodes in this subset

are L-connected. We denote by C(L) the set of all the L-components. Given a component T in

〈V,E〉, let CT (L) = {C ⊆ T : C is a L-component} be the set of all L-components contained in T

(notice that CT (L) forms a partition of T and that CE(L) = C(L)). Similarly, for each non-empty

coalition S ⊆ E, CT (L|S) = {C ⊆ T : C is a L-component} denotes the set of all L|S -components

(i.e., in the restriction L|S = 〈V (S), S, w|S〉) contained in T .

An LC situation L′ = 〈V,E,w′〉 such that w′(e) ∈ {0, 1} for each e ∈ E is said to be simple.

Following the decomposition in [4] for classical connection situations, the next lemma shows that

an LC situation can be decomposed as a sum of simple LC situations. We �rst need some further

notations. Let L = 〈V,E,w〉 be an LC situation. We de�ne the set ΣE of linear orders on E as

the set of all bijections σ : {1, . . . , |E|} → E. For each σ ∈ ΣE de�ne the simple LC situation

Lσ,k = 〈V,E, eσ,k〉, for each k ∈ {1, 2, . . . , |E|}, where the vector eσ,k ∈ {0, 1}E , is such that

eσ,1(σ(j)) = 1 for all j ∈ {1, 2, . . . , |E|}, and for each k ∈ {2, . . . , |E|}

eσ,k(σ(1)) = eσ,k(σ(2)) = . . . = eσ,k(σ(k − 1)) = 0

and

eσ,k(σ(k)) = eσ,k(σ(k + 1)) = . . . = eσ,k(σ(|E|)) = 1.

(2)

Lemma 1. Let L = 〈V,E,w〉 be an LC situation. Let σ ∈ ΣE be such that w(σ(1)) ≤ w(σ(2)) ≤

. . . ≤ w(σ(|E|)). Then we have that

w = w(σ(1))eσ,1 +

|E|∑
k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k. (3)

Proof. The proof is very similar to the decomposition procedure introduced in [4]. ut

Example 3 (follows Example 2). Consider the LC situation of Example 2 and the ordering σ =

({1, 2}, {1, 3}, {2, 4}, {3, 4}, {2, 3}). Notice that w(σ(1)) ≤ . . . ≤ w(σ(5)). According to Lemma 1

we have that

w = eσ,1 + 0eσ,2 + eσ,3 + 2eσ,4 + 4eσ,5

where the weight vectors eσ,1, . . . , eσ,5 are such that eσ,1 = (1, 1, 1, 1, 1), eσ,2 = (0, 1, 1, 1, 1), eσ,3 =

(0, 0, 1, 1, 1), eσ,4 = (0, 0, 0, 1, 1) and eσ,5 = (0, 0, 0, 0, 1).

6

4 A decomposition theorem

It is easy to check that for a simple LC situation L′ = 〈V,E,w′〉 and a component T in 〈V,E〉,

the total cost of a tree spanning all nodes in T at the minimum cost is equal to the the number of

elements in CT (L′) minus one, which is precisely the minimum number of edges of cost 1 that are

needed to connect all L′-components. So, for a simple LC situation L′ = 〈V,E,w′〉 it holds that

the corresponding LC game (E, c′) can be rewritten as

c′(S) =
∑

T is a component in 〈V (S),S〉

(|CT (L′|S)| − 1) (4)

for each S ∈ 2E \ {∅}. In other terms, the cost of a coalition S is given by the sum, over all the

components T in the sub-graph 〈V (S), S〉, of the minimum number of links of cost 1 needed to

connect all the L′|S -components contained in T .

Example 4 (follows Example 2). Consider the simple LC situation L′ = 〈V,E,w′〉 with 〈V,E〉 of

Example 2 and w′ such that w′(2, 3) = w′(2, 4) = w′(3, 4) = 1 and w′(1, 2) = w′(1, 3) = 0, as

depicted in Figure 3. We have C(L′) = {{1, 2, 3}, {4}} and, by relation (4), c(E) = |C(L′)| − 1 = 1.

2

1 3 4
0

0 1 1

1

Fig. 3. A simple LC situation.

Now, let S = {13, 24}. The LC situation L′|S = 〈V (S), S, w′|S〉 is such that there are two

components in 〈V (S), S〉, precisely, {1, 3} and {2, 4}. Component {1, 3} contains only one L′|S-

component, i.e., C{1,3}(L′|S) = {{1, 3}}, whereas component {2, 4} contains two L′|S-components,

i.e., C{2,4}(L′|S) = {{2}, {4}}. So, according to relation (4), c′(S) = |C{1,3}(L′|S)|−1+|C{2,4}(L′|S)|−

1 = 1. Di�erently, if S = {13, 12, 23, 24}, then 〈V (S), S〉 is connected, and, again, we have

C{1,2,3,4}(L′|S) = {{1, 2, 3}, {4}} and c(S) = 1.

Following the approach introduced in [13] to decompose mcst games, we can now prove the

following lemma.

Lemma 2. Let L = 〈V,E,w〉 be an LC situation with at least one edge e ∈ E such that w(e) > 0,

and let α = min{w(e) : w(e) > 0} be its minimum weight. Let L′ = 〈V,E,w′〉 be the simple LC

situation de�ned by w′(e) = 1 if w(e) > 0 and w′(e) = 0, otherwise, for each e ∈ E, and let

L′′ = 〈V,E,w′′〉 be the LC situation with w′′ = w− αw′. Finally, let c, c′ and c′′ be the LC games

corresponding to L, L′ and L′′ respectively. Then, c = αc′ + c′′.

7

Proof. Clearly, by de�nition we have w = αw′+w′′. Let S ∈ 2E\{∅} and let 〈V (S), Γ ′〉 be a mcsf for

〈V (S), S, w′|S〉. Write Γ ′ = L0∪L1 where L0 := {l ∈ Γ ′ : w′(l) = 0} and L1 := {l ∈ Γ ′ : w′(l) = 1}.

The cost of Γ ′ is:

c′(S) = w′(Γ ′) = |L1| =
∑
T is a component in 〈V (S),S〉(|CT (L′|S)| − 1)

=
∑
T is a component in 〈V (Γ ′),Γ ′〉(|CT (L′|Γ ′)| − 1),

(5)

where the �rst equality follows from relation (4) and the second one from the fact that Γ ′ is a

spanning forest in 〈V (S), S〉, which means that PΓ ′ ≡ PS .

We �rst show that there exists a mcsf Γ ′′ for 〈V (S), S, w′′〉 with L0 ⊆ Γ ′′. Take an arbitrary

mcsf Γ for S in 〈V (S), S, w′′〉. If L0 6⊆ Γ choose an l ∈ L0\Γ . Since Γ ∪ {l} contains a cycle R,

whereas Γ ′, and hence L0, do not contain cycles, we can �nd an edge l′ ∈ R with l′ /∈ L0. De�ne

Γ̃ := (Γ ∪{l})\{l′}. Since w′′(l) = 0 and w′′(l′) ≥ 0 we �nd that also Γ̃ is a mcsf for 〈V (S), S, w′′〉.

Moreover |Γ̃ ∩ L0| = |Γ ∩ L0|+ 1. Repeating this argument results in the tree Γ ′′ with L0 ⊆ Γ ′′.

Note that the set PΓ ′ of all components in 〈V (Γ ′), Γ ′〉 coincides with the one PΓ ′′ in 〈V (Γ ′′), Γ ′′〉.

Moreover, since L0 ⊆ Γ ′′, then for each component T ∈ PΓ ′ (or, equivalently, in PΓ ′′), the num-

ber of L′|Γ ′′ -components contained in T must be at most the corresponding number of L′|Γ ′ -

components. Consequently, we have that

w′(Γ ′′) =
∑
T is a component in 〈V (Γ ′′),Γ ′′〉(|CT (L′|Γ ′′)| − 1)

≤
∑
T is a component in 〈V (Γ ′),Γ ′〉(|CT (L′|Γ ′)| − 1) = w′(Γ ′).

(6)

Therefore, Γ ′′ is also a mcsf for 〈V (S), S, w′〉. Having w = αw′ + w′′ and the fact that Γ ′′ is a

mcsf for S in both 〈V (S), S, w′〉 and 〈V (S), S, w′′〉 we may conclude that Γ ′′ is also a mcsf for S

in 〈V (S), S, w〉. So, c(S) = w(Γ ′′) = αw′(Γ ′′) + w′′(Γ ′′) = αc′(S) + c′′(S). ut

The following decomposition theorem shows that every link game can be written as a non-negative

combination of LC games corresponding to simple LC situations.

Theorem 1. Let L = 〈V,E,w〉 be an LC situation and let (E, c) be its corresponding LC game.

Let σ ∈ ΣE be such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|E|)). De�ne the LC game (E, cσ,k)

corresponding to the simple LC situation Lσ,k = 〈V,E, eσ,k〉, for each k ∈ {1, . . . , |E|}. Then,

c = w(σ(1))cσ,1 +

|E|∑
k=2

(
w(σ(k))− w(σ(k − 1))

)
cσ,k. (7)

Proof. The proof follows directly by Lemma 1 and the recursive application of Lemma 2, using eσ,j

in the role of w′, w(σ(j))−w(σ(j−1)) in the role of α, and
∑|E|
k=j+1

(
w(σ(k))−w(σ(k−1))

)
eσ,k in

the role of w′′ at each recursive call j ∈ {1, . . . , |E| − 1} (and setting, by convention, w(σ(0)) = 0).

ut

Example 5 (follows Examples 2 and 3). Consider again the LC situation of Examples 2 and 3,

with σ = ({1, 2}, {1, 3}, {2, 4}, {3, 4}, {2, 3}). According to Theorem 1 we have c = cσ,1 + 0cσ,2 +

cσ,3 + 2cσ,4 + 4cσ,5, where the LC games cσ,1, . . . , cσ,5 corresponding to the simple LC situations

8

eσ,1, . . . , eσ,5 are those shown in Table 2. One can easily verify that the last row of Table 2 coincides

with the LC game c, as computed in Example 2 (see Table 1).

Table 2. Decomposition of the LC game coresponding to the LC situation of Figure 2.

S {12, 13, 23} {23, 24, 34} {12, 13, 23, 34} {12, 13, 23, 24} {23, 24, 34, 13} {23, 24, 34, 12} E

cσ,1(S) 2 2 3 3 3 3 3

cσ,2(S) 2 2 3 3 3 3 3

cσ,3(S) 0 2 1 1 2 2 1

cσ,4(S) 0 1 1 0 1 1 0

cσ,5(S) 0 0 0 0 0 0 0

Sum 2 6 6 4 7 7 4

5 The core of an LC game

In this section we prove that LC games have a non-empty core and that core allocations can be

e�ciently computed, even if, as we have shown in the previous section, LC games are not necessarily

concave. One could argue that the savings due to cooperation in an LC situation originate from

the possibility to break cycles without destroying the connectivity of the network. On the other

hand, it is not immediately clear how those savings should be shared among the links involved in

the cycle in order to obtain a core allocation. Next example shows that trivial allocation protocols,

to be more speci�c, the equal sharing rule applied to the edges involved in the cycles, in general

does not provide a core allocation.

Example 6. Consider the simple LC situation L′ = 〈V,E,w′〉 depicted in Figure 4, with the set E

composed by the 15 edges depicted in Figure 4 and where the cost w′(e) of each edge e ∈ E is equal

to 1. In order to obtain a mcsf on L′ it su�ces to eliminate four edges such that no cycles appear

and the network remains connected (e.g., deleting edges {1, 2}, {4, 5}, {7, 8} and {10, 11}), therefore

leading to an optimal network of cost 11. On the other hand, if we split equally the total cost 11 (or

the total saving 4) among the edges of the network we obtain that each link in E should pay 11
15 which

is not in the core of the corresponding LC game, since c(12, 13, 23) = 2 < 3 11
15 = x12 + x13 + x23.

Even if the cycles play a central role in the determination of the savings (as illustrated in the

previous example), de�ning an allocation rule based on the analysis of the cycles of a graph could be

computationally very hard (one edge may belong to several cycles). In the following, our objective

is to prove that LC games have a non-empty core and core allocations can be easily computed

without looking at the cycles of a graph.

9

1

2

3

4

5 6

7

89

12 10

11

Fig. 4. A simple LC situation where the equal sharing allocation does not belong to the core (the cost of

each edge is 1).

Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈ {0, 1}). For each i ∈ V , let Ci(L′) be

the L′-component to which i belongs. We denote by BΓij = {{k, l} ∈ E : k ∈ Ci(L′) and l ∈ Cj(L′)}

the bridge set of all edges connecting the two L′-components Ci(L′) and Cj(L′) (clearly, {i, j} ∈ BΓij
and w(k, l) = 1 for each {k, l} ∈ BΓij). Moreover, let ĒΓ = E \

⋃
e∈Γ :w′(e)=1B

Γ
ij be the set of edges

in E that do not belong to any set BΓij with {i, j} ∈ Γ and w′(i, j) = 1.

Remark 2. Let 〈V, Γ 〉 be a mcsf for the simple LC situation L′ = 〈V,E,w′〉. Note that for

{i, j}, {k, l} ∈ Γ with {i, j} 6= {k, l} and w′(i, j) = w′(k, l) = 1, we have BΓij ∩ BΓkl = ∅, since

each edge of cost 1 in Γ connects two disjoint L′-components.

Example 7 (follows Example 4). Consider again the simple LC situation L′ = 〈V,E,w′〉 of Example

4. Let the tree Γ = {{1, 2}, {1, 3}, {2, 4}} be a mcst in L′. Then, we have that BΓ24 = {{2, 4}, {3, 4}}

and ĒΓ = {{1, 2}, {1, 3}, {2, 3}}.

Now, we can introduce a family of cost sharing vectors for simple LC games.

De�nition 2. Let L′ = 〈V,E,w′〉 be a simple LC situation and let 〈V, Γ 〉 be a mcsf for L′ =

〈V,E,w′〉. We denote by X (L′, Γ) the set of (positive) vectors x ∈ RE+ satisfying the following two

conditions:

i)
∑
e∈BΓij

xe = 1 for all {i, j} ∈ Γ such that w′(i, j) = 1;

ii) xe = 0 for all e ∈ Ē,

where 〈V, Γ 〉 is a mcsf for the simple LC situation L′.

In other words, X (L′, Γ) is the set of positive allocation vectors such that the service providers

located over the edges in ĒΓ pay nothing and those over the edges in BΓij , for each {i, j} ∈ Γ with

w′(i, j) = 1, share the cost to connect Ci(L′) and Cj(L′).

Lemma 3. Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈ {0, 1}) and let 〈V, Γ 〉 be a

mcsf for L′. Then X (L′, Γ) 6= ∅ and
∑
e∈E xe = w′(Γ).

10

Proof. To prove that X (L′, Γ) 6= ∅, simply take the vector x ∈ RE+ such that

xe =


1
|BΓij |

if ∃{i, j} ∈ Γ with w′(i, j) = 1 and e ∈ BΓij ,

0 otherwise,
(8)

for each e ∈ E. It is immediate to check that the vector x de�ned according to relation (8) satis�es

conditions (i) and (ii) in De�nition 2. To see that every vector x ∈ X (L′, Γ) is e�cient, simply

notice that ∑
e∈E

xe =
∑

{i,j}∈Γ :w′(i,j)=1

∑
e∈BΓij

xe =
∑

{i,j}∈Γ :w′(i,j)=1

1 = w′(Γ),

where the �rst equality follows from condition (ii) in De�nition 2, and the second equality from

condition (i). ut

Example 8 (follows Examples 4 and 7). The allocation vectors in X (L′, Γ), whatever mcsf Γ for

L′ is constructed, is such that the edges {2, 4} and {3, 4} share the cost of connecting the L′-

components {1, 2, 3} and {4}. We have that

X (L′, Γ) = {x ∈ RE+ : x12 = x13 = x23 = 0 and x24 + x34 = 1}.

Next lemma, that holds for general LC situations, is useful to prove the non-emptiness of the

core of simple LC games, as shown by Proposition 2.

Lemma 4. Let L = 〈V,E,w〉 be an LC situation, let 〈V, Γ 〉 be a mcsf for L and let c be the

corresponding LC game. For each S ⊆ E. Then,

c(S) ≥ w(Γ ∩ S), (9)

Proof. Recall that c(S) = w(ΓS) =
∑
e∈ΓS w(e), where ΓS is a mcsf for the restriction LS =

〈V (S), S, w|S〉, and w(Γ ∩ S) =
∑
e∈Γ∩S w(e).

First note that each component T in 〈V (Γ ∩ S), Γ ∩ S〉 is also a connected set of nodes in

the network 〈V (S), ΓS〉. So, if two nodes i, j ∈ V are connected in the network 〈V, Γ 〉 they must

be connected also in the network 〈V, (Γ \ S) ∪ ΓS〉 (i.e., 〈V, (Γ \ S) ∪ ΓS〉 is a spanning network

for 〈V,E〉, meaning that P(Γ\S)∪ΓS ≡ PE), and this directly implies relation (9). Suppose, on the

contrary, that w(Γ ∩ S) > c(S) = w(ΓS). By simple considerations on the sets of edges Γ, S and

ΓS we obtain that

w(Γ) = w((Γ ∩ S) ∪ (Γ \ S)) = w(Γ ∩ S) + w(Γ \ S) > w(ΓS) + w(Γ \ S) ≥ w(ΓS ∪ (Γ \ S)),

which yields a contradiction with the fact that Γ is a mcsf for 〈V,E〉 (notice that the second

equality follows from the fact that (Γ ∩ S)∩ (Γ \ S) = ∅ and the last inequality from the fact that

ΓS ∩ (Γ \ S) is not necessarily empty). ut

Proposition 2. Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈ {0, 1}) and let (E, c′)

be the corresponding LC game. Then, X (L′, Γ) ⊆ Core(c′) 6= ∅.

11

Proof. By Lemma 3 we know that X (L′, Γ) 6= ∅ and that each element x ∈ X (L′, Γ) is an e�cient

allocation. Now, in order to prove that x ∈ X (L′, Γ) is in Core(c′) we need to prove that
∑
e∈S xe ≤

c′(S) for all S ⊆ E. Notice that

∑
e∈S

xe =
∑

{i,j}∈S∩Γ :w′(i,j)=1

∑
e∈S∩BΓij

xe ≤
∑

e∈S∩Γ :w′(i,j)=1

1 =
∑

e∈S∩Γ
w′(e) ≤ c′(S), (10)

for each S ⊆ E, where the �rst equality follows from condition (ii) in De�nition 2, the �rst

inequality from condition (i) in De�nition 2, the second equality from the fact that w′ is a simple

LC situation and the second inequality from Lemma 4. ut

We can �nally prove that LC games have a non-empty core.

Theorem 2. Let L = 〈V,E,w〉 be an LC situation and let (E, c) be the corresponding LC game.

Then, Core(c) 6= ∅.

Proof. Let σ ∈ ΣE be such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|E|)). For each k ∈ {1, . . . , |E|},

take xk ∈ X (Lσ,k, Γ k), where 〈V, Γ k〉 is a mcsf for Lσ,k and cσ,k is the LC game corresponding to

the simple LC situation eσ,k. De�ne the vector x ∈ RE such that

x = w(σ(1))xk +

|E|∑
k=2

(
w(σ(k))− w(σ(k − 1))

)
xk.

For each S ⊆ E with S 6= ∅ we have that

∑
e∈S xe ≤ w(σ(1))cσ,1(S) +

∑|E|
k=2

(
w(σ(k))− w(σ(k − 1))

)
cσ,k(S) = c(S), (11)

where the inequality follows from the fact that, by Proposition 2, xk ∈ Core(cσ,k) and the fact

that w(σ(1)) ≥ 0 and w(σ(k)) − w(σ(k − 1)) ≥ 0 for each k ∈ {1, . . . , |E|}, and the second

equality follows directly from Theorem 1; similarly, for the e�ciency condition of core allocations

in X (Lσ,k, Γ k) we have

∑
e∈N xe = w(σ(1))cσ,1(E) +

∑|E|
k=2

(
w(σ(k))− w(σ(k − 1))

)
cσ,k(E) = c(E) = w(Γ).

Then it has been established that x ∈ Core(c). ut

Example 9 (follows Examples 2, 3 and 5). Let Γ k = Γ = {{1, 2}, {1, 3}, {2, 4}} for each k ∈

{1, . . . , 5} (notice that this is a mcsf obtained using the Kruskal algorithm [9] on the ordering

of the edges σ). It is easy to check that X (Lσ,1, Γ) = {(x12, x13, x24, x34, x23) = (1, 1, 1, 0, 0)},

X (Lσ,2, Γ) = {x ∈ RE+ : x13 + x23 = x24 = 1 and x12 = x34 = 0}, X (Lσ,3, Γ) = {x ∈ RE+ :

x12 = x13 = x23 = 0 and x24 +x34 = 1} and X (Lσ,4, Γ) = X (Lσ,5, Γ) = {(x12, x13, x24, x34, x23) =

(0, 0, 0, 0, 0)}. Consider for instance the core allocations xk ∈ X (Lσ,k, Γ) computed according to

12

relation (8) as follows:

{1, 2} {1, 3} {2, 4} {3, 4} {2, 3}

x1 1 1 1 0 0

x2 0 1
2 1 0 1

2

x3 0 0 1
2

1
2 0

x4 0 0 0 0 0

x5 0 0 0 0 0

x = x1 + 0x2 + x3 + 2x4 + 4x5 1 1 3
2

1
2 0

One can easily verify that x ∈ Core(c), as immediately suggested by Theorem 2.

6 Concluding remarks

In this paper we studied a class of cooperative games where the players are the edges of a weighted

graph and the goal of a coalition of edges is to connect the adjacent nodes at a minimum cost. We

also provided a procedure based on a decomposition theorem to easily generate allocation vectors

in the core of an LC game. An interesting research direction is related to the property-driven

analysis of particular one-point solutions for LC situations, i.e. maps that associate to each LC

situation a particular allocation vector, independently from the selected mcsf and, possibly, in the

core of the corresponding LC game. Alternative cost allocation protocols keeping into account the

role of edges in maintaining the connectivity of the network should be further investigated.

As shortly suggested in Example 9, the procedure to �nd core allocations used in the proof of

Theorem 2 is strongly related to the Kruskal algorithm for �nding a spanning network of minimum

cost on weighted graphs [9]. In general, it is possible to de�ne a procedure aimed at computing

vectors in X (Lσ,k, Γ k) at each k-th step of the Kruskal algorithm, and obtain, after precisely n-

steps (where n is the number of nodes, if the graph is connected) both an optimal network and

an allocation in the core of the LC game. On the other hand, the procedure used in Theorem 2

selects the elements of a particular subset of the core, and the issue of how to e�ciently generate

all the allocations in the core of an LC game (or other speci�c subsets of stable allocations) is still

an open problem. Notice that the non-emptiness of the core for LC games can be also proved using

the results in [12] for games on matroids (LC games being a special case of games on matroids),

and an interesting related question is whether the procedure used in Theorem 2 can be generalized

to the more general framework of matroids.

Another open question concerns the existence of solutions for LC games that are cost monotonic

(i.e., such that if some connection costs go down, then no edges will pay more) and, in addition,

that can be extended to a population monotonic allocation scheme (pmas) [17] (roughly speaking,

an allocation method is pmas extendible if it assigns an allocation vector to every coalition in a

monotonic way and such that the cost allocated to some edge does not increase if the coalition

13

of edges to which it belongs becomes larger). It would be interesting to analyse whether the core

allocations computed according to the procedure used in Theorem 2 satisfy these properties.

Finally, as an alternative framework, one could imagine a version of a (monotonic) LC game

where each service provider has the power, alone or in cooperation, to control the implementation

of the services over the entire network, and not only those using the connections within a given

coalition, like in the current version of the model.

References

1. Aziz, H., Lachish O., Paterson, M., Savani, R.: Wiretapping a hidden network. Internet and Network

Economics, pp. 438-446. Springer, Berlin Heidelberg (2009).

2. Bergañtinos, G., Lorenzo, L., Lorenzo-Freire S.: A generalization of obligation rules for minimum cost

spanning tree problems. Eur. J. Oper. Res. 211, 122�129 (2011).

3. Bird, C.: On cost allocation for a spanning tree: a game theoretic approach. Networks 6, 335�350 (1976)

4. Branzei, R., Moretti, S., Norde, H., Tijs, S. The P-value for cost sharing in minimum cost spanning tree

situations. Theory Decis. 56, 47�61 (2004)

5. Claus, A., Kleitman, D.J.: Cost allocation for a spanning tree. Networks 3, 289�304 (1973)

6. Feltkamp, V.: Cooperation in controlled network structures, PhD Dissertation, Tilburg University, The

Netherlands (1995)

7. Granot, D., Huberman, G.: On minimum cost spanning tree games. Math. Prog. 21, 1�18 (1981)

8. Hougaard, J.L., Moulin, H.: Sharing the cost of redundant items. Games Econ. Behav. 87, 339�352

(2014)

9. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.

Amer. Math. Soc. 7, 48�50 (1956)

10. Moretti, S., Tijs, S., Branzei, R., Norde, H.: Cost allocation protocols for supply contract design in

network situations. Math. Meth. Oper. Res. 69(1), 181�202 (2009)

11. Moulin, H., Laigret, F.: Equal-need sharing of a network under connectivity constraints. Games Econ.

Behav. 72(1), 314�320 (2011)

12. Nagamochi, H., Zeng, D. Z., Kabutoya, N., Ibaraki, T.: Complexity of the minimum base game on

matroids. Math. Oper. Res. 22(1), 146�164 (1997)

13. Norde, H., Moretti, S., Tijs, S.: Minimum cost spanning tree games and population monotonic alloca-

tion schemes, Eur. J. Oper. Res. 154(1), 84�97 (2004)

14. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389�1401

(1957)

15. Shapley, L.S.: A Value for n-Person Games. H. W. Kuhn and A. W. Tucker (ed.) Contributions to the

Theory of Games II, Ann. Math. Studies 28, pp. 307�317, Princeton University Press (1953)

16. Shapley, L.S.: Cores and Convex Games. Int. J. Game Theory 1, 1�26 (1971)

17. Sprumont, Y.: Population monotonic allocation schemes for cooperative games with transferable utility.

Games Econ. Behav. 2, 378�394 (1990)

18. Tijs, S., Branzei, R., Moretti, S., Norde H.: Obligation rules for minimum cost spanning tree situations

and their monotonicity properties. Eur. J. Oper. Res. 175, 121�134 (2006)

14

