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Abstract Centrality measures are used in network analysis to identify the relevant

elements in a network. Recently, several centrality measures based on coalitional

game theory have been successfully applied to different kinds of biological net-

works, such as brain networks, gene networks, and metabolic networks. We propose

an approach, using coalitional games, to the problem of identifying relevant genes in

a biological network. Our model generalizes the notion of degree centrality, whose

correlation with the relevance of genes for different biological functions is supported

by several practical evidences in the literature. The new relevance index we propose

is characterized by a set of axioms defined on gene networks and a formula for

its computation is provided. Furthermore, an application to the analysis of a large

co-expression network is shortly presented.

1 Introduction

Gene regulatory networks and co-expression networks are of great interest in the

field of molecular biology and epidemiology to better understand the interaction

mechanisms between genes, proteins and other molecules within a cell and under

certain biological conditions of interest ([5], [7], [8], [34]). A crucial point in the

analysis of genes’ interaction is the formulation of appropriate measures of the role
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played by each gene to influence the very complex system of genes’ relationships in

a network.

In our work, we will focus on a particular kind of networks, that are gene co-

expression networks, but our approach may be used to analyse other kinds of net-

works, such as protein-protein interaction networks or cell-cell interaction networks.

Co-expression networks [37] may be built from gene expression data collected by

means of microarray technology and other high-throughput experimental techniques

[26], which allows for the simultaneous quantification of the expression of thou-

sands of genes. The nodes in the co-expression network represent genes (or pro-

teins) and their connection is determined by the coexpression of the genes in the

data samples, often measured by the Pearson correlation coefficient between gene

expression profiles. This assumption is called the guilt-by-association heuristic: if

two genes show similar expression profiles, they are supposed to follow the same

regulatory regime. Since the coordinated co-expression of genes encode interacting

proteins, studying co-expression patterns can provide insight into the underlying

cellular processes and enable the reconstruction of gene regulatory networks.

Centrality analysis represents an important tool for the interpretation of the interac-

tion of genes in a co-expression network ([3], [6], [13],[14], [15]). The relationship

between centrality of genes or proteins in a co-expression network and their rel-

evance (measured by biological features such as lethality or essentiality) has been

stressed in several works in the literature. Most central elements of protein networks

have been found to be essential to predict lethal mutations [14]. Highly connected

hub genes, largely responsible for maintaining network connectivity, have been dis-

covered to be likely essential for yeast survival [6]. In [13] it has been shown how be-

tweenness centrality ([1], [11]) is generally a positive marker for essential genes in

A. thaliana. Similarly, the relationship between the degree centrality ([25], [32]) and

the essentiality of genes in transcript co-expression networks has been higlighted in

[3]. Moreover, other centrality measures have been investigated in this sense in the

recent literature [15].

However, in some cases, genes that lie in the periphery of a network might have

an important role in the biological condition it represents. As an example, in [12]

it has been shown that differentially expressed genes in major depression (i.e. those

genes that present a statistically different behaviour in depressed patients compared

to healthy patients) reside in the periphery of resilient gene co-expression networks,

thus suggesting that the hub genes are not always the most relevant in the regulatory

processes within gene networks. Consider, for instance, the network in Fig 1. All

classical centrality measures assign the highest relevance to the hub of the graph,

i.e. node 1. Such a node has maximum degree, is the closest node to all other nodes

in the graph, lies on the highest number of shortest paths connecting the other nodes

and is directly connected with the most nodes of high degree. These features corre-

spond to four of the most known classical centrality [18] measures: degree centrality

([25], [32]), closeness centrality ([2], [27]), betweenness centrality ([1], [11]) and

eigenvector centrality [4], which give highest centrality to node 1. In particular, the

set of nodes {2, . . . ,6} has two characteristics that make them relevant genes when

the network depicted in Fig 1 represents a gene regulatory network:



A game theoretic neighbourhood-based relevance index 3

Fig. 1 A network with 21

nodes.

(a)through their connections, the nodes in the set are able to influence the expression

of all other genes in the network, i.e. they interact directly with all the other genes

within the network;

(b)its removal (or inhibition) breaks down the regulatory activity of the network,

by leaving all the leaf nodes isolated and therefore not able to maintain their

regulatory activity.

With these two features in mind, we introduce an index that aims at measuring

the potential of a gene in preserving the regulatory activity within a gene network,

by stressing the ability of a gene in influencing the overall expression of genes in the

network and to absorb the effects of the inhibition of one or more correlated genes,

or in another words its resilience to the removal of connected nodes. In this sense,

node 2 (as well as nodes 3,4, 5 and 6) is more relevant than node 1: when node 1

is removed, the network is divided into five components, whose overall regulation

is maintained thanks to the presence of nodes 2,3,4,5 and 6 respectively. On the

other hand, when one of these last nodes is removed, the network is split in four

component, three of whom are no longer able (as being isolated nodes) to maintain

their regulatory activity.

The index we propose aims at highlighting the role of genes in the overall “con-

nectivity” of the network, by taking into account the effects that their inhibition have

over the induced subnetworks.

A relevant set of genes to this extent would be able to interact directly with the max-

imum number of other nodes in the network and its removal would split the network

in a maximum number of connected components with few genes, or eventually con-

stituted by isolated genes.

To this purpose, we introduce in this paper a cooperative game, where the value

of a coalition of genes depends on the cardinality of the coalition itself and of its
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neighbourhood. The more the genes that are directly interacting in the network with

genes in the coalition, and therefore the ability of the coalition to keep the network

connected, the higher the power of the coalition. Recently, several centrality mea-

sures based on cooperative games have been successfully applied to different kinds

of biological networks, such as brain networks ([16],[17],[19]), gene networks [23],

and metabolic networks [29], and classical solutions for cooperative games have

been employed for the analysis of different biological data ([30],[10],[23]). We in-

troduce our game theoretic relevance index by an axiomatic characterization on gene

networks and we provide a formula for its computation, which has a straightforward

interpretation. We prove that such an index coincides with the Shapley value[31] of

the considered cooperative game, which takes into account the marginal contribu-

tions of genes to the connectivity of all the coalitions of genes in the network. More-

over, we use our index to assess the relevance of genes in a real dataset related to

lung cancer. On such a network, when no a priori knowledge is assumed about the

genes under analysis, the index is able to highlight the role of genes in the overall

connectivity of the network, by assigning the highest relevance to those genes that

share the two aforementioned characteristics.

The paper is structured as follows: Section 2 introduces some notations and ba-

sic concepts on graph theory and coalitional games. In Section 3 we introduce the

methodology, describing our model and an axiomatic characterization of the game-

theoretical relevance index in terms of biological properties. An application to gene

expression data from microarray technology is presented in Section 4 and Section 5

concludes the paper.

2 Preliminaries and Notations

An (undirected) graph or network is a pair 〈N,E〉, where N is a finite set of vertices

or nodes and E is a set of edges e of the form {i, j} with i, j ∈ N, i 6= j.

We define the set of neighbours of a node i in graph 〈N,E〉 as the set Ni(E) =
{ j ∈ N : {i, j} ∈ E}, and the degree of i as the number di(E) = |Ni(E)| of neighbours

of i in graph 〈N,E〉. With a slight abuse of notation, we denote by NS(E) = { j ∈
N : ∃i ∈ S s.t. j ∈ Ni(E)} the set of neighbours of nodes in S ∈ 2N , S 6= /0, and in the

graph 〈N,E〉. A path between nodes i and j in a graph 〈N,E〉 is a finite sequence of

nodes (i0, i1, ..., ik), where i = i0 and j = ik , k ≥ 1, such that {is, is+1} ∈ E for each

s ∈ {0, · · · ,k− 1} and such that all these edges are distinct. Two nodes i, j ∈ N are

connected in 〈N,E〉 if i = j or if there exists a path between i and j in E . Let i ∈ N

and S ⊆ N \ {i}. A graph 〈N,E i
S〉, where the set of edges is E i

S = {{i, j} : j ∈ S} is

said a star on S with center in i. Notice that the set of neighbours of nodes in 〈N,E i
S〉

are such that Ni(E
i
S) = S, N j(E

i
S) = {i}, for each j ∈ S, and N j(E

i
S) = /0, for each

j ∈ N \ (S∪{i}).
A coalitional game (also known as cooperative game in characteristic function

form or Transferable Utility (TU) game), is a pair (N,v), where N denotes a finite

set of players and v is the characteristic function, assigning to each S ⊆ N, a real
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number v(S) ∈ R, with v( /0) = 0 by convention. If the set N of players is fixed,

we identify a coalitional game (N,v) with the corresponding characteristic function

v. A group of players S ⊆ N is called a coalition and v(S) is called the worth of

coalition S. We will denote by G the class of all coalitional games. Let C ⊆ G be a

subclass of coalitional games. Given a set of players N, we denote by C N ⊆ C the

class of coalitional games in C with N as set of players. A one-point solution (or

simply a solution) for a class C N of coalitional games is a function ψ : C N → R
N

that assigns a payoff vector ψ(v) ∈ R
N to every coalitional game in the class. It

prescribes how to convert the information on the worth of every coalition of players

in a single attribution to each of the players. A well-known solution is the Shapley

value [31], which has been applied to a wide range of fields, including biology [24].

The Shapley value φi(v) of a player i ∈ N in a game (N,v) is defined as the average

marginal contribution of i over all |N|! possible orders of players (we denote by

|N| the cardinality of the set N), and can be computed according to the following

formula:

φi(v) = ∑
S⊆N\i

|S|!(|N|− |S|− 1)!

|N|!
(v(S∪ i)− v(S)). (1)

We recall some nice properties of the Shapley value of a coalitional game (N,v)
[31]: efficiency (EFF), i.e. ∑i∈N φi(v) = v(N); symmetry (SYM), i.e. if i, j ∈ N are

such that v(S∪{i}) = v(S∪{ j}) for all S ⊆ N \ {i, j}, then φi(v) = φ j(v); dummy

player property (DPP), i.e. if i ∈ N is such that v(S∪ {i})− v(S) = v({i}) for all

S ⊆ N, then φi(v) = v({i}); additivity (ADD), i.e. φ(v)+φ(w) = φ(v+w) for each

v,w ∈ C N . It is well known that the Shapley value is the only solution that satisfies

these four properties on the class G N .

3 Methodology

Let 〈N,E〉 be a gene network, that is a network where the set of nodes N represents a

set of genes and the set of edges E describes the interaction among genes, i.e. there

exists an edge between two genes if they are directly interacting in the biological

condition under analysis. Moreover, let k ∈ R
N be a parameter vector that specifies

the a priori importance of each gene. We define a coalitional game (N,vk
E), where N

is the set of genes under study and the characteristic function vk
E assigns a worth to

each coalition of genes S ⊆ N representing the overall magnitude of the interaction

between the genes in S, which takes into account the weight (a priori importance)

of each gene directly connected to S in the biological network.

More precisely, the map vk
E : 2N →R assigns to each coalition S ∈ 2N \{ /0} the value

vk
E(S) = ∑

j∈S∪NS(E)

k j (2)
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Fig. 2 A star with six

nodes. The network

in figure is the star

〈{1,2,3,4,5,6},E1
{2,3,4,5}〉.

that is the sum of the weights associated to the genes in S and to the ones that are di-

rectly connected in 〈N,E〉 to some genes in S (notice that vk
E specifies a real number

for each of the 2|N| subsets of N and, by convention, the value of the empty coalition

is null, i.e., vk
E( /0) = 0). The class of games (N,v) defined according to relation (2),

on some gene network G ≡ 〈V,E〉 and with parameter k ∈R
N , is denoted by E K

N .

In the literature related to the application of game theoretic centrality to co-

expression networks, another way to keep into account the a priori importance of

genes has been proposed in [23] by means of the so-called association game, where

a set of key-genes K ⊂ N (e.g. a set of genes known a priori to be involved in

biological pathways related to chromosome damage) is considered and the value

assigned to a coalition S is the number of key-genes interacting only with S (for-

mally, in [23] the value assigned to a coalition S ⊆ N is the cardinality of the set

{i ∈ K : Ni(E) ⊆ S}). However, the definition proposed in relation (2) is more flex-

ible to explore all possibilities of reciprocal influence among genes. It generalises

the game introduced in [35] for determining the “top-k nodes” in a co-autorship

network, by the introduction of a parameter that specifies the a priori importance

of each node. The parameter vector k allows for an a priori ranking of the genes

according to their importance, while in the previous model introduced in [23] only

a two-level distinction was made between key-genes and non key-genes. Moreover,

by measuring to what extent a coalition of genes is connected to the rest of the net-

work, relation (2) generalizes the notion of degree centrality for groups of genes,

which is justified by some practical evidences showing a strong correlation between

the degree centrality and genes that are essential for different biological functions

(see, for instance, [3, 6, 14, 15]).

We now introduce some properties for a relevance index for genes, that is a map

ρ : E K
N →R

N . We start with a reinterpretation of the classical properties of SYM,

DPP and EFF on the class E K
N (see Section 2 for a formal definition on the class

of all TU-games).

Consider a gene network 〈N,E〉 and a vector of weights k ∈R
N . The property of

SYM implies that if two genes i, j ∈ N have the same weight (ki = k j) and in addi-

tion, they are connected to the same set of neighbours (Ni(E) = N j(E)), then they

should have the same relevance. For instance, nodes 2,3,4 and 5 in the star depicted

in Fig 2 are symmetric.
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The property DPP also has an intuitive interpretation on the graph: every dis-

connected node i ∈ N (like node 6 in Fig 2) should have relevance ki. Finally, the

EFF property implies that the sum of the relevance of all genes should be equal to

∑i∈N ki, the total sum of weights.

We introduce now a new axiom, saying that the transformation of a node i with

zero weight to a node with weight ki should affect only the genes directly connected

to i, and its impact on the relevance of its neighbours should be equal to the one had

in an equivalent star of center i.

Axiom 1 (Star Additivity, SADD) Let 〈N,E〉 be a gene network with parameter

vector k−i ∈R
N such that gene i has weight 0 and let v

k−i

E be the corresponding game

defined according to relation (2). Then consider the game vk
E defined according to

relation (2) on 〈N,E〉 and with parameter vector k that assigns a positive weight ki

to gene i and the same weight as k−i to all the other genes. An index ρ : E K
N →R

N

satisfies the SADD property iff

ρ(vk
E) = ρ(v

k−i

E )+ρ(vsi

E i
Ni(E)

),

where v
si

E i
Ni(E)

is the game defined according to relation (2) on the star 〈N,E i
Ni(E)

〉 on

Ni(E) with center i and si is the parameter vector that assigns ki to i and 0 to j 6= i.

For instance, consider again the network of Fig 2, and suppose that ρ ′ ∈ R
6 is

the relevance index corresponding to a parameter vector k−1. Moreover let ρ ′′ ∈ R
6

be the relevance index on the same network with parameter s1 such that only node 1

has a positive weight k1. Then, the SADD property says that in the situation where

the parameter vector is given by k = k−1 + s1 and ρ ′′′ ∈ R
6 is the corresponding

relevance index, then it must hold ρ ′′′ = ρ ′+ρ ′′.

Roughly speaking, axiom SADD states that increasing the weight of a node i from 0

to a positive value should only affect the total relevance of gene i and its neighbours

at the same extent for whatever graph. As a consequence, a positive change in the

weight of a gene produces the same effect on its relevance and on the one of their

neighbours independently from the topology of the network, and the effect of the

changes is comparable along different networks. Then, redistributing the a priori

importance of a node among their neighbours, the SADD property catches the idea

of measuring the capacity of nodes to absorb the effect of inhibition of correlated

genes, as previously discussed in Section 1.

Proposition 1. The Shapley value is the unique relevance index ρ that satisfies SYM,

DPP, EFF and SADD on the class E K
N . Moreover, for each gene network 〈N,E〉

with k ∈ R
N as a vector of weights, it can be computed according to the following

formula:

ρi(v
k
E) = ∑

j∈(Ni(E)∪{i})

k j

d j(E)+ 1
, (3)

for each i ∈ N.
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Proof. Let 〈N,E i
Ni(E)

〉 be a star on Ni(E) with center in i, and such that only i has

a positive weight equal to ki and let vsi

E i
Ni(E)

be the corresponding game defined ac-

cording to relation (2). It is easy to check that the unique index that satisfies the

properties of SYM, DPP and EFF is the one such that

ρ j(v
si

E i
Ni(E)

) = φ j(v
si

E i
Ni(E)

) =

{

ki

di(E)+1
if j ∈ Ni(E)∪{i},

0 otherwise.
(4)

By the repeated application of axiom SADD, and since ∑i∈N vsi

E i
Ni(E)

= vk
E , we have

that

ρ(vk
E) = ∑

i∈N

ρ(vsi

E i
Ni(E)

). (5)

Then, the proof follows by relation (4) and the additivity of the Shapley value.

The interpretation of the formula in (3) is straightforward: a gene is assigned a

high relevance if it is connected to many genes which are in turn connected with few

other genes, that is the more neighbours with low degree, the highest the relevance.

Notice also that, due to the exponential number of terms involved, the Shapley value

is general computationally challenging. Instead, for the class of games considered

in this section, formula (3) allows for the computation of the Shapley value in poly-

nomial time.

Example 1. Consider the gene network in Fig 1. Suppose all the genes have the same

a priori importance, and let for simplicity ki = 1 ∀i ∈ N. Then, by Proposition 1

ρ(vk
E) = ( 35

30
, 56

30
, 56

30
, 56

30
, 56

30
, 56

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
, 21

30
).

Therefore, our index gives the highest relevance to nodes 2,3,4,5 and 6, followed

by node 1 and the least relevance to the leaf nodes {7, . . . ,21}. On the other hand,

all the other classical centrality measures defined in Section 2 provide the following

ranking: node 1 has the maximum centrality, followed by nodes {2,3,4,5,6} and

finally the leaf nodes.

4 Experimental results

A gene expression dataset related with a very common kind of lung cancer called

adenocarcinoma has been studied. Adenocarcinoma cancers are usually found in

lung outer areas as the lining of the airways. The data were generated in a study

where 107 samples of several tumor stages in a population of smoker and not smoker

people were analyzed [20] (the dataset with accession number GDS3257 has been

downloaded from the Gene Expression Omnibus (GEO) [9]). These raw data have

been preprocessed with Babelomics tool [22] using some standard filtering steps.

Concretely, those genes with a percentage of missing values greater than 80% have
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Fig. 3 First analysis: Shap-

ley value distribution. The

density distribution of the

index ρ is shown, for ki = 1

for every gene i. The dotted

vertical line represents the

cutoff: the 5% of genes with

highest index is selected.

been removed. In the rest of the cases, missing values have been replaced with the

average of the expression profile of the row. Those gene profiles with a standard

deviation under 0.5 have been removed in order to only consider genes differen-

tially expressed. The resulting gene expression matrix is composed by 2517 gene

expression profiles (rows) and 107 samples (columns).

A gene co-expression network has been generated, by establishing a link between

two genes if and only if the Pearson’s correlation between their gene expression

profiles is higher than a fixed threshold. The choice of the threshold is based on the

following considerations: a suitable network should consist of connected compo-

nents with the highest possible cardinality and should also be as sparse as possible

in order to better reveal the relationships between the nodes (genes). Therefore, the

network must be experimentally built according to an equilibrium between connec-

tivity and sparsification [33]. The BioLayout tool [36] has been used to conduct an

experimental study, which has led to the choice of 0.8 as the value for the correlation

threshold. The network so obtained is composed by 2154 nodes (genes) and 24821

edges.

A first analysis has been carried out on the aforementioned network, with no a

priori knowledge of the importance of the different genes, thus considering each

gene equally important, i.e. setting ki = 1 for each gene i ∈ N. Following this ap-

proach, the relevance index ρ is computed. The density distribution of ρ is shown

in Fig 3. In particular, we select the 5% of genes with highest relevance for further

analysis (n = 108). The lists of the 5% of genes with highest value according to the

different centrality measures are compared as follows:

(i) the 108 genes selected by our index are directly interacting in the network with

1412 genes, comparably with the ones selected by the betweenness centrality,

whose neighborhood consists in 1423 genes. The other measures are much less

effective in this sense: the genes selected by the degree centrality interact with

1062 genes, the ones by closeness centrality with 668 and the ones by eigenvector

centrality with 383 genes.
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(ii)when the 108 genes selected by ρ are removed, the network is split in 165 con-

nected components, 125 of which are isolated nodes. Three of them contain a

high number of genes (550, 826 and 338), one of them 42 nodes, and the rest

very few nodes (2 to 10 nodes each). A similar behaviour is observed after the

removal of the 108 nodes selected by the betweenness centrality: the network is

split in 170 components, 122 of which are isolated nodes. On the other hand, the

effects of the removal of the genes selected by the other measures are definitively

less severe.

Among the classical centrality measures, our relevance index shows a maximum

overlap with betweenness centrality, with 66 genes in common (out of the 108 se-

lected) and a high positive correlation between the list of genes. The number of com-

mon genes among the different lists and their correlation, measured by the Pearson

correlation coefficient, are shown in Table 1. The set of 100 genes with the highest

Table 1 Number of common genes among the relevance vectors of 108 genes provided by the

different relevance measures. The number in parenthesis represents the correlation of the vector of

indices among the lists of common genes.

ρ(1) degree closeness betweenness eigenvector

ρ(1) 108 (1) 49 (-0.221) 40 (0.430) 66 (0.846) 28 (0.509)

degree 49 (-0.221) 108 (1) 19 (0.482) 28 (-0.068) 86 (0.977)

closeness 40 (0.430) 19 (0.482) 108 (1) 48 (0.578) 0 (NA)

betweenness 66 (0.846) 28 (-0.068) 48 (0.697) 108 (1) 7 (0.121)

eigenvector 28 (0.509) 86 (0.977) 0 (NA) 7 (0.121) 108 (1)

Shapley value has also been investigated from a biological point of view. A Lit-

erature Mining approach has been used with a Cytoscape plugging called Agilent

Literature Search [28]. The Cytoscape plugging searches a set of genes in published

papers available in public repositories such as PubMed. The search has been per-

formed by taking as input the list of genes selected by our relevance index and a set

of key-words, namely “Homo sapiens” and “Adenocarcinoma”. The tool provides

as a result that the subset of selected genes that are cited in the related literature

is composed by 70, which is a rather encouraging result. More details about the

experimental analysis are omitted for space reasons.

5 Conclusions

In this paper, we proposed a relevance index for nodes of gene co-expression net-

works, with the objective of measuring the potential of genes in acting as intermedi-

aries between hub nodes and leaf nodes and preserving the regulatory activity within

gene networks. For this purpose, we used a game-theoretic approach, by defining a

cooperative game where the strength of a coalition of genes depends on the a priori
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importance of the genes in its neighbourhood. The Shapley value of such a game is

proposed as a new relevance index for genes. Our methodology is supported by a

property-driven approach, where the set of properties satisfied by our index have a

biological interpretation.

The versatility of our model allows for the combination of a game-theoretical

approach with other techniques from network analysis in order to assess the a pri-

ori importance of genes (i.e., the parameter vector k) in the network under analysis,

which may be used as a parameter of the model to compute the a posteriori rele-

vance of nodes. For instance, in an alternative analysis (omitted for space reasons)

of the same lung cancer network considered in Section 4, the a priori importance

of genes has been assessed by a parameter vector that depends on the cluster struc-

ture of the network, and according to the principle that overlapping genes among

clusters are to some extent important in a gene network [21]. An interesting direc-

tion for future research is to further explore these techniques, in order to refine the

relevance analysis, and to compare the results provided by our model over different

co-expression networks.
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