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Chapter 1

Introduction and overview

1.1 Game theory and connection situations

In this monograph Game Theory is central for studying the interaction among

decision makers (which are called players) in connection situations, where play-

ers need to be connected directly or via other players to a source, and where

connections between players and between players and the source are costly.

Since the seminal book “Theory of Games and Economic Behavior” by John

von Neumann and Oskar Morgenstern (1944), it is usual to divide Game The-

ory into two main groups of interaction situations (which are called games),

non-cooperative and cooperative games. Non-cooperative games deal with con-

flict situations where players cannot make binding agreements. In cooperative

games all kinds of agreement among the players are possible.

In non-cooperative games, each player will choose to act in his own interest

keeping into account that the outcome of the game depends on the actions of all

the players involved. Actions can be made simultaneously by players, as in the

‘stone, paper, scissors’ game or in ‘matching pennies’, or sequentially at several

time moments, as in chess.

Cooperative games deal with situations where groups of players (which are

called coalitions) coordinate their actions with the objective to end up in joint

payoffs which often exceed the sum of individual payoffs. A classical application

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

of cooperative games is in cost allocation problems (see, for instance, Young

(1994)). Using cooperative games in this context, it is possible to describe a

situation where the players are willing to join bigger coalitions in order to have

extra monetary savings as effect of cooperation. A very simple example is a

situation with two nearby towns that are considering whether to implement a

joint waste collection system. Town 1 could implement a system for itself at

a cost of 7 million euros, whereas town 2 could implement its waste collection

system at a cost of 4 million euros. However, if they cooperate, thanks to a more

efficient use of common facilities, they can implement a waste collection system

at a cost of 10 million euros. This situation can be formulated as a cooperative

cost game (or simply cost game) ({1, 2}, c), where towns 1 and 2 are the players

and the characteristic cost function c assigns to each coalition the corresponding

cost of implementing a waste collection system, i.e. (in million euros) c({1}) = 7,

c({2}) = 4, c({1, 2}) = 10 and c(∅) = 0. Clearly, it makes sense to cooperate,

since the two players can jointly save 1 million. Cooperation will only occur,

however, if they agree on how to share the total cost of 10 million euros. Trying

to solve this problem, a cost allocation that can be accepted by both towns

1 and 2 must be efficient (the total cost must be entirely shared), equitable

and must provide incentives to cooperation. For instance, one could propose to

share equally the cost of 10 million euros, 5 million euros for each town. The

argument for equal division is that each town has an equal power to enter in a

contract, so each town should support an equal burden. On the other hand, it

could be the case that town 1 produces four times the waste of town 2. Then,

it seems fair to propose a method based on the proportion of waste produced

by the two towns. Such an allocation method would charge town 1 of 8 million

euros and town 2 of 2 million euros. Surely, neither of these two proposals will

be adopted. In fact, town 2 is not likely to agree to equal division, because 5

million euros exceed the cost of implementing its own collection system. On the

other hand, town 1 is not likely to agree to the allocation method proportional

to waste production, since 8 million exceed the cost of implementing its own

system. One possible solution for cost game ({1, 2}, c) is to equally divide the

amount of money that 1 and 2 save by cooperation. Using this method, town

1 would pay 7− 0.5 = 6.5 million, and town 2 would pay 4− 0.5 = 3.5 million.
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This allocation gives to players an incentive to cooperate, because each realizes

positive savings. But, it is not the only allocation with these characteristics.

Any allocation in which 1 pays at most 7 million and 2 pays at most 4 million

creates no disincentives to cooperation: using game theory terminology, such

an allocation is stable. The set of all stable allocations is the core of the cost

game, a concept that will be more generally defined in Chapter 2.

Clearly, the example above is just one of the many situations in which game

theory can be used to analyze a cost allocation problem. In particular, this

dissertation is focused on the application of cooperative games to the analysis

of cost allocation problems arising from connection situations. A connection

situation takes place in the presence of a group of agents, each of which needs

to be connected directly or via other agents to a source. If connections among

agents are costly, then each agent will evaluate the opportunity of cooperating

with other agents in order to reduce costs. In fact, if a group of agents decides to

cooperate, a configuration of links which minimizes the total cost of connection is

provided by a minimum cost spanning tree (mcst). A connection situation may

arise facing the problem of building a network of computers that connects every

computer with some server: agents are the computer users, the source is the

server and the costs of links are the connection costs of each pair of computers or

of a computer and the server. Another example could be the problem of building

a drainage system that connects every house in a city with a water purifier. The

problem of finding an mcst may be easily solved thanks to different algorithms

proposed in literature (Boruvka (1926a,b), whose translations may be found in

Nešetřil et al (2001), Kruskal (1956), Prim (1957), Dijkstra (1959). A historic

overview of mcst problems can be found in Graham and Hell (1985).

However, finding an mcst does not guarantee that it is going to be really

implemented: agents must still support the cost of the mcst and then a cost

allocation problem must be addressed. This cost allocation problem was in-

troduced by Claus and Kleitman in 1973 and has been studied with the aid of

cooperative game theory since the basic paper of Bird (1976). Given a con-

nection situation with a group of agents, Bird (1976) introduced an associated

cooperative cost game (known as mcst game), where the players are the agents

and the worth of a coalition is the minimal cost of connecting this coalition to
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the source via links between members of the coalition; in addition, Bird (1976)

proposed an allocation method for connection situations (in this dissertation re-

ferred as the Bird rule) that associates with each mcst a cost allocation. After

the paper of Bird, much attention has been paid to study the properties of core

allocations for mcst games. Granot and Huberman (1981) proved that alloca-

tions provided by the Bird rule for connection situations are extreme points of

the core of the associated mcst game. Granot and Huberman (1984) also pro-

posed other methods which provide allocations in the core of an mcst game, with

particular attention to ease computational difficulty in computing the nucleolus

of an mcst game. In a similar direction, Feltkamp et al. (1994a,b) introduced

and characterized the Proportional rule and the Equal Remaining Obligation

rule for connection situations. Aarts (1994) found other extreme points of the

core when the connection situation has an mcst which is a chain, i.e. a tree

with only two leaves (a leaf of a tree is a node with only one incident edge).

Kuipers (1993) introduced core elements of mcst games associated to connection

situations where the cost of each link is either zero or one. The Shapley value

(Shapley (1953)) of an mcst game, which is not necessarily in the core of an

mcst game, was also studied and axiomatically characterized by Kar (2002).

Many cost allocation methods have been proposed, and different properties

have been considered as well to make them suitable for application in a “dy-

namic” framework. In many applications the cardinality of the set of agents can

vary in time, and also increasing or decreasing of connection costs may occur.

Consider, for instance, a wireless telecommunication network where agents are

operators of transmitters for traffic exchange and the source is the central hub

station. Agents can decide to communicate directly with the main exchange

hub, by means of powerful and very expensive transmitters, or, alternatively,

can decide to cooperate and construct a wireless network of less powerful, and

consequently, cheaper transmitters. Since transmissions are costly, such a situa-

tion can be handled as an mcst problem and the related cost allocation problem

can be studied as an mcst game. Moreover, in such a situation, it may happen

that at a given moment either new owners of transmitters can be willing to enter

the network, or the cost of connection can increase (e.g. as a consequence of an

improvement in quality and quantity of services supplied) or decrease (e.g. by
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improving telecommunication technologies). Of course, in all the connection

situations that may change in time, cost allocations which are stable only in the

original situation cannot guarantee cooperation among agents also under the

new conditions.

Another realistic example where changes in the original connection situation

may occur is in supply networks. Connection situations may be useful to answer

questions regarding the implementation of clauses in supply contracts concern-

ing transportation networks and the related cost allocation problem (Voß and

Schneidereit (2002), Sharkey (1995)). In this case, agents are customer nodes

of a supply chain, who all want to be connected with a central service (i.e. the

source), directly or via other agents, and where connections are costly (e.g. costs

due to transportation or to lead times). Stability is an important characteristic

for cost allocation protocols applied to supply transportation networks, since it

is a necessary condition for any subset of customers not to secede and build their

own competing transportation sub-network. But, increasing of transportation

costs may occur, and, consequently, other incentives to cooperation are de-

manded. For instance, supply contracts must take into consideration clauses for

having various transport possibilities enabling, e.g., expedited delivery in cases

of necessary adjustments in the lead times (Voß and Schneidereit (2002)) with

corresponding increasing of transportation costs.

It should be evident that all those cost allocation problems arising from

connection situations which may undergo one or more changes, require sustain-

able allocation methods. Therefore, the goal of this monograph is to analyze

allocation methods which can keep, in the most general setting, incentives for

cooperation also under modifications in the population of agents and in the

structure of connection costs. For example, the question of the existence of

population monotonic allocation schemes (pmas) (Sprumont (1990)) is central.

A pmas provides a cost allocation vector for every coalition in a monotonic way,

i.e. the cost allocated to some player does not increase if the coalition to which

he belongs becomes larger. Another example regards cost monotonic alloca-

tion rules, that will also be studied in this monograph, where cost monotonicity

means that if some connection costs go down (up), then no agents will pay more

(less). To achieve this goal, the Kruskal algorithm (Kruskal (1956)) plays a key
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role. Roughly speaking, this algorithm works in the following way: in the first

step an edge between two nodes in N ∪ {0} of minimal cost is formed. In every

subsequent step, a new edge of minimal cost is formed, under the constraint that

no cycles are formed. In summary, a sequence of edges is produced and after

n steps an mcst appears. Since some edges may have the same cost, different

mcsts may be selected by the Kruskal algorithm, depending on the ordering of

the edges with respect to their increasing costs which has been considered in

the Kruskal algorithm.

In this monograph, a set of cost allocation protocols is provided which charge

the agents with “fractions” of the cost of each edge constructed in each step of

the Kruskal algorithm with the possibility to control the cost allocation problem

during the construction procedure (Moretti et al. (2005), Norde et al. (2004)).

These protocols can be easily implemented in practical network situations (for

instance, in supply transportation networks), are flexible to changes in the net-

work situation, and meet the requirement of continuous monitoring by the agents

involved. It turns out that a subclass of these cost allocation protocols coin-

cides with the class of Obligations rules (Tijs et al. (2006a)). It is shown that

Obligation rules are cost monotonic and induce a pmas. Interesting rules among

Obligation rules are the P -value (Branzei et al. (2004), Feltkamp et al. (1994b))

and the P τ -values, for each ordering τ of the players (Norde et al. (2004)). Other

characteristics of the Obligation rules are that different feasible orderings of the

edges lead to the same cost allocations and that all these allocations are ele-

ments of the Bird core (Bird (1976), Tijs et al. (2006b)). Variants of connection

situations are also studied (Norde et al. (2004), Moretti et al. (2002)).

Other authors have studied cost allocation problems under modifications of

the elements of the connection situations. In the paper of Kent and Skorin-

Kapov (1996) the question of the existence of pmas in connection situations is

central. In the paper of Dutta and Kar (2004), cost monotonic allocation rules

were studied, where cost monotonicity means that an agent i does not pay more

if the cost of a link involving i decreases, nothing else changing in the network.

Monotonicity properties for cost allocation protocols have been also studied in

Bergañtinos and Vidal-Puga (2007a). Bergañtinos and Vidal-Puga (2007b) in-

troduced the class of optimistic transferable utility games associated to mcst
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situations, where the worth of a coalition is the minimal cost of connecting

this coalition to the source or to a player who is not a member of the coali-

tion. Bergañtinos and Lorenzo-Freire (2008b) introduced optimistic weighted

Shapley rules for connection situations and proved that they are special Oblig-

ation rules. Later, Bergañtinos and Lorenzo-Freire (2008a) characterized the

optimistic weighted Shapley rules using monotonicity properties.

Other classes of cost allocation problems related to variants in connection sit-

uations are: Steiner tree games (Megiddo (1978), Skorin-Kapov (1995)), where

the cost of a coalition of agents is the minimum weight of a Steiner tree1 that

spans the coalition; minimum cost spanning forest games (Kuipers (1998)), deal-

ing with more than one source; spanning network games (Granot and Maschler

(1999), van den Nouweland et al. (1993)), where costs are both on the edges and

on the vertices of the connection situation; hub network games (Skorin-Kapov

(1998)), where some of the nodes of the connection situation serve as focal points

(i.e. hubs); mcst extension problems (Feltkamp (1994)), which are generalized

connection situations in which some network can be present initially.

More recently, Fernandez et al. (2004) have introduced a multi-criteria ver-

sion of an mcst-game as a set-valued TU-game, and provided a family of core

solutions for these games. Suijs (2003) studied mcst problems in which the

connection costs are represented by random variables. Granot et al. (2002) in-

troduced the class of extended tree games, where the agents want to receive a

commodity flow from the root and the flow requirements of the agents can be

different. Moretti (2006) introduced a class of mcst games applied to the analy-

sis of gene expression data, where nodes in the connection situation represent

genes and the cost of a link between two genes is a measure of dissimilarity

between the two genes.

1Given a subset of nodes identified as terminals in a connection situation, a Steiner tree is

an mcst that includes all the terminals and possibly many others. Note that for Steiner tree

problems some nodes may be switching points (i.e. there are no users residing at them).
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1.2 Overview

This dissertation mainly deals with cost games arising from mcst situations

which are defined on undirected complete weighted graphs, where coalitions are

not allowed to use networks which contain nodes outside the coalitions. Only

Chapter 7 is devoted to variants of this kind of mcst situations.

In Chapter 2, some basic preliminaries and notations are presented. The

notions of mcst situations and mcst games are formulated and illustrated on

basic complete weighted graphs, that have been used throughout the monograph

to illustrate also other concepts. The definitions of some basic notions in the

theory of cooperative games, as the core of a game or the notion of pmas, are

also introduced and illustrated with examples.

In Chapter 3, the Subtraction Algorithm is presented. This algorithm com-

putes, for every mcst situation and each permutation on the set of players, a

pmas. As a basis for this algorithm serves a decomposition theorem which guar-

antees that every mcst game can be written as a nonnegative combination of

mcst games corresponding to 0 − 1 cost functions (called simple mcst games).

It turns out that the Subtraction Algorithm is closely related to the famous

algorithm of Kruskal for the determination of mcsts. Furthermore, for each per-

mutation τ on the set of players, the notion of P τ -value is introduced, as the

allocation rule for mcst situations which divides the cost of the grand coalition

according to the Subtraction Algorithm initialized with τ . This chapter is based

on Norde, Moretti, Tijs (2004).

In Chapter 4, the class of Construct and Charge (CC -) rules for mcst sit-

uations is introduced. CC -rules are defined starting from charge systems, and

specify particular allocation protocols rooted on the Kruskal algorithm for com-

puting an mcst. Furthermore, the chapter focuses on the class of Obligation rules

for mcst situations. A characteristic of Obligation rules is that they assign to an

mcst situation a vector of cost contributions which can be obtained as a product

of a double stochastic matrix with the cost vector of edges in the optimal tree

provided by the Kruskal algorithm. It is proved that special charge systems,

called conservative, lead to a subclass of CC -rules that coincides with the class

of Obligation rules. An interesting feature of such rules is that different feasible

orderings of the edges lead to the same cost allocations. Properties of particular
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Obligation rules, as the Potters value (P -value) and the P τ -value introduced in

Chapter 3, are also discussed. It turns out that the P -value equals the Equal

Remaining Obligations (ERO) rule suggested by Jos Potters (which explains

the name of the value) and which is studied first in Feltkamp et al. (1994). Fur-

thermore, the P -value turns out to be the average of the P τ -values. Sections

4.2-4.4 and 4.7 are based on Moretti, Tijs, Branzei, Norde (2008); section 4.5 is

based on Tijs, Branzei, Moretti, Norde (2006a); section 4.6 is based on Branzei,

Moretti, Norde, Tijs (2004).

In Chapter 5, it is first demonstrated that Obligation rules are cost monotonic

and induce also a pmas. Then, a new way to define the irreducible core (Bird

(1976)) is presented, based on a non-Archimedean semimetric. The Bird core

correspondence turns out to have interesting monotonicity and additivity prop-

erties, and each stable cost monotonic allocation rule for mcst situations is a

selection of the Bird core correspondence. Section 5.2 is based on Tijs, Branzei,

Moretti, Norde (2006a); sections 5.3 and 5.4 are based on Tijs, Moretti, Branzei,

Norde (2006b).

In Chapter 6 an axiomatic characterization of the P -value is provided, where

cone-wise positive linearity of the P -value is a fundamental property and where

the decomposition of an mcst situation into simple mcst situations plays a role.

Using the additivity property an axiomatic characterization of the Bird core

correspondence is also given. A value-theoretic interpretation of the Obligation

rules using sharing values for cost games is also discussed. Section 6.2 is based

on Branzei, Moretti, Norde, Tijs (2004); section 6.3 is based on Tijs, Moretti,

Branzei, Norde (2006b); section 6.4 is based on Moretti, Tijs, Branzei, Norde

(2005).

In Chapter 7 it is shown that, for variants of classical mcst games, a pmas

does not necessarily exist. In particular, this chapter deals with monotonic mcst

situations and directed mcst situations. Directed mcst situations of a special

kind are studied, namely those which show up in considering the problem of

connecting units (houses) in mountains with a purifier. For such problems

an easy method is described to obtain an mcst. It turns out that the cores

of the related cost allocation problems have a simple structure and each core

element can be extended to a pmas and also to a bi-monotonic allocation scheme
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(Branzei et al. (2001), Voorneveld et al. (2002)). Sections 7.2 and 7.3 are based

on Norde, Moretti, Tijs (2004); section 7.4 is based on Moretti, Norde, Pham

Do, Tijs (2002).



Chapter 2

Connection situations and

games

2.1 Minimum cost spanning tree (mcst) situa-

tions

An (undirected) graph is a pair < V, E >, where V is a set of vertices or nodes

and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j. The complete

graph on a set V of vertices is the graph < V, EV >, where EV = {{i, j}|i, j ∈
V and i 6= j}.

A path between i and j in a graph < V, E > is a sequence of nodes (i0, i1, . . . ,

ik), where i = i0 and j = ik, k ≥ 1, such that {is, is+1} ∈ E for each s ∈
{0, ..., k− 1} and such that all these edges are distinct. A cycle in < V, E > is a

path from i to i for some i ∈ V . A path (i0, i1, . . . , ik) is without cycles if there

do not exist a, b ∈ {0, 1, . . . , k}, a 6= b, such that ia = ib. Two nodes i, j ∈ V

are connected in < V, E > if i = j or if there exists a path between i and j in

E. A connected component of V in < V, E > is a maximal subset of V with the

property that any two nodes in this subset are connected in < V, E >.

This monograph deals with minimum cost spanning tree (mcst) situations,

i.e. situations where a set N = {1, . . . , n} of agents is willing to be connected as

11
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cheap as possible to a source (i.e. a supplier of a service) denoted by 0, based

on a given weight (or cost) system of connection. In the sequel we use also the

notation N ′ = N ∪{0}, and w for the weight function, i.e. a map which assigns

to each edge e ∈ EN ′ a non-negative number w(e) representing the weight or

cost of edge e.

We denote an mcst situation with set of users N , source 0, and weight

function w by < N ′, w > (or simply w). Further, we denote by WN ′
the set

of all mcst situations < N ′, w > (or w) with node set N ′. For each S ⊆ N ,

one can consider the mcst subsituation < S′, w|S′ >, where S′ = S ∪ {0} and

w|S′ : ES′ → IR+ is the restriction of the weight function w to ES′ ⊆ EN ′ ,

i.e. w|S′(e) = w(e) for each e ∈ ES′ . If w(e) ∈ {0, 1} for every e ∈ EN ′ ,

the weight function w is called a simple weight function, and we refer then to

< N ′, EN ′ , w > as a simple mcst situation.

Let < N ′, w > be an mcst situation. The carrier Ca(w) of w is the set of

edges with positive costs, i.e. Ca(w) = {e ∈ E : w(e) > 0}. Two nodes i and j

are called (w, N ′)-connected if i = j or if there exists a path (i0, . . . , ik) from i

to j, with w({is, is+1}) = 0 for every s ∈ {0, . . . , k−1}. A (w, N ′)-component of

N ′ is a maximal subset of N ′ with the property that any two nodes in this subset

are (w, N ′)-connected. We denote by Ci(w) the (w,N ′)-component to which i

belongs and by C(w) the set of all the (w, N ′)-components of N ′. Clearly, the

collection of (w, N ′)-components forms a partition of N ′.

The cost of a network Γ ⊆ EN ′ is w(Γ) =
∑

e∈Γ w(e). A network Γ is a

spanning network on S′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every

i ∈ S there is a path in < S′, Γ > from i to the source. For any mcst situation

w ∈ WN ′
it is possible to determine at least one spanning tree on N ′, i.e. a

spanning network without cycles on N ′, of minimum cost; each spanning tree of

minimum cost is called an mcst for N ′ in w or, shorter, an mcst for w. Given a

spanning network Γ on N ′ we define the set of edges of Γ with nodes in S′ ⊆ N ′

as the set EΓ
S′ = {{i, j}|{i, j} ∈ Γ and i, j ∈ S′}.

Example 2.1.1 In this example we consider a minimum cost spanning tree

situation arising from the problem of car pooling. Suppose that three employees

of a firm consider the possibility of car pooling in order to reduce their daily

travel cost. The cost of driving a car from one employee to another or from one
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employee to the firm are given in Figure 2.1. Here the employees are denoted
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Figure 2.1: An mcst situation < {0, 1, 2, 3}, w > (left side) and a related mcst

(right side).

by 1, 2, and 3 and the firm by 0. To each edge e ∈ E{0,1,2,3} is assigned a

non-negative number w(e) representing the cost of edge e. A minimum cost

spanning tree in this mcst situation < {0, 1, 2, 3}, w > is the network Γ =

{{0, 1}, {1, 2}, {1, 3}} with cost w(Γ) = 48. This network Γ corresponds to the

plan of car pooling in which employees 2 and 3 drive their car in solitude to

employee 1 where all employees take one car in order to drive together to the

firm. In the remaining of the thesis, to capture the attention of the reader on a

certain mcst, we will represent the edges of the mcst by means of thicker lines,

as it has been shown in Figure 2.2.

2.1.1 Algorithms for the determination of an mcst

Two famous algorithms for the determination of a minimum cost spanning tree

are the algorithm of Prim (Prim (1957)) and the algorithm of Kruskal (Kruskal

(1956)). Let < N ′, w > be an mcst situation. A minimum cost spanning tree

in < N ′, w > can be obtained in the following two ways.
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Figure 2.2: An mcst situation < {0, 1, 2, 3}, w > and an mcst in <

{0, 1, 2, 3}, w > with edges denoted by thicker lines.

Prim’s Algorithm: In the first step construct an edge of minimal

cost between a node in N and the source 0. In every subsequent

step construct an edge of minimal cost between a node in N which

is not connected yet with the source, directly or indirectly, and the

source or with a node in N which is already connected with the

source, directly or indirectly. In every step of the algorithm there is

precisely one node in S which gets a connection with the source, so

the algorithm stops after precisely |N | steps.

Kruskal’s Algorithm: In the first step construct an edge between

nodes in N∪{0} of minimal cost. In every subsequent step construct

an edge between nodes in N ∪ {0} of minimal cost which does not

form a cycle with the edges which have already been constructed.

The algorithm also stops after precisely |N | steps.

Example 2.1.2 Consider the mcst situation < N ′, w > of Example 2.1.1, with

N ′ = {0, 1, 2, 3} and w as depicted in Figure 2.1.

Prim’s Algorithm may first form edge {0, 1}, then {1, 2} (alternatively, {1, 3}),
and finally {1, 3} (alternatively, {1, 2}). Having selected the edge {0, 1} in the

first step, Prim’s algorithm on this mcst situation determines the mcst {{0, 1},
{1, 2}, {1, 3}}. On the same mcst situation, Prim’s Algorithm may first form

edge {0, 2}, then {1, 2}, and finally {1, 3}, bringing to the mcst {{0, 2}, {1, 2},
{1, 3}}.
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Kruskal’s Algorithm first forms the cheapest edge {1, 2} (alternatively, {1, 3}),
then {1, 3} (alternatively, {1, 2}). After the first two steps of the Kruskal’s Al-

gorithm, the cheapest edges {1, 2} and {1, 3} have been formed. Since edge

{2, 3} forms a cycle with the edges {1, 2} and {1, 3}, it cannot be constructed.

Finally, at the third step of the algorithm, one of the edges {0, 1} and {0, 2}
may be formed. Depending on whether {0, 1} or {0, 2} is formed, the Kruskal’s

Algorithm determines the mcst {{0, 1}, {1, 2}, {1, 3}} or {{0, 2}, {1, 2}, {1, 3}},
respectively.

2.1.2 Kruskal cones

The basic idea behind Kruskal’s algorithm is to consider edges one by one ac-

cording to non-decreasing cost. This idea leads to the classification of mcst

situations on the basis of the orders of the edges considered in Kruskal’s algo-

rithm.

We define the set ΣEN′ of linear orders on EN ′ as the set of all bijections

σ : {1, . . . , |EN ′ |} → EN ′ , where |EN ′ | is the cardinality of the set EN ′ . For each

mcst situation < N ′, w > there exists at least one linear order σ ∈ ΣEN′ such

that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |)). We denote by wσ the column

vector
(
w(σ(1)), w(σ(2)), . . . , w(σ(|EN ′ |)))t.

For any σ ∈ ΣEN′ we define the set

Kσ = {w ∈ IR
EN′
+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′ |))}.

The set Kσ is a cone in IR
EN′
+ , which we call the Kruskal cone with respect to

σ. One can easily see that
⋃

σ∈ΣE
N′

Kσ = IR
EN′
+ . For each σ ∈ ΣEN′ the cone

Kσ is a simplicial cone with generators eσ,k ∈ Kσ, k ∈ {1, 2, . . . , |EN ′ |}, where

eσ,1(σ(j)) = 1 for all j ∈ {1, 2, . . . , |EN ′ |}, and for each k ∈ {2, . . . , |EN ′ |}

eσ,k(σ(1)) = eσ,k(σ(2)) = . . . = eσ,k(σ(k − 1)) = 0

and

eσ,k(σ(k)) = eσ,k(σ(k + 1)) = . . . = eσ,k(σ(|EN ′ |)) = 1.

(2.1)
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This implies that each w ∈ Kσ can be written in a unique way as a non-negative

linear combination of these generators. To be more concrete, for w ∈ Kσ we

have

w = w(σ(1))eσ,1 +
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k. (2.2)

Clearly, we can also write WN ′
=

⋃
σ∈ΣE

N′
Kσ, if we identify an mcst situ-

ation < N ′, w > with w.

Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. We can con-

sider a sequence of precisely |EN ′ | + 1 graphs < N ′, F σ,0 >,< N ′, F σ,1 >, . . . ,

< N ′, F σ,|EN′ | > such that F σ,0 = ∅, F σ,k = Fσ,k−1 ∪ {σ(k)} for each k ∈
{1, . . . , |EN ′ |}. For each graph < N ′, F σ,k >, with k ∈ {0, 1, . . . , |EN ′ |}, let

πσ,k be the partition of N ′ consisting of the connected components of N ′ in

< N ′, F σ,k >.

Remark 2.1.1 For each k ∈ {1, . . . , |EN ′ |}, πσ,k is either equal to πσ,k−1 or is

obtained from πσ,k−1 by forming the union of two elements of πσ,k−1.

Now, we define recursively the function ρσ : {0, 1, . . . , |N |} → {0, 1, . . . , |EN ′ |}
by

• ρσ(0) = 0

• ρσ(j) = min{k ∈ {ρσ(j − 1) + 1, . . . , |EN ′ |}|πσ,k 6= πσ,ρσ(j−1)}

for each j ∈ {1, . . . , |N |}.
Note that πσ,ρσ(i) 6= πσ,ρσ(j) for each i, j ∈ {0, 1, . . . , |N |} with i 6= j, and

σ(ρσ(1)), . . . , σ(ρσ(|N |)) correspond to the |N | formed edges in the Kruskal’s

algorithm when the order σ of the edges is considered.

Example 2.1.3 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 2.1. Note that w ∈ Kσ, with σ(1) = {1, 3},
σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {0, 1}, σ(5) = {0, 2}, σ(6) = {0, 3}.
The sequence of seven graphs < N ′, F σ,k > and the corresponding sequence of
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partitions πσ,k are shown in the following table

k Fσ,k πσ,k

0 {∅} {{0}, {1}, {2}, {3}}
1 {{1, 3}} {{0}, {1, 3}, {2}}
2 {{1, 3}, {1, 2}} {{0}, {1, 2, 3}}
3 {{1, 3}, {1, 2}, {2, 3}} {{0}, {1, 2, 3}}
4 {{1, 3}, {1, 2}, {2, 3}, {0, 1}} {N ′}
5 {{1, 3}, {1, 2}, {2, 3}, {0, 1}, {0, 2}} {N ′}
6 {{1, 3}, {1, 2}, {2, 3}, {0, 1}, {0, 2}, {0, 3}} {N ′}

Then, ρσ(0) = 0, ρσ(1) = 1, ρσ(2) = 2, ρσ(3) = 4.

2.2 Cooperative game theory and mcst games

Next, we recall some basic game theoretical notions. A cooperative cost game

or cost game is a pair (N, c), where N denotes the finite set of players and

c : 2N → IR is the characteristic function, with c(∅) = 0 (here 2N denotes

the power set of player set N). Often we identify a cost game (N, c) with the

corresponding characteristic function c. A group of players T ⊆ N is called a

coalition and c(T ) is called the cost of this coalition. The class of all cost games

with N as set of players is denoted by GN . Let HN ⊆ GN . We call a map

ψ : HN → IRN a value if it assigns to every cost game (N, c) ∈ HN one payoff

vector (or cost allocation) in IRN . A payoff vector x ∈ IRN is efficient for a cost

game (N, c) ∈ GN if we have
∑

i∈N xi = c(N). A value ψ is efficient if we have

that ψ(c) is an efficient payoff vector for each c ∈ HN . A value ψ : HN → IRN

is called linear if ψ(βv + γu) = βψ(v) + γψ(u) for all games v, u ∈ HN and real

numbers β, γ ∈ IR such that βv + γu ∈ HN .

A particular set, possibly empty, of payoff vectors of a cost game (N, c) is the

core, which is defined as the set of efficient payoff vectors for which no coalition

has an incentive to leave the grand coalition N . In formula

core(c) = {x ∈ IRN |
∑

i∈S

xi ≤ c(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = c(N)}.
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A game (N, c) is called a concave game if the marginal contribution of any player

to any coalition is not less than his marginal contribution to a larger coalition,

i.e. if it holds that

c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ) (2.3)

for all i ∈ N and all S ⊆ T ⊆ N \ {i}.
We define the set ΣN of possible orders on the set N as the set of all bijections

τ : {1, . . . , |N |} → N , where |N | is the cardinality of the set N and where

τ(i) = j means that with respect to τ , player j is in the i-th position.

Let (N, c) be a cooperative cost game. For τ ∈ ΣN , the marginal vector

mτ (c) is defined by

mτ
i (c) = c([i, τ ])− c((i, τ)) for all i ∈ N,

where [i, τ ] = {j ∈ N : τ−1(j) ≤ τ−1(i)} is the set of predecessors of i with

respect to τ including i, and (i, τ) = {j ∈ N : τ−1(j) < τ−1(i)} is the set of

predecessors of i with respect to τ excluding i. In a coherent way with respect

to previous notations, we will indicate the set [i, τ ] ∪ {0} and (i, τ) ∪ {0} as

[i, τ ]′ and (i, τ)′, respectively. For instance, for each k ∈ {1, . . . , |N |} and for

each l ∈ {2, . . . , |N |}, the set [τ(k), τ ]′ = {0, τ(1), . . . , τ(k)} and (τ(l), τ)′ =

{0, τ(1), . . . , τ(l − 1)}, which will be denoted shorter as [τ(k)]′ and (τ(l))′, re-

spectively.

The most well-known value in the theory of cost games is the Shapley value

(Shapley (1953)). The Shapley value φ(c) of a cost game (N, c) is defined as the

average of marginal vectors over all |N |! possible orders in ΣN . In formula

φi(c) =
∑

τ∈ΣN

mτ
i (c)
|N |! for all i ∈ N. (2.4)

A population monotonic allocation scheme or pmas (Sprumont (1990)) of

the game (N, c) is a scheme x = {xS,i}S∈2N\{∅},i∈S with the properties

i)
∑

i∈S

xS,i = c(S) for all S ∈ 2N\{∅};

ii) xS,i ≥ xT,i for all S, T ∈ 2N\{∅} and i ∈ N with i ∈ S ⊂ T .
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A pmas provides a cost allocation vector for every coalition in a monotonic

way, i.e. the cost allocated to some player decreases if the coalition to which he

belongs becomes larger.

Let < N ′, w > be an mcst situation. The minimum cost spanning tree game

(N, cw) (or simply cw), corresponding to < N ′, w >, is defined by

cw(S) = min{w(Γ)|Γ is a spanning network on S′}

for every S ∈ 2N\{∅}, with the convention that cw(∅) = 0.

We denote by MCST N the class of all mcst games corresponding to mcst

situations in WN ′
. For each σ ∈ ΣEN′ , we denote by Gσ the set {cw | w ∈

Kσ} which is a cone. We can express MCST N as the union of all cones Gσ,

i.e. MCST N =
⋃

σ∈ΣE
N′
Gσ, and we would like to point out that MCST N

itself is not a cone if |N | ≥ 2.

Example 2.2.1 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 2.1.

If S = {1, 2} then a minimum cost spanning network for S is Γ = {{1, 2},
{0, 1}} with cost 36, whereas the minimum cost spanning network for S = {3}
is Γ = {{0, 3}} with cost 26. Proceeding in this way we find that the mcst game

(N, cw), corresponding to < N ′, w >, is given by

cw(123) = 48,

cw(12) = 36, cw(13) = 36, cw(23) = 44,

cw(1) = 24, cw(2) = 24, cw(3) = 26.

We call a map F : WN ′ → IRN assigning to every mcst situation w a unique cost

allocation in IRN a solution. A solution F is efficient if we have
∑

i∈N Fi(w) =

w(Γ) for each w ∈ WN ′
, where Γ is a spanning network on N ′ of minimal cost.

A solution F has the carrier property if Fi(w) = 0 for each w ∈ WN ′
and for

each i ∈ N such that i is (w, N ′)-connected to 0.

The core C(cw) of an mcst game cw ∈ MCST N is nonempty (Granot and

Huberman (1981), Bird (1976)) and, given an mcst Γ (with no cycles) for N ′

in the mcst situation w, one can easily find an element in the core looking at

the algorithm of Prim described in Section 2.1.1. If one assigns the cost of an
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edge, which is formed in some step of the algorithm, to the player who just gets

a connection with the source, directly or indirectly, then one obtains a core ele-

ment of the corresponding mcst game (see Bird (1976) for more details). In the

following example we will illustrate that such a procedure does not necessarily

generate a pmas of the corresponding mcst game.

Example 2.2.2 Consider the complete weighted graph < N ′, w̃ > with N ′ =

{0, 1, 2, 3} and cost function w̃ as depicted in Figure 2.3. Application of Prim’s
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Figure 2.3: The cost function w̃ on E{0,1,2,3}.

algorithm for the mcst situation < {0, 1, 2, 3}, w̃ > yields the formation of edge

{0, 1} first, followed by the formation of edge {1, 3} and edge {2, 3}. The cost

of edge {0, 1} is assigned to player 1, the cost of edge {1, 3} to player 3 and

the cost of edge {2, 3} to player 2. Following the same procedure for all other

coalitions we get the following table

S 1 2 3

{1, 2, 3} 6 8 13

{1, 2} 6 17 ∗
{1, 3} 6 ∗ 13

{2, 3} ∗ 17 8

{1} 6 ∗ ∗
{2} ∗ 17 ∗
{3} ∗ ∗ 18

This table does not provide a pmas of the corresponding mcst game ({1, 2, 3},
cw̃): in coalition S = {2, 3} player 3 has to pay 8 which is strictly less than the

amount 13 which he has to pay in the larger coalition N = {1, 2, 3}.
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Chapter 3

Mcst games and population

monotonic allocation

schemes

3.1 Introduction

In Example 2.2.2 it has been provided an mcst situation where the allocation

method introduced by Bird (1976) does not generate a pmas of the correspond-

ing mcst game. But it is not clear, up to this point of the story, whether it is

possible to find a solution for mcst situations which is always able to generate

a pmas. Solving this problem is particularly valuable in applications where the

cardinality of the set of agents can vary in time.

Consider for instance the mcst situation introduced in Example 2.1.1. Prim’s

Algorithm may first form edge {0, 1} at the first step, then {1, 2}, and finally

{1, 3} and the Bird rule yields the core allocation x = (24, 12, 12).

Suppose now that a fourth employee is asking whether he can join the car-

poolers 1, 2, and 3. The cost of driving from employee 4 to the other employees

and to the firm are given in Figure 3.1, as well as a minimum spanning tree for

the new situation. Application of the Bird rule to this new situation yields the

23
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Figure 3.1: The cost of driving and a minimum spanning tree in the new situa-

tion.

allocation x = (12, 22, 12, 10). In the new situation employee 2 has to pay 22,

whereas in the old situation he only paid 12. Therefore, if the employees use

the Bird rule in order to divide joint costs, employee 2 will veto the entrance

of employee 4. Note that if Prim’s Algorithm applied to the mcst situation in

Example 2.1.1 would have formed edge {0, 2} at the first step, then {1, 2}, and

finally {1, 3}, bringing to the mcst {{0, 2}, {1, 2}, {1, 3}}, the Bird rule would

have provided the allocation (12, 24, 12). With respect to this allocation in the

mcst situation of Figure 2.1, according to the Bird rule in the new mcst situation

of Figure 3.1, no employees would have put a veto on the entrance of employee

4.

The central question in this chapter is whether every minimum cost span-

ning tree game has a population monotonic allocation scheme (pmas) (Sprumont

(1990)), which is an allocation scheme that provides a core element for the game

and all its subgames and which, moreover, satisfies a monotonicity condition in

the sense that players have to pay less in larger coalitions. We will answer this

question in the affirmative and we will provide the Subtraction Algorithm, that

computes for every minimum cost spanning tree game a pmas. We will show that

this algorithm is closely related to Kruskal’s algorithm for finding a minimum

spanning tree (Kruskal (1956)). The Subtraction Algorithm is based upon a

decomposition theorem, which shows that every minimum cost spanning tree

game can be written as a non-negative combination of minimum cost spanning

tree games corresponding to simple mcst situations.

This chapter is organized as follows. In Section 3.2 the decomposition theo-
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rem is provided and minimum cost spanning tree games corresponding to simple

mcst situations are studied. The Subtraction Algorithm is presented in Section

3.3. This chapter is based on Norde, Moretti, Tijs (2004).

3.2 Simple mcst games and the decomposition

theorem

If the cost of all edges in Ca(w) are lowered by the cost of an edge in Ca(w)

with minimal cost we are left with a cost function with smaller carrier. The

following lemma establishes a relation between the corresponding mcst games.

Lemma 3.2.1 Let w ∈ WN ′
be a cost function with Ca(w) 6= ∅ and let α :=

min{w(l) : l ∈ Ca(w)}. Let w′ be the simple cost function defined by w′(l) := 1

if l ∈ Ca(w) and w′(l) := 0 otherwise. Let w′′ be the cost function defined by

w′′(l) := w(l) − αw′(l) for every l ∈ EN ′ . Finally, let c, c′ and c′′ be the mcst

games corresponding to w, w′ and w′′ respectively. Then, we have w = αw′+w′′

and c = αc′ + c′′.

Proof It follows by definition that w = αw′ + w′′. In order to prove that

c = αc′ + c′′, i.e. c(S) = αc′(S) + c′′(S) for every S ∈ 2N\{∅}, let S ∈ 2N\{∅}.
Let Γ′ be a minimum cost spanning network for S in w′ without cycles, i.e. Γ′ is

a minimum cost spanning tree for S in w′. Write Γ′ = L0∪L1 where L0 := {l ∈
Γ′ : w′(l) = 0} and L1 := {l ∈ Γ′ : w′(l) = 1}. Clearly, |Γ′| = |L0|+ |L1|. Since

Γ′ is a tree we also have |Γ′| = |S|. Hence, c′(S) = w′(Γ′) = |L1| = |S| − |L0|.
It suffices to show that there exists a minimum cost spanning tree Γ′′ for S

in w′′ with L0 ⊆ Γ′′. Since then Γ′′ contains at most |Γ′′\L0| = |S| − |L0|
edges in Ca(w′) and hence w′(Γ′′) ≤ |S| − |L0| = w′(Γ′). Therefore, Γ′′ is

also a minimum cost spanning tree for S in w′. Having w = αw′ + w′′ and

the fact that Γ′′ is a minimum cost spanning tree for S in both w′ and w′′ we

may conclude that Γ′′ is also a minimum cost spanning tree for S in w. So,

c(S) = w(Γ′′) = αw′(Γ′′) + w′′(Γ′′) = αc′(S) + c′′(S).

In order to show that there is a minimum cost spanning tree Γ′′ for S in w′′

with L0 ⊆ Γ′′ take an arbitrary minimum cost spanning tree Γ for S in w′′.

If L0 ⊆ Γ the proof is finished. If L0 6⊆ Γ choose an l ∈ L0\Γ. Since Γ ∪ {l}
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contains a cycle C, whereas Γ′, and hence L0, do not contain cycles, we can find

an edge l′ ∈ C with l′ /∈ L0. Define Γ̃ := (Γ ∪ {l})\{l′}. Since w′′(l) = 0 and

w′′(l′) ≥ 0 we find that also Γ̃ is a minimum cost spanning tree for S in w′′.

Moreover |Γ̃ ∩ L0| = |Γ ∩ L0| + 1. Repeating this argument results in the tree

Γ′′ with the desired properties.

The following decomposition theorem shows that every minimum cost span-

ning tree game can be written as a non-negative combination of minimum cost

spanning tree games corresponding to simple mcst situations.

Theorem 3.2.2 Let w ∈ WN ′
be a cost function with Ca(w) 6= ∅ and let c

be the corresponding mcst game. Then, there exists a sequence of simple cost

functions w1, . . . , wk, with Ca(w) = Ca(w1) ⊃ Ca(w2) ⊃ · · · ⊃ Ca(wk), and

positive numbers α1, . . . , αk such that

w =
k∑

j=1

αjwj . (3.1)

Moreover, if c1, . . . , ck are the mcst games corresponding to w1, . . . , wk respec-

tively, we have

c =
k∑

j=1

αjcj . (3.2)

Proof The proof is by induction to |Ca(w)|.
If |Ca(w)| = 1 then Ca(w) has a unique element, say l∗. Defining α := w(l∗)

and the simple cost function w1 by w1(l∗) := 1 and w1(l) := 0 if l 6= l∗ we

clearly have w = α1w1. Moreover, if c1 is the mcst game corresponding to w1

one easily verifies that c = α1c1.

Now, let m ∈ IN, m ≥ 2 and suppose that the assertion has been proved for

every cost function w with |Ca(w)| ≤ m − 1. Consider a cost function w with

|Ca(w)| = m. According to Lemma 3.2.1 there is a simple cost function w1,

namely the simple cost function with the same carrier as w, a positive number

α1 and a cost function w′′ with Ca(w′′) ⊂ Ca(w) such that w = α1w1 +

w′′. Moreover, if c1 and c′′ are the mcst games corresponding to w1 and w′′

respectively, we have c = α1c1 + c′′. Application of the induction hypothesis to

w′′ finishes the proof.
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Remark 3.2.1 In order to prove relation (3.1), one may directly observe that

WN ′
=

⋃
σ∈ΣE

N′
Kσ, where Kσ is the Kruskal cone with respect to σ, σ ∈ ΣEN′ ,

introduced in Section 2.1.2. As we already remarked in relation (2.2), w ∈ Kσ

can be written in a unique way as a non-negative linear combination of the

generators of the simplicial cone Kσ.

Example 3.2.1 Consider the cost function w of Example 2.1.1. Note that

w ∈ Kσ, with σ(1) = {1, 3}, σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {0, 1},
σ(5) = {0, 2}, σ(6) = {0, 3}. Hence, by relation (2.2), we have

w = w(σ(1))eσ,1 +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k

= 12eσ,1 + (12− 12)eσ,2 + (20− 12)eσ,3

+(24− 20)eσ,4 + (24− 24)eσ,5 + (26− 24)eσ,6 =

= 12eσ,1 + 8eσ,3 + 4eσ,4 + 2eσ,6.

In terms of Theorem 3.2.2 we may write

w = α1w1 + α2w2 + α3w3 + α4w4

where α1 = 12, α2 = 8, α3 = 4 and α4 = 2, and the simple cost functions

w1, . . . , w4 are specified by

edge l {1, 3} {1, 2} {2, 3} {0, 1} {0, 2} {0, 3}
w1(l) = eσ,1(l) 1 1 1 1 1 1

w2(l) = eσ,3(l) 0 0 1 1 1 1

w3(l) = eσ,4(l) 0 0 0 1 1 1

w4(l) = eσ,6(l) 0 0 0 0 0 1

Computing the mcst games c1, . . . , c4 corresponding to w1, . . . , w4 respectively,

we get

coalition S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
c1(S) 1 1 1 2 2 2 3

c2(S) 1 1 1 1 1 2 1

c3(S) 1 1 1 1 1 1 1

c4(S) 0 0 1 0 0 0 0
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One easily verifies that
∑4

i=1 αici coincides with the mcst game c, as computed

in Example 2.2.1.

3.3 The Subtraction Algorithm for population

monotonic allocation scheme (pmas)’s gen-

eration

In this section we will focus on simple cost functions. We show that an mcst

game corresponding to a simple cost function has a population monotonic allo-

cation scheme. Using Theorem 3.2.2 we obtain as a corollary that every mcst

game has a population monotonic allocation scheme.

Let w be a simple cost function and let S ∈ 2N\{∅} be a coalition. Two

nodes i and j in S∪{0} are (w, S′)-connected if there exists a sequence of nodes

i = i0, . . . , ik = j in S ∪ {0} with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}.
A (w, S′)-component of S∪{0} is a maximal subset of S∪{0} with the property

that any two nodes in this subset are (w,S′)-connected. The number of (w, S′)-

components is denoted by n(w, S′). Clearly, the collection of (w, S′)-components

forms a partition of S ∪ {0}.

Lemma 3.3.1 Let w be a simple cost function and let c be the corresponding

mcst game. Then, we have

c(S) = n(w,S′)− 1

for every S ∈ 2N\{∅}.

Proof Let S ∈ 2N\{∅}. If n(w, S′) = 1 then S ∪ {0} is the unique (w, S′)-

component. Therefore, Γ = {l ∈ EN ′ : l ⊆ S ∪ {0}, w(l) = 0} is a spanning

network for S with w(Γ) = 0. Hence, c(S) = 0 = n(w, S′)− 1.

Now, suppose n(w, S′) ≥ 2. Let C0, C1, . . . , Ck (k ≥ 1) be all (w, S′)-compo-

nents. Clearly, S∪{0} = ∪k
i=0Ci and n(w, S′) = k+1. Without loss of generality
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we may assume that 0 ∈ C0. For every i ∈ {1, . . . , k} select some node ni ∈ Ci.

Consider the network

Γ = {l ∈ EN ′ : l ⊆ S ∪ {0}, w(l) = 0} ∪ {{ni, 0} : i ∈ {1, . . . , k}}.

The network Γ is a spanning network for S: nodes in C0 are connected with

source 0 via edges in Γ of zero cost, and nodes in Ci with i ∈ {1, . . . , k} are

connected with the source via node ni. Moreover w(Γ) = k. It suffices to

show that for any spanning tree Γ′ for S we have w(Γ′) ≥ k, since then Γ

is a minimum cost spanning network for S in w, and hence we have c(S) =

w(Γ) = k = n(w,S′)− 1. So, let Γ′ be a spanning tree for S. Define, for every

i ∈ {0, . . . , k}, Γi := Γ′ ∩ {l ∈ EN ′ : l ⊆ Ci, w(l) = 0}. Since Γ′, and hence Γi,

does not contain cycles we have |Γi| ≤ |Ci| − 1 for every i ∈ {0, . . . , k}. Write

Γ′ = L0 ∪ L1 where L0 := {l ∈ Γ′ : w(l) = 0} and L1 := {l ∈ Γ′ : w(l) = 1}.
Since L0 ⊆ ∪k

i=0Γi we have

|L0| ≤
k∑

i=0

|Γi| ≤
k∑

i=0

|Ci| − (k + 1) = |S|+ 1− (k + 1) = |S| − k.

Therefore,

w(Γ′) = |L1| = |Γ′| − |L0| = |S| − |L0| ≥ k.

Example 3.3.1 Consider the complete weighted graph < N ′, w > with N ′ =

{0, . . . , 8} and simple cost function w specified by {l ∈ EN ′ : w(l) = 0} =

{{0, 1}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {6, 7}}. Let c be the corresponding mcst game.

The edges with zero cost are depicted in Figure 3.2. Clearly, {0, 1}, {2, 3, 4, 5},
{6, 7} and {8} are all (w, N)-components. Consequently, c(N) = n(w, N)− 1 =

4 − 1 = 3. If we consider for example coalition S = {2, 3, 5, 6} we get that

{0}, {2, 3}, {5} and {6} are all (w, S′)-components. Consequently, we also have

c(S) = n(w,S′)− 1 = 4− 1 = 3.

In order to show that an mcst game corresponding to a simple cost function has

a pmas we need some more notation. In the following, if w ∈ WN ′
is a simple

cost function, S ∈ 2N\{∅} and i ∈ S then the (w, S′)-component to which i

belongs is denoted by Ci(w, S).
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Figure 3.2: The cost function of Example 3.3.1.

Definition 3.3.1 Let w ∈ WN ′
be a simple cost function and let τ ∈ ΣN . The

scheme xτ,w = (xτ,w
S,i )S∈2N\{∅},i∈S is defined in the following way:

xτ,w
S,i =





0 if 0 ∈ Ci(w,S),

0 if 0 /∈ Ci(w,S) and τ−1(i) 6= min
j∈Ci(w,S)

τ−1(j),

1 if 0 /∈ Ci(w,S) and τ−1(i) = min
j∈Ci(w,S)

τ−1(j),

for every S ∈ 2N\{∅} and for every i ∈ S.

The scheme xτ,w provides for every coalition S ∈ 2N\{∅} a division of the cost

c(S) in the following way: all members of the (w,S′)-component containing the

source 0 do not have to pay anything whereas the (unit) cost of all other (w, S′)-

components is allocated to the member in the component with the lowest index

according to τ .

Example 3.3.2 Consider the simple cost function w of Example 3.3.1 and let

τ ∈ ΣN be given by τ−1(1) = 2, τ−1(2) = 7, τ−1(3) = 5, τ−1(4) = 3, τ−1(5) =

6, τ−1(6) = 8, τ−1(7) = 1 and τ−1(8) = 4. Then, xτ,w
N,1 = xτ,w

N,2 = xτ,w
N,3 = xτ,w

N,5 =

xτ,w
N,6 = 0 and xτ,w

N,4 = xτ,w
N,7 = xτ,w

N,8 = 1. Moreover, for S = {2, 3, 5, 6} we get

xτ,w
S,2 = 0 and xτ,w

S,3 = xτ,w
S,5 = xτ,w

S,6 = 1.

In the following lemma we prove that the scheme xτ,w is a pmas for the mcst

game corresponding to simple cost function w.

Lemma 3.3.2 Let w be a simple cost function, cw the corresponding mcst game,

and τ ∈ ΣN . Then, xτ,w is a pmas for cw.
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Proof Let S ∈ 2N\{∅}. Every (w, S′)-component which does not contain the

source 0 contains precisely one player i ∈ S with xτ,w
S,i = 1. Therefore,

∑

i∈S

xτ,w
S,i = n(w, S′)− 1 = c(S).

Now, let i ∈ N and S, T ∈ 2N\{∅} be such that i ∈ S ⊂ T . In order to show

that xτ,w
S,i ≥ xτ,w

T,i it suffices to show that xτ,w
T,i = 1 implies xτ,w

S,i = 1. So, assume

xτ,w
T,i = 1, i.e. 0 6∈ Ci(w, T ) and

τ−1(i) = min
j∈Ci(w,T )

τ−1(j).

Obviously, we have Ci(w,S) ⊆ Ci(w, T ), which implies 0 6∈ Ci(w, S) and

τ−1(i) = min
j∈Ci(w,S)

τ−1(j).

Therefore, xτ,w
S,i = 1.

As a corollary we get the main theorem of this section.

Theorem 3.3.3 Every mcst game has a pmas.

Proof The theorem follows directly from Theorem 3.2.2, Lemma 3.3.2 and

the observation that if x1 = (x1
S,i)S∈2N\{∅},i∈S is a pmas for game c1 and

x2 = (x2
S,i)S∈2N\{∅},i∈S is a pmas for game c2, then we have that αx1 + βx2 :=

(αx1
S,i + βx2

S,i)S∈2N\{∅},i∈S is a pmas for αc1 + βc2 for every α ≥ 0 and every

β ≥ 0.

A basis for an algorithm that finds a pmas in any mcst game is provided by The-

orem 3.2.2 and Lemma 3.3.2. Let w ∈ WN ′
with Ca(w) 6= ∅ and let σ ∈ ΣEN′

be such that w ∈ Kσ. As we already remarked in relation (2.2), w ∈ Kσ can be

written in a unique way as a non-negative linear combination of the generators

of the simplicial cone Kσ, in formula

w = w(σ(1))eσ,1 +
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k.

Note that Ca(eσ,1) ⊃ · · · ⊃ Ca(eσ,k). Theorem 3.2.2 tells us that the same

decomposition is true for the mcst games cw and c1, . . . , c|EN′ |, corresponding



32 CHAPTER 3. MCST GAMES AND POPULATION MONOTONIC ALLOCATION SCHEMES

to w and eσ,1, . . . , eσ,|EN′ |, respectively:

cw = w(σ(1))c1 +
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
ck.

Subsequently, fix some permutation τ ∈ ΣN . Compute, for every k ∈ {1, . . . ,

|EN ′ |}, the scheme xτ,eσ,k

. According to Lemma 3.3.2 the scheme xτ,eσ,k

is a

pmas for ck for every k ∈ {1, . . . , |EN ′ |}. Define the scheme P τ,w in the following

way:

P τ,w := w(σ(1))xτ,eσ,1
+

∑|EN′ |
k=2

(
w(σ(k))− w(σ(k − 1))

)
xτ,eσ,k (3.3)

or, alternatively,

P τ,w :=
( ∑|EN′ |−1

k=1

(
xτ,eσ,k − xτ,eσ,k+1)

w(σ(k))
)

+ w(σ(|EN ′ |))xτ,eσ,|E
N′ | .

(3.4)

For the same arguments used to prove Theorem 3.3.3, we have that P τ,w is a

pmas for the mcst game cw. For the sake of completeness note that for w = 0

the vectors P τ,w
S,i := 0, for every S ∈ 2N\{∅} and each i ∈ S, determine a pmas

for the corresponding minimum cost spanning tree game cw = 0.

Example 3.3.3 Consider the cost function w of Example 2.1.1 and the corre-

sponding mcst game c introduced in Example 2.2.1. As we already noted in

Example 2.1.3 and Example 3.2.1, we have that w ∈ Kσ, with σ(1) = {1, 3},
σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {0, 1}, σ(5) = {0, 2}, σ(6) = {0, 3} and, by

relation (2.2),

w = w(σ(1))eσ,1 +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k

= 12eσ,1 + (12− 12)eσ,2 + (20− 12)eσ,3

+(24− 20)eσ,4 + (24− 24)eσ,5 + (26− 24)eσ,6 =

= 12eσ,1 + 8eσ,3 + 4eσ,4 + 2eσ,6.

Let τ ∈ ΣN be given by τ−1(i) = i for every i ∈ N . By relation (3.3) we have
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that P τ,w is given by the following sum

P τ,w = 12xτ,eσ,1
+ 8xτ,eσ,3

+ 4xτ,eσ,4
+ 2xτ,eσ,6

=

S 1 2 3

{1, 2, 3} 12 12 12

{1, 2} 12 12 ∗
{1, 3} 12 ∗ 12

{2, 3} ∗ 12 12

{1} 12 ∗ ∗
{2} ∗ 12 ∗
{3} ∗ ∗ 12

+

S 1 2 3

{1, 2, 3} 8 0 0

{1, 2} 8 0 ∗
{1, 3} 8 ∗ 0

{2, 3} ∗ 8 8

{1} 8 ∗ ∗
{2} ∗ 8 ∗
{3} ∗ ∗ 8

+

S 1 2 3

{1, 2, 3} 4 0 0

{1, 2} 4 0 ∗
{1, 3} 4 ∗ 0

{2, 3} ∗ 4 0

{1} 4 ∗ ∗
{2} ∗ 4 ∗
{3} ∗ ∗ 4

+

S 1 2 3

{1, 2, 3} 0 0 0

{1, 2} 0 0 ∗
{1, 3} 0 ∗ 0

{2, 3} ∗ 0 0

{1} 0 ∗ ∗
{2} ∗ 0 ∗
{3} ∗ ∗ 2

=

S 1 2 3

{1, 2, 3} 24 12 12

{1, 2} 24 12 ∗
{1, 3} 24 ∗ 12

{2, 3} ∗ 24 20

{1} 24 ∗ ∗
{2} ∗ 24 ∗
{3} ∗ ∗ 26

An alternative way of describing the procedure used to define scheme P τ,w, is

the following algorithm.

Subtraction Algorithm for the computation of a pmas of an mcst

game.

Initialization: Let < N ′, w > be an mcst situation and let

τ ∈ ΣN . Define x = {xS,i}S∈2N\{∅},i∈S by xS,i := 0

for every S ∈ 2N\{∅}, i ∈ S.
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Algorithm: WHILE w 6= 0

DO α := min{w(l) : l ∈ EN ′ , w(l) > 0}
FOR every S ∈ 2N\{∅}, i ∈ S:

BEGIN

IF 0 /∈ Ci(w, S) and

τ−1(i) = minj∈Ci(w,S) τ−1(j)

THEN xS,i := xS,i + α

END

FOR every l ∈ EN ′ with w(l) > 0:

BEGIN

w(l) := w(l)− α

END

END

Output: A pmas (xS,i)S∈2N\{∅},i∈S for the game cw such that

xS,i = P τ,w
S,i for each S ∈ 2N \ {∅} and i ∈ S.

In the following two examples we illustrate the Subtraction Algorithm.

Example 3.3.4 Consider the cost function w of Example 2.1.1 and the corre-

sponding mcst game cw introduced in Example 2.2.1.

Let τ ∈ ΣN be given by τ−1(i) = i for every i ∈ N . In every step of

the Subtraction Algorithm some of the coefficients xS,i will be raised by some

amount α. Which coefficients xS,i will be raised? Coefficient xS,i will be raised

if there is no path in S ∪ {0} of zero cost from i to source 0 (0 /∈ Ci(w, S)),

and if there is no path in S ∪ {0} of zero cost from i to some node j ∈ S with

τ−1(j) < τ−1(i).

In the first step of the algorithm α = 12, the cost of edges {1, 2} and {1, 3}.
All coefficients xS,i will be raised by 12. Since all edges have positive cost, at

the end of step 1 the cost of every edge will be lowered by 12, so w({1, 2}) =

w({1, 3}) = 0.

In the second step of the algorithm α = 8, the cost of edge {2, 3}. Since there is

no path from i ∈ {1, 2, 3} to source 0 of cost zero and {1, 2}, {1, 3} is a path of

zero cost, according to τ all coefficients xS,1 with 1 ∈ S are raised by 8 together

with x{2,3},2,x{2,3},3, x{2},2 and x{3},3. At the end of step 2 the cost of every



3.3. THE SUBTRACTION ALGORITHM FOR POPULATION MONOTONIC ALLOCATION SCHEME (PMAS)’S GENERATION 35

edge with positive cost will be lowered by 8, so w({2, 3}) = 0.

In the third step of the algorithm α = 4, the cost of edges {0, 1} and {0, 2}.
Since there is no path from i ∈ {1, 2, 3} to source 0 with zero cost, according to

τ all coefficients xS,1 with 1 ∈ S are raised by 4 together with x{2},2, x{3},3 and

x{2,3},2 (since 2 and 3 are connected via a zero cost path and τ−1(2) < τ−1(3)).

At the end of step 2 the cost of every edge with positive cost will be lowered by

4, so w({0, 1}) = w({0, 2}) = 0.

In step 4 we have α = 2, the cost of edge {0, 3}. Now, all players are (w,S′)-

connected with the source, for each S ∈ 2N \ {∅, {3}}. Hence, only x{3},3 is

raised by 2. At the end of step 4, the cost of the unique edge with positive

cost, edge {0, 3}, is lowered by 2 and the algorithm stops. The pmas of the

corresponding mcst game, created in the Subtraction Algorithm, is given by

S 1 2 3

{1, 2, 3} 12 + 8 + 4 12 12

{1, 2} 12 + 8 + 4 12 ∗
{1, 3} 12 + 8 + 4 ∗ 12

{2, 3} ∗ 12 + 8 + 4 12 + 8

{1} 12 + 8 + 4 ∗ ∗
{2} ∗ 12 + 8 + 4 ∗
{3} ∗ ∗ 12 + 8 + 4 + 2

=

S 1 2 3

{1, 2, 3} 24 12 12

{1, 2} 24 12 ∗
{1, 3} 24 ∗ 12

{2, 3} ∗ 24 20

{1} 24 ∗ ∗
{2} ∗ 24 ∗
{3} ∗ ∗ 26

Example 3.3.5 Consider the complete weighted graph < N ′, w > with N ′ =

{0, 1, 2, 3} and cost function w as depicted in the following figure. Let τ ∈ ΣN
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be given by τ−1(i) = i for every i ∈ N . In the first step of the algorithm α = 6,
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the cost of edge {0, 1}. Since all edges have positive cost all coefficients xS,i will

be raised by 6. At the end of step 1 the cost of every edge will be lowered by 6;

so, w({0, 1}) = 0.

In the second step of the algorithm α = 2, the cost of edge {2, 3}. Since edge

{0, 1} is a path from 1 to source 0 of cost zero no coefficient xS,1 with 1 ∈ S will

be raised in this step (and in subsequent) steps, whereas all other coefficients

are raised by 2. At the end of step 2 the cost of every edge with positive cost

will be lowered by 2; so, w({0, 1}) = w({2, 3}) = 0.

In the third step of the algorithm α = 5, the cost of edge {1, 3}. Since edge {2, 3}
is a path of zero cost which connects player 3 with player 2, which has a lower

index according to τ (τ−1(2) < τ−1(3)), the coefficients x{1,2,3},3 and x{2,3},3
will not be raised in this and further steps. All coefficients, which remain to be

raised, are increased by 5 and at the end of step 3 the cost of every edge with

positive cost will be lowered by 5; so, w({0, 1}) = w({1, 3}) = w({2, 3}) = 0.

In step 4 we have α = 4, the cost of edge {0, 2}. Since player 2 is (w, {0, 1, 2, 3})-
connected with the source, via path {0, 1}, {1, 3}, {2, 3}, and player 3 is (w, {0, 1,

3})-connected with the source, via path {0, 1}, {1, 3}, the corresponding coeffi-

cients will not be raised anymore, whereas all coefficients, which remain to be

raised, are increased by 4. At the end of step 4 the cost of every edge with

positive cost will be lowered by 4; so, w({0, 1}) = w({0, 2}) = w({1, 3}) =

w({2, 3}) = 0.

In step 5 we have α = 1, the cost of edge {0, 3}. Since edge {0, 2} is a path from

2 to source 0 of zero cost the coefficients x{1,2},2, x{2,3},2, and x{2},2 will not

be raised any further. The only coefficient which remains to be raised, x{3},3,

is increased by 1. At the end of step 5 every edge with positive cost is lowered

by 1; so, w({0, 2}) = 0.

In step 6 we have α = 3, the cost of edge {1, 2}. Since edge {0, 3} is a path

from 3 to source 0 of zero cost coefficient x{3},3 will not be raised anymore.

The cost of the only edge with positive cost, edge {1, 2}, is lowered by 3 and

the algorithm stops. The pmas of the corresponding mcst game, created in the
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Subtraction Algorithm, is given by

S 1 2 3

{1, 2, 3} 6 6 + 2 + 5 6 + 2

{1, 2} 6 6 + 2 + 5 + 4 ∗
{1, 3} 6 ∗ 6 + 2 + 5

{2, 3} ∗ 6 + 2 + 5 + 4 6 + 2

{1} 6 ∗ ∗
{2} ∗ 6 + 2 + 5 + 4 ∗
{3} ∗ ∗ 6 + 2 + 5 + 4 + 1

=

S 1 2 3

{1, 2, 3} 6 13 8

{1, 2} 6 17 ∗
{1, 3} 6 ∗ 13

{2, 3} ∗ 17 8

{1} 6 ∗ ∗
{2} ∗ 17 ∗
{3} ∗ ∗ 18

Moreover, note that player 2 in coalition {1, 2, 3} has to pay the cost of edge

{1, 3}, although he does not belong to this edge. In every step of the Subtraction

Algorithm a multiple of a simple cost function is subtracted from cost function

w; the same multiple of the pmas of the mcst game corresponding to this simple

cost function is added to {xS,i}S∈2N\{∅},i∈S .

Remark 3.3.1 Consider an mcst situation < N ′, w >. Let τ ∈ ΣN and

let P τ,w be the pmas generated by the Subtraction Algorithm or via relation

(3.3). Let P τ (w) := P τ,w
N be the corresponding core allocation in the mcst game

(N, cw). In the next chapters, the properties of the allocation vectors P τ (w)

(to which we will refer as P τ -values), for each w ∈ WN ′
and τ ∈ ΣN , will be

studied.

Remark 3.3.2 Consider a complete weighted graph < N ′, w > where, in or-

der to simplify arguments, all edges have different positive cost. Let τ ∈ ΣN .

Moreover, let Γ = {l1, . . . , ln} be the unique minimum cost spanning tree for N

with w(l1) < w(l2) < · · · < w(ln). So, according to Kruskal’s algorithm, edge l1

forms in the first step, edge l2 in the second step, etc. Let i1 ∈ N be the unique

player which is connected via network Γ1 = {l1} with the source 0 or with some

node j ∈ N with τ−1(j) < τ−1(i1), let i2 be the unique player in N\{i1} which

is connected via network Γ2 = {l1, l2} with the source 0 or with some node j ∈ N

with τ−1(j) < τ−1(i2), etc. Note that in Example 3.3.5 we have l1 = {0, 1},
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l2 = {2, 3}, l3 = {1, 3}, and i1 = 1, i2 = 3 and i3 = 2. One easily verifies

that P τ
ik

(w) = w(lk) for every k ∈ {1, . . . , n}. Stated differently, the Subtraction

Algorithm allocates the cost of an edge which forms in some step of Kruskal’s

algorithm to the player which gets a connection with the source or with a player

with a lower index according to τ . This procedure to allocate the cost of an edge

which forms in some step of Kruskal’s algorithm will be formalized in Example

4.2.4 to define the charge system Cτ .



Chapter 4

Construct and Charge rules

4.1 Introduction

As we already said in Chapter 2, to construct an mcst two methods are mainly

used: Prim’s algorithm (Prim (1957)) and Kruskal’s algorithm (Kruskal (1956)).

Both algorithms determine an mcst where exactly one edge is constructed in

every step of the algorithm. The total number of steps equals n. To divide the

cost of an mcst among the agents, both algorithms are suitable to define cost

allocation protocols which charge the agents with “fractions” of the cost of each

edge constructed in each step of the procedure.

In Feltkamp et al. (1994a,b), Norde et al. (2004), Branzei et al. (2004) and

Tijs et al. (2006a) particular allocation protocols based on Kruskal’s algorithm

are studied. Recently, (Moretti et al. (2005)), we have discovered that we can

embed all these allocation protocols on mcst situations in a larger class of Con-

struct and Charge rules, formally introduced in Section 4.4. Construct and

Charge rules have been studied already in Feltkamp et al. (1994b) for minimum

cost spanning extension (mcse) situations. These mcse situations are general-

ized mcst situations in which some network can be present initially, which has

to be extended to a network connecting every player to the source. Feltkamp

et al. (1994b) proved that the allocations provided by Construct and Charge

rules are in the core of the game corresponding to an mcse situation (in case

39
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no network is present initially, an mcse situation is an mcst situation, and the

game is the corresponding mcst game).

Some Construct and Charge rules are independent of the selected mcst, but

others are not. For example, the Proportional rule (Feltkamp et al. (1994b)) is

a Construct and Charge rule and may provide different cost allocations on the

same mcst situation, depending on the feasible orderings of the edges with re-

spect to increasing costs. The ERO-rule introduced in Feltkamp et al. (1994a,b)

and rebaptized as the P -value (Branzei et al. (2004)), the P τ -values (Norde et

al. (2004), Branzei et al. (2004)) and the Obligation rules (Tijs et al. (2006a))

are Construct and Charge rules which do not depend on the mcst selected,

providing a unique cost allocation on each mcst situation.

The aim of this chapter is to introduce and characterize a class of rules for

mcst situations, which we call ‘conservative Construct and Charge’ rules. An

interesting feature of such rules is that different feasible orderings of the edges

lead to the same cost allocations. It turns out that the subclass of conservative

Construct and Charge rules coincides with the class of Obligations rules (Tijs

et al. (2006a)), that will be introduced in Section 4.5.

In Section 4.2 the definition of a charge system is introduced, specific exam-

ples are given and some basic properties are studied. In Section 4.3 conservative

charge systems are introduced and a related concept of potential is discussed.

Based on charge systems and orderings of the edges with respect to increas-

ing costs, the definition of a Construct and Charge rule for mcst situations is

given in Section 4.4, together with some examples and properties for such rules.

In section 4.5 Obligation rules are introduced starting from the general notion

of obligation map, and some basic properties are studied. In Section 4.7 the

connection of Construct and Charge rules with Obligation rules is studied.

Sections 4.2-4.4 and 4.7 are based on Moretti, Tijs, Branzei, Norde (2008);

section 4.5 is based on Tijs, Branzei, Moretti, Norde (2006a); section 4.6 is

based on Branzei, Moretti, Norde, Tijs (2004).
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4.2 Charge systems

To introduce charge systems we need some additional notations. Let N =

{1, . . . , n} and ∆(N) = {x ∈ IRN
+ |

∑
i∈N xi = 1}. We denote by EN ′ the set of

n-vectors of edges which form a spanning tree on N ′, i.e.

EN ′ = {(a1, . . . , an) ∈ (EN ′)n|{a1, . . . , an} is a spanning network on N ′}.

Note that the number of edges which form a spanning tree on N ′ is n.

Given an element a = (a1, . . . , an) ∈ (EN ′)n, we denote by a|j the restriction

of a to the first j components, that is a|j = (a1, . . . , aj) for each j ∈ N . Further,

for each j ∈ N , we denote by Π(a|j) the partition of N ′ such that

Π(a|j) = {T ⊆ N ′|T is a connected component in < N ′, {a1, . . . , aj} >}.

Example 4.2.1 Consider the spanning tree depicted in Figure 4.1 on N ′ =

{0, 1, 2, 3, 4}. Vectors a = ({2, 3}, {0, 1}, {3, 4}, {0, 3}) and b = ({3, 4}, {2, 3},
{0, 1}, {0, 3}, ) are elements of E{0,1,2,3,4}. Note that a|3 = ({2, 3}, {0, 1}, {3, 4})
and b|3 = ({3, 4}, {2, 3}, {0, 1}) implying that Π(a|3) = Π(b|3) = {{0, 1},
{2, 3, 4}}.

Summing up, each element a ∈ EN ′ tells the “history” of the spanning network
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Figure 4.1: A spanning tree on N ′ = {0, 1, 2, 3, 4}.

formation, that is adding the edge aj to the already formed graph a|j−1, for

each j ∈ N (note that when the first edge a1 is formed, the already formed

graph is < N ′, ∅ >. So, Π(a|0) is the singleton partition of N ′.).
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Now, let θ ∈ Θ(N ′), where Θ(N ′) is the family of partitions of N ′, and let

T ⊆ N ′. If T is a subset of a certain element of the partition θ, we denote this

element as S(θ, T ).

Definition 4.2.1 A charge system C on N is a set of functions C = {C1, . . . , Cn}
with Cj : {a|j |a ∈ EN ′} → ∆(N) for each j ∈ N satisfying the following prop-

erties:

(Connection property): Cj
i (a|j) = 0 for each i ∈ S(Π(a|j−1), {0}),

each j ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ ;

(Involvement property): Cj
i (a|j) = 0 for each i ∈ N \ S(Π(a|j), aj)

each j ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ ;

(Total aggregation property):
∑n

j=1 Cj
i (a|j) = 1 for each i ∈ N,

and each a = (a1, . . . , an) ∈ EN ′ .

A charge system specifies how to charge agents during the construction of a

spanning tree. Let a ∈ EN ′ . First, the cost of each edge aj , for each j ∈
N , should be totally charged among agents as soon as aj is formed. This

requirement makes a charge system promptly adaptable to modified situations,

where edges are formed according to different orders (for instance, due to a

change in the route of transportation).

The connection property says that agents already connected to the source in

a|j−1 should not be charged anymore. This property accounts for the fact that

there is no interest for agents already connected to the source in contributing

to the construction of other edges in the network.

The involvement property specifies that only agents who are connected to

nodes in aj in the graph a|j (i.e. agents involved in forming aj) should be

charged with fractions of the cost of aj . This property is particularly valu-

able in supply transportation networks, because the continuous control on the

charge procedure is simpler for customers which are directly involved in the

construction of the edges.

The total aggregation property says that when the construction of the span-

ning network corresponding to a is completed, each agent has been charged
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for a total amount of fractions equal to 1. This property is a natural a priori

requirement of fairness in a charge system, since it guarantees that all agents

have duties on the same amount of total fractions of edges of a spanning tree.

The charge systems in Examples 4.2.2 and 4.2.3 will play a role in Section 4.7

to define special Construct and Charge rules. The intuition behind the charge

system of Example 4.2.2 is to charge each agent in a connected component

according to his ‘remaining obligation (RO)’. At the start the RO is 1 for every

agent. If in some step of the algorithm the connected component of an agent i is

linked to some other connected component, then agent i is charged according to

the following rule: if i is linked to a component containing the source, then i is

charged by his RO (leaving a RO of 0 for this agent); otherwise, if i is linked to

a component not containing the source, then i is charged half of his RO (leaving

a RO that is half of his RO in the previous step). The charge system of Example

4.2.3 charges the agents involved in forming the edge aj , for each j ∈ N , taking

into account the cardinality of their connected components in the graphs a|j−1

and a|j . As a result of this procedure, at each stage j ∈ N , agents in the same

connected component have the same RO.

Example 4.2.2 Consider the charge system C̃ = {C̃1, . . . , C̃n} on N such that

for each a = (a1, . . . , an) ∈ EN ′ and for each i, j ∈ N

C̃j
i (a|j) =





1
2rj

i if i ∈ S(Π(a|j), aj)

and 0 /∈ S(Π(a|j), aj),

rj
i if {0, i} ⊆ S(Π(a|j), aj)

and 0 /∈ S(Π(a|j−1), {i}),

0 otherwise,

(4.1)

where the remaining obligation rj is defined as

rj
i = 1−

j−1∑

k=1

C̃k
i (a|k) (4.2)

for each j ∈ N , j > 1, and r1
i = 1 for each i ∈ N .

The involvement property and the connection property of functions C̃1, . . . ,

C̃n are a direct consequence of relation (4.1). For the total aggregation property
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of functions C̃1, . . . , C̃n, first note that, by relation (4.2), for each i, j ∈ N such

that i ∈ S(Π(a|j), aj) and 0 /∈ S(Π(a|j), aj), the quantity
∑j

k=1 C̃k
i (a|k) < 1.

Then, by relation (4.1) the total aggregation property follows immediately.

In order to prove that function C̃j , j ∈ N , takes values in ∆(N), we first

note by relations (4.1) that C̃j
i ≥ 0, for all i, j ∈ N . Second, we prove by

induction to j that the sum
∑

i∈N C̃j
i (a|j) = 1 for each j ∈ N .

If j = 1 we have that
∑

i∈N C̃1
i (a|1) =

∑
i∈a1,i6=0 C̃1

i (a|1) = 1.

Now, let j ∈ {2, . . . , n} and suppose that
∑

i∈N C̃k
i (a|k) = 1 for every k ∈

{1, . . . , j − 1}. Let z ∈ aj be one of the two nodes of edge aj such that 0 /∈
S(Π(a|j−1), {z}) and let Kz ⊆ {1, . . . , j − 1} be the set of indices k such that

ak is contained in S(Π(a|j−1), {z}), in formula Kz = {k ∈ {1, . . . , j − 1}|ak ⊆
S(Π(a|j−1), {z}). Note that |Kz| = |S(Π(a|j−1), {z})| − 1, since |Kz| edges are

needed to construct a spanning tree on S(Π(a|j−1), {z}). We have

∑
i∈S(Π(a|j−1),{z})

∑j−1
k=1 C̃k

i (a|k)

=
∑j−1

k=1

∑
i∈S(Π(a|j−1),{z}) C̃k

i (a|k)

=
∑

k∈Kz

∑
i∈S(Π(a|j−1),{z}) C̃k

i (a|k)

=
∑

k∈Kz

∑
i∈N C̃k

i (a|k) = |Kz|,

(4.3)

where the second equality follows from the involvement property which specifies

that C̃k
i (a|k) = 0 for each i ∈ S(Π(a|j−1), {z}) and k ∈ {1, . . . , j − 1} \ Kz;

the third equality follows from the involvement property which specifies that

C̃k
i (a|k) = 0 for each i ∈ N \ S(Π(a|j−1), {z}) and k ∈ Kz; finally, the last

equality follows from the induction hypothesis. When edge aj is constructed,

a new partition of nodes Π(a|j) forms. By the connection property, only nodes

which were not yet connected to 0 in Π(a|j−1) are charged. Then, we distinguish

two cases:
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case 1) aj = {u, v} ∈ EN ′ , 0 /∈ S(Π(a|j), {u}), 0 /∈ S(Π(a|j), {v}). We have
∑

i∈N C̃j
i (a|j)

=
∑

i∈S(Π(a|j−1),{u})
1
2rj

i +
∑

i∈S(Π(a|j−1),{v})
1
2rj

i

=
∑

i∈S(Π(a|j−1),{u})
1
2

(
1−∑j−1

k=1 C̃k
i (a|k)

)

+
∑

i∈S(Π(a|j−1),{v})
1
2

(
1−∑j−1

k=1 C̃k
i (a|k)

)

= 1
2

(|S(Π(a|j−1), {u})| − |Ku|
)

+ 1
2

(|S(Π(a|j−1), {v})| − |Kv|
)

= 1
2

(|S(Π(a|j−1), {u})| − |S(Π(a|j−1), {u})|+ 1
)

+ 1
2

(|S(Π(a|j−1), {v})| − |S(Π(a|j−1), {v})|+ 1
)

= 1.

where the first equality follows by relation (4.1) and the involvement prop-

erty, and the third equality from relation (4.3).

case 2) aj = {u, v} ∈ EN ′ , 0 /∈ S(Π(a|j), {u}), 0 ∈ S(Π(a|j), {v}). We have
∑

i∈N C̃j
i (a|j)

=
∑

i∈S(Π(a|j−1),{u}) rj
i

=
∑

i∈S(Π(a|j−1),{u})
(
1−∑j−1

k=1 C̃k
i (a|k)

)

=
(|S(Π(a|j−1), {u})| − |Ku|

)

=
(|S(Π(a|j−1), {u})| − |S(Π(a|j−1), {u})|+ 1

)
= 1,

where the first equality follows by relation (4.1) and the involvement prop-

erty, and the third equality from relation (4.3).

We may conclude that C̃1, . . . , C̃n constitute a charge system.

Example 4.2.3 Consider the set of functions Ĉ = {Ĉ1, . . . , Ĉn} on N such

that for each a = (a1, . . . , an) ∈ EN ′ and for each j ∈ N

Ĉj
i (a|j) =





1
|S(Π(a|j−1),{i})| −

1
|S(Π(a|j),{i})| if 0 /∈ S(Π(a|j), aj)

1
|S(Π(a|j−1),{i})| if {0, i} ⊆ S(Π(a|j), aj)

and 0 /∈ S(Π(a|j−1), {i}),

0 otherwise,
(4.4)
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for each i ∈ N .

In order to check that the functions Ĉ1, . . . , Ĉn constitute a charge system,

we first show that functions Ĉ1, . . . , Ĉn take values in ∆(N). Note that for each

j ∈ N such that aj = {u, v} ∈ EN ′ and 0 /∈ S(Π(a|j), aj) we have that

∑
i∈N Ĉj

i (a|j)

=
∑

i∈S(Π(a|j−1),{u})
1

|S(Π(a|j−1),{u})| −
1

|S(Π(a|j),{u})|
+

∑
i∈S(Π(a|j−1),{v})

1
|S(Π(a|j−1),{v})| −

1
|S(Π(a|j),{v})|

=
∑

i∈S(Π(a|j−1),{u})
1

|S(Π(a|j−1),{u})| +
∑

i∈S(Π(a|j−1),{v})
1

|S(Π(a|j−1),{v})|
−∑

i∈S(Π(a|j),aj)
1

|S(Π(a|j),aj)| = 1 + 1− 1 = 1.

Differently, for each j ∈ N such that 0 ∈ S(Π(a|j), aj) we have that

∑
i∈N Ĉj

i (a|j) =
∑

i∈S(Π(a|j−1),{m})
1

|S(Π(a|j−1),{m})| = 1,

where m ∈ S(Π(a|j), aj) is such that 0 /∈ S(Π(a|j−1), {m}).
The connection property of functions Ĉ1, . . . , Ĉn directly follows by relation

(4.4) .

To prove that Ĉ1, . . . , Ĉn satisfy the involvement property we note that if

for i, j ∈ N we have that i /∈ S(Π(a|j), aj), then it follows that S(Π(a|j−1), {i})
= S(Π(a|j), {i}), since nothing is changed in the connected component of agent

i from stage j − 1 to stage j. Consequently, by relation (4.4), we have that

Ĉj
i (a|j) = 0.

Finally, to prove that functions Ĉ1, . . . , Ĉn satisfy the total aggregation prop-

erty, first note that for each i ∈ N , we have that
∑n

j=1 Ĉj
i (a|j) =

∑k
j=1 Ĉj

i (a|j),

where k ∈ N is such that {0, i} ⊆ S(Π(a|k), ak) and 0 /∈ S(Π(a|k−1), {i}).
Consequently, for k = 1, by relation (4.4) we have that

1∑

j=1

Ĉj
i (a|j) =

1
|S(Π(a|0), {i})|

= 1.

For k > 1 we have that
∑k

j=1 Ĉj
i (a|j) =

( ∑k−1
j=1

1
|S(Π(a|j−1),{i})| −

1
|S(Π(a|j),{i})|

)
+ 1
|S(Π(a|k−1),{i})|

= 1
|S(Π(a|0),{i})| −

1
|S(Π(a|k−1),{i})| + 1

|S(Π(a|k−1),{i})| = 1
|S(Π(a|0),{i})| = 1.
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Example 4.2.4 Given a bijection τ ∈ ΣN , consider the set of functions Cτ =

{Cτ,1, . . . , Cτ,n} on N be such that for each a = (a1, . . . , an) ∈ EN ′ and for each

i ∈ N

Cτ,1
i (a|1) =





1 if τ−1(i) = max{τ−1(k)|k ∈ S(Π(a|1), a1) \ {0}},

0 otherwise,

and for each j ∈ {2, . . . , n}

Cτ,j
i (a|j) =





1 if τ−1(i) = max{τ−1(k)|k ∈ S(Π(a|j), aj) \ {0}
and Cτ,l

k (a|l) = 0 for all l < j},

0 otherwise.

One can easily verify that the functions Cτ,1, . . . , Cτ,n take values in ∆(N) and

satisfy the connection property, involvement property and total aggregation

property. Hence these functions constitute a charge system.

Example 4.2.5 Consider the set of functions Č = {Č1, . . . , Čn} on N such

that for each a = (a1, . . . , an) ∈ EN ′ and each i ∈ N

Č1
i (a|1) =





1
2 if 0 /∈ S(Π(a|1), a1) and i ∈ S(Π(a|1), a1)

1 if {0, i} ⊆ S(Π(a|1), a1),

0 otherwise,

and for each j ∈ {2, . . . , n}

Čj
i (a|j) =





min{1−∑j−1
k=1 Čk

i (a|k), α} if i ∈ S(Π(a|j), aj),

0 otherwise.

where α ∈ IR+ is a real number such that

∑

i∈S(Π(a|j),aj)\{0}
min{1−

j−1∑

k=1

Čk
i (a|k), α} = 1. (4.5)
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From relation (4.5) it follows directly that the functions Č1, . . . , Čn take val-

ues in ∆(N). One can easily check that the functions Č1, . . . , Čn also satisfy

the connection property, involvement property and total aggregation property.

Hence, these functions constitute a charge system.

Next example shows a numerical application of the charge systems introduced

in Examples 4.2.2 - 4.2.5.

Example 4.2.6 Consider the spanning tree depicted in Figure 4.1 of Example

4.2.1 and consider the charge systems C̃, Ĉ, Cτ with τ(i) = i for each i ∈
{1, . . . , n}, and Č, respectively introduced in Examples 4.2.2 - 4.2.5. In Tables

4.1 - 4.4 we show the respective charge systems corresponding to a and b of

Example 4.2.1.

j 1 2 3 4

C̃j(a|j) (0, 1
2 , 1

2 , 0)t (1, 0, 0, 0)t (0, 1
4 , 1

4 , 1
2 )t (0, 1

4 , 1
4 , 1

2 )t

C̃j(b|j) (0, 0, 1
2 , 1

2 )t (0, 1
2 , 1

4 , 1
4 )t (1, 0, 0, 0)t (0, 1

2 , 1
4 , 1

4 )t

Table 4.1: The charge system of Example 4.2.2 for a and b of Example 4.2.1.

j 1 2 3 4

Ĉj(a|j) (0, 1
2 , 1

2 , 0)t (1, 0, 0, 0)t (0, 1
6 , 1

6 , 2
3 )t (0, 1

3 , 1
3 , 1

3 , )t

Ĉj(b|j) (0, 0, 1
2 , 1

2 )t (0, 2
3 , 1

6 , 1
6 )t (1, 0, 0, 0)t (0, 1

3 , 1
3 , 1

3 )t

Table 4.2: The charge system of Example 4.2.3 for a and b of Example 4.2.1.

j 1 2 3 4

Cτ,j(a|j) (0, 0, 1, 0)t (1, 0, 0, 0)t (0, 0, 0, 1)t (0, 1, 0, 0, )t

Cτ,j(b|j) (0, 0, 0, 1)t (0, 0, 1, 0)t (1, 0, 0, 0)t (0, 1, 0, 0, )t

Table 4.3: The charge system of Example 4.2.4, with τ(i) = i for each i ∈
{1, . . . , 4}, for a and b of Example 4.2.1.
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j 1 2 3 4

Čj(a|j) (0, 1
2 , 1

2 , 0)t (1, 0, 0, 0)t (0, 1
3 , 1

3 , 1
3 )t (0, 1

6 , 1
6 , 2

3 )t

Čj(b|j) (0, 0, 1
2 , 1

2 )t (0, 1
3 , 1

3 , 1
3 )t (1, 0, 0, 0)t (0, 2

3 , 1
6 , 1

6 )t

Table 4.4: The charge system of Example 4.2.5 for a and b of Example 4.2.1.

4.3 Conservative Charge systems

In this section, special charge systems, which we call conservative, will play

a role. Consider a charge system C = {C1, . . . , Cn} on N . We define the

aggregate contribution of the charge system C on a|j , for each j ∈ N and for

each a = (a1, . . . , an) ∈ EN ′ , as the n-vector AC(a|j) calculated via the following

formula

AC(a|j) =
j∑

k=1

Ck(a|k). (4.6)

Definition 4.3.1 Let C = {C1, . . . , Cn} be a charge system on N . We call C
a conservative charge system if for all j ∈ N and for each pair a,b ∈ EN ′ , with

Π(a|j) = Π(b|j) we have

AC(a|j) = AC(b|j). (4.7)

The peculiarity of conservative charge systems is that they preserve the aggre-

gate contribution from the network construction history, i.e. the aggregate con-

tribution corresponding to a|j , for a ∈ EN ′ and j ∈ N , is only dependent on the

partition of N ′ induced by the connected components in < N ′, {a1, . . . , aj} >.

Example 4.3.1 It is easy to check that the charge system C̃ of Example 4.2.2

is not conservative. Consider, for instance, AC̃(a|3) and AC̃(b|3) in Example

4.2.1. As we noted in Example 4.2.1, Π(a|3) = Π(b|3) but, from Table 4.1 in

Example 4.2.6, we have that AC̃(a|3) = (1, 3
4 , 3

4 , 1
2 )t 6= (1, 1

2 , 3
4 , 3

4 )t = AC̃(b|3).

Now, consider the charge system Ĉ introduced in Examples 4.2.3. For each

i, j ∈ N and each a ∈ EN ′ we have

AĈi (a|j) =





1− 1
|S(Π(a|j),{i})| if 0 /∈ S(Π(a|j), {i})

1 otherwise.
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Note that AĈi (a|j) is only dependent on the partition of N ′ induced by the

connected components in < N ′, {a1, . . . , aj} >, for each i, j ∈ N , i.e. Ĉ is a

conservative charge system.

Now, consider the charge system Cτ introduced in Examples 4.2.4. For each

j ∈ {1, . . . , n}, each i ∈ N and each a ∈ EN ′ we have

AC
τ

i (a|j) =





0 if τ−1(i) = min{τ−1(k)|k ∈ S(Π(a|j), {i}) \ {0}},

1 otherwise.

Note that AC
τ

i (a|j) is only dependent on the partition of N ′ induced by the

connected components in < N ′, {a1, . . . , aj} >, for each j ∈ {1, . . . , n} and each

i ∈ N , i.e. Cτ is a conservative charge systems.

Differently, it is easy to check that the charge system Č of Example 4.2.5 is

not conservative. Consider, for instance, AČ(a|3) and AČ(b|3) in Example 4.2.1.

As we noted in Example 4.2.1, Π(a|3) = Π(b|3) but, from Table 4.4 in Example

4.2.6, we have that AČ(a|3) = (1, 5
6 , 5

6 , 1
3 )t 6= (1, 1

3 , 5
6 , 5

6 )t = AČ(b|3).

Now, let C be a conservative charge system on N . We introduce the notion

of potential with respect to C, denoted by P C , which is a function on 2N ′ \ {∅}
with values in IRN .

Definition 4.3.2 Let C = {C1, . . . , Cn} be a conservative charge system on N .

For each S ∈ 2N ′ \ {∅}, consider an element a = (a1, . . . , an) ∈ EN ′ such that

Π(a|j) = {S, {i}i∈N ′\S}, with j ∈ N .

We define the potential of S with respect to the conservative charge sys-

tem C as the unique1 aggregate contribution corresponding to the partition

{S, {i}i∈N ′\S}; in formula

P C(S) := AC(a|j).

1Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ EN′ , and S ∈ 2N′ \ {∅} be such that Π(a|j) =

Π(b|j) = {S, {i}i∈N′\S}, with j ∈ N . Recall that by Definition 4.3.1, we have AC(a|j) =

AC(b|j). So, the aggregate contribution corresponding to {S, {i}i∈N′\S} is unique.
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The name of potential is inspired from physics where each conservative vector

field has a potential. In a connection situation, an intuitive interpretation of

the potential P C(S), S ∈ 2N ′ \ {∅}, is as the level of “connection work” done

by nodes in N when {S, {i}i∈N ′\S} is the current set of connected components

and the conservative charge system C is used. Note that at the beginning of the

connection process, when no edges are formed and all the connected components

are singletons, the level of connection work performed by nodes should be zero.

This motivates us to use the convention that P Ci ({j}) = P Ci ({0}) = 0 for all

i, j ∈ N .

Other elementary properties of P C : 2N ′ \ {∅} → IRN
+ are collected in the

following lemma, which will play a role in Section 4.7 to prove Theorem 4.7.2.

Lemma 4.3.1 Let C = {C1, . . . , Cn} be a conservative charge system on N , let

P C be the potential w.r.t. C and let S ∈ 2N ′ \ {∅}. Then,

(c.1) if 0 ∈ S then P C(S) = eS\{0};

(c.2)
∑

i∈S\{0} P Ci (S) =
∑

i∈N P Ci (S) = |S| − 1;

(c.3) if S ⊆ T ⊆ N ′, then P C(S) ≤ P C(T ).

[Here eS\{0} ∈ IRN
+ is such that e

S\{0}
i = 1 for each i ∈ S \ {0} and e

S\{0}
i = 0

for each i ∈ N \ S.]

Proof

(c.1) Let a = (a1, . . . , an) ∈ EN ′ and j ∈ N be such that Π(a|j) = {S, {i}i∈N ′\S}.
Then, for each i ∈ N ∩ S

P Ci (S) = ACi (a|j) =
∑j

k=1 Ck
i (a|k) = 1−∑n

k=j+1 Ck
i (a|k) = 1,

where the third equality follows from the total aggregation property of C
and the fourth equality follows from the connection property of C. From

the involvement property, we have P Ci (S) = 0 for each i ∈ N \ S, which

finally proves property (c.1).

(c.2) If 0 ∈ S then property (c.2) follows directly from property (c.1).
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Now, consider the case 0 /∈ S. Let a = (a1, . . . , an) ∈ EN ′ and j ∈ N be

such that Π(a|j) = {S, {i}i∈N ′\S}. First, note that since 0 /∈ S, j = |S|−1.

Then,
∑

i∈S P Ci (S) =
∑

i∈S ACi (a|j) =
∑

i∈S

∑j
k=1 Ck

i (a|k)

=
∑j

k=1

∑
i∈S Ck

i (a|k) =
∑j

k=1 1 = |S| − 1,

where the fourth equality follows from the involvement property. By the

involvement property it follows too that P Ci (S) = 0 for each i ∈ N \ S,

which finally proves property (c.2).

(c.3) Let a = (a1, . . . , an) ∈ EN ′ and j, l ∈ N with l ≥ j be such that Π(a|j) =

{S, {i}i∈N ′\S} and Π(a|l) = {T, {i}i∈N ′\T }. Then,

P C(S) = AC(a|j) =
∑j

k=1 Ck(a|k)

≤ ∑j
k=1 Ck(a|k) +

∑l
k=j+1 Ck(a|k)

=
∑l

k=1 Ck(a|k) = AC(a|l) = P C(T ),

which concludes the proof of property (c.3).

Proposition 4.3.1 Let C = {C1, . . . , Cn} be a conservative charge system on

N . Let a = (a1, . . . , an) ∈ EN ′ and j ∈ N be such that Π(a|j) = {S1, S2, . . . ,

Sm}, with S1, S2, . . . , Sm ⊂ N ′ and m ≤ n. Then,

AC(a|j) =
m∑

r=1

P C(Sr).

Proof Let r ∈ {1, 2, . . . ,m}. Determine br(1), . . . , br(pr) ∈ {1, . . . , j} such that

Π(abr(1), abr(2), . . . , abr(pr)) = {Sr, {i}i∈N ′\Sr
}, where pr = |Sr| − 1.

Then, for each i ∈ N \ Sr, by the involvement property of C

P Ci (Sr) = ACi (abr(1), abr(2), . . . , abr(pr)) = 0,

whereas for each i ∈ N ∩ Sr

P Ci (Sr) = ACi (abr(1), abr(2), . . . , abr(pr))

= ACi (abr(1), . . . , abr(pr), (as)s∈{1,...,j}\{br(1),...,br(pr)})

= ACi (a1, a2, . . . , aj) = ACi (a|j),
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where the second equality follows from the involvement property in the edge

sequence (abr(1), abr(2), . . . , abr(j)), and the third equality follows from the fact

that C is conservative. Consequently,
∑m

r=1 P C(Sr) = AC(a|j).

4.4 Construct & Charge rules

At this point, we have all the ingredients to introduce the definition of a Con-

struct & Charge rule.

Definition 4.4.1 Let C = {C1, . . . , Cn} be a charge system on N . Let σ ∈
ΣEN′ and let Kσ be the Kruskal cone w.r.t. σ. The Construct and Charge

(CC-)rule w.r.t. C and σ is the map χC,σ : Kσ → IRN given by

χC,σ(w) =
n∑

r=1

w(σ(ρσ(r)))Cr(σ(ρσ(1)), . . . , σ(ρσ(r))) (4.8)

for each mcst situation w in the cone Kσ.

Remark 4.4.1 Note that the CC-rule χC̃,σ, where C̃ is the charge system of

Example 4.2.2, corresponds to the Proportional rule introduced in Feltkamp et

al. (1994a).

The following example illustrates the CC-rules corresponding to the charge

systems introduced in Examples 4.2.2 - 4.2.5.

Example 4.4.1 Consider the mcst situation < N ′, w > of Example 2.1.1. Let

σ be as in Example 2.1.3 and σ′(1) = {1, 2}, σ′(2) = {1, 3}, σ′(3) = {2, 3},
σ′(4) = {0, 1}, σ′(5) = {0, 2}, σ′(6) = {0, 3}. Now, we apply Definition 4.4.1

to the charge systems introduced in Examples 4.2.2 - 4.2.5 to calculate the

allocations provided by the corresponding CC-rules on < N ′, w >.

The charge system C̃ of Example 4.2.2 leads to

χC̃,σ(w)

= 12 ∗ ( 1
2 , 0, 1

2 )t + 12 ∗ (1
4 , 1

2 , 1
4 )t + 24 ∗ ( 1

4 , 1
2 , 1

4 )t

= (15, 18, 15)t,
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and
χC̃,σ′(w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 12 ∗ (1
4 , 1

4 , 1
2 )t + 24 ∗ ( 1

4 , 1
4 , 1

2 )t

= (15, 15, 18)t.

Note that χC̃,σ(w) 6= χC̃,σ′(w).

The charge system Ĉ of Example 4.2.3 leads to

χĈ,σ(w)

= 12 ∗ ( 1
2 , 0, 1

2 )t + 12 ∗ (1
6 , 2

3 , 1
6 )t + 24 ∗ ( 1

3 , 1
3 , 1

3 )t

= (16, 16, 16)t,

and
χĈ,σ′(w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 12 ∗ (1
6 , 1

6 , 2
3 )t + 24 ∗ ( 1

3 , 1
3 , 1

3 )t

= (16, 16, 16)t.

Note that χĈ,σ(w) = χĈ,σ′(w).

The charge system Cτ of Example 4.2.4, with τ(i) = i for each i ∈ {1, 2, 3},
leads to

χC
τ ,σ(w)

= 12 ∗ (0, 0, 1)t + 12 ∗ (0, 1, 0)t + 24 ∗ (1, 0, 0)t

= (12, 12, 24)t,

and
χC

τ ,σ′(w)

= 12 ∗ (0, 1, 0)t + 12 ∗ (0, 0, 1)t + 24 ∗ (1, 0, 0)t

= (12, 12, 24)t.

Note that χC
τ ,σ(w) = χC

τ ,σ′(w).

The charge system Č of Example 4.2.5 leads to

χČ,σ(w)

= 12 ∗ ( 1
2 , 0, 1

2 )t + 12 ∗ (1
3 , 1

3 , 1
3 )t + 24 ∗ ( 1

6 , 4
6 , 1

6 )t

= (14, 20, 14)t,

and
χČ,σ′(w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 12 ∗ (1
3 , 1

3 , 1
3 )t + 24 ∗ ( 1

6 , 1
6 , 4

6 )t

= (14, 14, 20)t.

Note that χČ,σ(w) 6= χČ,σ′(w).
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Definition 4.4.2 Let C = {C1, . . . , Cn} be a charge system on N . We say that

C has the patch property if for all σ1, σ2 ∈ ΣEN′ :

χC,σ1(w) = χC,σ2(w)

for each w in the cone Kσ1 ∩Kσ2 .

If C = {C1, . . . , Cn} has the patch property, then we can define χC by

χC(w) = χC,σ(w) (4.9)

for all w ∈ WN ′
, where σ ∈ ΣEN′ is such that w ∈ Kσ. We will call χC the

CC-rule with respect to C.

Remark 4.4.2 Example 4.4.1 shows that the charge system C̃ introduced in

Example 4.2.2 and the charge system Č introduced in Example 4.2.5 do not

satisfy the patch property, so we cannot define χC̃ and χČ via relation (4.9).

Theorem 4.4.1 Let C = {C1, . . . , Cn} be a charge system on N . If C has the

patch property, then C is conservative.

Proof Suppose that C has the patch property and it is not conservative. Then,

we can find a j ∈ N and a pair a = (a1, . . . , an),b = (b1, . . . , bn) ∈ EN ′ , with

Π(a|j) = Π(b|j) and AC(a|j) 6= AC(b|j).

Suppose Π(a|j) = {S1, S2, . . . , Sm} and take w ∈ WN ′
such that

w({i, j}) =





0 if there exists r ∈ {1, . . . , m} s.t. i, j ∈ Sr,

1 otherwise,

for each {i, j} ∈ EN ′ . Let σ1 ∈ ΣEN′ be such that σ1(ρσ1(k)) = ak for

each k ∈ {1, . . . , j} and σ1(ρσ1(l)) = dl for each l ∈ {j + 1, . . . , n}, where

(a1, . . . , aj , dj+1, . . . , dn) ∈ EN ′ and ρσ1 is defined as in Section 2.1.2.

Let σ2 ∈ ΣEN′ be such that σ2(ρσ2(k)) = bk for each k ∈ {1, . . . , j} and

σ2(ρσ2(l)) = dl for each l ∈ {j + 1, . . . , n}, with (b1, . . . , bj , dj+1, . . . , dn) ∈ EN ′ .



56 CHAPTER 4. CONSTRUCT AND CHARGE RULES

In addition, σ1 and σ2 can be chosen such that w ∈ Kσ1 ∩Kσ2 . We have

χC,σ1(w)

=
∑j

r=1 w(ar)Cr(a|r) +
∑n

r=j+1 w(dr)Cr(a1, . . . , aj , dj+1, . . . , dr)

=
∑n

r=j+1 Cr(a1, . . . , aj , dj+1, . . . , dr)

= eN −∑j
r=1 Cr(a|r)

= eN −AC(a|j),

where the third equality follows from the total aggregation property.

Similarly,

χC,σ2(w) = eN −
j∑

r=1

Cr(b|r) = eN −AC(b|j).

So, χC,σ1(w) 6= χC,σ2(w), which yields a contradiction with the fact that C
has the patch property.

4.5 Obligation rules

A different approach to define allocation protocols is rooted on the concept of

obligations maps (Tijs et al. 2006) instead of the concept of charge systems.

Surprisingly, the two approaches are strongly connected, as it will be shown in

the next section.

Let ∆(N) = {x ∈ IRN
+ |

∑
i∈N xi = 1}. The sub-simplex ∆(S) of ∆(N) given

by ∆(S) = {x ∈ ∆(N)|∑i∈S xi = 1} is called, for reasons to be clarified later,

the set of obligation vectors of S.

An obligation function is a map o : 2N \ {∅} → ∆(N) assigning to each S ∈
2N \ {∅} an obligation vector

o(S) ∈ ∆(S) (4.10)

in such a way that for each S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S

oi(S) ≥ oi(T ). (4.11)
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Such an obligation function o on 2N \{∅} induces an obligation map ô : Θ(N ′) →
IRN , where Θ(N ′) is the family of partitions of N ′, and

ô(θ) =
∑

S∈θ,0/∈S

o(S) (4.12)

for each θ ∈ Θ(N ′).

Note that if θ = {N ′}, then the resulting empty sum is assumed, by defini-

tion, to be the n-vector of zeroes: ô(θ) = 0 ∈ IRN .

Obligation maps are basic ingredients for Obligation rules: specifically, they

play a central role in defining the cost allocation protocol along the step-wise

connection procedure. Three interesting types of obligation maps are provided

in examples 4.5.1-4.5.3.

Example 4.5.1 Let o∗ : 2N \ {∅} → ∆(N) be defined by o∗(S) = eS

|S| for each

S ∈ 2N \ {∅}, where eS is the n-vector such that eS
i = 1 if i ∈ S and eS

i = 0 if

i ∈ N \ S. Then, o∗ is an obligation function and the corresponding obligation

map is

ô∗i (θ) =





|S(θ, {i})|−1 if 0 /∈ S(θ, {i})

0 otherwise,

(4.13)

for each θ ∈ Θ(N ′) and each i ∈ N . Here S(θ, {i}) ∈ θ is the partition element

to which i belongs.

Note that o∗(S) is the barycenter of ∆(S) and for N = {1, 2, 3, 4}, θ =

{{1, 2}, {0, 3}, {4}} we have ô∗(θ) = ( 1
2 , 1

2 , 0, 1).

Example 4.5.2 Given τ ∈ ΣN , let oτ on 2N \ {∅} be the obligation function

such that for each S ∈ 2N \ {∅} and i ∈ N

oτ
i (S) =





1 if τ−1(i) = min{τ−1(k)|k ∈ S}

0 otherwise.

If N = {1, 2, 3, 4}, θ = {{1, 2}, {0, 3}, {4}} and τ−1(i) = i for each i ∈ N , then

ôτ (θ) = oτ ({1, 2}) + oτ ({4}) = (1, 0, 0, 1).
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Example 4.5.3 Let ν ∈ IRN
++ be a vector of strictly positive real values. Let

oν : 2N \ {∅} → ∆(N) be defined by

oν
i (S) =





νiP
j∈S νj

if i ∈ S

0 otherwise.

Then, oν is an obligation function. Note that if νi = 1 for each i ∈ N , then

oν
i (S) = o∗i (S) for each S ∈ 2N \ {∅}, where o∗(S) is as in Example 4.5.1.

One can easily check that the obligation maps in Examples 4.5.1-4.5.3 satisfy

condition (4.11). Next example shows a map o : 2N \ {∅} → ∆(N) assigning to

each S ∈ 2N \{∅} an obligation vector o(S) ∈ ∆(S) in such a way that condition

(4.11) is not satisfied implying that it is not an obligation function.

Example 4.5.4 Let U ⊂ N and let oU : 2N \ {∅} → ∆(N) be such that

oU
i (S) =





|S|−1 if i ∈ S and U * S

|U |−1 if i ∈ U and U ⊆ S

0 otherwise.

Then, if N = {1, 2, 3, 4} and U = {2, 3}, oU ({1, 2, 4}) = ( 1
3 , 1

3 , 0, 1
3 ) and oU ({1, 2,

3, 4}) = (0, 1
2 , 1

2 , 0). So, oU is not an obligation function since it does not satisfy

condition (4.11).

Remark 4.5.1 Let o•, o◦ : 2N \ {∅} → ∆(N) be two distinct obligation func-

tions. For each α ∈ [0, 1] let oα : 2N \{∅} → IRN be defined by oα(S) = αo•(S)+

(1 − α)o◦(S) for each S ∈ 2N \ {∅}. Then,
∑

i∈S oα
i (S) =

∑
i∈S

(
αo•i (S) +

(1 − α)o◦i (S)
)

= 1. Moreover, since condition (4.11) holds both for o• and

o◦, condition (4.11) holds for their convex combination oα too. Therefore,

oα is an obligation function which induces the corresponding obligation map

ôα(θ) = αô•(θ) + (1− α)ô◦(θ) for each θ ∈ Θ(N ′).
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Definition 4.5.1 Let ô be an obligation map on Θ(N ′). Let σ ∈ ΣEN′ . The

contribution matrix w.r.t ô and σ is the matrix Dσ,ô ∈ IRN×|EN′ | where

Dσ,ô
ik = ôi(πσ,k−1)− ôi(πσ,k)

for each i ∈ N and each k ∈ {1, . . . , |EN ′ |}.

Some characteristics of the contribution matrix are given in the following propo-

sition.

Proposition 4.5.1 Let ô be an obligation map on Θ(N ′). Let σ ∈ ΣEN′ . Then,

Dσ,ô is a non-negative matrix for which each row sum is equal to 1 and the ρσ(j)-

th column sum is equal to 1 for each j ∈ {1, . . . , n}, whereas each k-th column

sum with k ∈ {1, . . . , |EN ′ |} \ {ρσ(j)|j ∈ {1, . . . , n}} is equal to 0.

Proof First, note that by Remark 2.1.1 and the definition of obligation map

the matrix Dσ,ô is non-negative.

The sum of the elements in each row i ∈ N is equal to 1 because

|EN′ |∑

k=1

(
ôi(πσ,k−1)− ôi(πσ,k)

)
= ôi(πσ,0)− ôi(πσ,|EN′ |) = 1− 0 = 1

for each i ∈ N .

The ρσ(j)-th column sums, for each j ∈ {1, . . . , n}, are equal to 1 because

∑
i∈N Dσ,ô

iρσ(j) =
∑

i∈N

(
ôi(πσ,ρσ(j)−1)− ôi(πσ,ρσ(j))

)
=

=
∑

i∈N ôi(πσ,ρσ(j)−1)−∑
i∈N ôi(πσ,ρσ(j)) =

=
(|πσ,ρσ(j)−1| − 1

)− (|πσ,ρσ(j)| − 1
)

= 1

for each j ∈ {1, . . . , n}, where in the last equality we use Remark 2.1.1. The

k-th column sums, for each k ∈ {1, . . . , |EN ′ |}\{ρσ(j)|j ∈ {1, . . . , n}}, are equal

to 0 because πσ,k−1 = πσ,k and then

∑
i∈N Dσ,ô

ik =
∑

i∈N

(
ôi(πσ,k−1)− ôi(πσ,k)

)
= 0.
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Definition 4.5.2 Let ô be an obligation map on Θ(N ′). Let σ ∈ ΣEN′ . We

define the map φσ,ô : Kσ → IRN by

φσ,ô(w) = Dσ,ôwσ, (4.14)

for each mcst situation w in the cone Kσ.

[Recall that wσ is defined in Section 2.1.2 as the column vector
(
w(σ(1)), w(σ(2)),

. . . , w(σ(|EN ′ |)))t.]

Onwards, let ek ∈ IR|EN′ | be the column vector such that ek
t = 1 if t = k

and ek
t = 0 for each t ∈ {1, . . . , |EN ′ |} \ {k}. From Proposition 4.5.1 it follows

directly that the matrix D̄σ,ô ∈ IRN×n defined by

D̄σ,ôej = Dσ,ôeρσ(j) (4.15)

for each j ∈ {1, . . . , n} is a double stochastic matrix (i.e. all entries are non-

negative and each row sum and each column sum is equal to 1), and

φσ,ô(w) = D̄σ,ô
(
w(σ(ρσ(1))), . . . , w(σ(ρσ(n)))

)t
. (4.16)

Remark 4.5.2 Let σ ∈ ΣEN′ . Note that for each mcst situation w in the cone

Kσ and for each j ∈ {1, . . . , n} we have

D̄σ,ô∗ej = Ĉj ,

where ô∗ is the obligation map defined in Example 4.5.1; D̄σ,ô∗ is defined by

relation (4.15) on the contribution matrix w.r.t. ô∗ and σ; D̄σ,ô∗ej is the j-

th column of the double stochastic matrix D̄σ,ô∗ ; Ĉj is the j-th element of the

charge system Ĉ defined in Example 4.2.3. Consequently, for each w ∈ Kσ we

have

φσ,ô∗(w) = χĈ,σ(w),

where φσ,ô∗ is the map defined by relations (4.16) w.r.t. σ and ô∗, and χĈ,σ is

the Construct & Charge rule w.r.t. Ĉ and σ.

Remark 4.5.3 Let σ ∈ ΣEN′ . Note that for each mcst situation w in the cone

Kσ and for each j ∈ {1, . . . , n} we have

D̄σ,ôτ

ej = Cτ,j ,
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where ôτ is the obligation map defined in Example 4.5.2; D̄σ,ôτ

is defined by

relation (4.15) on the contribution matrix w.r.t. ôτ and σ; D̄σ,ôτ

ej is the j-th

column of the double stochastic matrix D̄σ,ôτ

; Cτ,j is the j-th element of the

charge system Cτ defined in Example 4.2.4. Consequently, for each w ∈ Kσ we

have

φσ,ôτ

(w) = χC
τ ,σ(w),

where φσ,ôτ

is the map defined by relations (4.16) w.r.t. σ and ôτ , and χC
τ ,σ is

the Construct & Charge rule w.r.t. Cτ and σ.

In order to define Obligation rules properly on the set WN ′
, we need Lemma

4.5.1. In the sequel, recall that, for each t ∈ {1, . . . , |EN ′ |}, wσ
t is the t-th

coordinate of the vector wσ.

Lemma 4.5.1 Let ô be an obligation map on Θ(N ′); let σ ∈ ΣEN′ , w ∈ Kσ.

Suppose that, for some t ∈ {1, . . . , |EN ′ | − 1}, wσ
t = wσ

t+1. Then, for the

ordering σ′ ∈ ΣEN′ such that σ′(i) = σ(i) for each i ∈ {1, . . . , |EN ′ |} \ {t, t+1},
σ′(t) = σ(t + 1) and σ′(t + 1) = σ(t), we have that w ∈ Kσ′ and φσ,ô(w) =

φσ′,ô(w).

Proof It is obvious that w ∈ Kσ′ . Let a = wσ
t . Note that ô(πσ,k) = ô(πσ′,k) for

all k ∈ {1, . . . , |EN ′ |} with k 6= t. This implies that wσ
k Dσ,ôek = wσ′

k Dσ′,ôek

for all k ∈ {1, . . . , |EN ′ |} with k /∈ {t, t + 1} and

wσ′
t Dσ′,ôet + wσ′

t+1D
σ′,ôet+1 =

= a(ô(πσ′,t−1)− ô(πσ′,t)) + a(ô(πσ′,t)− ô(πσ′,t+1)) =

= a(ô(πσ′,t−1)− ô(πσ′,t+1)) = a(ô(πσ,t−1)− ô(πσ,t+1)) =

= a(ô(πσ,t−1)− ô(πσ,t)) + a(ô(πσ,t)− ô(πσ,t+1)) =

= wσ
t Dσ,ôet + wσ

t+1D
σ,ôet+1.

(4.17)

So, Dσ,ôwσ = Dσ′,ôwσ′ or, equivalently, φσ,ô(w) = φσ′,ô(w).

By repeatedly using Lemma 4.5.1 we obtain

Proposition 4.5.2 Let ô be an obligation map on Θ(N ′). If w ∈ Kσ ∩ Kσ′

with σ, σ′ ∈ ΣEN′ , then φσ,ô(w) = φσ′,ô(w).
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This proposition makes it possible to define an Obligation rule with respect to

an obligation map on Θ(N ′) as a map on WN ′
.

Definition 4.5.3 Let ô be an obligation map on Θ(N ′). The Obligation (O-

)rule w.r.t. ô is the map φô : WN ′ → IRN defined by

φô(w) = φσ,ô(w) (4.18)

for each w ∈ WN ′
, where σ ∈ ΣEN′ is such that w ∈ Kσ.

Remark 4.5.4 The P -value (Feltkamp et al. (1994b), Branzei et al. (2004)),

that will be studied in depth in Section 4.6, is both an Obligation rule and a

Construct & Charge rule. In fact, by definition, P (w) := φô∗(w) for each w ∈
WN ′

, and by Remark 4.5.2 φô∗(w) = φσ,ô∗(w) = χĈ,σ(w) for each w ∈ WN ′
,

where σ ∈ ΣEN′ is such that w ∈ Kσ, and χĈ,σ is the Construct and Charge

rule w.r.t. Ĉ and σ.

In an analogous way, the P τ -values (Norde et al. (2004), Branzei et al. (2004)),

with τ ∈ ΣN , introduced in Section 3.3, are also both Obligation rules and Con-

struct & Charge rules. In fact, by Remark 3.3.1 and relation (3.4), P τ (w) =

φôτ

(w) for each w ∈ WN ′
, and by Remark 4.5.3 φôτ

(w) = φσ,ôτ

(w) = χC
τ ,σ(w)

for each w ∈ WN ′
, where σ ∈ ΣEN′ is such that w ∈ Kσ and χC

τ ,σ is the

Construct and Charge rule w.r.t. Cτ and σ.

Next two examples provide an illustration of two obligation rules.

Example 4.5.5 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w of Example 2.1.1. The contribution matrix Dσ,ô∗ is

Dσ,ô∗ =




1
2

1
6 0 1

3 0 0

0 2
3 0 1

3 0 0
1
2

1
6 0 1

3 0 0




and wσ = (12, 12, 20, 24, 24, 26)t.

Then, P (w) = φô∗(w) = Dσ,ô∗wσ = (16, 16, 16)t.
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Example 4.5.6 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w of Example 2.1.1. Let τ ∈ ΣN be such that τ−1(1) = 2, τ−1(2) = 3 and

τ−1(3) = 1. The contribution matrix Dσ,ôτ

is

Dσ,ôτ

=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0




and wσ = (12, 12, 20, 24, 24, 26)t.

Then, P τ (w) = φôτ

(w) = Dσ,ôτ

wσ = (12, 12, 24)t.

Now, we want to make clear that we have chosen the name “Obligation rule”

because such rules deal with “(remaining) obligations” of players for the cost of

edges along a step-wise connection procedure. Let ô be an obligation map on

Θ(N ′) and let w ∈ WN ′
. According to the corresponding Obligation rule φô,

each player i ∈ N is committed in paying, according to some specific protocol,

fractions of edges summing up to 1 along a step-wise process. More precisely,

an Obligation rule allocates the cost of an edge which forms in each step k,

k ∈ {1, . . . , |EN ′ |}, of the Kruskal’s algorithm to some players in N according

to the k-th column of the contribution matrix Dσ,ô, with σ ∈ ΣEN′ such that

w ∈ Kσ. By Proposition 4.5.1, after each step k, the total quantity of fractions

of edges that each player i ∈ N still has to pay is given by

1−
k∑

j=1

Dσ,ô
ij = ôi(πσ,k). (4.19)

Since equation (4.19) defines the sum of remaining fractions of edges that play-

ers are obliged to pay after step k up to the end of the connection procedure,

we call ôi(πσ,k) the (remaining) obligation for player i at step k.

We collect some interesting properties of Obligation rules in Proposition 4.5.3.

Proposition 4.5.3 The Obligation rules are efficient, satisfy the carrier prop-

erty and form a convex set .

Proof Let ô be an obligation map on Θ(N ′), let w ∈ WN ′
and let σ ∈ ΣEN′
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be such that w ∈ Kσ.

i) From (4.15) and (4.18) it follows

φô
i (w) =

n∑

k=1

D̄σ,ô
ik w(σ(ρσ(k))),

for each i ∈ N , implying that

∑

i∈N

φô
i (w) =

n∑

k=1

w(σ(ρσ(k)))
∑

i∈N

D̄σ,ô
ik =

n∑

k=1

w(σ(ρσ(k))) = w(Γ),

where the second equality follows from Proposition 4.5.1 and where Γ is a

spanning network on N ′ of minimal cost. So, efficiency is proved.

ii) Let i ∈ N be a player who is (w, N ′)-connected to the source 0. There

exists r ∈ {1, . . . , |EN ′ |} such that i is connected to 0 in F σ,r but not in

F σ,r−1 and w(σ(r)) = 0. Moreover, by the definition of an obligation map,

ôi(πσ,k) = 0 for k ∈ {r, . . . , |EN ′ |}. It follows by (4.18) that φô
i (w) = 0

and then it is proved that φô satisfies the carrier property.

iii) Let ô•, ô◦ and ôα, with α ∈ [0, 1], be as in Remark 4.5.1. Then,

αφô•(w) + (1− α)φô◦(w)

= αDσ,ô•wσ + (1− α)Dσ,ô◦wσ

=
(
αDσ,ô• + (1− α)Dσ,ô◦

)
wσ

= Dσ,ôα

wσ = φôα

(w)

for every w ∈ WN ′
and σ ∈ ΣEN′ such that w ∈ Kσ, where the third

equality follows from Remark 4.5.1 and the definition of Dσ,ôα

. Then, it

is proved that the set of Obligation rules is a convex set.

4.6 The P -value

A special Obligation rule is the P -value, studied in Branzei et al. (2004). It

turns out that the P -value equals the Equal Remaining Obligations (ERO)
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rule suggested by Jos Potters (which explains the name P -value) and which is

introduced in Feltkamp et al. (1994a).

Definition 4.6.1 The P -value is the map P : WN ′ → IRN , defined by

P (w) = φô∗(w) (4.20)

for each w ∈ WN ′
and where φô∗ is the Obligation rule w.r.t. the obligation

map ô∗ of Example 4.5.1.

Example 4.5.5 provides an illustration of the P -value.

Remark 4.6.1 Let σ ∈ ΣEN′ . For each k ∈ {1, . . . , |EN ′ |}, consider the simple

mcst situation eσ,k. Then, for k > 1, each edge e ∈ Fσ,k−1 has cost eσ,k(e) = 0.

Therefore, if i and j in N ′ are connected in < N ′, F σ,k−1 >, then they are

also in the same (eσ,k, N ′)-component. Conversely, if i and j are in the same

(eσ,k, N ′)-component, then they are also connected in < N ′, F σ,k−1 > and as a

consequence, by equation (4.13), ô∗i (π
σ,k−1) = ô∗j (π

σ,k−1).

Using the linearity of P (or φô∗) on Kσ, an alternative way of calculating P (w),

which will be useful in the following, is as linear combination of P (eσ,k), k ∈
{1, . . . , |EN ′ |}, where σ ∈ ΣEN′ is such that w ∈ Kσ (see relation (2.2)). In

formula,

P (w) = w(σ(1))P (eσ,1) +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
P (eσ,k). (4.21)

Note that for each mcst situation eσ,k ∈ Kσ, k ∈ {1, . . . , |EN ′ |}, we have

P (eσ,k) =
n∑

r=1

eσ,k(σ(ρσ(r)))
(
ô∗(πσ,ρσ(r−1))− ô∗(πσ,ρσ(r))

)
= ô∗(πσ,k−1),

(4.22)

where the second equality follows from the fact that ô∗(πσ,ρσ(n)) is the zero

vector. As we said at the beginning of this section, the P -value coincides with the

Equal Remaining Obligations (ERO) rule. The ERO-rule has been introduced in

Feltkamp et al. (1994) via an extension of Kruskal’s algorithm. According to the

ERO-rule, at each stage k ∈ {0, 1, . . . , |EN ′ |} of the algorithm, each player i ∈
N pays exactly the difference between remaining obligations, i.e. ô∗i (π

σ,k−1) −
ô∗i (π

σ,k) for each i ∈ N , as shown in Theorem 4.3 of Feltkamp et al. (1994). An
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axiomatic characterization of the ERO-rule using the properties of NE (Non-

Emptiness), FSC (Free-for-Source-Component), LOC (Local), Eff (Efficiency),

ET (Equal Treatment) and IPCons (Inversely Proportional Consistency) is given

there. In Section 6.2 we provide an alternative axiomatic characterization.

We end this section with a proposition that enlightens the connection be-

tween the P -value and the P τ -values, τ ∈ ΣEN′ , according to Remark 4.5.4.

Proposition 4.6.1 Let w ∈ WN ′
. Then,

P (w) =
1
n!

∑

τ∈ΣN

P τ (w). (4.23)

Proof By Remark 4.5.4 and relation (4.16) we only have to prove that

D̄σ,ô∗ =
1
n!

∑

τ∈ΣN

D̄σ,ôτ

. (4.24)

Let σ ∈ ΣEN′ be such that w ∈ Kσ.

To prove (4.24), note that for each i ∈ N , the edge σ(ρσ(i)) connects two

disconnected subsets of vertices S, T ∈ πσ,ρσ(i−1). Then, for each player j ∈
N \ (S ∪ T ), if any, 1

n!

∑
τ∈ΣN

D̄σ,ôτ

ji = D̄σ,ô∗
ji = 0.

On the other hand, for players in S ∪ T , we have two possibilities regarding

the position of the source w.r.t. the sets S and T :

i) The source 0 belongs neither to S nor to T implying that for each j ∈ T

and for each τ ∈ ΣN

ôτ
j (πσ,ρσ(i−1))−ôτ

j (πσ,ρσ(i)) =





1 if τ−1(j) = min{τ−1(k)|k ∈ T} and

τ−1(j) 6= min{τ−1(k)|k ∈ S ∪ T};

0 otherwise.

The fraction of orderings τ ∈ ΣN such that τ(min{τ−1(k)|k ∈ S∪T}) ∈ S

is equal to |S|
|S∪T | = |S|

|S|+|T | whereas the fraction of orderings τ ∈ ΣN such

that τ−1(j) = min{τ−1(k)|k ∈ T} is equal to 1
|T | . Then, it follows that
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for each j ∈ T

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji

= 1
n!

∑
τ∈ΣN

(
ôτ

j (πσ,ρσ(i−1))− ôτ
j (πσ,ρσ(i))

)

= |S|
|S∪T |

1
|T | = 1

|T | − 1
|S∪T |

= ô∗j (π
σ,ρσ(i−1))− ô∗j (π

σ,ρσ(i))

= D̄σ,ô∗
ji .

Similar arguments hold for each j ∈ S too.

ii) The source 0 belongs either to S or to T . Without loss of generality,

suppose 0 ∈ S. Then, for each j ∈ S

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji

= 1
n!

∑
τ∈ΣN

(
ôτ

j (πσ,ρσ(i−1))− ôτ
j (πσ,ρσ(i))

)

= 0

= ô∗j (π
σ,ρσ(i−1))− ô∗j (π

σ,ρσ(i))

= D̄σ,ô∗
ji .

On the other hand, for each j ∈ T

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji

= 1
n!

∑
τ∈ΣN

(
ôτ

j (πσ,ρσ(i−1))− ôτ
j (πσ,ρσ(i))

)

= 1
|T |

= ô∗j (π
σ,ρσ(i−1))− ô∗j (π

σ,ρσ(i))

= D̄σ,ô∗
ji .

A similar argument holds if 0 ∈ T .

Hence, (4.24) is proved implying that P (w) = 1
n!

∑
τ∈ΣN

P τ (w).

4.7 Conservative Construct & Charge rules

The main result in this section is derived from the relation between Obligation

rules and conservative Construct & Charge rules introduced in the previous

sections.
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Remark 4.7.1 Let ô be an obligation map on Θ(N ′) and let C = {C1, . . . , Cn}
be a set of functions with Cj : {a|j : a ∈ EN ′} → ∆(N), for each j ∈ N , such

that

Cj(a|j) = ô(Π(a|j−1))− ô(Π(a|j)) (4.25)

for each a ∈ EN ′ and j ∈ N . It is easy to see, via relation (4.12), that C satisfies

the connection property and the involvement property. By Proposition 4.5.1, it

follows that C satisfies the total aggregation property as well. As a consequence,

C is charge system on N .

Note that, by relation (4.16), for all σ ∈ ΣEN′ and w ∈ Kσ

φσ,ô(w) =
∑n

r=1 w(σ(ρσ(r)))
(
ô(πσ,ρσ(r−1))− ô(πσ,ρσ(r))

)

=
∑n

r=1 w(σ(ρσ(r)))Cr(σ(ρσ(1)), . . . , σ(ρσ(r))) = χC,σ(w).
(4.26)

Relation (4.26) shows that the class of Obligation rules is a subclass of the class

of CC-rules. The inclusion in the other way is not true, as indicated in Re-

mark 4.4.2, and proved by the fact that the CC-rule w.r.t. the charge system

introduced in Example 4.2.5 cannot be defined via relation (4.9). Another coun-

terexample is the Proportional rule, i.e. the CC-rule w.r.t. the charge system

introduced in Example 4.2.2, that cannot be defined via relation (4.9).

So, it makes sense to study for conservative charge systems the following

property.

Definition 4.7.1 Let C = {C1, . . . , Cn} be a charge system on N . We say that

C has the obligation property if there exists an obligation map ô on Θ(N ′) such

that

Cj(a|j) = ô(Π(a|j−1))− ô(Π(a|j))

for each a ∈ EN ′ and j ∈ N .

Theorem 4.7.1 Let C = {C1, . . . , Cn} be a charge system on N with the oblig-

ation property. Then, C has the patch property.

Proof Consider an obligation map ô on Θ(N ′) such that

Cj(a|j) = ô(Π(a|j−1))− ô(Π(a|j))

for each a ∈ EN ′ and j ∈ N . The assertion that C has the patch property follows

directly by Definition 4.5.1 and relation (4.26) on the obligation rule φô.
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In the following theorem, we give a sufficient condition for charge systems

to satisfy the obligation property.

Theorem 4.7.2 Let C = {C1, . . . , Cn} be a conservative charge system on N .

Then, C has the obligation property.

Proof Let P C(S) be the potential of S with respect to the conservative charge

system C for each S ∈ 2N \ {∅}. Consider the map oC : 2N \ {∅} → IRN
+ defined

by

oC(S) = eS − P C(S) (4.27)

for each S ∈ 2N \ {∅}, where eS ∈ IRN
+ is such that eS

i = 1 for each i ∈ S and

eS
i = 0 for each i ∈ N \ S. Note that for each j ∈ N , we have

ôC(Π(a|j−1))− ôC(Π(a|j))

=
∑

S∈Π(a|j−1),0/∈S oC(S)−∑
S∈Π(a|j),0/∈S oC(S)

=
∑

S∈Π(a|j−1),0/∈S

(
eS − P C(S)

)−∑
S∈Π(a|j),0/∈S

(
eS − P C(S)

)

=
∑

S∈Π(a|j−1)

(
eS\{0} − P C(S)

)−∑
S∈Π(a|j)

(
eS\{0} − P C(S)

)

=
∑

S∈Π(a|j)
P C(S)−∑

S∈Π(a|j−1)
P C(S)

+
∑

S∈Π(a|j−1)
eS\{0} −∑

S∈Π(a|j)
eS\{0}

=
∑

S∈Π(a|j)
P C(S)−∑

S∈Π(a|j−1)
P C(S)

= AC(a|j)−AC(a|j−1)

=
∑j

k=1 Ck(a|k)−∑j−1
k=1 Ck(a|k) = Cj(a|j),

where the third equality follows from Lemma 4.3.1.(c.1), the fifth equality fol-

lows from the fact that
∑

S∈θ eS\{0} = eN for each θ ∈ Θ(N ′) and the sixth

equality from Proposition 4.3.1.

We want to prove that oC is an obligation function, i.e. oC satisfies the

properties (4.10) and (4.11).

By definition, it follows directly that oCi (S) = 0 for each i ∈ N \ S and

oCi (S) ≥ 0 for each i ∈ S and for each S ∈ 2N \ {∅}. Moreover, from (c.2) of

Lemma 4.3.1, it follows that

∑

i∈N

oCi (S) =
∑

i∈S

(
1− P Ci (S)

)
= |S| − (|S| − 1) = 1,
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for each S ∈ 2N \ {∅}, implying that property (4.10) holds.

Finally, by (c.3) in Lemma 4.3.1, we have that for each S ⊆ T ⊆ N , S 6= ∅,
and each i ∈ S

oCi (S) = 1− P Ci (S) ≥ 1− P Ci (T ) = oCi (T ), (4.28)

which proves that property (4.11) holds, too.

The next theorem is the main result in this section.

Theorem 4.7.3 For each charge system C = {C1, . . . , Cn} on N the following

statements are equivalent:

i) C is a conservative charge system;

ii) C satisfies the patch property;

iii) C satisfies the obligation property.

Proof Equivalence of i), ii) and iii) follows from Theorems 4.4.1, 4.7.1 and

4.7.2. Specifically, by Theorem 4.4.1, if C has the patch property then C is a

conservative charge system. By Theorem 4.7.2, if C is a conservative charge

system then C satisfies the obligation property. Finally, by Theorem 4.7.1, if C
satisfies the obligation property then C has the patch property. From

Theorem 4.7.3 and Remark 4.7.1 we conclude that the class of conservative

CC-rules coincides with the class of Obligation rules.

Remark 4.7.2 As we already observed in Remark 4.5.4, since the P -value and

the P τ -values, with τ ∈ ΣN , are Obligation rules, one can obtain the corre-

sponding charge systems using relation (4.25). It is easy to check, for example,

that the obligation map of Example 4.5.1, which defines the P -value as in Sec-

tion 4.6, may be obtained by relation (4.25) on the charge system Ĉ of Example

4.2.3.



Chapter 5

Monotonicity properties for

cost allocation rules

5.1 Introduction

In this chapter, we study some properties of Obligation rules in mcst situations

where the cardinality of the set of agents can vary in time, and also increasing

or decreasing of connection costs may occur. In Section 5.2, we show that

Obligation rules are cost monotonic and induce population monotonic allocation

schemes. Note that the concept of cost monotonicity defined in Section 5.2 and

introduced in Tijs et al. (2006a) is stronger than the concept of cost monotonicity

introduced in Dutta and Kar (2004), because we simply impose that if some

connection costs go down, then no agents will pay more (as in the strong cost

monotonicity property used by Bergañtinos and Vidal-Puga (2004)).

The irreducible core (that we will call the Bird core) is central in Sections

5.3 and 5.4. There, we will give a new “tree free” way to introduce the Bird

core by constructing for each mcst-problem a related problem, where the weight

function is a non-Archimedean semimetric. Moreover, we introduce a related

concept of cost monotonicity for multisolutions in mcst situations which gener-

alizes the concept of cost monotonicity for mcst solutions introduced in Section

5.2. The relations between stable cost monotonic rules and the Bird core are

71
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also discussed in Section 5.4.

Section 5.2 is based on Tijs, Branzei, Moretti, Norde (2006a); sections 5.3

and 5.4 are based on Tijs, Moretti, Branzei, Norde (2006b).

5.2 Cost monotonicity for solutions and pmas

In this section we will discuss some nice monotonicity properties of the Obliga-

tion rules. First, we provide the definition of cost monotonic solutions for mcst

situations.

Definition 5.2.1 A solution F : WN ′ → IRN is a cost monotonic solution if

for all mcst situations w, ŵ ∈ WN ′
such that w(ê) ≤ ŵ(ê) for one edge ê ∈ EN ′

and w(e) = ŵ(e) for each e ∈ EN ′ \ {ê}, it holds that F (w) ≤ F (ŵ).

We prove in Theorem 5.2.2 that Obligation rules are cost monotonic; the main

step is the following lemma.

Lemma 5.2.1 Let ô be an obligation map on Θ(N ′) and let w ∈ WN ′
. Let

ê ∈ EN ′ and let h > w(ê) be such that there is no e ∈ EN ′ with w(ê) < w(e) < h.

Define w̃ ∈ WN ′
by w̃(e) := w(e) if e ∈ EN ′ \ {ê} and w̃(ê) = h. Then:

φô(w̃) ≥ φô(w).

Proof Let Z := {e ∈ EN ′ |w(e) = w(ê)} be the set of edges that have the same

cost as ê. Let σ ∈ ΣEN′ be such that w ∈ Kσ. Without loss of generality we

may assume that σ−1(ê) = max{σ−1(e)|e ∈ Z}, i.e. σ ranks the edges of Z with

ê last. By construction we also have w̃ ∈ Kσ and hence

φô(w̃) = Dσ,ôw̃σ ≥ Dσ,ôwσ = φô(w),

where at the inequality we used the fact that w̃σ ≥ wσ and the fact that the

matrix Dσ,ô is non-negative.

Theorem 5.2.2 Obligation rules are cost monotonic.
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Proof Let ô be an obligation map on Θ(N ′) and let φô be the Obligation rule

w.r.t ô. Let w, ŵ ∈ WN ′
and ê ∈ EN ′ be as in Definition 5.2.1.

Let H := {h ∈ IR| there is an edge f ∈ EN ′ s.t. h = w(f) ∈ (w(ê), ŵ(ê))}. If

H = ∅ then the statement follows directly from Lemma 5.2.1. If H 6= ∅ write

H = {h1, . . . , hk} with h1 < . . . < hk.

Consider the sequence of precisely k+2 mcst situations w0, . . . , wk+1 ∈ WN ′

such that w0 = w, wk+1 = ŵ and for each r ∈ {1, . . . , k}, wr(e) = w(e) for each

e ∈ EN ′ \ {ê} and wr(ê) = hr.

Applying Lemma 5.2.1 for each r ∈ {1, . . . , k}, with wr−1 in the role of w

and wr in the role of w̃, it follows that

φô(ŵ) = φô(wk+1) ≥ φô(wk) ≥ . . . ≥ φô(w0) = φô(w),

which finally proves cost monotonicity of Obligation rules.

The following theorem shows that Obligation rules induce a pmas for the cor-

responding mcst games.

Before introducing the theorem, we need to introduce some further notations.

Let o be an obligation function and ô the corresponding obligation map. Let

S ⊆ N , let oS denote the restriction of o to 2S \ {∅} and let ôS denote the

corresponding obligation map, i.e.

ôS(θ) =
∑

T∈θ,0/∈T

oS(T )

for every θ ∈ Θ(S ∪ {0}).
Recall also that if w ∈ WN ′

, then the Obligation rule φôS w.r.t the obligation

map ôS and applied to w|S′ , i.e. the restriction of the weight function w to

ES′ ⊆ EN ′ as defined in Section 2.1, provides a vector in IRS according to

Definition 4.5.3 w.r.t. the set of nodes S′.

Theorem 5.2.3 Let ô be an obligation map on Θ(N ′), let φô be the Obligation

rule w.r.t ô, and let w ∈ WN ′
. Then, the table [φôS (w|S′)]S∈2N\{∅} is a pmas

for the mcst game (N, cw).
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Proof Given S ⊂ T ⊆ N , define < T ′, ŵ > with T ′ = T ∪ {0} and

ŵ({i, j}) =





w({i, j}) if i, j ∈ S′

w({i, j}) + λS otherwise

(5.1)

where λS = 1 + max{w({i, j})|i, j ∈ S′}.
Then, in < T ′, ŵ > each edge with at least one node not in S′ is more

expensive than in < T ′, w|T ′ >.

Further, let σ̄ ∈ ΣET ′ be such that ŵ ∈ K σ̄ and let σS′ ∈ ΣES′ be such

that σS′(i) = σ̄(i) for each i ∈ {1, . . . , |ES′ |}. Then, by (5.1) it follows that

w|S′ ∈ KσS′
.

Note that for each i ∈ S

φôT
i (ŵ) = φôS

i (w|S′). (5.2)

This follows from the fact that in < S′, w|S′ > the edges with at least one node

not in S′ are discarded and in < T ′, ŵ > the edges with at least one node not

in S′ are allowed but they are too expensive. The result is that applying the

Kruskal procedure on < T ′, ŵ > w.r.t. σ̄ the players in S′ are already connected

to 0 before one of the edges with nodes not in S′ is considered. So, by definition

of an obligation map, we have that the contribution matrix Dσ̄,ôT with |T | rows

and |ET ′ | columns is of the form

Dσ̄,ôT =




DσS′ ,ôS N1

N2 R




99K players in S

99K players in T \ S,

where the four submatrices DσS′ ,ôS , N1, N2 and R are such that:

• DσS′ ,ôS is the contribution matrix w.r.t. to σS′ and to ôS with |S| rows

and |ES′ | columns;

• N1 is the null matrix with |S| rows and |ET ′ | − |ES′ | columns;

• N2 is the null matrix with |T | − |S| rows and |ES′ | columns;

• R is a real valued matrix with |T | − |S| rows and |ET ′ | − |ES′ | columns

obtained according to the definition of the contribution matrix Dσ̄,ôT .
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Hence, for each i ∈ S, φôT
i (ŵ) = (DσS′ ,ôS ŵσS′

|S′ )i = φôS
i (ŵ|S′) = φôS

i (w|S′), which

yields equation (5.2). [Here (DσS′ ,ôS ŵσS

|S′)i is the i-th component of the vector

DσS′ ,ôS ŵσS′

|S′ .]

Recall that Obligation rules are cost monotonic. Since ŵ(e) ≥ w|T ′(e) for each

e ∈ ET ′ , we have

φôT
i (ŵ) ≥ φôT

i (w|T ′), for each i ∈ T. (5.3)

From (5.2) and (5.3) we obtain

φôS
i (w|S′) ≥ φôT

i (w|T ′) for each i ∈ S. (5.4)

From (5.4) and the efficiency property it follows that [φôS (w|S′)]S∈2N\{∅} is a

pmas for the mcst game (N, cw).

From Theorem 5.2.3 and the definition of a pmas, it follows that Obligation

rules provide cost allocations which are core elements of the game (N, cw).

5.3 Minimal mcst situations

Let w ∈ WN ′
. For each path p = (i0, i1, . . . , ik) from i to j in the graph

< N ′, EN ′ > we denote the set of its edges by E(p), that is E(p) = {{i0, i1},
{i1, i2}, . . . , {ik−1, ik}}. Moreover, we call maxe∈E(p) w(e) the top of the path

p and denote it by t(p). We denote by PN ′
ij the set of all paths without cycles

from i to j in the graph < N ′, EN ′ >.

Now, we define the key concept of this section, namely the reduced weight

function.

Definition 5.3.1 Let w ∈ WN ′
. The reduced weight function w is given by

w(i, j) = min
p∈PN′

ij

max
e∈E(p)

w(e) = min
p∈PN′

ij

t(p) (5.5)

for each i, j ∈ N ′, i 6= j.

Now, extending w by putting w(i, i) = 0 for each i ∈ N ′, we obtain a non-

negative function on the set of all pairs of elements in N ′. The obtained reduced
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weight function w is a semimetric on N ′ with the sharp triangle inequality, i.e. a

non-Archimedean (NA-)semimetric. In formula, for each i, j, k ∈ N ′

w(i, j) ≥ 0 and w(i, i) = 0 (non-negativity);

w(i, j) = w(j, i) (symmetry);

w(i, k) ≤ max{w(i, j), w(j, k)} (sharp triangle inequality).

The proof is left to the reader. If w > 0, then w is a non-Archimedean metric

on the set N ′.

For the reduced weight function w we have a special property related to

triangles, as the next lemma shows.

Proposition 5.3.1 (The isoscele triangle property) Let w be the reduced

weight function corresponding to w ∈ WN ′
and i, j, k ∈ N ′ such that w(i, j) ≤

w(i, k) and w(i, j) ≤ w(k, j). Then, w(i, k) = w(j, k).

Proof By the sharp triangle inequality w(i, k) ≤ max{w(i, j), w(j, k)} = w(j, k)

and w(j, k) ≤ max{w(j, i), w(i, k)} = w(i, k).

So, w(i, k) = w(j, k).

This property for NA-semimetrics will be useful in proving that there are many

minimum cost spanning trees for (N ′, w), as we will see in Theorem 5.3.2.

In the sequel we simply refer to w as the mcst situation which assigns to each

edge {i, j} ∈ EN ′ the reduced weight value as defined in equality (5.5). Further,

we will denote by WN ′
⊂ WN ′

the set of all mcst situations which assign to

each edge {i, j} ∈ EN ′ the distance w(i, j) provided by a reduced weight w on

N ′.

Example 5.3.1 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 5.1. Note that w ∈ Kσ, with σ(1) = {1, 2},
σ(2) = {0, 1}, σ(3) = {1, 3}, σ(4) = {0, 3}, σ(5) = {0, 2}, σ(6) = {2, 3}.
The corresponding mcst situation w is depicted in Figure 5.2.

One main result in this section, Proposition 5.3.2, concerns an interesting re-

lation which can be established between the mcst situation w and a minimal
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Figure 5.1: An mcst situation with three agents.
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Figure 5.2: The mcst situation w corresponding to w.

mcst situation wΓ as defined by Bird (1976), where Γ is an mcst for N ′ in w.

Given an mcst situation w ∈ WN ′
and an mcst Γ for N ′ in w, the minimal mcst

situation wΓ is defined (cf. Bird (1976)) by

wΓ({i, j}) = max
e∈E(pΓ

ij)
w(e) = t(pΓ

ij), (5.6)

where pΓ
ij ∈ PN ′

ij is the unique path in Γ from i to j.

Proposition 5.3.2 Let w ∈ WN ′
and i, j ∈ N ′. Let Γ be an mcst for N ′ in w

and pΓ
ij be the unique path in Γ from i to j. Then,

t(pΓ
ij) = min

p∈PN′
ij

t(p). (5.7)

Proof Let p∗ ∈ arg minp∈PN′
ij

t(p) and let e∗ be an edge on p∗ such that

t(p∗) = w(e∗). Let ê = {m, n} be an edge on pΓ
ij with w(ê) = t(pΓ

ij).

We have to prove that w(ê) = w(e∗). If so, then it follows immediately that

minp∈PN′
ij

t(p) = w(e∗) = w(ê) = t(pΓ
ij).
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If e∗ = ê then of course w(e∗) = w(ê). Otherwise, first note that by defini-

tion of e∗

w(ê) ≥ w(e∗). (5.8)

Let Sm be the set of all nodes r ∈ N ′ such that n is not on the path from

m to r in < N ′, Γ >; let Sn be the set of nodes r ∈ N ′ such that m is not on

the path from n to r in < N ′,Γ >, i.e.

Sm = {r ∈ N ′|@e ∈ E(pΓ
mr) with n ∈ e}

and

Sn = {r ∈ N ′|@e ∈ E(pΓ
nr) with m ∈ e}.

Note that {Sn, Sm} is a partition of N ′ and nodes in Sn are connected in

< N ′, Γ > to nodes in Sm via edge {m,n}. Moreover, by the definition of a

path without cycles, i, j must belong to different sets of the partition {Sn, Sm}.
So, without loss of generality we suppose that i ∈ Sm and j ∈ Sn.

Consider the set of edges E+ = {{t, v}|t ∈ Sm, v ∈ Sn}. Then,

w({m, n}) = w(ê) ≤ w(e), for each e ∈ E+. (5.9)

In order to prove inequality (5.9), suppose on the contrary that w({m,n}) >

w(e) for some e ∈ E+. Then, the graph Γ+ = (Γ \ {ê}) ∪ {e} would be a

spanning network in N ′ cheaper than Γ, which yields a contradiction.

By the definition of a path, for each p ∈ PN ′
ij there exists at least one

edge e ∈ E+ such that e is on the path p. By inequality (5.9), it follows that

t(p) ≥ w(e) ≥ w(ê). This implies that w(e∗) = minp∈PN′
ij

t(p) ≥ w(ê). To-

gether with inequality (5.8) we have finally w(e∗) = w(ê).

As a direct consequence of Proposition 5.3.2 we have that the mcst situation w

coincides, for each mcst Γ for w, with the minimal mcst situation wΓ introduced

by Bird (1976). So, wΓ = wΓ̌ for each pair of mcst Γ, Γ̌, a fact which is already

known (cf. Aarts (1994), Feltkamp (1995), Feltkamp et al. (1994)), but with

a complicated proof. Let w ∈ WN ′
and let Γ be an mcst for w. Let τ ∈ ΣN .

We say that Γ and τ fit (or, also, that τ fits with Γ) if EΓ
[τ(1)]′ , EΓ

[τ(2)]′ , . . .,
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EΓ
[τ(|N |)]′ are spanning networks on sets of nodes [τ(1)]′, [τ(2)]′, . . . , [τ(|N |)]′,

respectively.

Example 5.3.2 In Figure 5.3 is depicted an mcst, denoted by Γ, for the mcst

situation w of Figure 5.2. Consider τ1, τ2 ∈ ΣN such that τ1(1) = 1, τ1(2) = 2,
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Figure 5.3: An mcst Γ for the mcst situation w of Figure 5.2.

τ1(3) = 3 and τ2(1) = 1, τ2(2) = 3, τ2(3) = 2. Note that both τ1 and τ2 fit with

Γ but none of the other four elements of ΣN fits with Γ.

Remark 5.3.1 Let w ∈ WN ′
, let Γ be an mcst for w and let τ ∈ ΣN be an

order such that Γ and τ fit. Then,

∑

e∈EΓ
[τ(r)]′

w(e) = cw([τ(r)]) (5.10)

for each r ∈ {1, . . . , |N |}. So, EΓ
[τ(r)]′ is an mcst for the mcst situation < [τ(r)]′,

w|[τ(r)]′ >.

Remark 5.3.2 Let w ∈ WN ′
, let Γ be an mcst for w and let τ ∈ ΣN be an

order such that Γ and τ fit. The marginal vector mτ (cw) of the mcst game

cw coincides with the Bird allocation in w corresponding to Γ and therefore

mτ (cw) ∈ C(cw), as is proved in Granot and Huberman (1981).

Remark 5.3.3 For each σ ∈ ΣEN′ there exists a tree Γ which is an mcst for

every w ∈ Kσ; further, there exists a τ ∈ ΣN such that Γ and τ fit.
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The considerations in Remarks 5.3.1-5.3.3 together with the next lemma prelude

to Theorem 5.3.2.

Lemma 5.3.1 Let w ∈ WN ′
, let Γ be an mcst for w and let τ ∈ ΣN be such that

Γ and τ fit. Let r ∈ {1, . . . , |N |−1} and let τ̌ ∈ ΣN be such that τ̌(r) = τ(r + 1),

τ̌(r + 1) = τ(r) and τ̌(i) = τ(i) for each i ∈ {1, . . . , |N |} \ {r, r + 1} (i.e. τ̌ is

obtained from τ by a neighbor switch of τ(r) and τ(r + 1)). Then, there is an

mcst Γ̌ for w such that τ̌ and Γ̌ fit.

Proof If τ(r) is not the immediate predecessor of τ(r+1) in Γ then take Γ̌ = Γ

and then τ̌ and Γ̌ fit.

If τ(r) is the immediate predecessor of τ(r + 1) in Γ, then let k ∈ [τ(r − 1)]′ be

the immediate predecessor of τ(r) in Γ.

First, note that

w({k, τ(r + 1)}) ≥ w({k, τ(r)}) (5.11)

and

w({k, τ(r + 1)}) ≥ w({τ(r), τ(r + 1)}) (5.12)

because Γ is an mcst for w.

Consider two cases:

c.1) w({k, τ(r)}) ≤ w({τ(r), τ(r + 1)}). Take Γ̌ = (Γ \ {{τ(r), τ(r + 1)}}) ∪
{{k, τ(r + 1)}}. By inequality (5.11) and the isoscele triangle property

w({k, τ(r + 1)}) = w({τ(r), τ(r + 1)}), and then Γ̌ is an mcst in w and Γ̌

and τ̌ fit.

c.2) w({τ(r), τ(r+1)}) < w({k, τ(r)}). Take Γ̌ = (Γ\{{k, τ(r)}})∪{{k, τ(r+

1)}}. By inequality (5.12) and the isoscele triangle property w({k, τ(r)}) =

w({k, τ(r + 1)}) and then Γ̌ is an mcst in w and Γ̌ and τ̌ fit.

Theorem 5.3.2 Let w ∈ WN ′
.Then,

i) for each τ ∈ ΣN there exists an mcst Γ such that Γ and τ fit.
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ii) Let cw be the mcst game corresponding to w. Then, mτ (cw) ∈ C(cw) for

all τ ∈ ΣN and cw is a concave game.

Proof

i) Let Γ̂ be an mcst for w. Then, there is at least one τ̂ ∈ ΣN such that Γ̂

and τ̂ fit. Further, each τ can be obtained from τ̂ by a suitable sequence

of neighbor switches and so, by applying Lemma 5.3.1 repeatedly, we

complete the proof of assertion i).

ii) Let Γ be an mcst in N ′ for w and let τ ∈ ΣN be such that Γ and τ fit. By

Remark 5.3.2, it follows that mτ (cw) coincides with the Bird allocation

corresponding to Γ. Hence, again by Remark 5.3.2, mτ (cw) ∈ C(cw).

Finally, by the Ichiishi theorem (Ichiishi (1981)) telling that a game is

concave iff all marginal vectors are in the core of the game, it follows that

cw is a concave game.

Let w ∈ WN ′
. We call the core of the mcst game cw the Bird core of the

mcst game cw and denote it by BC(w). By Theorem 5.3.2 it directly follows

that the Bird core BC(w) of the mcst game cw is the convex hull of all the

Bird allocations corresponding to the minimum cost spanning trees for w. Note

also that BC(w) ⊆ C(cw), since cw(S) ≤ cw(S) for each S ∈ 2N \ {∅} and

cw(N) = cw(N) (cf. Feltkamp (1995)).

Example 5.3.3 Consider the mcst situation w of Figure 5.1 and the corre-

sponding reduced mcst situation w of Figure 5.2. Then,

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cw 8 12 12 13 18 24 23

cw 8 8 10 13 18 18 23

There are six minimum cost spanning trees for w. Three of them lead to the

Bird allocation (8, 5, 10) and the other three to the Bird allocation (5, 8, 10).

Further, mτ (cw) = (8, 5, 10) for τ ∈ ΣN with (τ(1), τ(2), τ(3)) ∈ {(1, 2, 3),

(1, 3, 2), (3, 1, 2)} and mτ (cw) = (5, 8, 10) for τ ∈ ΣN with (τ(1), τ(2), τ(3)) ∈
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{(2, 1, 3), (2, 3, 1), (3, 2, 1)}. The Bird core BC(w) is the convex hull of the

marginal vectors of the game cw, that is BC(w) = conv{(8, 5, 10), (5, 8, 10)} ⊂
C(cw).

5.4 Cost monotonicity for multisolutions

In Section 5.2 we have proved that the class of Obligation rules is a class of

solutions for mcst situations which are cost monotonic, i.e. if the costs of some

edges increase, then no agent will pay less.

In this section we introduce a related concept of cost monotonicity for mul-

tisolutions on mcst situations. We call a correspondence G : WN ′ ³ IRN

assigning to every mcst situation w a set of cost allocations in IRN a multi-

solution. For instance, by Theorem 4.7.3, non-conservative CC-rules are not

solutions for mcst situations, but they are multisolutions.

Definition 5.4.1 A multisolution M : WN ′ ³ IRN is a cost monotonic multi-

solution if for all mcst situations w, w′ ∈ WN ′
such that w(e) ≤ w′(e) for each

e ∈ EN ′ , it holds that

M(w) ⊆ compr−(M(w′)) and M(w′) ⊆ compr+(M(w)),

where compr−(B) = {x ∈ IRN |∃b ∈ B s.t. xi ≤ bi ∀i ∈ N} and compr+(B) =

{x ∈ IRN |∃b ∈ B s.t. bi ≤ xi ∀i ∈ N}, for each B ⊂ IRN .

Cost monotonicity for multi-solutions is not satisfied in general by non-conservative

CC-rules, as it is shown in Example 5.4.1, dealing with specific mcst situations

where the optimal tree is unique.

Example 5.4.1 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 5.4 (left side). Note that there exists a unique

σ ∈ ΣN ′ with w ∈ Kσ, where σ is such that σ(1) = {1, 2}, σ(2) = {1, 3},
σ(3) = {2, 3}, σ(4) = {1, 0}, σ(5) = {2, 0}, σ(6) = {3, 0}. We apply Definition
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Figure 5.4: Two mcst situations w (left side) and w′ (right side).

4.4.1 to the charge systems C̃ introduced in Example 4.2.2 to calculate the

allocations provided by the corresponding CC-rules on < N ′, w >. We have

χC̃,σ(w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 16 ∗ (1
4 , 1

4 , 1
2 )t + 24 ∗ ( 1

4 , 1
4 , 1

2 )t

= (16, 16, 20)t.

Now, consider the mcst situation < N ′, w′ > with w′ as depicted in Figure

5.4 (right side), where w′(e) = w(e) for all e ∈ EN ′ \ {1, 2} and w′({1, 2}) >

w({1, 2}). Note that also for this mcst situation there exists a unique σ′ ∈ ΣN ′

with w′ ∈ Kσ, where σ′ is such that σ′(1) = {1, 3}, σ′(2) = {1, 2}, σ′(3) =

{2, 3}, σ′(4) = {1, 0}, σ′(5) = {2, 0}, σ′(6) = {3, 0}. We have

χC̃,σ′(w′)

= 16 ∗ ( 1
2 , 0, 1

2 )t + 18 ∗ (1
4 , 1

2 , 1
4 )t + 24 ∗ ( 1

4 , 1
2 , 1

4 )t

= (18.5, 21, 18.5)t.

Agent 3 is better off in w′, where the cost of edge {1, 2} is larger. So, {χC̃,σ′(w′)}
is not a subset of compr+({χC̃,σ(w)}).

Before discussing properties of the Bird core as multisolution for mcst situations,

we introduce the following propositions dealing with mcst situations originated

from NA-semimetrics.
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Proposition 5.4.1 Let w ∈ WN ′
, let Γ be an mcst for w and τ ∈ ΣN be such

that Γ and τ fit. Then,

mτ
τ(j)(cw) = min

k∈(τ(j))′
w(k, τ(j)),

for each j ∈ {2, . . . , |N |}.

Proof Let j ∈ {2, . . . , |N |}. Note that by Remark 5.3.1

mτ
τ(j)(cw) = cw([τ(j)])− cw((τ(j))) =

∑

e∈EΓ
[τ(j)]′

w(e)−
∑

e∈EΓ
(τ(j))′

w(e). (5.13)

Since Γ and τ fit, we have EΓ
[τ(j)]′ \ EΓ

(τ(j))′ = {{τ(j), s}}, for some s ∈ (τ(j))′.

Because EΓ
[τ(j)]′ is an mcst for w|[τ(j)]′ , we have s ∈ arg mink∈(τ(j))′ w({k, τ(j)}).

So, ∑

e∈EΓ
[τ(j)]′

w(e)−
∑

e∈EΓ
(τ(j))′

w(e) = min
k∈(τ(j))′

w(k, τ(j)). (5.14)

From (5.13) and (5.14) follows the proposition.

Proposition 5.4.2 Let w,w′ ∈ WN ′
be NA-semimetric mcst situations such

that w(e) ≤ w′(e) for each e ∈ EN ′ . Then, it holds that

mτ (cw) ≤ mτ (cw′) for each τ ∈ ΣN .

Proof Let τ ∈ ΣN . By Theorem 5.3.2 there exist two mcst’s Γ and Γ′ for w

and w′, respectively, such that they both fit with τ . First, note that

mτ
τ(1)(cw) = w(0, τ(1)) ≤ w′(0, τ(1)) = mτ

τ(1)(cw′).

Further,
mτ

τ(j)(cw) = mink∈(τ(j))′ w(k, τ(j))

≤ mink∈(τ(j))′ w
′(k, τ(j))

= mτ
τ(j)(cw′),

for each j ∈ {2, . . . , |N |}, where the first and the second equality follow by

Proposition 5.4.1 and the inequality follows from w(e) ≤ w′(e) for each e ∈ EN ′ .
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Theorem 5.4.1 The correspondence BC is a cost monotonic multisolution.

Proof Let w, w′ ∈ WN ′
be such that w(e) ≤ w′(e) for each e ∈ EN ′ . By

Theorem 5.3.2 and properties of concave games, BC(w) is a convex set whose

extreme points are the marginal vectors of the game cw, i.e. each element of

BC(w) is a convex combination of marginal vectors of the game cw. Let x ∈
BC(w). There exist numbers ατ , with τ ∈ ΣN , 0 ≤ ατ ≤ 1,

∑
τ∈ΣN

ατ = 1 and

x =
∑

τ∈ΣN

ατ mτ (cw). (5.15)

Hence,
x =

∑
τ∈ΣN

ατ mτ (cw)

≤ ∑
τ∈ΣN

ατ mτ (cw′)

= x′ ∈ BC(w′),
(5.16)

where the inequality follows by Proposition 5.4.2 and the fact that w(e) ≤ w′(e)

for each e ∈ EN ′ and the second equality by Theorem 5.3.2, implying that

BC(w) ⊆ compr−(BC(w′)). Using a similar argument the other way around in

relations (5.16), it follows that BC(w′) ⊆ compr+(BC(w)), which concludes the

proof.

To connect the cost monotonicity of the Bird core with cost monotonicity of

Obligation rules, we need Proposition 5.4.3.

Proposition 5.4.3 Let F : WN ′ → IRN be a cost monotonic and efficient

solution. Then,

i) F (w) = F (w) for every w ∈ WN ′
;

ii) If F is also stable (i.e. F (w′) ∈ C(cw′) for every w′ ∈ WN ′
), then F (w) ∈

BC(w) for every w ∈ WN ′
.

Proof Let w ∈ WN ′
. First, note that by Definition 5.3.1,

w(e) ≤ w(e) for each e ∈ EN ′ . (5.17)
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Let Γ be an mcst for w.

i) By inequality (5.17) and cost monotonicity of F , F (w) ≤ F (w). On the

other hand Γ is an mcst for w too, and by efficiency of F

∑

i∈N

Fi(w) =
∑

i∈N

Fi(w) = w(Γ).

So, F (w) = F (w).

ii) By inequality (5.17),

cw(S) ≤ cw(S) for all S ⊆ N,

and by Definition 5.3.1

cw(N) = cw(N) = w(Γ).

Then, by stability of F , F (w) ∈ C(cw) = BC(w) ⊆ C(cw) and by result (i)

F (w) ∈ BC(w) too.

Remark 5.4.1 Proposition 5.4.3 can be extended to multisolutions which are

cost monotonic and efficient (Property 6.3.1 in Section 6.3) multisolutions. From

this follows that BC is the “largest” cost monotonic stable multisolution.

Remark 5.4.2 In Section 5.2 we have proved that Obligation rules are both

cost monotonic and stable solutions for mcst situations. So, by Proposition 5.4.3,

it follows that for each w ∈ WN ′
, the set F(w) = {φ(w) | φ is an Obligation rule}

is a subset of the Bird core BC(w) and F(w) = F(w).



Chapter 6

Additivity-based

characterizations for cost

allocation protocols

6.1 Introduction

In Section 4.5 we have introduced the definition of Obligation rules on Kruskal

cones and the related notion of contribution matrix w.r.t. an obligation map

ô and an ordering σ ∈ ΣEN′ of the edges. As a consequence, Obligation rules

are additive on each Kruskal cone in the space of mcst situations with a fixed

number of users, i.e. the allocation vector provided by an Obligation rule on

the mcst situation w + w′ is equal to the sum of allocation vectors provided by

the same Obligation rule on each single mcst situation w and w′, for each w, w′

in the Kruskal cone Kσ. In this chapter, we show that the Cone-wise Positive

Linearity (CPL), defined by Property 6.2.4 and reformulated for multi-solutions

by Property 6.3.4, is a fundamental property for the axiomatic characterizations

presented in this chapter. In fact, the CPL property is satisfied by every Oblig-

ation rule. In particular, the CPL property plays an important role for the

axiomatic characterization of a special Obligation rule, the P -value (Branzei et

87
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al. (2006b)). More surprisingly, the CPL property extended to multi-solutions

plays an important role also in the axiomatic characterization of the Bird core

(Tijs et al. (2006b)).

In Section 6.2 we give an axiomatic characterization of the P -value. An

axiomatic characterization of the Bird core is given in Section 6.3. Finally, in

Section 6.4 the additivity property of Obligation rules is used to characterize

these solutions for mcst situations using a value-theoretic approach based on

sharing values for cost games.

Section 6.2 is based on Branzei, Moretti, Norde, Tijs (2004); section 6.3 is

based on Tijs, Moretti, Branzei, Norde (2006b); section 6.4 is based on Moretti,

Tijs, Branzei, Norde (2005).

6.2 An axiomatic characterization of the P-value

Recall that a solution for mcst situations is a map F : WN ′ → IRN assigning

to every mcst situation w a unique cost allocation in IRN . Some interesting

properties for solutions of mcst situations are the following:

Property 6.2.1 The solution F is efficient (EFF) if for each w ∈ WN ′

∑

i∈N

Fi(w) = w(Γ),

where Γ is a minimum cost spanning network on N ′.

Property 6.2.2 The solution F has the Equal Treatment (ET) property if for

each w ∈ WN ′
and for each i, j ∈ N with Ci(w) = Cj(w),

Fi(w) = Fj(w).

Property 6.2.3 The solution F has the upper bounded contribution (UBC)

property if for each w ∈ WN ′
and every (w, N ′)-component C 6= {0}

∑

i∈C\{0}
Fi(w) ≤ min

i∈C\{0}
w({i, 0}).
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Property 6.2.4 The solution F has the Cone-wise Positive Linearity (CPL)

property if for each σ ∈ ΣEN′ , for each pair of mcst situations w, ŵ ∈ Kσ and

for each pair α, α̂ ≥ 0, we have

F (αw + α̂ŵ) = αF (w) + α̂F (ŵ).

Proposition 6.2.1 The P -value satisfies the properties EFF, ET, UBC and

CPL.

Proof Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. Then, the

following considerations hold:

i) Let σ(t1), σ(t2), . . ., σ(tn), be the n edges of the mcst Γ corresponding to

Kruskal order σ. These edges correspond to non-zero columns in Dσ,ô∗

and then the sum of coordinates of each column equals 1. Hence,

P (w) = Dσ,ô∗wσ =
n∑

r=1

w(σ(tr))Dσ,ô∗etr ,

∑

i∈N

Pi(w) =
n∑

r=1

w(σ(tr))
∑

i∈N

(
Dσ,ô∗etr

)
i
=

n∑
r=1

w(σ(tr)) = w(Γ),

which proves the EFF property.

ii) Note that if w is the zero function then it trivially follows that Pi(w) =

Pj(w) for each i, j ∈ N .

Consider w 6= 0 and define k = min{j|w(σ(j)) > 0}. Then, wσ is of the

form (0, . . . , 0, w(σ(k)), . . . , w(σ(|EN ′ |)))t, and for each i ∈ N

Pi(w) =
(
Dσ,ô∗wσ

)
i
=
|EN′ |∑

r=k

(ô∗i (π
σ,r−1)− ô∗i (π

σ,r))w(σ(r)). (6.1)

Let C be a (w, N ′)-component and consider two users i, j ∈ C. By Remark

4.6.1 this means that i and j are connected in the graph < N ′, F σ,k−1 >

and so also in < N ′, F σ,r > for every r ∈ {k, . . . , |EN ′ |}. Then, for each

r ∈ {k, . . . , |EN ′ |}

ô∗i (π
σ,r−1)− ô∗i (π

σ,r) = ô∗j (π
σ,r−1)− ô∗j (π

σ,r).

Hence, by (6.1), Pi(w)=Pj(w), which proves the ET property.
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iii) If w is the zero function then it directly follows that
∑

i∈S Pi(w) = 0 =

mini∈S w({i, 0}), for each S ∈ 2N \ {∅}.
Consider w 6= 0 and let C 6= {0} be a (w, N ′)-component. Note that

there exists m ∈ {1, . . . , |EN ′ |} such that σ(m) ⊆ C ∪{0} and w(σ(m)) =

mini∈C\{0} w({i, 0}). Define k = min{j|w(σ(j)) > 0}. If m < k, then

0 ∈ C and since nodes in C \{0} pay nothing according to P (w), the UBC

property holds. Instead, if m ≥ k then
∑

i∈C\{0} Pi(w) =

=
∑

i∈C\{0}
∑m

r=k w(σ(r))(ô∗i (π
σ,r−1)− ô∗i (π

σ,r)) ≤
≤ w(σ(m))

∑
i∈C\{0}

∑m
r=k(ô∗i (π

σ,r−1)− ô∗i (π
σ,r)) =

= w(σ(m))
∑

i∈C\{0} ô∗i (π
σ,k−1) =

= w(σ(m))

(6.2)

where the first equality follows from ô∗i (π
σ,u) = 0 for all u ∈ {m, . . . , |EN ′ |}

and for each i ∈ C, and in the last one we use the fact that all nodes in

C \{0} are connected in the graph < N ′, F σ,k−1 >. Note that (6.2) proves

the UBC property.

iv) The CPL property follows trivially from the definition of P .

Theorem 6.2.1 The P -value is the unique solution which satisfies the proper-

ties EFF, ET, UBC and CPL on the class WN ′
of mcst situations.

Proof We already know by Proposition 6.2.1 that the P -value satisfies the four

properties EFF, ET, UBC and CPL. To prove the uniqueness consider a map

ψ : WN ′ → IRN satisfying EFF, ET, UBC and CPL.

Let σ ∈ ΣEN′ and k ∈ {1, . . . , |EN ′ |}. First, we will show that for mcst

situation eσ,k ∈ Kσ, ψ(eσ,k) = P (eσ,k). By UBC, for each (eσ,k, N ′)-component

C 6= {0}

∑

i∈C\{0}
ψi(eσ,k) ≤ min

i∈C\{0}
eσ,k({i, 0}) =





0 if 0 ∈ C

1 if 0 /∈ C

(6.3)
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implying that
∑

i∈N

ψi(eσ,k) =
∑

C∈C(eσ,k)

∑

j∈C\{0}
ψj(eσ,k) ≤ |C(eσ,k)| − 1 = eσ,k(Γ),

where Γ is a minimum spanning network on N ′ for mcst situation eσ,k. By EFF,

we have
∑

i∈N ψi(eσ,k) = eσ,k(Γ), and then the inequalities in equation (6.3)

are equalities. Finally, by ET, we find that

ψi(eσ,k) =





0 if 0 ∈ Ci(eσ,k)

1
|Ci(eσ,k)| if 0 /∈ Ci(eσ,k)

= ô∗i (π
σ,k−1) = Pi(eσ,k) (6.4)

for each i ∈ N , where the last equality follows by relation (4.22). Note that we

only used EFF, ET and UBC properties to get relation (6.4) for mcst situation

eσ,k. Now, we use the CPL property to show that for any mcst situation w ∈
WN ′

, ψ(w) = P (w). Let σ ∈ ΣEN′ be such that w ∈ Kσ. From the CPL

property of ψ and relation (2.2) it follows

ψ(w) = w(σ(1))ψ(eσ,1) +
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
ψ(eσ,k). (6.5)

Further, from (4.21), (6.4) and (6.5) we obtain ψ(w) = P (w).

To prove the logical independence of the four properties we need to consider

some other solutions on WN ′
:

i) z, such that zi(w) = 0 for each i ∈ N and mcst situation w;

ii) P τ , with τ ∈ ΣN ;

iii) ε, such that εi(w) = w(Γ)
|N | for each i ∈ N , where Γ is a minimum spanning

network on N ′ for mcst situation w;

iv) D, such that (w, N ′)-components “pay” proportionally to their “distance”

from the source, i.e. such that for each i ∈ N

Di(w) =





1
|Ci(w)|

minj∈Ci(w) w({j,0})P
C∈C(w) minj∈C\{0} w({j,0}) w(Γ) if 0 /∈ Ci(w)

0 if 0 ∈ Ci(w),

where Γ is a minimum spanning network on N ′ for mcst situation w.
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Proposition 6.2.2 The axioms EFF, ET, UBC and CPL are logically inde-

pendent.

Proof The logical independence of the four properties follows from the following

table.

EFF ET UBC CPL

z no yes yes yes

P τ yes no yes yes

ε yes yes no yes

D yes yes yes no

It is trivial to show that z satisfies axioms ET, UBC and CPL but not EFF.

Being an Obligation rule, P τ satisfies the CPL, EFF and UBC, as it will be

proved in Proposition 6.2.3. In order to show that P τ does not satisfy the ET

property, consider the mcst situation < N ′, w > with N ′ = {0, 1, 2} and w as

depicted in Figure 6.1, and let τ ∈ Σ{1,2} be such that τ(1) = 1 and τ(2) = 2.

Then, P τ
1 (w) = 0 and P τ

2 (w) = 1.

¡
¡

¡¡

@
@

@@
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ii

0

1 2

1 5

0

Figure 6.1: The mcst situation < {0, 1, 2}, w >.

To prove the third row, it is easy to see that ε satisfies EFF, ET and CPL.

To see that ε does not satisfy the UBC property, consider again the mcst sit-

uation < N ′, w > with N ′ = {0, 1, 2} and w as depicted in Figure 6.1. Then,

ε(w) = ( 3
2 , 3

2 ), i.e. player 1 in the (w,N ′)-component C = {1} pays more than

mini∈C\{0} w({i, 0}) = 1.

For the proof of the last row, note that D trivially satisfies EFF and ET. Let

w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. The UBC property follows

from the fact that for each component C ∈ C(w), if 0 /∈ C(w) then

minj∈C w({j, 0}) = minj∈C(w) w({j,0})P
C∈C(w) minj∈C\{0} w({j,0})

∑
C∈C(w) minj∈C\{0} w({j, 0}) ≥

≥ minj∈C(w) w({j,0})P
C∈C(w) minj∈C\{0} w({j,0})w(Γ) =

∑
j∈C Dj(w).
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In order to prove that D does not satisfy the CPL property, consider the two

mcst situations < N ′, w′ > and < N ′, w′′ >, with N ′ = {0, 1, 2} and w′, w′′ as

depicted in Figure 6.2.
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< {0, 1, 2}, w′ >
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@

@@

i
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0
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20 1

2

< {0, 1, 2}, w′′ >

Figure 6.2: Two mcst situations in the same Kruskal cone.

Note that w′, w′′ ∈ Kσ with σ(1) = {0, 2}, σ(2) = {1, 2} and σ(3) = {0, 1}.
Then, D(w′) = ( 1

1 × 4
4 × 1, 0) = (1, 0) and D(w′′) = ( 1

1 × 20
21 × 3, 1

1 × 1
21 × 3) =

( 60
21 , 3

21 ).

Differently, the sum of the two mcst situations w′+w′′ is the mcst situation

< N ′, w′ + w′′ > with w′ + w′′ depicted in Figure 6.3. Finally, D(w′ + w′′) =

¡
¡

¡¡

@
@

@@

i

ii

0

1 2

24 1

3

Figure 6.3: The mcst situation < {0, 1, 2}, w′ + w′′ >.

( 1
1 × 24

25 × 4, 1
1 × 1

25 × 4) = ( 96
25 , 4

25 ) 6= ( 81
21 , 3

21 ) = D(w′) +D(w′′).

We conclude this section with Proposition 6.2.3 claiming that every Obligation

rule satisfies three of the four properties presented above.

Proposition 6.2.3 Obligation rules satisfy the properties EFF, UBC and CPL.
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Proof We already proved in Proposition 4.5.3 that Obligation rules are efficient.

As we already observed, the CPL property follows trivially from the defini-

tion of Obligation rule, since the contribution matrix w.r.t. an obligation map

ô and an ordering σ ∈ ΣEN′ is the same for each w ∈ Kσ.

The same arguments used to prove that the P -value satisfies the UBC prop-

erty works also for every Obligation rule. More precisely, let ô be an obligation

map on Θ(N ′), let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ.

If w is the zero function then for the Obligation rule φô it directly follows

that
∑

i∈S φô
i (w) = 0 = mini∈S w({i, 0}), for each S ∈ 2N \ {∅}.

Consider w 6= 0 and let C 6= {0} be a (w,N ′)-component. Note that

there exists an m ∈ {1, . . . , |EN ′ |} such that σ(m) ⊆ C ∪ {0} and w(σ(m)) =

mini∈C\{0} w({i, 0}). Define k = min{j|w(σ(j)) > 0}. If m < k, then 0 ∈ C

since nodes in C \ {0} pay nothing according to φô(w) and the UBC property

holds. Instead, if m ≥ k then

∑
i∈C\{0} φô

i (w) =

=
∑

i∈C\{0}
∑m

r=k w(σ(r))(ôi(πσ,r−1)− ôi(πσ,r)) ≤
≤ w(σ(m))

∑
i∈C\{0}

∑m
r=k(ôi(πσ,r−1)− ôi(πσ,r)) =

= w(σ(m))
∑

i∈C\{0} ôi(πσ,k−1) =

= w(σ(m))

(6.6)

where in the first equality we use that ôi(πσ,u) = 0 for all u ∈ {m, . . . , |EN ′ |}
and for each i ∈ C, and in the last one we use the fact that all nodes in C \ {0}
are connected in the graph < N ′, F σ,k−1 >. Note that relation (6.6) proves the

UBC property.

6.3 An axiomatic characterization of the Bird

core

In order to introduce an axiomatic characterization of the Bird core, we need

to prove the following fact for NA-semimetric mcst situations.



6.3. AN AXIOMATIC CHARACTERIZATION OF THE BIRD CORE 95

Lemma 6.3.1 Let w, w′ ∈ WN ′
and let σ ∈ ΣEN′ be such that w, w′ ∈ Kσ.

Let α, α′ ≥ 0. Then, αw, α′w′, αw + α′w′ ∈ K σ̂ for some σ̂ ∈ ΣEN′ .

Proof By relation (5.5), for each edge e ∈ EN ′ , there is an edge ē ∈ EN ′ such

that w(e) = w(ē): given that e = {i, j}, ē is such that w(ē) = minP∈PN′
ij

t(p).

Note that for each w1 in the same cone Kσ as w we have w1(e) = w1(ē). This

implies that for all pairs of edges e1, e2 ∈ EN ′

w(e1) ≤ w(e2) ⇔ w(ē1) ≤ w(ē2) ⇔ w1(e1) ≤ w1(e2).

So, for each σ̄ ∈ ΣEN′ we have:

w ∈ K σ̄ ⇔ w1 ∈ K σ̄.

Using this fact, respectively, for αw, α′w′ and αw + α′w′ ∈ Kσ in the role

of w1, we obtain

w ∈ K σ̄ ⇔ αw, α′w′, αw + α′w′ ∈ K σ̄,

for each σ̄ ∈ ΣEN′ .

Proposition 6.3.1 Let w, w′ ∈ WN ′
and let σ ∈ ΣEN′ be such that w, w′ ∈ Kσ.

Let α, α′ ≥ 0. Then,

i) αw + α′w′ = αw + α′w′;

ii) cαw+α′w′ = αcw + α′cw′ .

[The NA-semimetric mcst situations w, w′, αw + α′w′ are obtained via reduction

of the weight functions w,w′, αw + α′w′, respectively.]

Proof

i) Let e = {i, j} ∈ EN ′ . We have

αw + α′w′(e) = (αw + α′w′)(ê)

= αw(ê) + α′w′(ê)

= αw(e) + α′w′(e),
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where ê ∈ EN ′ is such that w(ê) = minp∈PN′
ij

maxa∈E(p)

(
(αw+α′w′)(a)

)
,

and where the second equality follows from the fact that w, w′ and (αw +

α′w′) all belong to Kσ;

ii) Note that, by Lemma 6.3.1, αw,α′w′, αw + α′w′ ∈ K σ̄ for some σ̄ ∈ ΣEN′ .

For each S ∈ 2N \ {∅}, there is, according to Remark 5.3.3, a common

mcst ΓS for αw, α′w′ and αw + α′w′. Hence,

αcw(S) + α′cw′(S) =
∑

e∈ΓS
αw(e) +

∑
e∈ΓS

α′w′(e)

=
∑

e∈ΓS

(
αw′(e) + α′w(e)

)

=
∑

e∈ΓS

(
αw + α′w′(e)

)

= cαw+α′w′(S),

where the third equality follows by (i).

Some interesting properties for multisolutions on the class of mcst situations

are the following.

Property 6.3.1 The multisolution G is efficientF (EFFF) if for each w ∈ WN ′

and for each x ∈ G(w) ∑

i∈N

xi = w(Γ),

where Γ is a minimum cost spanning network for w on N ′.

Property 6.3.2 The multisolution G has the positive (POS) property if for

each w ∈ WN ′
and for each x ∈ G(w)

xi ≥ 0

for each i ∈ N .

Property 6.3.3 The multisolution G has the Upper Bounded ContributionF

(UBCF) property if for each w ∈ WN ′
and every (w, N ′)-component C 6= {0}

∑

i∈C\{0}
xi ≤ min

i∈C\{0}
w({i, 0})

for each x ∈ G(w).
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Property 6.3.4 The multisolution G has the Cone-wise Positive LinearityF

(CPLF) property if for each σ ∈ ΣEN′ , for each pair of mcst situations w, ŵ ∈
Kσ and for each pair α, α̂ ≥ 0, we have

G(αw + α̂ŵ) = αG(w) + α̂G(ŵ).

[Here we denote by αG(w) + α̂G(ŵ) the set {αx + α̂x̂|x ∈ G(w), x̂ ∈ G(ŵ}.]

Proposition 6.3.2 The Bird core BC satisfies the properties EFFF, POS, UBCF

and CPLF.

Proof Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. Since BC(w) =

C(cw), the following considerations hold:

i) For each allocation x ∈ BC(w),
∑

i∈N xi = w(Γ) for some mcst Γ for w by

the efficiency property of the core of the game cw. So, BC has the EFFF

property.

ii) For each allocation x ∈ BC(w), xi ≥ 0 for each i ∈ N since the Bird core

is the convex hull of all Bird allocations in the mcst w, which are vectors

in IRN
+ . So, BC has the POS property.

iii) For each (w, N ′)-component C 6= {0} and each x ∈ BC(w)
∑

i∈C\{0}
xi ≤ cw(C \ {0}) = min

i∈C\{0}
w({i, 0})

by coalitional rationality of the core of the game cw. So, BC has the UBCF

property.

iv) Let σ ∈ ΣEN′ , let w, w′ ∈ WN ′
be such that w, w′ ∈ Kσ and let α, α′ ≥ 0.

Since the core is additive on the class of concave games (see Dragan et

al. (1989)), we have

BC(αw+α′w′) = C(cαw+α′w′) = αC(cw)+α′C(cw′) = αBC(w)+α′BC(w′).

Hence, BC has the CPLF property.

Inspired by the axiomatic characterization of the P -value (Branzei et al. (2004))

we provide the following theorem.
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Theorem 6.3.2 The Bird core BC is the largest multisolution which satisfies

EFFF, POS, UBCF and CPLF, i.e. for each multisolution F which satisfies

EFFF, POS, UBCF and CPLF, we have F (w) ⊆ BC(w), for each w ∈ WN ′
.

Proof We already know by Proposition 6.3.2 that the Bird core BC satisfies

the four properties EFFF, POS, UBCF and CPLF.

Let Ψ : WN ′ ³ IRN be a multisolution satisfying EFFF, POS, UBCF and

CPLF. Let w ∈ WN ′
and σ ∈ ΣEN′ be such that w ∈ Kσ. We have to prove

that Ψ(w) ⊆ BC(w).

First, note that by the CPLF property of Ψ

(
w(σ(1))Ψ(eσ,1) +

|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
Ψ(eσ,k)

)
= Ψ(w). (6.7)

Let x ∈ Ψ(w). According to (6.7) there exists xeσ,k ∈ Ψ(eσ,k) for each k ∈
{1, . . . , |EN ′ |} such that

x = w(σ(1))xeσ,1
+
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
xeσ,k

.

By the UBCF property, for each k ∈ {1, . . . , |EN ′ |} and for each (eσ,k, N ′)-

component C 6= {0} we have

∑

i∈C\{0}
xeσ,k

i ≤ min
i∈C\{0}

eσ,k({i, 0}) =





0 if 0 ∈ C

1 if 0 /∈ C

(6.8)

implying that
∑

i∈N

xeσ,k

i =
∑

C∈C(eσ,k)

∑

j∈C\{0}
xeσ,k

j ≤ |C(eσ,k)| − 1 = eσ,k(Γ),

where Γ is a minimum spanning network on N ′ for the simple mcst situation eσ,k.

By the EFFF property, we have
∑

i∈N xeσ,k

i = eσ,k(Γ), and then inequalities in

relation (6.8) are equalities, that is

∑

i∈C\{0}
xeσ,k

i =





0 if 0 ∈ C

1 if 0 /∈ C.

(6.9)
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Now, consider the game c
eσ,k corresponding to the simple mcst situation eσ,k.

Note that for each S ∈ 2N \ {∅},

c
eσ,k(S) =

∣∣∣{C | C is a (eσ,k, N ′)− component, C ∩ S 6= ∅, 0 /∈ C}
∣∣∣,

which is the number of (eσ,k, N ′)-components not connected to 0 in eσ,k with

at least one node in the player set S.

By (6.9) and the POS property, it follows that
∑

i∈S xeσ,k

i ≤ c
eσ,k(S) and to-

gether with the EFFF property we have xeσ,k ∈ C(c
eσ,k) = BC(eσ,k). Moreover,

from Proposition 6.3.1 it follows

x =
(
w(σ(1))xeσ,1

+
|EN′ |∑

k=2

(
w(σ(k))− w(σ(k − 1))

)
xeσ,k

)
∈ C(cw) = BC(w).

(6.10)

Keeping into account relation (6.7), we have Ψ(w) ⊆ BC(w).

6.4 Sharing values for mcst games

In this section the set of Obligation rules, and, consequently, the set of conser-

vative CC-rules, will be considered from a value-theoretic point of view.

First, we introduce some notions. The dual unanimity game (N, u∗S) on S ⊆
N is the game described by u∗S(T ) = 1 if S ∩ T 6= ∅ and u∗S(T ) = 0, otherwise.

It is well-known that the dual unanimity games form a basis of the linear space

GN implying that every cost game (N, c) can be written as a linear combination

of dual unanimity games in a unique way, i.e. c =
∑

S⊆N,S 6=∅ αS(c)u∗S . The

coefficients (αS(c))S∈2N\{∅} are called dual unanimity coefficients of the cost

game (N, c).

A sharing system is a map q : 2N \ {∅} → IRN
+ such that q(S) ∈ ∆(S) , for

every nonempty coalition S. With every sharing system q one can associate a

sharing value mq, defined for every c ∈ GN and every i ∈ N by

mq
i (c) =

∑

S⊆N :i∈S

qi(S)αS(c) (6.11)

where αS(c) is the dual unanimity coefficient of S in the game c.
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The most well-known value in the theory of cost games is the Shapley value,

introduced by Shapley (1953). This value can be described in several ways. In

this setting the definition of the Shapley value using dual unanimity games fits

better. In formula

φi(c) =
∑

S⊆N :i∈S

αS(c)
|S| . (6.12)

for each i ∈ N . Note that relation (6.12) can be obtained by relation (6.11)

with qi(S) = 1
|S| , for each i ∈ N and S ⊆ N such that i ∈ S.

Further, with every obligation function o one can associate a special sharing

value mo.

The following lemmas are helpful in relating sharing values with Obligation

rules.

Lemma 6.4.1 Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. Then,

i) w = w(σ(1))eσ,1 +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
eσ,k,

ii) cw = w(σ(1))ceσ,1 +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
c
eσ,k ,

where eσ,k ∈ Kσ, k ∈ {1, 2, . . . , |EN ′ |}, is the the minimal mcst situation on

eσ,k ∈ Kσ.

Proof The proof follows from relation (2.2) and by Proposition 6.3.1.

Let o be an obligation function and let ô be the corresponding obligation map

on Θ(N ′). Let w ∈ WN ′
. From relation (2.2) and the definition of Obligation

rule via relation (4.14), it follows that φô(w) can be calculated as linear com-

bination of φô(eσ,k), k ∈ {1, . . . , |EN ′ |}. More precisely, let σ ∈ ΣEN′ be such

that w ∈ Kσ, then

φô(w) = w(σ(1))φô(eσ,1) +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
φô(eσ,k), (6.13)

where for k ∈ {1, . . . , |EN ′ |} and eσ,k ∈ Kσ

φô(eσ,k) =
∑|EN′ |

r=k+1

(
ô(πσ,r−1)− ô(πσ,r)

)
= ô(πσ,k) =

∑
V ∈πσ,k:0/∈V o(V ).

(6.14)
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Further, from Proposition 4.5.3 (efficiency of Obligation rules), Theorems 5.2.2

(cost monotonicity of Obligation rules) and Proposition 5.4.3.i it follows that

for every w ∈ WN ′

φô(w) = φô(w). (6.15)

Now, we introduce the following lemma.

Lemma 6.4.2 Let σ ∈ ΣEN′ and let eσ,k ∈ Kσ, k ∈ {1, . . . , |EN ′ |}. Let ô be

an obligation map on Θ(N ′). Then,

i) c
eσ,k =

∑
V ∈πσ,k:0/∈V u∗V ,

ii) mo(c
eσ,k) = φô(eσ,k),

where eσ,k ∈ Kσ, k ∈ {1, 2, . . . , |EN ′ |}, is the the minimal mcst situation on

eσ,k ∈ Kσ.

Proof First, note that by Lemma 6.3.1, eσ,k ∈ Kσ.

i) follows from the fact that for each S ∈ 2N \ {∅},

c
eσ,k(S) = |{V : V is a (eσ,k, N ′)− component, V ∩ S 6= ∅, 0 /∈ V }|,

where the (eσ,k, N ′)-components are precisely the elements of the partition

πσ,k;

ii)

mo(c
eσ,k) = mo(

∑
V ∈πσ,k:0/∈V u∗V )

=
∑

V ∈πσ,k:0/∈V mo(u∗V )

=
∑

V ∈πσ,k:0/∈V o(V ) = φô(eσ,k),

(6.16)

where the first equality follows by part i) of Proof, the second equality

follows from linearity of mo, the third equality follows from relation (6.11)

and the last equality follows from relations (6.14) and (6.15).

Finally, we introduce the main result of this section.
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Theorem 6.4.3 Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. Let ô

be an obligation map on Θ(N ′). Then,

mo(cw) = φô(w).

Proof Note that

mo(cw)

= w(σ(1))mo(ceσ,1) +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
mo(c

eσ,k)

= w(σ(1))φô(eσ,1) +
∑|EN′ |

k=2

(
w(σ(k))− w(σ(k − 1))

)
φô(eσ,k)

= φô(w),

where the first equality follows from Lemma 6.4.1.ii and the linearity of mo,

the second equality from Lemma 6.4.2.ii, and the third equality follows from

relation (6.13).

Corollary 6.4.4 The P -value on w equals the Shapley value on cw.

Proof Consider the charge system of Example 4.2.3. As we already said in

Remark 4.7.2, such a charge system leads to a conservative CC-rule which cor-

responds to the P -value (Branzei et al. (2004)). The obligation function o∗

obtained from the charge system Ĉ of Example 4.2.3 via relation (4.27) is such

that o∗(S) = eS

|S| for each S ∈ 2N \ {∅}, where eS is the |N |-vector such that

eS
i = 1 if i ∈ S and eS

i = 0 if i ∈ N \ S. Then, from relation (6.12) it follows

directly that mo∗(cw) is the Shapley value of the game cw.



Chapter 7

Variants of mcst games

7.1 Introduction

In this section we consider some variants of minimum cost spanning tree games.

One variant, presented in Section 7.2, is the class of monotonic minimum cost

spanning tree games which are characterized by the fact that coalitions are

allowed to use networks which contain nodes outside the coalition (Steiner trees).

Two other variants are obtained by considering directed weighted graphs. Here

the aim of coalitions is to construct a directed network such that every player

in the coalition is connected with the source via a directed path. This approach

leads to the class of directed minimum cost spanning tree games and monotonic

directed minimum cost spanning tree games, both presented in Section 7.3. For

any of these new classes of games we present an example that does not have

a pmas. Finally, in Section 7.4, a special subclass of directed minimum cost

spanning tree problems, introduced in Moretti et al. (2002), is studied, which

shows up in considering the problem of connecting houses in mountains with

a water purifier. It is shown that the games corresponding to these problems

always have a pmas. Sections 7.2 and 7.3 are based on Section 6 in Norde,

Moretti, Tijs (2004) and Section 7.4 is based on Moretti, Norde, Pham Do, Tijs

(2002).
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7.2 Monotonic mcst games

First, we consider the class of monotonic minimum cost spanning tree games.

Definition 7.2.1 Let < N ′, w > be a complete weighted graph. The monotonic

minimum cost spanning tree game (N, cmon), corresponding to < N ′, w >, is

defined by

cmon(S) = min{w(Γ) : Γ is a spanning network for some coalition T ⊇ S}

for every S ∈ 2N\{∅}.

In the following example we present a monotonic minimum cost spanning tree

game without a pmas.

Example 7.2.1 Consider the complete weighted graph < N ′, w > with N ′ =

{0, 1, 2, 3, 4, 5, 6} and cost function w as depicted in Figure 7.1. All edges which

are depicted have cost 1, whereas all other edges have cost 10. A minimum
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Figure 7.1: The cost function of Example 7.2.1.

cost spanning tree for S = {1, 2, 3} is {{0, 4}, {0, 5}, {1, 4}, {2, 4}, {3, 5}}. So,

cmon(123) = 5. A minimum cost spanning tree for S = {1, 2} is {{0, 4}, {1, 4},
{2, 4}}. So, cmon(12) = 3. In a similar way one gets cmon(13) = cmon(23) = 3. If
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cmon has a pmas {xS,i}S∈2N\{∅},i∈S then

10 = 2cmon(123)

= 2(x123,1 + x123,2 + x123,3)

≤ x12,1 + x13,1 + x12,2 + x23,2 + x13,3 + x23,3

= x12,1 + x12,2 + x13,1 + x13,3 + x23,2 + x23,3

= cmon(12) + cmon(13) + cmon(23)

= 9,

which yields a contradiction. In fact, we have shown that cmon is not even

totally balanced. Megiddo (1978) already noted that monotonic minimum cost

spanning tree games do not have to be totally balanced.

7.3 Directed mcst games

In order to provide the definition of directed minimum cost spanning tree games

and monotonic directed minimum cost spanning tree games we need some more

terminology. A complete directed weighted graph is a tuple < N ′, w > where

i) N ′ = {0, 1, . . . , n};
ii) w : D → IR+, where D = {(i, j) : i, j ∈ N ′, i 6= j}.

Elements of D are called directed arcs. A directed path from i to j in network

Γ ⊆ D is a sequence of nodes i = i0, i1, . . . , ik = j such that (is, is+1) ∈ Γ for

every s ∈ {0, . . . , k − 1}. Network Γ is a spanning network for S (S ⊆ N) if for

every (i, j) ∈ Γ we have {i, j} ⊆ S∪{0} and if for every i ∈ S there is a directed

path in Γ from i to 0.

Definition 7.3.1 Let < N ′, w > be a complete directed weighted graph. The

directed minimum cost spanning tree game (N, c), corresponding to < N ′, w >,

is defined by

c(S) = min{w(Γ) : Γ is a spanning network for S}
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for every S ∈ 2N\{∅}, whereas the monotonic directed minimum cost spanning

tree game (N, cmon), corresponding to < N ′, w >, is defined by

cmon(S) = min{w(Γ) : Γ is a spanning network for some coalition T ⊇ S}

for every S ∈ 2N\{∅}.
We conclude this section with two examples which show that directed minimum

cost spanning tree games and monotonic directed minimum cost spanning tree

games do not necessarily have a pmas.

Example 7.3.1 Consider the complete directed weighted graph < N ′, w >

with N ′ = {0, 1, 2, 3, 4, 5, 6} and cost function w as depicted in Figure 7.2. All

directed arcs which are depicted have cost 0 whereas all other directed arcs

have cost 1. Let (N, c) be the directed minimum cost spanning tree game,
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Figure 7.2: The cost function of Example 7.3.1.

corresponding to < N ′, w >, and suppose that x = {xS,i}S∈2N\{∅},i∈S is a

pmas for c. A minimum cost spanning network for N is obtained by taking

all directed arcs with cost 0 and directed arc (1, 0). So, c(123456) = 1. Now,

consider S = {1, 3, 4}. We have

2 = c(134) = x134,1 + x134,3 + x134,4

≤ x14,1 + x3,3 + x14,4

= x14,1 + x14,4 + x3,3

= c(14) + c(3)

= 1 + 1 = 2,

and hence x134,3 = x3,3 = c(3) = 1. Since also c(13) = c(4) = 1 we get in a

similar way that x134,4 = 1. Therefore, x134,1 = c(134) − x134,3 − x134,4 = 0
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and hence, by population monotonicity, xN,1 ≤ x134,1 = 0. By considering

respectively coalitions {2, 3, 4}, {3, 5, 6}, {4, 5, 6}, {5, 1, 2} and {6, 1, 2} we get

via analogous arguments that the numbers xN,2, . . . , xN,6 are all nonpositive.

This contradicts however that
∑

i∈N xN,i = c(N) = 1.

Example 7.3.2 Consider the complete directed weighted graph < N ′, w >

with N ′ = {0, 1, 2, 3, 4, 5, 6} and cost function w as depicted in Figure 7.3. All

directed arcs which are depicted have cost 0, whereas all other directed arcs

have cost 1. Let cmon be the monotonic directed minimum cost spanning tree
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Figure 7.3: The cost function of Example 7.3.2.

game corresponding to < N ′, w >. A minimum cost spanning network for

S = {1, 2, 3} is {(1, 4), (2, 4), (3, 5), (4, 0), (5, 0)} so cmon(123) = 2. A minimum

cost spanning network for S = {1, 2} is {(1, 4), (2, 4), (4, 0)} so cmon(12) = 1. In

a similar way one gets cmon(13) = cmon(23) = 1. Since 2cmon(123) > cmon(12) +

cmon(13) + cmon(23) we conclude, in a similar way as in Example 7.2.1, that cmon

has no pmas.

7.4 A connection situation on mountains

Consider a group of persons whose houses lie on mountains which surround a

valley or part of a coast. Their houses are not yet connected to a drainage where
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one has to empty their sewage. Obviously, sewage has to be collected downhill,

in a water purifier in the valley or along the coast. Each one wants to connect

his house with a drain pipe to the water purifier. However, it is possible but not

necessary for everyone to be connected directly with the water purifier, being

connected via others is sufficient. Assuming that pipes are large enough one

pipe can serve more than one person. Only connections from houses to strictly

lower ones are allowed but, sometimes, connection from higher houses to lower

houses is impossible (e.g. because of a natural reef between the two houses). A

formal description of this kind of situations on mountains is given below.

Consider a tuple given by < N, {0}, A,w >, where N = {1, 2, . . . , n} cor-

responds to the set of agents (houses), 0 corresponds to the water purifier and

where < N ∪ {0}, A > is a rooted directed graph with N ∪{0} as set of vertices,

A ⊂ N × (N ∪ {0}) as set of arcs and 0 as the root. We assume also that the

following conditions M.1 and M.2 hold:

M.1 (Direct connection possibility) For each k ∈ N , (k, 0) ∈ A.

M.2 (No cycles) For each s ∈ IN and v1, v2, . . . , vs ∈ N ∪ {0} such that

(v1, v2) ∈ A, (v2, v3) ∈ A, . . ., (vs−1, vs) ∈ A we have (vs, v1) /∈ A.

Further, w : A → IR+ is a non-negative function on the set of arcs. We call such

a tuple < N, {0}, A,w > with the properties M.1 and M.2 a mountain situation.

Given a mountain situation < N, {0}, A, w > there exists an intrinsic height

function h : N ∪ {0} → IN ∪ {0} such that (i, j) ∈ A implies h(i) > h(j). One

defines h as follows: for i ∈ N ∪ {0}, h(i) is the length of a longest path from i

to 0.

To avoid too many technicalities we will assume in the following that <

N, {0}, A,w > does not only satisfy M.1 and M.2, but also M.3:

M.3 (Genericity condition) For each k ∈ N and all i, j ∈ N ∪ {0}, i 6= j:

(k, i) ∈ A, (k, j) ∈ A ⇒ w(k, i) 6= w(k, j).

Condition M.3 gives us the possibility to speak of the cheapest connection point

bS(k) of k in S, with S ∈ 2N \ {∅}:

bS(k) = argminl∈S∪{0}:(k,l)∈Aw(k, l).
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Condition M.3 is useful to avoid too many technicalities. We invite the reader

to adjust the results of this section for situations where M.3 does not hold.

Two interesting questions related to such a mountain situation are:

Q.1 How to find a 0-connecting subtree < N ∪ {0}, T > of < N ∪ {0}, A >,

i.e. a subtree connecting each i ∈ N with 0, with minimum cost?

Q.2 How to allocate the connection costs in such a tree among the agents?

Given a mountain situation < N, {0}, A, w >, the next theorem answers

question Q.1 showing that there is a unique optimal tree (with minimum cost),

connecting all players in N with the root 0. This tree corresponds to the situ-

ation where each agent k ∈ N connects himself with his best connection point

bN (k) ∈ N ∪ {0}.

Theorem 7.4.1 Let < N, {0}, A,w > be a mountain situation and let T =

{(k, bN (k)) | k ∈ N}. Then

(i) < N ∪ {0}, T > is a 0-connecting subtree of < N ∪ {0}, A >.

(ii) The tree < N ∪{0}, T > is the unique 0-connecting subtree with minimum

cost.

Proof (i) Since T ⊂ A, clearly T does not contain cycles. That T is a tree

connecting each point i ∈ N via a path with 0 follows from the claim that for

each s ∈ {1, . . . , L}, where L = max{h(i) | i ∈ N ∪{0}}, the next property P (s)

holds:

P (s): for each k ∈ N with h(k) = s there is a t(k) ∈ IN and

a sequence v0, v1, . . . , vt(k) such that v0 = k, vr+1 = bN (vr) for

r = 0, 1, . . . , t(k)− 1, and vt(k) = 0.

We prove the claim by induction to s. P (1) holds because for each k ∈ N with

h(k) = 1 we take t(k) = 1, v0 = k and v1 = 0. Suppose now that P (s) holds

for each s < m with m ∈ {2, . . . , L}. Let k ∈ N be such that h(k) = m. Then

h(bN (k)) < m. If h(bN (k)) = 0, then bN (k) = 0 and we take t(k) = 1, v0 = k,

v1 = 0. Suppose h(bN (k)) 6= 0. Then, by the induction hypothesis, there is a

t(bN (k)) and a sequence v0, v1, . . . , vt(bN (k)) determining a path in A from bN (k)
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to 0 with vr+1 = bN (vr) for r ∈ {0, 1, . . . , t(bN (k))− 1}. Then w0, w1, . . . , wt(k)

is a desired path for k, where t(k) = t(bN (k)) + 1, w0 = k, wi = vi−1 for

i ∈ {1, . . . , t(k)}. So, P (m) holds.

(ii) Let < N ∪ {0}, G > be a 0-connecting tree unequal to < N ∪ {0}, T >.

Then for each point k ∈ N , there is a π(k) ∈ N ∪ {0} such that (k, π(k)) ∈ G.

Moreover, since G 6= T we can choose π : N → N ∪ {0} such that there is a

k∗ ∈ N with π(k∗) 6= bN (k∗), implying w(k∗, π(k∗)) > w(k∗, bN (k∗)) by M.3.

Then ∑

(i,j)∈G

w(i, j) ≥
∑

k∈N

w(k, π(k)) >
∑

k∈N

w(k, bN (k)).

So, < N ∪ {0}, G > is not optimal.

Example 7.4.1 Figure 7.4 corresponds to a mountain situation < N, {0}, A,

w >, where N = {1, 2, 3}, A = {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)} and

w(i, j) = 10i − 5j for each (i, j) ∈ A. Then the intrinsic height function h

is described by h(i) = i for each i ∈ N . Since bN (1) = 0, bN (2) = 1, bN (3) = 2,

the tree < N∪{0}, T > with T = {(1, 0), (2, 1), (3, 2)} is an optimal 0-connecting

tree with cost 10 + 15 + 20 = 45.
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Figure 7.4: The mountain situation of Example 7.4.1

7.4.1 Cooperative cost games on mountain situations

To provide an answer to question Q.2 we need to introduce the corresponding

cooperative cost games. For further use, we first recall bounds for core elements
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for a cooperative cost game (N, c):

Mi(N, c) ≤ xi ≤ c({i}) for all x ∈ core(N, c), i ∈ N. (7.1)

Here Mi(N, c) = c(N)−c(N\{i}), is the marginal contribution to the costs of N

by player i ∈ N . Note that the second inequality in (7.1) is one of the stability

conditions
∑

i∈S xi ≤ c(S), S ∈ 2N , of core allocations. For the first inequality

in (7.1) note that

xi =
n∑

k=1

xk −
∑

k∈N\{i}
xk = c(N)−

∑

k∈N\{i}
xk ≥ c(N)− c(N\{i}) = Mi(N, c),

where the second equality follows from the fact that core allocations are effi-

cient and the inequality from the stability condition
∑

i∈S xi ≤ c(S) of core

allocations, with N\{i} in the role of S.

Let < N, {0}, A,w > be a mountain situation. Then the corresponding

cooperative cost game (N, ĉ) is given by ĉ(∅) = 0 and for T ∈ 2N\{∅} the cost

ĉ(T ) of coalition T is the cost of the optimal 0-connecting tree in the mountain

problem < T, {0}, A(T ), wT >, where A(T ) = {(i, j) ∈ A | i ∈ T, j ∈ T ∪ {0}},
and wT : A(T ) → IR+ is the restriction of w : A → IR+ to A(T ). Note that for

each T ∈ 2N\{∅},
ĉ(T ) =

∑

k∈T

w(k, bT (k)).

Take the allocation B(N, {0}, A,w) ∈ IRN with Bk(N, {0}, A, w) = w(k, bN (k)),

corresponding to the situation where each player i pays his cheapest connection

in N ∪ {0}. Then B(N, {0}, A,w) is a core element of (N, ĉ), since

ĉ(N) =
∑

k∈N

w(k, bN (k)) =
∑

k∈N

Bk(N, {0}, A, w)

by Theorem 7.4.1, and further

ĉ(T ) =
∑

k∈T

w(k, bT (k)) ≥
∑

k∈T

w(k, bN (k)) =
∑

k∈T

Bk(N, {0}, A, w)

for each T ∈ 2N\{∅}. The core element B(N, {0}, A, w) corresponds to the

situation where the player bN (k) to which k connects himself does not ask a

compensation for this service to k. But there are other interesting core alloca-

tions in general, corresponding to situations where compensation plays a role.
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In the description of these core elements the second cheapest connection point

of k in T ∪ {0},

sT (k) =

{
argminl∈(T∪{0})\{bT (k)}:(k,l)∈Aw(k, l) if bT (k) 6= 0

0 if bT (k) = 0,

plays a role.

Suppose player k wants to connect to bN (k) 6= 0 and player bN (k) wants to

ask a price pk ≥ 0 from k for connecting k. Which price pk can bN (k) ask for his

service to k such that k connects with bN (k) and does not go, e.g., to the second

best connection point sN (k) for a connection? The price should be an element

of the closed interval [0, w(k, sN (k)) − w(k, bN (k))]. A price pk larger than

w(k, sN (k))− w(k, bN (k)) can lead to a connection to sN (k), and if sN (k) 6= 0

even to a positive compensation for sN (k), e.g. 1
2 (pk−w(k, sN (k))+w(k, bN (k)))

and then both players k and sN (k) are better off. The allocations (x1, . . . , xn)

corresponding to such competitive prices in the given closed interval turn out to

be just the core allocations of the k-connection game (N, ck) to be introduced

now.

The k-connection game (N, ck) is the cooperative cost game with ck(S) = 0

if k /∈ S and ck(S) = w(k, bS(k)) otherwise. Note that, if bN (k) 6= 0, then

MbN (k)(N, ck) = ck(N)− ck(N\{bN (k)}) = w(k, bN (k))− w(k, sN (k)).

Theorem 7.4.2 Let (N, c1), . . . , (N, cn) be the connection games corresponding

to the mountain situation < N, {0}, A, w > and let (N, ĉ) be the corresponding

cost game. Then

(i) c =
∑n

k=1 ck,

(ii) core(N, ĉ) ⊃ P (N, c) where P (N, c) =
∑n

k=1 core(N, ck),

(iii) for every T ∈ 2N\{∅} we have core(T, ck) = {0} if k /∈ T ,

core(T, ck) =

{w(k, bT (k))ek − (ebT (k) − ek)p | 0 ≤ p ≤ w(k, sT (k))− w(k, bT (k))}

if k ∈ T, bT (k) 6= 0, and

core(T, ck) = {w(k, 0)ek} if k ∈ T, bT (k) = 0.
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[Here ek ∈ IRT is the k-th standard basis vector with k-th coordinate 1 and

the other coordinates 0.]

Proof (i) is a direct consequence of the definitions of c, c1, . . . , cn.

(ii) follows from (i) because core(N, ·) is a superadditive correspondence.

(iii) Note that if k /∈ T then (T, ck) is the zero game and hence core(T, ck)= {0}.
If k ∈ T and bT (k) 6= 0 then Mi(T, ck) = ck(i) = 0 if i ∈ T\{k, bT (k)}. For

x ∈ core(T, ck) we have, by (7.1), xi = 0 for each i ∈ T\{k, bT (k)}. Further,

since core allocations are efficient, we have xk + xbT (k) = ck(T ) = w(k, bT (k)),

and, by (7.1), w(k, bT (k)) − w(k, sT (k)) = MbT (k)(T, ck) ≤ xbT (k) ≤ 0. This

implies that

core(T, ck) ⊂
{w(k, bT (k))ek − (ebT (k) − ek)p | 0 ≤ p ≤ w(k, sT (k))− w(k, bT (k))}.

For the reverse inclusion, note that for xp = w(k, bT (k))ek − (ebT (k) − ek)p with

0 ≤ p ≤ w(k, sT (k)) − w(k, bT (k)) we have xp(T ) =
∑

i∈T xp
i = w(k, bT (k)) =

ck(T ) and for S ⊂ T :

xp(S) = w(k, bT (k))

= ck(S) if {k, bT (k)} ⊂ S

xp(S) = 0

= ck(S) if {k, bT (k)} ∩ S = ∅
xp(S) = w(k, bT (k)) + p

≤ w(k, sT (k))

≤ ck(S) if k ∈ S, bT (k) /∈ S, and

xp(S) = −p

≤ 0

= ck(S) if k /∈ S, bT (k) ∈ S.

So, xp ∈ core(T, ck).

If k ∈ T and bT (k) = 0 the statement can be proved in a similar way.

The subset P (N, ĉ) of core(N, ĉ) is the set of price supported core elements. In

the next section we will show that elements x of P (N, ĉ) are pmas-extendable

i.e. there exists a population monotonic allocation scheme {aT,i}T∈2N\{∅},i∈T

such that aN,i = xi for each i ∈ N .
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Example 7.4.2 Consider again the mountain situation of Example 7.4.1. The

cost game (N, ĉ) corresponding to this situation and the k-connection games are

given in the next table:

S = (1) (2) (3) (1, 2) (1, 3) (2, 3) (1, 2, 3)

c(S) = 10 20 30 25 35 40 45

c1(S) = 10 0 0 10 10 0 10

c2(S) = 0 20 0 15 0 20 15

c3(S) = 0 0 30 0 25 20 20

Note that c = c1+c2+c3, core(N, c1) = {(10, 0, 0)}, core(N, c2) = conv{(0, 15, 0),

(−5, 20, 0)}, and core(N, c3) = conv{(0, 0, 20), (0,−5, 25)}.
Finally, note that B(N, {0}, A, w) = (10, 15, 20).

7.4.2 Pmas on mountain situations

The scheme A0 = (w(i, bT (i)))T∈2N\{∅},i∈T is an example of a pmas. To find

other pmas-es it is interesting to note that if Ak is a pmas of the connection

game (N, ck), for each k ∈ N , then
∑n

k=1 Ak is a pmas of (N, ĉ). This motivates

us to concentrate on how to find a pmas of connection games.

If k /∈ T then (T, ck) is the zero game and hence core(T, ck) = {0}. If k ∈ T

then it follows from Theorem 7.4.2.iii that

core(T, ck) = {xαk

T ∈ IRT |αk ∈ [0, 1]},

where

xαk

T = w(k, bT (k))ek + α(w(k, bT (k))− w(k, sT (k)))(ebT (k) − ek)

if bT (k) 6= 0, and xαk

T = w(k, 0)ek if bT (k) = 0. Note that the core has a

unique element if bT (k) = 0. The next Theorem 7.4.4 shows that each core

element xαk

N of (N, ck) can be extended to a pmas, namely Aαk . Here Aαk =
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(aαk

T,i)T∈2N\{∅},i∈T is the allocation scheme, where, for every T ∈ 2N\{∅},

(aαk

T,i)i∈T =





0 if k /∈ T ;

(xαk

N )i∈T if k ∈ T and bN (k) ∈ T ;

x0
T if k ∈ T and bN (k) /∈ T.

This cost allocation scheme corresponds to the situation where k ∈ T pays his

connection cost w(k, bT (k)) and also as compensation for bN (k) of αk times

the marginal contribution of bN (k) in T if bN (k) ∈ T , and no compensation

if bN (k) /∈ T . Note that ‘column’ k of A0 equals ‘column’ k of the scheme

B(N, {0}, A, w). Note moreover, that in rows T with k /∈ T we have a core

element since 0 is the unique core element of < T, ck >, and in rows T with

k ∈ T and bN (k) /∈ T we also have core elements. It follows from the following

lemma that also the rows with k ∈ T and bN (k) ∈ T contain core elements. So,

Aαk is a stable monotonic allocation scheme.

Lemma 7.4.3 Let T ∈ 2N be such that k ∈ T and bN (k) ∈ T . Then (aαk

T,i)i∈T =

(xαk

N )i∈T ∈ core(T, ck).

Proof The only thing to show is that −α(w(k, bN (k)) − w(k, sN (k))) ∈ [0,

w(k, sT (k))− w(k, bT (k))]. Note that

0 ≤ −α(w(k, bN (k))− w(k, sN (k)))

= α(w(k, sN (k))− w(k, bN (k)))

≤ w(k, sN (k))− w(k, bN (k))

= w(k, sN (k))− w(k, bT (k))

≤ w(k, sT (k))− w(k, bT (k)).

At the last equality we used the fact that bN (k) = bT (k) and at the last inequal-

ity that

w(k, sN (k)) = min{w(k, i) | i ∈ (N ∪ {0})\{bN (k)}, (k, i) ∈ A}
≤ min{w(k, i) | i ∈ (T ∪ {0})\{bT (k)}, (k, i) ∈ A}
= w(k, sT (k)).

Theorem 7.4.4 For each α ∈ [0, 1], Aα = (aα
T,i)T∈2N\{∅},i∈T is a pmas of

(N, ck).
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Proof By Lemma 7.4.3, we only have to prove that aS,i ≥ aT,i for all S, T ∈ 2N

and i ∈ N with i ∈ S ⊂ T . Take i ∈ N , S, T ∈ 2N such that i ∈ S ⊂ T . We

consider 3 cases:

(i) Suppose that i ∈ S\{k, bN (k)}. Then aα
S,i = 0 ≥ 0 = aα

T,i since the column

(aU,i)U∈2N\{∅},i∈U is a zero column.

(ii) Suppose that i = bN (k) ∈ S ⊂ T . Then aα
S,bN (k) = aα

T,bN (k) = α(w(k, bN (k))−
w(k, sN (k))) if k ∈ S, and aα

S,bN (k) = aα
T,bN (k) = 0 if k /∈ T . If k /∈ S and k ∈ T

then aα
S,bN (k) = 0 ≥ aα

T,bN (k) = α(w(k, bN (k))− w(k, sN (k))).

(iii) Suppose that i = k ∈ S ⊂ T . Then aα
S,k = aα

T,k = (xα
N )k if bN (k) ∈ S,

and aα
S,k = w(k, bS(k)) ≥ w(k, bT (k)) = aα

T,k if bN (k) /∈ T . If bN (k) /∈ S

and bN (k) ∈ T then aα
S,k = w(k, bS(k)) ≥ w(k, sN (k)) ≥ (1 − α)w(k, bN (k)) +

αw(k, sN (k)) = (xα
N )k = aα

T,k.

Theorem 7.4.5 Each core element x ∈ P (N, c) can be extended to a pmas of

(N, c).

Proof Since P (N, c) =
∑n

k=1 core(N, ck) in view of Theorem 7.4.2 one can find

α1, α2, . . . , αn ∈ [0, 1] such that x =
∑n

k=1 xk,αk

N with xk,αk

N ∈ core(N, ck) for

every k ∈ {1, . . . , n}. Each xk,αk

N has a pmas extension Ak,αk by Theorem 7.4.4.

Then A =
∑n

k=1 Ak,αk is a pmas of (N, c).

Example 7.4.3 Reconsider the situation of Example 7.4.1. Then (10, 0, 0) is

the unique core element of (N, c1), the core element (−2 1
2 , 171

2 , 0) of (N, c2) is

the midpoint of the core of (N, c2), and (0,−21
2 , 22 1

2 ) is the midpoint of the core

of (N, c3). So x = (7 1
2 , 15, 221

2 ) = (10, 0, 0) + (−2 1
2 , 17 1

2 , 0) + (0,−2 1
2 , 221

2 ) ∈
P (N, c). Then A1, 1

2 + A2, 1
2 + A3, 1

2 is a pmas extending x. In matrix notation

A1, 1
2 + A2, 1

2 + A3, 1
2 =

1 2 3

N 10 0 0

(12) 10 0 ∗
(13) 10 ∗ 0

(23) ∗ 0 0

(1) 10 ∗ ∗
(2) ∗ 0 ∗
(3) ∗ ∗ 0

+

1 2 3

−21
2 171

2 0

−21
2 171

2 ∗
0 ∗ 0

∗ 20 0

0 ∗ ∗
∗ 20 ∗
∗ ∗ 0

+

1 2 3

0 −21
2 221

2

0 0 ∗
0 ∗ 25

∗ −21
2 221

2

0 ∗ ∗
∗ 0 ∗
∗ ∗ 30

=

1 2 3

71
2 15 22 1

2

71
2 171

2 ∗
10 ∗ 25

∗ 171
2 221

2

10 ∗ ∗
∗ 20 ∗
∗ ∗ 30

,
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a pmas extension of (7 1
2 , 15, 221

2 ).

7.4.3 Bi-monotonic allocation schemes and cost monotonic-

ity

A connection game (N, ck) has the property that k is a veto player because

ck(S) = 0 for all S not containing k. For such games bi-monotonic allocation

schemes (bi-mas) are introduced in Branzei et al. (2001) (see also Voorneveld et

al. (2002)). A bi-mas for such a game with a veto player is a stable allocation

scheme with the property that the veto player is weakly better off and the

other players weakly worse off in larger coalitions. Let us be more specific.

An allocation scheme (bT,i)T∈2N\{0},i∈T is a bi-monotonic allocation scheme for

(N, ck) if

each row (bT,i)i∈T ∈ core(T, ck), (7.2)

and for all S, T ∈ 2N with k ∈ S ⊂ T

bT,k ≤ bS,k (7.3)

bT,i ≥ bS,i for all i ∈ S\{k}. (7.4)

It turns out that for connection games bi-monotonic allocation schemes exist.

Moreover, each core element of (N, ck) can be extended to a bi-mas, as Theorem

7.4.6 shows. For α ∈ [0, 1], let (bα
T,i)T∈2N\{0},i∈T be the allocation scheme with

(bα
T,i)i∈T =

{
xα

T if k ∈ T,

0 if k /∈ T.

Theorem 7.4.6 For every α ∈ [0, 1], (bα
T,i)T∈2N\{0},i∈T is a bi-mas extending

xα
N .

Proof (i) In view of Theorem 7.4.2 row T in (bα
T,i)T∈2N\{0},i∈T is a core element

for each T ⊂ N and row N equals xα
N . So, (7.2) holds.

(ii) To prove (7.3) note that for S ⊂ T and k ∈ S we have

w(k, bS(k)) ≥ w(k, bT (k)), (7.5)
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w(k, sS(k)) ≥ w(k, sT (k)). (7.6)

Using (7.5) and (7.6) we obtain (7.3) as follows:

bα
T,k = (1− α)w(k, bT (k)) + αw(k, sT (k))

≤ (1− α)w(k, bS(k)) + αw(k, sS(k))

= bα
S,k.

(iii) To prove (7.4) for S, T with i, k ∈ S ⊂ T , i 6= k, we consider 3 cases:

i 6= bS(k); i = bT (k); i = bS(k) 6= bT (k).

If i 6= bS(k), then i 6= bT (k); so, bα
S,i = bα

T,i = 0.

If i = bT (k), then i = bS(k) and then

bα
T,i = α(w(k, i)− w(k, sT (k)))

≥ α(w(k, i)− w(k, sS(k)))

= bα
S,i,

where the inequality follows from (7.6).

If i = bS(k) 6= bT (k), then bα
S,i = α(w(k, bS(k))− w(k, sS(k))) ≤ 0 = bα

T,i.

Example 7.4.4 Take the game of Example 7.4.2. Then for k = 3 the bi-mas,

corresponding to α = 1
2 , is given by

1 2 3

(123) 0 −2 1
2 22 1

2

(12) 0 0 ∗
(13) −2 1

2 ∗ 27 1
2

(23) ∗ −5 25

(1) 0 ∗ ∗
(2) ∗ 0 ∗
(3) ∗ ∗ 30

Now, suppose a mountain situation < N, {0}, A, w1 > changes to the mountain

situation < N, {0}, A,w2 >, where w2(i, j) = w1(i, j) for all (i, j) ∈ A\{(k, l)}
and w2(k, l) > w1(k, l). Consider the allocations B1 = B(N, {0}, A,w1) and

B2 = B(N, {0}, A, w2). Then, obviously, B1
i = B2

i for all i ∈ N\{k}, and

B1
k = w(k, bN (k)) = B2

k if bN (k) 6= l, while B2
k > B1

k if bN (k) = l. So the
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allocation rule B is cost monotonic on the class of mountain situations. Allo-

cation rules where compensations for connections play a role do not have this

cost monotonicity property. The reason is that if an arc increases so much in

costs that there is a change of best connection points, the new connection point

profits from the compensation and is better off.

Example 7.4.5 Consider again the mountain situation of Example 7.4.1. Con-

sider the allocation B(N, {0}, A,w) and the allocation E(N, {0}, A,w), where

compensations of half of the marginal contribution take place. The alloca-

tion B(N, {0}, A,w) equals (10, 15, 20) and E(N, {0}, A, w) equals (7 1
2 , 15, 221

2 ).

If we change the mountain situation such that the cost of (3, 2) raises to 40

then we obtain as allocations B(N, {0}, A,w) and E(N, {0}, A, w), respectively,

(10, 15, 25) and (5, 171
2 , 271

2 ). In the allocation E(N, {0}, A,w) player 1 is better

off because of compensations from two players.
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Samenvatting

In dit proefschrift staat de toepassing van coöperatieve speltheorie centraal bij

de analyse van kostentoewijzingsproblemen, die voortvloeien uit situaties waar

netwerken geconstrueerd moeten worden. Zo’n situatie doet zich voor wanneer

een aantal economische agenten rechtstreeks of indirect verbonden moet worden

met één of andere voorziening (de bron). Als verbindingskosten tussen agenten

hoog zijn dan zullen agenten de mogelijkheid van samenwerking onderzoeken om

de kosten te drukken. In feite zal een groep agenten, die besluit om samen te

werken, een netwerk vormen van minimale kosten. Zo’n netwerk wordt een min-

imum opspannende boom (mob) genoemd. Echter, indien zo’n mob gevonden is,

dan is dat nog geen garantie dat deze ook daadwerkelijk wordt gëımplementeerd:

de agenten moeten ook nog in staat zijn om de kosten van deze mob op één of

andere manier te verdelen en daartoe moet het bijbehorende kostentoewijzing-

sprobleem opgelost worden. Dit kostentoewijzingsprobleem is bestudeerd in

het fundamentele paper van Bird in 1976. Voor problemen waarbij een netwerk

geconstrueerd dient te worden heeft Bird een bijbehorend coöperatief spel gefor-

muleerd (een zogeheten mob spel), waarbij de spelers de economische agenten

zijn en waarbij de waarde van een coalitie gelijk is aan de minimale kosten van

een netwerk dat alle spelers in de coalitie rechtstreeks of indirect met de bron

verbindt.

In dit proefschrift worden een aantal kostentoewijzingsmechanismen voorgesteld.

Deze brengen de agenten fracties van de kosten van verbindingen in rekening, die

gevormd worden tijdens het toepassen van het algoritme voor het vinden van een

mob, dat gëıntroduceerd werd door Kruskal in 1956. Deze mechanismen worden

Construct and Charge regels genoemd. Zij kunnen makkelijk gëımplementeerd
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worden in praktische situaties, zijn flexibel voor veranderingen in de situatie,

en voldoen aan de voorwaarde van continue controle door de betrokken agen-

ten. Het blijkt dat een deel van deze mechanismen overeenkomt met de klasse

van Obligatie regels. Aangetoond wordt dat Obligatie regels monotoon in de

kosten zijn en een populatie monotoon toewijzingsschema induceren. Interes-

sante regels onder de Obligatie regels zijn de P -waarde en de P τ -waarden, voor

iedere volgorde τ van de spelers. Andere karakteristieken van Obligatie regels

zijn dat verschillende uitvoerbare volgordes van de verbindingen tot dezelfde

kostentoewijzingen leiden en dat al deze toewijzingen in de Bird core zitten.

Varianten van netwerkconstructieproblemen worden ook bekeken.

In Hoofdstuk 2 wordt de benodigde voorkennis en notatie gëıntroduceerd.

The concepten ‘mob situatie’ en ‘mob spel’ worden geformuleerd en gëıllustreerd

voor volledige grafen met een kostenstructuur. Deze voorbeelden zullen in het

gehele proefschrift gebruikt worden om andere concepten te illustreren. Basis-

begrippen uit de coöperatieve speltheorie, zoals ‘core’ en ‘populatie monotoon

toewijzingsschema’s’ worden ook behandeld en toegelicht via voorbeelden.

In Hoofdstuk 3 wordt het Subtraction Algoritme gepresenteerd. Dit algo-

ritme berekent voor iedere mob situatie en iedere volgorde van de spelers een

populatie monotoon toewijzingsschema. Als basis van dit algoritme dient een

decompositie-stelling, die toont hoe ieder mob spel geschreven kan worden als

een niet-negatieve combinatie van mob spelen behorende bij 0 − 1 kostenfunc-

ties (dit worden simpele mob spelen genoemd). Het blijkt dat het Subtraction

Algoritme nauwe banden heeft met het fameuse algoritme van Kruskal voor het

vinden van een mob. Bovendien wordt voor iedere volgorde τ van de spelers

de P τ -waarde gëıntroduceerd als het toewijzingsmechanisme voor mob situaties

die de kosten van de grote coalitie verdeelt via het Subtraction Algoritme, met

τ als initialisatie.

In Hoofdstuk 4 wordt de collectie Construct and Charge (CC -) regels voor

mob situaties gëıntroduceerd. Deze regels worden gedefinieerd aan de hand van

belastingsystemen, en specificeren speciale toewijzingsmechanismen aan de hand

van het algoritme van Kruskal voor het vinden van een mob. Bovendien besteedt

dit hoofdstuk speciale aandacht aan Obligatie regels voor mob situaties. Ken-

merkend voor deze regels is dat zij voor iedere mob situatie een kostentoewijzing
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opleveren, die gezien kan worden als het product van een dubbelstochastische

matrix met de kostenvector van verbindingen in een optimale boom, verkregen

via het algoritme van Kruskal. Aangetoond wordt dat speciale belastingsyste-

men, de zogeheten conservatieve systemen, tot een collectie van CC-regels leidt

dat samenvalt met de collectie Obligatie regels. Een interessante eigenschap van

deze regels is dat verschillende uitvoerbare volgordes van de verbindingen tot

dezelfde kostentoewijzingen leiden. Eigenschappen van speciale Obligatie regels,

zoals de Potters-regel (P -waarde) en de P τ -waardes, eerder gëıntroduceerd in

Hoofdstuk 3, worden ook besproken. Het blijkt dat de P -waarde samenvalt

met de Equal Remaining Obligations (ERO) regel, voorgesteld door Jos Potters

(hetgeen ook de naam van de regel verklaart). Bovendien blijkt dat de P -waarde

het gemiddelde is van de P τ -waarden.

In Hoofdstuk 5 wordt eerst aangetoond dat Obligatie regels monotoon in de

kosten zijn en bovendien leiden tot een populatie monotoon toewijzingsschema.

Daarna wordt een nieuwe manier voor het definiëren van de irreducibele core

gepresenteerd, gebaseerd op een niet-Archimedische halfmetriek. De Bird core

blijkt interessante monotoniciteits- en additiviteitskenmerken te hebben en ieder

stabiel toewijzingsmechanisme dat monotoon in de kosten is, blijkt een selectie

van de Bird core op te leveren.

In Hoofdstuk 6 wordt een axiomatische karakterisering van de P -waarde

gegeven, waarbij kegelwijze positieve lineariteit van de P -waarde een funda-

mentele eigenschap blijkt te zijn en waarbij ook de ontbinding van een mob situ-

atie in simpele mob situaties een rol speelt. Gebruik makend van de additiviteits-

eigenschap wordt ook een karakterisering van de Bird core gegeven. Een waarde-

theoretische interpretatie van Obligatie regels, waarbij gebruik gemaakt wordt

van ‘sharing values’ voor kostenspelen wordt ook bediscussieerd.

In Hoofdstuk 7 wordt aangetoond dat voor varianten van de klassieke mob

spelen een populatie monotoon toewijzingsschema niet noodzakelijkerwijs hoeft

te bestaan. In het bijzonder behandelt dit hoofdstuk monotone mob situaties

en gerichte mob situaties. Gerichte mob situaties van een speciale soort wor-

den bekeken, namelijk die situaties die te voorschijn komen wanneer het prob-

leem bekeken wordt voor het verbinden van eenheden (huizen) in de bergen

met een waterzuiveringsinstallatie. Voor dergelijke situaties wordt een simpele
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methode beschreven om een populatie monotoon toewijzingsschema te bepalen.

Het blijkt dat de cores van gerelateerde kostentoewijzingsproblemen een sim-

pele structuur hebben en dat ieder core element uitgebreid kan worden tot een

populatie monotoon toewijzingsschema en ook tot een bi-monotoon toewijz-

ingsschema.


