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ABSTRACT
A social ranking (solution) over a set N is defined as a map assign-

ing to each coalitional relation (i.e. a ranking over subsets of N )

another ranking over the single elements in N . Differently, coali-

tion formation situations, and, in particular, hedonic games, mainly

focus on partitions of the set N into disjoint coalitions, which are in

general referred to as coalition structures. A coalition structure may

be stable according to various notions of stability and the objective

is to understand under which conditions a coalition structure is

stable.

In this paper we merge the framework of coalition formation

with the one of social rankings to keep into account the effect of

hierarchies within coalitions on the stability of coalition structures.

We consider alternative classes of coalition formation games where

the preferences of the players over coalitions are induced by a so-

cial ranking. More precisely, players compare coalition structures

keeping into account both the relative ranking of coalitions to

which they belong (according to a coalitional relation) and their

position in the social ranking within each coalition. Constructive

characterizations of the set of stable coalition structures are pro-

vided for alternative classes of hedonic games, together with an

impossibility result on the existence of stable coalition structures

for (non-hedonic) coalition formation situations.
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1 INTRODUCTION
In a world where to be on the top of a social hierarchy is rewarded,

it could be convenient to belong to a society where it is easier to

rise through the ranks. For example, students might prefer to be

enrolled in low-ability schools where it is simpler to win a contest,

professors might be inclined to stay in little selective academic

settings in order to increase their academic self-concept, and even

employees seeking for quick promotions might be tempted to make

their career in a less attractive organization offering small salaries.

In those situations, and in every-day life, humans face the following

dilemma: is it better to be a big fish in a small pond, or a small fish

in a big pond? In this paper we try to provide a formal model aimed
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at explaining the tension between the “size” of the fish and the one

of the pond in determining how a social group is formed, and how

the individual social position affects the stability of a society.

For example, consider a classical (simple) coalitional game, with

set of players N = {1, 2, 3}, where coalitions (subsets of N ) may

be winning or loosing. A coalition S ⊆ N is winning, if it contains

at least two players (i.e., |S | ≥ 2), and it is losing, otherwise. If

players prefer to form winning coalitions than to form losing ones,

no matters their composition, then any partition of N containing

a winning coalition (i.e., any partition of type {{i, j}, {k}}, with
i, j,k ∈ N , or partition {N }) can be considered stable (according

to the notion of core stability to be introduced in Section 2), as no

player has a strong incentive to leave the element of the partition

to which she belongs. On the other hand, if a social ranking over

the players exists such that, for instance, player 1 is the leader of

any coalition she may form, then players 2 and 3 could have some

interest to form a winning coalition excluding player 1 to break

free from her leadership, and {{1}, {2, 3}} would end up being the

unique stable partition. Obviously, things can be much more com-

plicated: preferences over coalitions could be more general than a

dichotomous relation over winning and losing coalitions, and the

hierarchy of players induced by a social ranking could depend on

the composition of coalitions and on the relative strength of their

subsets. For instance, we can assume that players’ preferences use,

as a primary criterion to rank coalitions, the strength of coalitions

they can form, and then, as a secondary criterion, their social posi-

tion within each coalition; or the same criteria, but with an opposite

priority relation. In this paper, we investigate alternative models of

players’ preferences over coalitions, taking into account different

combinations of coalitional and social rankings, and we study their

impact on the stability of coalition structures.

As a starting point of our analysis, we use a classical framework

based on hedonic games [3, 5, 9]. In hedonic games, each player has

her/his own preferences over coalitions and the goal is finding a

coalition structure (i.e. a partition of the set of players) that satisfies

certain desiderata and guarantees, according to alternative crite-

ria, the stability of the coalition structure with respect to possible

deviations of single individuals or groups. Another important ingre-

dient of our analysis is the notion of social ranking, which is a map

assigning to each total preorder representing the relative strength

of coalitions (namely, a power relation) a ranking over the single

players representing their ordinal influence. Several social rankings
have been proposed in the literature (see, for example, [2, 7]). In

the paper [7], for instance, the authors axiomatically characterize a

social ranking based on the idea that the most influential individu-

als are those appearing more frequently in the highest positions in

the ranking of coalitions. They propose a set of four properties that

such a function should satisfy, and they prove that these properties



are enough to identify a unique social ranking, which is called lex-
icographic excellence (lex-cel). The lex-cel has received increasing

attention in the recent literature on social rankings. Some general-

izations of the lex-cel considering the size of coalitions have been

presented in papers [1, 4] following an axiomatic approach. In the

paper [2] it has been shown that the lex-cel is resistant to certain

forms of manipulability of the power relation by players trying to

get higher positions in the social ranking.

The main assumptions made through this paper for players’

preferences in hedonic games are the following: (1) the comparison

of coalitions is the same for all individuals, who are all aware of a

power relation representing the relative strength of coalitions; (2)

players share the same social reference to determine a hierarchy

within a coalition, which is defined according to a specific social

ranking (namely, the lex-cel one); (3) the directionality of players

preferences is determined by alternative combinations of two social

criteria: being in strong groups and being in high social positions.

Based on these hypothesis, we show that the core of hedonic games

may be easily characterised using an algorithmic approach. On

the other hand, as soon as the framework of hedonic games is

abandoned in favour of a more general framework where players’

preferences depend on the whole structure of partitions, we show

that for non hedonic games with more than seven players, the core

is empty.

In the following, we summarize our major contributions over the

alternative coalition formation situations considered in this paper:

• in case players’ preferences over coalition structures are

based on the relative strength of coalitions only (without

considering the lex-cel social ranking) we provide an algo-

rithm to find the core of hedonic games using a simple itera-

tive procedure aimed at selecting the “strongest” coalitions

through the power relation;

• in case the lex-cel social ranking affects players’ preferences

as a secondary criterion compared to the power relation,

then we show that, in general, the core of the related hedonic

games may be empty. However, we prove that the core is

not empty and the algorithm introduced for the previous

case can be used to find it, if the power relation is responsive
[8, 11], i.e., the relative ranking of any pair of coalitions

differing for just one element (e.g., i and j) should preserve

the relative ranking between the two singleton coalitions

{i} and {j}.
• in case the lex-cel social ranking is a primary criterion for

players’ preferences, we show that the core of the related

hedonic game is always non-empty and it can be found via a

more sophisticated algorithm computing the lex-cel ranking

on each restriction of the power relation;

• finally, for players’ preferences expressed as a combination of

the power ranking and the lex-cel social rankings directly on

coalition structures, we provide a general framework based

on non-hedonic games boiling down to the model introduced

in [10], if the power relation is responsive. Similar to [10],

we show that the core of non-hedonic games with at least

seven players is empty, if the power relation is responsive,

but it can be non-empty, otherwise.

The roadmap of the paper is as follows. We start in the next

section with some preliminary notation and notions about hedonic

games and the theory of social rankings. We continue in Section 3

with three alternative models for hedonic games where the players’

preference are based on the relative strength of coalitions only

(Section 3.1), a combination between relative strength of coalitions

as a primary criterion, and social rankings as a secondary criterion

(Section 3.2) and another combination of those two criteria giving

priority to social rankings over the relative strength of coalitions

(Section 3.3). Section 4 is devoted to the analysis of a (non-hedonic)

model of coalition formation where players’ preferences are ex-

pressed directly on partitions of the player set, again on the basis

of a combination between coalitional strength and social rankings.

Section 5 concludes with some perspectives for future research.

2 PRELIMINARIES
Let N = {1, . . . ,n} be a finite set of agents/players and P(N ) the
set of its non-empty subsets. A preorder on N is a reflexive and

transitive binary relation onN . A preorder that is total is called total
preorder, and the family of all total preorders on N is denoted by

TN
. An antisymmetric

1
total preorder is called linear order or total

order. A total preorder ⊒∈ T P(N ) is said a power relation. Given
S,T ∈ P(N ), S ⊒ T will stand for “S is at least as strong as T with

respect to the power relation ⊒”. We denote by ∼ its symmetric

part (i.e. S ∼ T if S ⊒ T and T ⊒ S) and by = its asymmetric part

(i.e. S ⊒ T and not T ⊒ S). So, for each pair of subsets S,T ∈ P(N ),
S = T means that S is strictly stronger thanT , whereas S ∼ T means

that S and T are indifferent.
Let ⊒∈ T P(N ) be of the form S1 ⊒ S2 ⊒ S3 ≽ · · · ⊒ S |P(N ) | .

The quotient order of ⊒ is denoted as Σ1 = Σ2 = Σ3 = · · · = Σl
in which the subsets Sj are grouped in the equivalence classes Σk
generated by the symmetric part of ⊒. This means that all the sets

in Σ1 are indifferent to S1 and are strictly better than the sets in Σ2
and so on. So, Σi = Si for any i = 1, . . . , |P(N )| if and only if ⊒ is

a linear order.

A social ranking (solution) on N is a function ρ : T P(N ) −→

T(N ) associating to each power relation ⊒∈ T P(N ) a total preorder
ρ(⊒) (or ρ⊒) over the elements of N . By this definition, the notion

iρ⊒j means that applying the social ranking to the power relation ⊒

gives the result that i is ranked higher than or equal to j . We denote

by I ⊒ the symmetric part of ρ⊒ , and by P ⊒ its asymmetric part. A

particular social ranking from the literature is the lexicographic

excellence one [7]. Given a power relation ⊒ and its associated

quotient order Σ1 = Σ2 = Σ3 = · · · = Σm , we denote by ik =
|{S ∈ Σk : i ∈ S}| the number of sets in Σk containing i for
k = 1, . . . , l . Now, let θ ⊒(i) be the l-dimensional vector θ ⊒(i) =
(i1, . . . , il ) associated to ⊒. Consider the lexicographic order ≥L
among vectors i and j: i ≥L j if either i = j or there exists t such
that it > jt and ir = jr for all r ∈ {1, . . . , t − 1}.

Definition 2.1 (Lexicographic-excellence (lex-cel) [7]). Let⊒∈ T P(N ).
The lexicographic excellence (lex-cel) is the binary relation R⊒le such

that for all i, j ∈ N :

i R⊒le j ⇐⇒ θ ⊒(i) ≥L θ ⊒(j).

1∀i, j ∈ N , iRj and jRi ⇒ i = j .



Example 2.2. Let N = {1, 2, 3} be the set of agents and let’s

consider the ranking ⊒ as follows:

{1, 2, 3} ∼ {1, 3} ∼ {2, 3} = {1, 2} ∼ {2} = {1} = {3}. We have

θ ⊒(1) = (2, 1, 1, 0), θ ⊒(2) = (2, 2, 0, 0) and θ ⊒(3) = (3, 0, 0, 1). So,
the lex-cel returns the following ranking: 3 P ⊒le 2 P ⊒le 1.

A hedonic game is defined as the structure G = (N , (≽i )i ∈N )

where ≽i∈ T
Ni

is a total preorder on Ni = {S ∈ P(N ) : i ∈ S},
for any i ∈ N . A coalition structure Π ⊂ P(N ) is just a partition
of N , and we denote by Π(i) the element to which an agent i ∈ N
belongs in Π. A coalition C ⊆ N blocks a coalition structure Π if

C ≻i Π(i) for all i ∈ C . A coalition structure that is not blocked by

any coalition is said stable. The core of a hedonic game G is the set

of all coalition structures that are stable, and it is denoted by C(G).

3 HEDONIC GAME MODELS
Let ⊒∈ T P(N ) be a power relation with the associated quotient

order Σ1 = Σ2 = Σ3 = · · · = Σl . For each element S ∈ P(N ), the
number δS (⊒) ∈ {1, 2, ..., l} is defined as the index of the equiva-

lence class to which the coalition S belongs (i.e., δS (⊒) is such that

S ∈ Σδ S (⊒)). In this section we analyse three alternative definitions

of players’ preferences for hedonic games.

3.1 First Case: Preferences Depend Only on the
Coalitional Strength

We first consider the case where players are aimed at forming

coalition as much strong as possible, with no interest in the social

position they cover within coalitions. We therefore define a hedonic

game G1 = (N , (≽i )i ∈N ) where ≽i , for each player i ∈ N , is the

preference relation of player i such that

S ≽i T ⇐⇒ δS (⊒) ≤ δT (⊒), (1)

for each coalition S,T ∈ Ni .
In this way, given the preorder on coalitions, each player is only

interested in being in the strongest coalitions with respect to the

power relation ⊒, completely disregarding any internal balances

within the coalitions.

Having defined the hedonic game, we are interested in understand-

ing whether there are stable partitions and, if there are, what they

are. For this purpose, we introduce Algorithm 1 that allows us to

find all and only stable partitions
2
. Basically Algorithm 1 performs

the following steps:

(1) it selects a coalition S from the best equivalence class of the

quotient order associated to ⊒;

(2) it removes all coalitions that have non-empty intersection

with S and redefines on the remaining coalitions the new

quotient order;

(3) it repeats the above steps until there are no more coalitions.

Example 3.1. LetN = {1, 2, 3, 4} and consider the power relation:
{1, 3} ∼ {2, 3} ∼ {1, 2, 4} = {1, 2} = {2, 4} = {1} = {3} = {2} =
{4} ∼ {1, 4} ∼ {3, 4} ∼ {1, 2, 3} ∼ {1, 3, 4} ∼ {2, 3, 4} ∼ {1, 2, 3, 4}.

The quotient order
3
of the power relation is shown in Table 1. We

2
An algorithm similar to Algorithm 1 has been recently studied in paper [6] to introduce

a family of social rankings rooted on the notion of stable coalition structure.

3
To save space, sets are denoted for short without commas and parentheses, e.g., 123

instead of {1, 2, 3}, and S ∪ i instead of S ∪ {i }.

Algorithm 1: finding a stable coalition structure

Input: A quotient order on P(N ) in the form

Σ1 = · · · = Σl ;

Output: A coalition structure Π = {S0, . . . , Sm } ⊆ P(N );

t ← 0;

p ← l ;

Π ← ∅;

for k=1 to p do
Σ
(0)

k ← Σk ;

end
while Σ

(t )
1
, ∅ do

Π ← Π ∪ {St }, with St ∈ Σ
(t )
1
;

I (t ) ← {C ∈
p⋃

k=1
Σ
(t )
k : St ∩C , ∅};

r ← 0;

Σ
(t+1)
1

← ∅;

for k=1 to p do
if Σ(t )k \ I

(t ) , ∅;
then

r ← r + 1;

Σ
(t+1)
r ← Σ

(t )
k \ I

(t )
;

end
end
t ← t + 1;

p ← r ;

end

denote byA(⊒) the set of all coalition structures that, given a power

relation ⊒, are generated by Algorithm 1.

Consider the coalition structure Π = {{2, 4}, {1}, {3}}. It is easy
to verify that Π is not stable. Now, using Algorithm 1, we can obtain

the following coalition structures:

A(⊒) = {{{1, 3}, {2, 4}}, {{2, 3}, {1}, {4}}}, {{1, 2, 4}, {3}}}.

We observe that all the three coalition structures inA(⊒) are stable

and form the core of the corresponding hedonic game G1
. In fact,

the next theorem shows that, in general, all and only the coalition

structures generated by Algorithm 1 are stable, i.e. A(⊒) = C(⊒).

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7
13, 23, 124 12 24 1 3 2 4, 14, 34, 123, 134, 234, 1234

Table 1: Quotient order of the power relation of Example 3.1.

Theorem 3.2. Let ⊒∈ T P(N ) be a power relation and let G1 =

(N , (≽i )i ∈N ) be a hedonic game where the players’ preferences are
defined according to relation (1). It holds that C(G1) = A(⊒).

Proof. We first prove that Π ∈ A(⊒) =⇒ Π ∈ C(G1).

Consider a coalition structure Π = {S0, S1, ..., Sm } ∈ A(⊒).
Suppose that Π < C(G1). Then, there must exist a coalition T ∈ Σh



for some h ∈ {1, 2, ..., l} such that T ≻i Π(i) ∀i ∈ T .
Since T was not selected by the algorithm, it means that there

exists a step t of the algorithm where St ∈ Σj for some j ≤ h
with T ∩ St , ∅. But then St ≽i T ∀i ∈ T ∩ St , which yields a

contradiction.

We now prove the opposite implication Π ∈ C(G1) =⇒ Π ∈ A(⊒).
Consider Π = {S0, S1, ..., Sm } ∈ C(G

1), adopting as convention:

S0 ⊒ S1 ⊒ ... ⊒ Sm .

We will show that, for every h ∈ {0, 1, ...,m}, Sh ∈ Σ
(h)
1

, where Σ
(h)
1

is the first equivalent class of the quotient order Σ1 = · · · = Σl con-
structed at step h, following the procedure of Algorithm 1, which

is equivalent to say that Π can be obtained by Algorithm 1.

One of the following cases holds: (1) either S0 < Σ1; (2) or S0 ∈ Σ1. In
the first case there would be a contradiction, since every partition in

the core must have an element in Σ1 (and in particular S0 ∈ Σ1 since
by the convention adopted S0 ⊒ Sj ∀j = 1, ...,m). If not, any coali-

tion in Σ1 would be a blocking coalition. So, the second case holds,

and we redefine a new quotient order Σ
(1)

1
= Σ

(1)

2
= ... = Σ

(1)

l1
among the coalitions that have empty intersection with S0 (simi-

larly to what is done by the algorithm). Since Π is a partition, its

elements are disjoint, so S1 must belong to an equivalent Σ
(1)

j , for

some j = 1, ..., l1. So, one of the following cases must hold: (1) either

S1 < Σ
(1)

1
; (2) or S1 ∈ Σ

(1)

1
. In the first case we would still have a

contradiction, since there would exist a coalitionT ∈ Σ
(1)

1
such that,

for every i ∈ T , T ≻i Π(i), since Π(i) ∈ Σ
(1)

j for j > 1.

So, the second case holds, and we redefine a new quotient order

Σ
(2)

1
= Σ

(2)

2
= ... = Σ

(2)

l2
among coalitions that have empty inter-

section with S0 ∪ S1:
Continuing iteratively, if at some step h ∈ {1, ...,m} we have

Sh−1 ∈ Σ
(h−1)
1

, a new quotient order between the coalitions that

have empty intersection with

h−1⋃
j=0

Sj is defined. So, we have that:

(1) either Sh < Σ
(h)
1

; (2) or Sh ∈ Σ
(h)
1

. Again, in the first case there

would be a contradiction, since there would exist T ∈ Σ
(h)
1

such

that T ≻i Π(i) for all i ∈ T , with Π(i) ∈ Σ
(h)
j and j > 1. So, the

second case would hold the procedure would continue till stepm

where Sm ∈ Σ
(m)
1

, and at this point the partition Π is generated

according to the algorithm. �

3.2 Second Case: Preferences Depend
Lexicographically on Coalitional Strength
and on Social Ranking

In this second case we want to study the consequences of inducing

a hedonic game based on a power relation, as in the previous case,

but this time aimed at breaking some possible ties within coalitions,

so that players no longer consider irrelevant their internal social

position. To establish an internal ranking for a coalition S , we use
a particular notion of social ranking and, for any coalition S , we
compute it on the restriction of a power relation to S , which we

denote with ⊒S . So, ⊒S is obtained from ⊒ by excluding coalitions

that contain players not in S (i.e.,T ⊒S U ⇔ T ⊒ U for allT ,U ⊆ S).
In this way given a coalition S and a social ranking ρ, we can define

the quotient order of ρ⊒S among the elements of S :

Γ1 P ⊒S Γ2 P ⊒S . . . P ⊒S Γq ,

where P ⊒S is the asymmetric part of the social ranking ρ⊒S , that
is computed on the restricted power relation ⊒S . This means that,

according to the social ranking ρ computed on the restricted power

relation ⊒S , all the players of S in Γ1 share the same social position

which is strictly higher than players in Σ2, and so on. In particular,

in the following we will consider as a social ranking the lex-cel, i.e.

ρ = Rle . Consider the following values:

• as before, for each coalition S ∈ P(N ) the value δS (⊒) ∈
{1, 2, ..., l} is such that S ∈ Σδ S (⊒);

• we introduce the value λi (⊒S ), for each S and each i ∈ S ,
as the index of the equivalence class to which individual i
belongs with respect to the quotient order Γ1 P ⊒S Γ2 P ⊒S

. . . P ⊒S Γq associated to the lex-cel rankingR⊒Sle over players

in S (i.e., λi (⊒S ) is such that i ∈ Γλi (⊒S )).

We therefore define a hedonic game G2 = (N , (≽i )i ∈N ) where ≽i ,
for each i ∈ N , is the preference relation of player i such that

S ≽i T ⇐⇒ (δS (⊒), λi (⊒S )) ≤L (δ
T (⊒), λi (⊒T )) (2)

for each coalition S,T ∈ Ni , where ≤L represents the lexicographic

relation. Notice that G2
is now dependent not only on ⊒, but also

on the notion of social ranking adopted.

Example 3.3. Consider the power relation of Example 3.1 and let

S = {1, 2, 3}. To define λi (⊒S ) for i = 1, 2, 3 we compute the lex-cel

on the restriction of ⊒ to S :
{1, 3} ∼S {2, 3} =S {1, 2} =S {1} =S {3} =S {2} =S {1, 2, 3}.

It is easy to see that 3P ⊒Sle 1P ⊒Sle 2. So, λ1(⊒S ) = 2, λ2(⊒S ) = 3 and

λ3(⊒S ) = 1. Notice that in general, the lex-cel on ⊒ is different

from the lex-cel computed on a restriction of ⊒ to a coalition S .
For instance, in this case we have 1P ⊒le3 on the power relation ⊒,

whereas we have 3P ⊒Sle 1 on its restriction to S .

Note that with preferences defined according to relation (2), we

are still giving more importance to the strength of coalitions (the

information provided by the power relation) than to the social rank-

ing within coalitions, since in the lexicographic order the index

δS (⊒) appears first. Of course, one could decide to use the order

on singletons to generate a social ranking ρ1 such that iρ⊒
1
j ⇐⇒

{i} ⊒ {j} for all i, j ∈ N . The choice of not using singletons, how-

ever, is motivated by the fact that the social ranking ρ1, considering
only the order on coalitions of size one, is somewhat blind to the

interaction abilities among players.

However, generating stable coalition structures for hedonic games

with preferences defined according to relation (2) is no longer so

easy and, in particular, Algorithm 1 cannot guarantee to find a

stable coalition structure, as shown in the following example.

Example 3.4. In Table 2, we consider the coalitions that are

elements of coalition structures in A(⊒), the set of all coalition

structures generated by Algorithm 1, and for each of such coali-

tions we show the corresponding values of δS (⊒) and of λi (⊒S ),
i ∈ {1, 2, 3, 4}. Coalition {1, 3}, for instance, belongs to the first

equivalence class of the quotient order (i.e., δ {1,3}(⊒) = 1), and the

lex-cel applied to the restriction of ⊒ to {1, 3} gives that 1 belongs to

the first equivalence class of the quotient order associated to R
⊒{1,3}

le



S δ S (⊒) λ1(⊒S ) λ2(⊒S ) λ3(⊒S ) λ4(⊒S )
{1, 3} 1 1 * 2 *

{2, 4} 3 * 1 * 2

{2, 3} 1 * 2 1 *

{1} 4 1 * * *

{4} 7 * * * 1

{1, 2, 4} 1 2 1 * 3

{3} 5 * * 1 *

Table 2: Values of δS (⊒) and of λi (⊒S ), i ∈ {1, 2, 3, 4}, for the
elements of coalition structures in A(⊒) of Example 3.4.

{{1,3}, {2,4}}

{2,3}

{{2,3}, {1}, {4}}

{{1,2,4},{3}}
{1,2,4}{1,3}

Figure 1: Blocking cycle among coalition structures inA(⊒)
(in bold): each coalition structure is blocked by a an element
of another coalition structure. Arrows represents the block-
ing action by an element of the coalition structure from
which the arrow starts (the blocking element is indicated
close to the corresponding arrow).

(i.e., λ1(⊒{1,3}) = 1), while 3 belongs to the second equivalence

class of the quotient order associated to R
⊒{1,3}

le (i.e, λ3(⊒{1,3}) = 2).

To check that there are no stable coalition structures, it is enough

to focus on coalition structures provided by Algorithm 1. Clearly,

the coalition structures in A(⊒) are not stable, since each of them

is blocked by an element of another one as shown in the diagram

in Figure 1. For instance, the coalition structure {{1, 3}, {2, 4}} is

blocked by coalition {2, 3} for player 2 strictly prefers {2, 3} to

{2, 4} since {2, 3} = {2, 4} (and, so, δ {2,3} = 1 < 3 = δ {2,4}), while
{1, 3} ∼ {2, 3} (and, so, δ {2,3} = 1 = δ {1,3}), and the advantage

to deviate for player 3 lies in the fact that: λ3(⊒{2,3}) = 1 < 2 =

λ3(⊒{1,3}).

For hedonic games based on preferences defined according to re-

lation (2), even players already in one of the strongest coalitions

according to the power relation, can improve their coalition by

trying to climb positions within it, and this makes the search for

stable coalition structures much more complicated. However, one

can consider a subclass of power relations such that it is still possi-

ble to generate stable partitions using Algorithm 1. For this reason,

we now introduce a well known property for power relations.

Definition 3.5 (Responsiveness [8, 11]). A total preorder⊒∈ T P(N )

is responsive if

{i} ⊒ {j} ⇐⇒ S ∪ {i} ⊒ S ∪ {j},

for all i, j ∈ N and all S ⊆ N \ {i, j}.

Notice that the power relation of Example 3.1 is not responsive

as, for instance, {1} = {3}, but {2, 3} = {1, 2}.
Now, before introducing the next proposition, we study how the

lex-cel behaves with respect to responsive power relations.

Lemma 3.6. Let ⊒∈ T P(N ) be a responsive power relation. Then,
R⊒le = ρ⊒

1
. Precisely, for all i, j ∈ N ,

iR⊒le j ⇐⇒ {i} ⊒ {j}.

Proof. We first prove the implication iR⊒le j =⇒ {i} ⊒ {j}.

Let i, j ∈ N be such that iR⊒le j . Suppose {j} = {i}. Then, by respon-

siveness, S ∪ {j} = S ∪ {i} for every S ⊆ N \ {i, j}. So, there must

exist a particularT ⊆ N \{i, j} such that:T ∪{j} ⊒ S∪{j} = S∪{i}
for every S ⊆ N \{i, j}. But this means that jP ⊒le i (j is ranked strictly

better than i according to the lex-cel), which yields a contradiction.

We now prove the opposite implication {i} ⊒ {j} =⇒ i R⊒le j. It

is easy to check that if {i} ∼ {j} then i I ⊒le j , for the responsiveness

of ⊒ implies T ∪ {i} ∼ T ∪ {j} for all T ⊆ N \ {i, j}. So, it remains

to prove that {i} = {j} =⇒ i P ⊒le j.

Let i, j ∈ N be such that {i} = {j}. Suppose that jR⊒le i . Then, by
definition of the lex-cel, there must exist T ⊆ N \ {i, j} such that

T ∪ {j} ⊒ S ∪ {i} for every S ⊆ N \ {i, j}.
But this yields a contradiction with the fact that ⊒ is responsive

and so it must be T ∪ {i} = T ∪ {j} for all T ⊆ N \ {i, j}. �

Lemma 3.6 tells us that in responsive power relations, the lex-cel

ranking coincides with the one given by the singletons.

Lemma 3.7. Let ⊒∈ T P(N ) be a responsive power relation, S,T ∈
P(N ) and a ∈ S ∩ T be such that Sa+ = {z ∈ S : {z} = {a}} , ∅
and S̃a+ = Sa+ ∩T . The following implication holds

λa (⊒T ) < λa (⊒S ) =⇒ Sa+ \ S̃a+ , ∅.

Proof. Consider the quotient orders associated to the social

ranking R⊒Sle over players in S and to the social ranking R⊒Tle over

players in T , respectively, Γ
(S )
1

P ⊒Sle Γ
(S )
2

P ⊒Sle ...P
⊒S
le Γ

(S )
qS and Γ

(T )
1

P ⊒Tle
Γ
(T )
2

P ⊒Tle ...P
⊒T
le Γ

(T )
qT . Suppose a ∈ Γ

(S )
h , for some h ∈ {1, 2, . . . ,qS }.

By Lemma 3.6, the lex-cel ranking is equivalent to that of the sin-

gletons
4
. Then, we have that h ≥ 2 (because Sa+ , ∅) and all the

players that are in Γ
(S )
j for j < h are also elements of Sa+ .

Now, suppose λa (⊒T ) < λa (⊒S ) and Sa+ \ S̃a+ = ∅. Then, it means

that S̃a+ = Sa+ , i.e. all players in S , that are ranked strictly higher

than a, are also inT . So, it implies that a ∈ Γ
(T )
r for r ≥ h. But that is

equivalent to λa (⊒T ) ≥ λa (⊒S ), which yields a contradiction. �

Lemma 3.7 says that moving from a coalition S to a coalition T , the
internal position of a player a improves only if at least one of the

players stronger than a and present in S , is not present in T .
We are now ready to introduce the main result of this section,

stating the equivalence between the set of coalition structures pro-

duced by Algorithm 1 and the core of a hedonic gamewhere players’

preferences are defined according to relation (2) under responsive

power relations.

4
Note also that if we consider a responsive ranking restricted to a coalition S , the
obtained ranking is still responsive.



Theorem 3.8. Let ⊒∈ T P(N ) be a responsive power relation and
let G2 = (N , (≽i )i ∈N ) be a hedonic game where players’ preferences
are defined according to relation (2). It holds that C(G2) = A(⊒).

Proof. We first prove implication Π ∈ A(⊒) =⇒ Π ∈ C(G2).

Consider the coalition structure Π = {S0, S1, ..., Sm } with S0 ⊒
S1 ⊒, . . . ,⊒ Sm . Suppose Π < C(G2). Then, there exists a blocking

coalition T ∈ Σh for some h ∈ {1, 2, ..., l} such that T ≻i Π(i)
∀i ∈ T .
Similar to the case of Section 3.1, where preferences were defined

according to relation (1) on the basis of the strength of coalitions

only, since T is not selected by Algorithm 1, there must exist a step

of the algorithm p where Sp ∈ Σj was selected for some j ≤ h with

T ∩ Sp , ∅.
In particular, we define t = min{p : T ∩ Sp , ∅}, so that we know

that T ∩ Sj = ∅ for j = 1, 2, ..., t − 1.

Notice that δSt (⊒) ≤ δT (⊒). However, sinceT must block Π it must

hold that δSt (⊒) = δT (⊒) and λi (⊒T ) < λi (⊒St ) ∀i ∈ T ∩ St .
We now consider the generic element a ∈ T ∩ St and write the two

sets as follows: {
St = {a} ∪ Sa+ ∪ Sa−
T = Q ∪ {a} ∪ S̃a+ ∪ S̃a−

where Sa+ = {z ∈ S : {z} = {a}}, Sa− = {z ∈ S : {a} ⊒ {z}, z , a},

S̃a+ = Sa+ ∩T and S̃a− = Sa− ∩T . The following facts hold:

(1) λa (⊒T ) < λa (⊒St ); so, by Lemma 3.7, Sa+ \ S̃a+ , ∅;
(2) T ∩ Sj = ∅ for j = 1, 2, ..., t − 1, since every player in the

blocking coalition T cannot be an element of coalitions in a

stronger equivalence class than the one to which St belongs.

Let b ∈ Sa+ \ S̃a+ . By the responsiveness of ⊒, we have that

{b} = {a} =⇒ ((T \ {a}) ∪ {b}) = ((T \ {a}) ∪ {a}) = T ∼ St .
Moreover, knowing that all elements of T cannot be taken from

S1, S2, ..., St−1, this leads a contradiction (the algorithm should have

selected ((T \ {a}) ∪ {b}) or another coalition stronger than St ),
since St was generated by Algorithm 1 and we showed that{

((T \ {a}) ∪ {b}) = St

((T \ {a}) ∪ {b}) ∩ Sj = ∅ ∀j < t .

The proof of the opposite implication Π ∈ C(G2) =⇒ Π ∈ A(⊒),
follows immediately from the fact that if G1 = (N , (≽′i )i ∈N ) is
the hedonic game in which the preferences (≽i )i ∈N were defined

according to relation (1), then it holds: C(G2) ⊆ C(G1) = A(⊒). �

3.3 Third Case: Preferences Depend
Lexicographically on Social Ranking and
on Coalitional Strength

This section is devoted to analyse the opposite case of players’

preferences defined according to relation (2). In this case, we assume

that players first want to maximize their position within a coalition

according to the social ranking and, as a secondary criterion, they

prefer to be be in stronger coalitions. To define the corresponding

hedonic game G3 = (N , (≽i )i ∈N ) we use the same ingredients

introduced in Section 3.2, but now we define the preference relation

(≽i )i ∈N , for each i ∈ N as follows

S ≽i T ⇐⇒ (λi (⊒S ),δ
S (⊒)) ≤L (λi (⊒T ),δ

T (⊒)) (3)

for each coalition S,T ∈ Ni , where ≤L represents again the lexico-

graphic relation.

Algorithm 2: finding a stable coalition structure

Input: A quotient order on P(N ) in the form

Σ1 = · · · = Σl ;

Output: A coalition structure Π = {S0, . . . , Sm } ⊆ P(N );

t ← 0; p ← l ; Π ← ∅;

for k=1 to p do
Σ
(0)

k ← Σk ;

end
while Σ

(t )
1
, ∅ do

St ← ∅;

u ← 1;

while u ≤ p do
if ∃S ∈ Σ(t )u s.t.: λi (⊒S ) = 1 ∀i ∈ S ;
then

St ← S ;

u ← p;

end
u ← u + 1;

end
Π ← Π ∪ {St };

I (t ) ← {C ∈
p⋃

k=1
Σ
(t )
k : St ∩C , ∅};

r ← 0;

Σ
(t+1)
1

← ∅;

for k=1 to p do
if Σ(t )k \ I

(t ) , ∅;
then

r ← r + 1;

Σ
(t+1)
r ← Σ

(t )
k \ I

(t )
;

end
end
t ← t + 1;

p ← r ;

end

Roughly speaking, Algorithm 2 performs the following steps:

(1) starting with the best equivalent class, it looks for a coalition

S , in which the players are all equivalent (i.e, λi (⊒S ) = 1 for

every i ∈ S);
(2) it removes all coalitions that have non-empty intersection

with S and redefines on the remaining coalitions the new

quotient order;

(3) it repeats the above steps until there are no more coalitions.

We denote by A ′(⊒) the partitions generated by Algorithm 2. One

can easily verify that Algorithm 2 always generates at least one

partition (i.e: A ′(⊒) , ∅). In fact, if we consider the coalition

structure Π = {{1}, {2}, . . . , {|N |}}, it holds that λi (⊒{i }) = 1 for

every i ∈ N , which means that if no other coalition structure Π′



exists where all players i gets λi (⊒Π′(i)) = 1 and where Π′(i) = {1},
then Π ∈ A ′(⊒).

Example 3.9. Consider again the power relation of Example 3.1. It

is immediate to see thatA ′(⊒) is a singleton containing the unique

coalition structure {{1}, {2}, {3}, {4}}.

Theorem 3.10. Let ⊒∈ T P(N ) be a responsive power relation and
let G3 = (N , (≽i )i ∈N ) be a hedonic game where players’ preferences
are defined according to relation (3). It holds that C(G3) = A ′(⊒).

Proof. We prove the implication Π ∈ A ′(⊒) =⇒ Π ∈ C(G3).

Consider a coalition structure Π = {S0, S1, ..., Sm }, with S0 ⊒ S1 ⊒
... ⊒ Sm . If Π is not in the core there must exist a blocking coalition

T such that T ≻i Π(i) ∀i ∈ T .
We define t =min{p : Sp∩T , ∅}. Then, thismeans that λi (⊒T ) = 1

and T = St ⊒ Π(i) for all i ∈ T , which yields a contradiction with

the fact that Algorithm 2 has selected St instead of T .
We now prove the opposite implication Π ∈ C(G3) =⇒ Π ∈ A ′(⊒).

Suppose Π < A ′(⊒). There must exist t ∈ {1, ...,m} with St ∈ Σ
(t )
j

and there must exist T ∈ Σ
(t )
j′ with j ′ < j such that λi (⊒T ) = 1

∀i ∈ T . However, in this way T would block Π, which yields a

contradiction with the fact that Π is in the core. �

As an immediate consequence of Proposition 3.10 and the fact

previously remarked that A ′(⊒) , ∅ for any power relation ⊒,

we have that the core of any hedonic game G3
, with preferences

defined according to relation (3), is non-empty (i.e, C(G3) , ∅).

4 A MODEL WITH PREFERENCES ON
COALITION STRUCTURES

In the previous sections, we dealt with purely hedonic games. In this

section, we introduce a (non-hedonic) coalition formation situation,

in which players’ preferences are directly expressed over coalition

structures. For this reason, we introduce a more general definition

of the notion of blocking coalition. A coalition C ⊆ N blocks a

coalition structure Π = {S0, S1, . . . , Sk } if Π
′ ≻i Π for all i ∈ C ,

where Π′ = {S0 \C, S1 \C, . . . , Sk \C,C} is obtained by Π adding

coalition C and removing the players in C from the elements of Π.
Then, a coalition structure that is not blocked by any coalition is said

stable and the core C(Ĝ) of a non-hedonic game Ĝ = (N , (≽i )i ∈N )
is the set of all coalition structures that are stable.

Consider a power relation ⊒∈ T P(N ). We associate to each

partition Π of N a ranking ≽Π over players in N such that i ≻Π j if

• either Π(i) = Π(j),
• or Π(i) ∼ Π(j) and i P ⊒Sle j, where S =

⋃
j ∈N :Π(j)∼Π(i)

Π(j);

and i ∼Π j, otherwise. In words, we say that, within a coalition

structure Π, i is strictly “stronger” than j (i.e, i ≻Π j) if

• either player i is in a strictly stronger coalition than the one

of player j according to ⊒,
• or i and j belong to equivalent coalitions in Π, but i has a
strictly better position than j according to the lex-cel com-

puted on the union of the coalitions of Π that are in the same

equivalence class as Π(i) and Π(j);

and i and j are equally strong (i ∼Π j) if they belong to equivalent

coalitions in Π and the lex-cel ranks them equally on ⊒S . The

quotient order associated to ≽Π is denoted by ΓΠ
1
≽Π ΓΠ

2
≽Π . . . ≽Π

ΓΠq . For any i ∈ N , the position of i in the quotient order is defined

as

rk⊒i (Π) =
1

|ΓΠu |

Ξu∑
k=1+Ξu−1

k, (4)

where Ξu = |
u⋃
h=1

ΓΠh | =
u∑
h=1
|ΓΠh |. Notice that rk⊒i (Π) ∈ [1, |N |]

and i ≽Π j ⇔ rk⊒i (Π) ≥ rk⊒j (Π), and the sum of the positions in

the ranking is equal to

|N |∑
k=1

k = |N |( |N |+1)
2

. We also point out that,

although not made explicit, rk⊒i (Π) depends on the choice of the

social ranking used.

Finally, we define a non-hedonic game Ĝ = (N , (≽i )i ∈N ) with
players’ preferences (≽)i ∈N over coalition structures as follows

Π ≽i Π̃ ⇐⇒ rk⊒i (Π) ≤ rk⊒i (Π̃), (5)

for every i ∈ N and all coalition structures Π, Π̃ ⊂ P(N ). The
coalition formation situation represented by a non-hedonic game Ĝ
is similar to the one studied in paper [10]. However, some relevant

differences exist between the two models:

• the model studied in [10] is defined on the domain of power

relations that are total orders over coalitions, whereas in

our case we consider total preorders (i.e., we allow for the

indifference between distinct coalitions);

• in [10] the individual positions within a coalition are given

exogenously, while in our approach they are determined

using a social ranking computed on a power relation;

• we compare each player with all the members in equivalent

coalitions and not only in her own coalition, as done in [10].

Example 4.1. Consider N = {1, 2, 3} and the power relation ⊒

defined as: {1, 2, 3} = {1, 2} ∼ {1, 3} = {2, 3} ∼ {1} = {2} ∼ {3}.
Let Π = {{1}, {2, 3}}. Since {2, 3} ∼ {1}, to determine ≽Π we must

use the lex-cel on the union: {2, 3} ∪ {1} = N (i.e., R⊒Nle = R⊒le ).

Hence, 1P ⊒le2I
⊒
le3 and ΓΠ

1
= {1}, ΓΠ

2
= {2} and ΓΠ

2
= {3}. Then,

• rk⊒
1
(Π) = 1

|ΓΠ
1
|

|ΓΠ
1
|∑

h=1
k = 1

• rk2 ⊒ (Π) = rk3 ⊒ (Π) =
1

|ΓΠ
2
|

|ΓΠ
1
|+ |ΓΠ

2
|∑

h=1+ |ΓΠ
1
|

k = 1

2
(2 + 3) = 2.5.

In this way we can compute, for every partition Π, the associated
vector rk⊒(Π) = (rk⊒

1
(Π), rk⊒

2
(Π), rk⊒

3
(Π)):

- Π0 = {{1, 2, 3}} =⇒ rk⊒(Π0) = (1, 2.5, 2.5);

- Π1 = {{1}, {2, 3}} =⇒ rk⊒(Π1) = (1, 2.5, 2.5)

- Π2 = {{2}, {1, 3}} =⇒ rk⊒(Π2) = (1, 3, 2);

- Π3 = {{3}, {1, 2}} =⇒ rk⊒(Π3) = (1, 2, 3);

- Π4 = {{1}, {2}, {3}} =⇒ rk⊒(Π3) = (1, 2.5, 2.5).

We can thus deduce the preferences over coalition structures:

(1) Π0 ∼1 Π1 ∼1 Π2 ∼1 Π3 ∼1 Π4;

(2) Π3 ≻2 Π0 ∼2 Π1 ∼2 Π4 ≻2 Π2;

(3) Π2 ≻3 Π0 ∼3 Π1 ∼3 Π4 ≻3 Π3;

So, in this example, every partition is core-stable. In fact, in order to

get a better ranking position, players 2 and 3 have to cooperate with



player 1, but player 1 has no incentive to deviate, since rk⊒
1
(Π) = 1

in every coalition structure Π.

As we already noticed, one of themain differences with respect to

paper [10], is that we deduce the individual positions using a social

ranking computed on a power relation. So, if we consider a power

relation ⊒ that is a linear order (instead of a total preorder) and

we use ρ1 as social ranking (instead of the lex-cel), then we would

fall exactly under the assumptions of paper [10]. Consequently, in

order to recover the results from model [10] using the lex-cel, we

need to consider a responsive total order, for in this case, by Lemma

3.6, the lex-cel coincides with ρ1.
Next, we introduce a special class of power relations, which, as it

will be shown later, do not admit core-stable partitions.

Definition 4.2. A power relation ⊒ on P(N ) is said to be homo-

geneous if

|S | > |T | ⇒ S = T for all S,T ∈ P(N ).

Proposition 4.3. Let N be such that |N | ≥ 7. Let ⊒ be a homoge-
neous and responsive total order on P(N ). Then, the (non-hedonic)
game Ĝ = (N , (≽i )i ∈N ) with preferences over coalition structures
defined according to relation (5) has an empty core.

Proof. By Lemma 3.6, the ranking provided by the lex-cel on

⊒ correspons to the total order defined by ⊒ over the singleton

coalitions. As a consequence, the players’ ranking position rk⊒i (Π),
for each i ∈ N , coincides precisely with the player i’s position in

the coalition structure Π according to the definition of player i’s
position provided on page 6 of the paper [10]. Therefore, the proof

follows the same steps of the one of Proposition 3 in the paper [10],

and it is omitted in this paper.

�

The assumption of responsiveness for power relations (not as-

sumed in [10]) is crucial for the proof of Proposition 4.3, as shown

by the following example with |N | = 7 where a total power rela-

tion is homogeneous but not responsive and where the core is not

empty.

Example 4.4. Let N = {1, 2, . . . , 7} and define a homogeneous

and total order ⊒ on P(N ) such that i < j ⇒ N \ {j} = N \ {i} for
all i, j ∈ N . Notice that 1 P ⊒le 2 P ⊒le . . . P

⊒
le 7. Consider the partition

Π = {N }. It is easy to check that rk⊒i (Π) = i for all i ∈ N . Let

iS = min{j ∈ S} for all S ⊆ N . Moreover, let ⊒ be such that for all

S ⊂ N , |S | < 7−1, and j ∈ S \{iS } we have S \{iS } = S \{j}. Notice
that ⊒ is not responsive (for all j ∈ S \ {iS }, S \ {iS } = S \ {j}, but
N \ {j} = N \ {iS } ). For any coalition T ⊂ N , T , N , according

to the lex-cel applied on the power relation ⊒T , we have j P
⊒T
le iT

for all j ∈ T \ {iT } (player iT , with the lowest index in T , has the
worst position in the lex-cel ranking computed on ⊒T ).

Consider a partition ΠS = {S,N \ S}. We distinguish two cases:

• 6 ≥ |S | ≥ 4: Notice that S ∩ {1, 2, 3, 4} , ∅ and iS =
rk⊒iS (Π) ≤ 4. By the homogeneity of ⊒, in the coalition struc-

ture ΠS , player iS is strictly stronger than any player in N \S ,
but any player in S , as we already noticed, is strictly stronger
than iS . So, rk

⊒
iS
(ΠS ) ≥ 4 ≥ rk⊒iS (Π): S is not blocking for Π.

• |S | < 4: By the homogeneity of ⊒, in the coalition structure

ΠS , any player in N \ {is } is strictly stronger than iS . More-

over, j P ⊒Sle iS for all j ∈ S \{iS }. So, rk
⊒
iS
(ΠS ) = 7 ≥ rk⊒iS (Π):

S is not blocking for Π.

We have shown that Π is in the core of game Ĝ = (N , (≽i )i ∈N ).

5 CONCLUSIONS
In this paper, we introduced coalition formation models and algo-

rithms aimed at studying the impact of two social attributes, i.e, the

strength of coalitions in a society and the position of players within

coalitions, on the existence of core-stable coalition structures.

The majority of the results presented in this paper, follows from

the basic assumption that the social ranking used to evaluate the

position of each player within a coalition is the the lex-cel [7].

Other social rankings have been proposed in the literature (see, for

instance, paper [2]), and it would be interesting to analyse and com-

pare the results about the stability of coalition structures adopting

alternative notions of social ranking. In a similar fashion, relaxing

the hypothesis that a power relation must be a total relation (as a

matter of facts, some comparisons among coalitions could be not

feasible or not available for practical reasons) could also be useful

to better understand the mechanisms governing the construction

of a society. Some preliminary results on our general (non-hedonic)

framework in Section 4 also suggest new research directions aimed

at characterizing new classes of non-responsive power relations

with a non-empty core.

In this paper, we focused on the investigation of the core of

(non-)hedonic games and its algorithmic characterization. From

a practical point of view, however, another reasonable approach

could be more oriented to stochastic models and simulations. For

instance, considering a population of players having heterogeneous

preferences (selected among those proposed in this study). In this

direction, an interesting research avenue that we are currently ex-

ploring, is the analysis of the recurrence of coalition structures

using a Markov-chain, where the states of the chain are the pos-

sible partitions of the set of players, and where the probability of

transition from one state to another is determined by the presence

or absence of blocking coalitions. This approach is particularly rel-

evant for models where the core is empty, or where an efficient

procedure for findings stable coalition structures is not available.

In fact, it is clear that if no stable coalition structures exist, then,

whatever coalition structure is considered, it is blocked by some

coalition. So, using the terminology of Markov chains, this is equiv-

alent to say that no absorbing state exists, and therefore it is always

possible to end up in a new coalitional structure with positive prob-

ability. In this setting, as a possible alternative to the notion of

core, one can be interested in looking for coalition structures that

are “more recurrent” than others, and in studying the asymptotic

behaviour of the chain.
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