
A Framework for Summarizing a Log of OLAP
Queries

Julien Aligon
Université François Rabelais Tours

Laboratoire d’Informatique
Email: julien.aligon@etu.univ-tours.fr

Patrick Marcel
Université François Rabelais Tours

Laboratoire d’Informatique
Email: patrick.marcel@univ-tours.fr

Elsa Negre
Université François Rabelais Tours

Laboratoire d’Informatique
Email: elsa.negre@univ-tours.fr

Abstract—Leveraging query logs benefits the users analyzing
large data warehouses. But so far nothing exists to allow the user
to have concise and usable representation of what is in the log.
In this paper, we propose a framework for summarizing OLAP
query logs. This framework is based on the idea that a query
can summarize another query and that a log can summarize
another log. It includes a simple language to declaratively specify
a summary, a measure to assess the quality of a summary and an
algorithm for automatically computing a good quality summary
of a query log.

I. INTRODUCTION

It is becoming accepted that leveraging query log would
help the user analyzing large databases or data warehouses
[1]. This is particularly relevant in a collaborative context for
instance to issue recommendations [2], [3], [4], [5]. But to the
best of our knowledge, even the simple problem of providing
the user with a concise representation of what is inside a large
log has rarely been addressed [1]. Using such a summary, that
avoids overwhelming the user, would have many advantages,
including:
• helping an administrator to manage and tune the OLAP

server if the summary indicates the frequently accessed
members,

• allowing a user to have a rough idea of the queries
launched by other users,

• assisting the user to perform new analysis sessions, for
instance by not redoing what has been done, or to write
new queries, by looking for what has been done.

In this paper, we propose to summarize automatically an
OLAP query log. In this context, we work with the following
assumptions:

1) A log is a (often very large) sequence of queries that
must be summarized with a concise representation,

2) The way summaries are obtained should be very flexible
(i.e., various relevant summaries may be computed from
one query log),

3) In addition, the quality of the summary must be evalu-
ated, in terms of how faithful it is to the log.

To answer point 1, we consider that a log will be summarized
by a sequence of queries, i.e., by another (much shorter) log.
Our answer to point 1 entails that a query will summarize
other queries. For point 2, we propose that summaries are
specified in a declarative fashion, i.e., summaries are the

results expressions constructed with a dedicated manipulation
language. This language allows to transform one or more
queries into another query for which its quality as a summary
is measured (point 3).

Our contributions include:
• A query manipulation language (called QML) tailored for

OLAP queries. This language is composed by binary and
unary operators that allow to summarize queries,

• A quality measure based on the classical notions of
precision and recall that allows to measure to which
extent a query is a good summary of another query,

• A greedy algorithm for automatically constructing, using
QML, a summary of a query log w.r.t. a quality threshold
given by the user.

This paper is organized as follows. The next section mo-
tivates the approach with a toy example. In Section III, we
propose a method to summarize queries by introducing the lan-
guage for manipulating queries and in Section IV we introduce
a quality measure for the summarized queries. In Section V we
present the algorithm that automatically computes a summary
of a query log. Section VI briefly discusses related work. We
conclude and draw perspectives in Section VII.

II. MOTIVATION

In this section, we illustrate with a toy example our approach
for summarizing a log of OLAP queries. The context of this
example is that of a user navigating a data warehouse. In our
example, the data warehouse records sales of beverages in
different locations at different time. The dimensions of this
data warehouse are given Figure 1. Consider a sequence of
queries s = 〈q1, q2, q3〉 where q1 is the first query launched,
q2 the second one and q3 the last one. Suppose these queries
are logged in a log L and ask respectively for:

1) The sales of Pepsi and Coke for July 2008, in cities Paris
or Marseille,

2) The sales of Coke for July 2008, in regions North or
South,

3) The sales of Orangina for the second semester 2008, in
regions North or South.

Assume we want to summarize these queries by another
query. Various solutions are possible. First, we can summarize

Fig. 1. Dimensions of our toy example

the queries by retaining for each dimension the most frequent
members. In that case, the resulting query would ask for sales
of Coke in regions North or South during July 2008.

A second alternative would be to summarize the queries
with another query having for each dimension the members
that cover all members present in the initial queries. For
example, note that ’Pepsi’, ’Coke’ and ’Orangina’ are sodas,
cities ’Paris’ and ’Marseille’ and regions ’North’ and ’South’
are in France and all three queries concern year ’2008’. The
query summarizing the log L would then ask for the sales of
soda in France in 2008.

Finally, note that we can have a compromise by summariz-
ing q1 and q2 first, say with the second alternative, and then
summarizing the resulting summary with q3, say with the first
alternative. In that case, we would obtain the query asking for
the sales of Soda and Orangina in France, region North and
region South, for year 2008 and the second semester of 2008.

These examples show the need for flexibility in how the
summary is computed. That is why in this paper we propose
to have a query manipulation language that is used to specify
summaries. In addition, as various summaries can be computed
from one log, the quality of these summaries should be
evaluated. For instance, for our first alternative, the quality
measure should take into account the fact that ’Orangina’ is
present in the log but not in the summary. In our second
alternative, this measure should take into account that indeed
’North’ and ’South’ cover ’Paris’ and ’Marseille’ but also
’Blois’, that is not present in the log.

Finally, note that so far, we have illustrated the problem of
summarizing queries by another query. But a set of queries
could be summarized by another set of queries. Moreover,
summaries for a log should respect the fact that logs are
sequences of queries. For instance, consider again L, this log
could be summarized by the sequence 〈q′1, q3〉 where q′1 is a
summary of q1 and q2 asking for the sales of Soda in France
in the second semester of 2008.

III. HOW TO SUMMARIZE QUERIES ?

In this section, we formally define the query manipulation
language.

A. Preliminary definitions

As the query manipulation language is tailored for OLAP
queries, we first begin with the definition of an OLAP query.
Note that in this paper, we do not consider query result, and
thus the definition of a query result is not given.

An n-dimensional cube C = 〈D1, ..., Dn, F 〉 is defined as
the classical n + 1 relation instances of a star schema, with
one relation instance for each of the n dimensions Di and
one relation instance for the fact table F . For a dimension
Di having schema S = {Li1, . . . , Lidi}, a member m is any
constant in

⋃
Li

j∈S
πLi

j
(Di). For a dimension Di, we consider

that members are arranged into a hierarchy <i and we note
m <i m

′ the fact that the member m′ is the ancestor of m in
this hierarchy.

Given such a cube, a cell reference (or reference for short) is
an n-tuple 〈m1, ...,mn〉 where mi is a member of dimension
Di,∀i ∈ [1, n]. We define multidimensional queries as sets
of references that can be expressed as Cartesian products of
multisets. The reason for having multisets is to be able to
define operators that count members’ occurrences.

Definition 3.1: Given an n-dimensional cube C =
〈D1, ..., Dn, F 〉, let Ri be a multiset of members of dimension
Di,∀i ∈ [1, n]. A query q over C is the multiset of references
q = R1 × ...×Rn.

In what follows, we assume an n-dimensional cube C =
〈D1, ..., Dn, F 〉. In the following definitions, i ranges from 1
to n. For a query q, mi(q) denotes its multiset of members in
dimension Di. A query q will be noted ×imi(q), and multiset
mi(q) will be noted 〈Si, fi〉, where Si is a set and fi is a
function giving the occurrences of each element of Si.

Example 3.1: Consider the three queries q1, q2 and q3 of
the toy example described in the previous section. q1 can be
expressed in the MDX query language:

SELECT
{[Drink].[DrinkAll].[Soda].[Pepsi],
[Drink].[DrinkAll].[Soda].[Coke]}
ON COLUMNS
Crossjoin({
[Country].[CountryAll].[France].[North].[Paris],
[Country].[CountryAll].[France].[South].[Marseille]},
{[Date].[DateAll].[2008].[S2-08].[July08]})
ON ROWS
FROM Cube

We have m1(q1) = {Pepsi, Coke}, m2(q1) =
{July08}, m3(q1) = {Paris,Marseille}. This query is
the set of references: q1 = {Pepsi, Coke} × {July08} ×
{Paris,Marseille}. The set of references for q2 and q3 are:

• q2 = {Coke} × {July08} × {North, South}

• q3 = {Orangina} × {S2-08} × {North, South}
The language we propose is composed by unary operators

and binary operators that manipulate queries and output a
query, that is called a summary query (or simply summary for
short). The main idea behind the definition of these operators is
that they operate dimension-wise: They construct a new query
from the one(s) in parameter by treating each dimension inde-
pendently. We now present formally these operators, starting
with the binary operators.

B. The binary operators of QML
The first operators are the classical bag operators [6] ex-

tended to multiple dimensions.
Definition 3.2: (Bag operators) Given two

queries q1 and q2 and op ∈ {∪B ,∩B , \B},
q1 op q2 = ×i(mi(q1) op mi(q2)).

Example 3.2: Consider the first two queries of Example 3.1,
we have:
• q4 = q1 ∪B q2 = {Pepsi, Coke, Coke} ×
{July08, July08}×{Paris,Marseille,North, South}

• q5 = q1 ∩B q2 = {Coke} × {July08} × ∅ = ∅
• q6 = q1 \B q2 = {Pepsi}×∅×{Paris,Marseille} = ∅
The next operators give priority to one query over the other.
Definition 3.3: (Priority operators) Given two queries q1

and q2, q1 C q2 = q1.

C. The unary operators of QML
Recall that a query can be seen as a Cartesian products of

multisets. Our first operator outputs, for a query q in parameter,
a query for which only the most frequent members of q in each
dimension is retained.

Definition 3.4: (Most frequent operator) Let q
be a query with mi(q) = 〈Si, fi〉 for all i.
mostfreq(q) = ×i〈S′i = {m ∈ Si|@m′ ∈ Si, fi(m

′) >
fi(m)}, fi|

S′
i

〉 (fi|X denotes the restriction of a function fi to
the set X)

Example 3.3: mostfreq(q4) = {Coke, Coke} ×
{July08, July08} × {Paris,Marseille,North, South}

Our second operator outputs, for a query q in parameter, a
query for which only the most general members of q in each
dimension are retained, w.r.t. the hierarchy of the dimension.

Definition 3.5: (Max operator) Let q be a query.
max(q) = ×i〈S′i = {m ∈ mi(q)|@m′ ∈ mi(q),
m <i m

′}, fi|
S′
i

〉
Example 3.4: max(q4) = {Pepsi, Coke, Coke} ×

{July08, July08} × {North, South}
Our next operator outputs, for a query q in parameter,

a query for which only the lowest common ancestors of
the members of q in each dimension are retained, w.r.t. the
hierarchy of the dimension.

Definition 3.6: (lca operator) Let q be a query. Let lca
be the function that outputs, for a given set of mem-
bers M in dimension Di, their common ancestor w.r.t.
<i, i.e., {m ∈ Di|∀m′ ∈ M,m′ <i m ∧ @m′′,
m′ <i m

′′m′′ <i m}. lca(q) = ×ilca(mi(q)).
Example 3.5: lca(q4) = {Soda} × {S2-08} × {France}

D. Expression of various summaries

We now briefly illustrate how QML can be used. For
instance, consider a log L composed by 3 queries: L =
〈q1, q2, q3〉. This log can be summarized by the query q1s
that retain only the references that appear in all queries, i.e.,
q1s = q1 ∩B q2 ∩B q3. Alternatively, L can be summarized
by taking into account the frequency of the members used in
the log: q2s = mostfreq(q1 ∪B q2 ∪B q3). Finally, L can be
summarized by a query roughly indicating the parts of the cube
that were explored: q3s = lca(q1 ∪B q2 ∪B q3). We illustrate
these possibilities on our running example.

Example 3.6: Summarizing by retaining the common
references of all queries, we obtain: q1s = q1 ∩B q2 ∩B q3
= ∅. Summarizing by frequencies on these queries, we
obtain: q2s = mostfreq(q1 ∪B q2 ∪B q3) = {Coke, Coke} ×
{July08, July08} × {North,North, South, South}.
Summarizing by lca, we obtain:
q3s = lca(q1 ∪B q2 ∪B q3) = {Soda} × {2008} × {France}.

In the following section, we introduce our measure for
assessing the quality of summaries expressed with QML.

IV. QUALITY MEASURE

In this section, we propose a measure that evaluates to which
extent a query is a good summary of some other queries.
The measure is based on the classical notion of precision and
recall. Note that the operators of QML define summaries by
adding or deleting references to their operands. It is the case,
for instance, of the lca operator which summarizes by adding
ancestors.

For instance, in Example 3.5, the added references in the
summary are: A = {Soda} × {S2-08} × {France}.
And in that case, the deleted references in the
summary are: D = {Coke, Pepsi} × {July08}×
{Paris,Marseille,North, South}. The intuition behind
this example is that we can consider this summary as a good
summary with a good quality. However, if we apply the
classical precision and recall measures to evaluate its quality,
both are null (since A ∩D = ∅).

For a given set of queries, our idea of good summary is that
the more references of the queries it has, the better quality
it achieves. But additions or deletions of references should
not decrease the quality if these additions cover, at best, the
coverage of deleted references (for the references at the most
detailed level w.r.t. the hierarchies of the dimensions). In that
sense, it would be preferable that the coverage of additions
introduces few references not in the coverage of the deleted
references. We now formalize these notions.

Definition 4.1: (Coverage) A reference r covers
another r’ if r=〈m1, ...,mn〉, r’=〈m′1, ...,m′n〉 and
∀i ∈ [1, n], mi >i m

′
i or mi = m′i.

For a set R of references, cover(R)={f ∈ ΠL1
1
(D1) ×

ΠL2
1
(D2)× ...×ΠLn

1
(Dn) | ∃r ∈ R, r covers f}

In Figure 2, we note L the set of the references of some
queries to be summarized, S the set of references of the
summary and K as L ∩ S. The shaded parts are the coverages
of D and A respectively, for the most detailed references.

Fig. 2. Principle of the quality measure

For instance, consider Example 3.5. L = q1 ∪ q2,
S = lca(q4) and L ∩ S = ∅ thus both A and
D 6= ∅. So, we compare cover(A) and cover(D).
cover(A) = {Pepsi, Coke,Orangina}× {July08,
August08, September08, October08, November08,
December08} ×{Paris,Blois,Marseille} and
|cover(A)| = 54. cover(D) = {Pepsi, Coke} × {July08} ×
{Paris,Marseille} ∪ {Coke} × {July08} × {Blois} and
|cover(D)| = 5. We can note that cover(D) ⊂ cover(A).
Intuitively, if a recall measure is used, it would be excellent
because all covered references are recalled. On the contrary,
a precision measure would be very bad because a lot of
references are introduced: The noise is consequent.

To formalize this intuition, our measure of recall is the
proportion of covered references existing in cover(D) and
found in cover(A) compared with the set of references in
cover(D). Moreover, recall favors maximality of K. Recall is
defined by: r = |K ∪ (cover(D) ∩ cover(A))|

|K ∪ cover(D)| .
The measure of precision is the proportion of covered ref-
erences existing in cover(D) and found in cover(A) com-
pared with the set of references in cover(A). As for recall,
precision encourages maximality of K. Thus we measure
the noise in the case when cover(A) would add new cov-
ered references in the summary. Precision is formalized as:
p = |K ∪ (cover(D) ∩ cover(A))|

|K ∪ cover(A)| . If S is the empty set (it is
the case of query q5 in Example 3.2), then we consider that
p = r = 0.

Note that these recall and precision measures are also
relevant in three particular cases:
• If D = ∅ (there is no deleted references, as for instance for

the union operator), recall is perfect and precision is only
based on the kept references compared with coverage of
A, i.e. p = |K|

|K ∪ cover(A)| .
• If A = ∅ (there is no added references, as for instance for

the priority operators), precision is perfect and recall is
based on the kept references compared to the coverage
of D, i.e. r = |K|

|K ∪ cover(D)| .

• If K = ∅ (there is no kept references, as for instance
for the lca operator), recall and precision are based
on the coverage of additions and deletions, i.e. r =
|cover(A) ∩ cover(D)|

|cover(D)| and p = |cover(A) ∩ cover(D)|
|cover(A)| .

Finally, our quality measure, simply named quality,
aggregates our recall and precision measures, with a
simple F-measure. Formally, given a set L of refer-
ences, a query R and a set of dimensions {D1, ..., Dn},
quality(L,R, {D1, ..., Dn}) = 2 × p × r

p + r . It returns a real
in [0,1].

So far, we have introduced a way to express summaries of
query sets. In the following section, we present our approach
for summarizing a query log, i.e., a sequence of queries.

V. HOW TO SUMMARIZE A LOG ?

In this section, we present an algorithm for summarizing a
log, based on QML and our quality measure. A log is a finite
sequence of queries. The main idea is that a summary of a
log is also a log, which is computed w.r.t. a quality threshold
given by the user.

Note that, if we summarize a set of queries by one
query, summary operators can be combined under the form:
u(q1 b q2) where u is a unary operator, b is a binary operator
and q1, q2 are two queries of the set to be summarized. The
idea is to apply this form in a greedy algorithm (Algorithm
Summarize detailed Figures 4 to 6). The algorithm iterates
until the quality of the summary falls under a threshold or the
summary stops changing. In a first part, the algorithm tests
each couple of consecutive queries with a binary operator (line
6 to 17). It takes the best summary w.r.t. the quality measure
(line 10 to 15). Then, with this summary query, the algorithm
tests each unary operators and the best output is kept (line 19
to 26). Note that the quality is measured w.r.t. the initial query
couple and not w.r.t. the output of the binary operator.

Figures 5 and 6 detail the algorithm of the quality measure.
Note that the size of coverages are computed without actually
computing the coverages. Indeed, we assume that the number
of covered members is kept for all members of the dimension
tables.

Figure 3 illustrates the algorithm with the following pa-
rameters: L = 〈q1, q2, q3〉 with q1, q2, q3 the three queries
of the toy example, U and B are respectively the sets of
unary and binary operators of QML, the dimensions of the
toy example and the quality threshold of 0.7. All binary
operators are tested on each couple of consecutive queries. The
couple {q1, q2} is selected because the quality measure is the
highest for the union operator. Then, with the result of binary
operator of couple {q1, q2}, all unary operators are tested. max
operator is selected. Finally, {q1, q2} can be summarized by
qS1. The algorithm tries to summarize with the new sequence
of queries 〈qS1, q3〉 following the same principle. As the
computed qualities are all below the threshold, the algorithm
stops with result 〈qS1, q3〉.

Fig. 3. First step of the algorithm on our toy example

VI. RELATED WORK

Summarization of structured data has attracted a lot of
attention in various domain, covering web server log [7]
pattern mining (see e.g., [8] that includes a brief survey),
sequences of event [9], database [10], multidimensional data
stream [11], and datacubes [12].

Many of these works rely on fuzzy set theory ([7], [10])
and/or are compression techniques for which it is important
that original data can be regenerated ([12], [8]). Moreover, it
can be the case that the summary has not the same type as
the data it summarizes. In the domain of database ([10], [11],
[12]), summarizing is applied to the database instance where,
for OLAP data, measure values are taken into account.

In this paper we address the problem of summarizing an
OLAP server query log. Our approach has the following
characteristics:
• We do not rely on fuzzy set theory for summarizing.

Instead, we leverage the hierarchies described in the
dimension tables.

• The type of the summary is the same as the type of the
summarized data.

• We do not address the problem of regenerating the
summarized data from the summary.

• We do not summarize a database instance, but database
queries.

To the best of our knowledge, no work have yet addressed
the problem of summarizing a database query log in a suitable
and concise representation. As pointed out in [1], many

systems provide query logging, primarily for physical tuning,
and allow users to view the log. But the way log is displayed,
often in flat table or file, is not suitable for browsing. In our
earlier work [13], we propose to organize an OLAP query log
under the form of a website. But if the log is large, browsing
this website may be tedious. An effective log visualization and
browsing tool is yet to be designed, and the present work is a
step in that direction.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we propose a framework for summarizing
OLAP query logs. This framework is based on the idea that
a query can summarize another query and that a log can
summarize another log. Our contributions include a query
manipulation language that allows to declaratively specify
a summary, a measure to assess the quality of a summary
and an algorithm for automatically computing a good quality
summary of a query log.

Future work includes the implementation of our approach as
well as various tests to assess its efficiency and effectiveness
to support on-line analysis. We will also study its extension
to a collaborative context where a log, composed by many
sequences of queries performed by different users, can be
efficiently browsed and searched.

REFERENCES

[1] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Su-
ciu, “A case for a collaborative query management system,” in CIDR.
www.crdrdb.org, 2009.

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query recommenda-
tions for interactive database exploration,” in SSDBM, ser. Lecture Notes
in Computer Science, M. Winslett, Ed., vol. 5566. Springer, 2009, pp.
3–18.

[3] A. Giacometti, P. Marcel, and E. Negre, “Recommending multidimen-
sional queries,” in DaWaK, ser. Lecture Notes in Computer Science, T. B.
Pedersen, M. K. Mohania, and A. M. Tjoa, Eds., vol. 5691. Springer,
2009.

[4] A. Giacometti, P. Marcel, E. Negre, and A. Soulet, “Query recommen-
dations for olap discovery driven analysis,” in DOLAP, 2009, pp. 81–88.

[5] K. Stefanidis, M. Drosou, and E. Pitoura, “”You May Also Like” Results
in Relational Databases,” in PersDB, 2009.

[6] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The
Complete Book. Upper Saddle River, NJ, USA: Prentice Hall Press,
2008.

[7] S. Zadrozny and J. Kacprzyk, “Summarizing the contents of web server
logs: A fuzzy linguistic approach,” in FUZZ-IEEE. IEEE, 2007, pp.
1–6.

[8] M. Ndiaye, C. T.Diop, A. Giacometti, P. Marcel, and A. Soulet, “Cube
based summaries of large association rule sets,” in sixth International
Conference on Advanced Data Mining and Applications (ADMA).
LNCS, 2010.

[9] W. Peng, C. Perng, T. Li, and H. Wang, “Event summarization for system
management,” in KDD, P. Berkhin, R. Caruana, and X. Wu, Eds. ACM,
2007, pp. 1028–1032.

[10] R. Saint-Paul, G. Raschia, and N. Mouaddib, “General purpose database
summarization,” in VLDB, K. Böhm, C. S. Jensen, L. M. Haas, M. L.
Kersten, P.-Å. Larson, and B. C. Ooi, Eds. ACM, 2005, pp. 733–744.

[11] Y. Pitarch, A. Laurent, and P. Poncelet, “Summarizing multidimensional
data streams: A hierarchy-graph-based approach,” in PAKDD (2), ser.
Lecture Notes in Computer Science, M. J. Zaki, J. X. Yu, B. Ravindran,
and V. Pudi, Eds., vol. 6119. Springer, 2010, pp. 335–342.

[12] L. V. S. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to
summarize the semantics of a data cube,” in VLDB. Morgan Kaufmann,
2002, pp. 778–789.

[13] S. Colas, P. Marcel, and E. Negre, “Organisation de log de requêtes
OLAP sous forme de site web,” in 6èmes journées francophones sur les
Entrepôts de Données et l’Analyse en ligne (EDA 2010), Djerba, Tunisie,
ser. RNTI, vol. B-6. Toulouse: Cépaduès, Juin 2010, pp. 81–95.

INPUT:
L: a log,
U : a set of unary operators,
B: a set of binary operators,
D1, . . . , Dn: the dimensions,
α: quality threshold.

OUTPUT: A summary of L.
VARIABLES:

SOQ, SOQ′: sequences of queries,
query1S , query2S , qS , queryB, queryU , query1, query2: queries,
quality, qualityQuery,max: reals.

1: SOQ′ ← 〈〉
2: SOQ ← L
3: qualityQuery ← α
4: while (qualityQuery >= α) and (SOQ′ 6= SOQ) and (sizeOf(SOQ) 6= 1) do
5: max ← 0
6: for each pair 〈query1, query2〉 of consecutive queries in SOQ do
7: for each b ∈ B do
8: qS ← query1 b query2
9: ref ← query1 ∪ query2 {the union of the references of query1 with those of query2}

10: quality ← Quality(ref ,qS ,D1, . . . , Dn) {Function Quality() returning the quality degree of a summarized query}
11: if quality > max then
12: max ← quality
13: query1S ← query1
14: query2S ← query2
15: queryB ← qS
16: end if
17: end for
18: end for
19: max ← 0
20: for each u ∈ U do
21: qS ← u(queryB)
22: ref ← query1S ∪ query2S
23: quality ← Quality(ref,qS ,D1, . . . , Dn)
24: if quality > max then
25: max ← quality
26: queryU ← qS
27: end if
28: end for
29: qualityQuery ← max
30: SOQ′ ← SOQ
31: SOQ ← SOQ.replace(query1S ,query2S ,queryU) {Function replace() replacing the pair {query1S ,query2S} by queryU}
32: end while
33: return SOQ′

Fig. 4. Algorithm Summarize(L, U , B, D1, . . . , Dn, α)

INPUT:
refi, refs: set of references,
D1, . . . , Dn: the dimensions

OUTPUT: The quality of refs w.r.t refi.
VARIABLES:

D, A: a set of references, K, CD , CA,C∩: integer, r, p: float
1: K ← |refi ∩ refs|
2: D ← refi - refs
3: A ← refs - refi
4: D ← max(D) {function max() returning a set of reference from D covering every references of D}
5: A ← max(A)
6: CD ← CardinalityOfCoverage(D)
7: CA ← CardinalityOfCoverage(A)
8: Cov∩ ← 0
9: M∩ ← 0

10: C∩ ← 0
11: for each reference rD of D do
12: for each reference rA of A do
13: for each dimension d of D1, . . . , Dn do
14: for each member mD of rD do
15: for each member mA of rA do
16: if mA <d mD then
17: Cov∩ = Cov∩ + |cover(mA)|
18: else {mD <d mA}
19: Cov∩ = Cov∩ + |cover(mD)|
20: end if
21: end for
22: end for
23: M∩ = M∩ × Cov∩
24: end for
25: end for
26: C∩ = C∩ + M∩
27: end for
28: r ← K+C∩

K+CD

29: p ← K+C∩
K+CA

30: return 2 × p × r
p + r

Fig. 5. Algorithm Quality(refi, refs, D1, . . . , Dn)
INPUT:

Sr : set of references,
D1, . . . , Dn: the dimensions

OUTPUT: |cover(Sr)|.
VARIABLES:

r: a reference, d: a dimension, m: a member,
1: Cov ← 0
2: T ← 0
3: C ← 0;
4: for each reference r of Sr do
5: for each dimension d of D1, . . . , Dn do
6: for each member m of r do
7: Cov = Cov + |cover(m)|
8: end for
9: T = T × Cov

10: end for
11: C = C + T
12: end for
13: return C

Fig. 6. Algorithm CardinalityOfCoverage(Sr , D1, . . . , Dn)

