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Abstract: Central nodes (i.e., prominent actors) in a social network
are those that are linked to other nodes in an extensive or critical
manner. Therefore, their removal may lead to points of failure.
The objective of the present work is to exploit network topology to
devise an approach towards (i) finding substitute(s) to a deleted node,
and (ii) adding appropriate links to avoid a fragmentation of the
network into unconnected subgraphs. The approach exploits the role
played by nodes to predict the new structure of a social network once
one entity disappears. The role of a node in the network is expressed in
terms of the number of interactions it has with the rest of the network.
Three important roles are considered: the leader, the mediator and the
witness. An entity acts as a leader, a mediator or a witness if it has a
high degree centrality, betweenness centrality and closeness centrality,
respectively.
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1 Introduction

Social network analysis (see (Carrington, 2007; Knoke and Yang, 2008; Wasserman
and Faust, 1994)) is an important research area that has attracted many
research communities and has been studied according to different approaches and
techniques. A social network is a dynamic structure (generally represented as a
graph) of a set of entities/actors (nodes) together with links (edges) between them.

Like all social structures, each actor plays a more or less important role within
the network like the leader who interacts with many other entities or the mediator
who acts as an intermediate entity between groups or the witness who has the best
visibility about the information flow in the network.

Many studies in social network analysis (SNA) focus on static networks as
indicated in Jamali and Abolhassani (2006). However, a social network is a
dynamic structure where links and entities appear and disappear. In this paper
we study the link prediction problem when a node is deleted. In practical terms,
given a social network, what happens if an entity disappears? What will be the
new structure of the network? Which node(s) will become substitute(s) and play
the role of the deleted node if the latter happens to be a leader or a mediator or a
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witness? What are the links that more likely will be created in order to maintain
the network in some stable structure?

The disappearance of central nodes (i.e., the ones with at least one high
centrality score) will very likely not have the same impact on the network as the
disappearance of rather peripheral ones (i.e., nodes with low centrality scores).
Based on this fact, we propose a procedure for predicting the evolution of the
structure of a social network after the deletion of an entity. Such a procedure first
identifies the role of the removed node within the network, then effectively removes
the node and its ties with other nodes, determines the potential substitute(s) and
finally creates new links between the (unique) selected substitute (if it exists)
and some identified nodes. Since degree, betweenness and closeness centralities are
among the most important measures for the role or position of a node in a network,
we will focus on them and associate to them three distinct roles, respectively:
Leader, Mediator and Witness. When no substitute is found, the nodes formerly
linked to the deleted node are connected to form a clique.

This paper is organized as follows: the next section gives some background
on social network analysis and motivates our approach. Section 3 presents some
related work while in Section 4, we describe our approach. An experimental study
conducted on real large datasets is described in Section 5. Finally, Section 6
concludes this paper and provides future work.

2 Background

In the following we first recall some useful notions and then we illustrate through
a simple example the way our approach works. The network is assumed to be a
connected, undirected and unweighted graph.

Consider the KITE network defined by David Krackhardt as shown in Figure
1 where ten individuals are linked through eighteen edges. One may first observe
that nodes D, F , G and H are central nodes in that network.

2.1 Centrality measures

There are many measures of node centrality in a graph to capture the importance
of an entity within such structure. For example, the degree centrality, the
betweenness centrality, and the closeness centrality of a given node (see Wasserman
and Faust (1994)) or a group of nodes (see Everett and Borgatti (2005)) are
frequently used centrality measures.

Degree centrality for individual nodes provides the number of their direct links
and helps identify leaders which have the (almost) highest number of links within
the network. Group degree centrality represents the number of nodes outside
the group that are linked to elements of the group. The normalized node degree
centrality and group degree centrality in a given social network SN are computed
as follows:
CSN

D (i) = d(i)
n−1 for a node i

CSN
D (G) = |N(G)|

n−|G| for a group G of nodes,

where d(i) is the degree (number of edges) of i, and N(G) is the set of nodes
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which do not belong to the group G but are adjacent to an element of the group.

Betweenness centrality expresses the amount of control that a node (or a group of
vertices) possesses over the interactions of other nodes in the network. It is high
for mediators (or brokers) which are nodes that act as intermediaries between
other nodes or as joins between communities. The betweenness centrality indicator
is computed as follows:

CSN
B (i) =

2×
∑

i6=j 6=k

pjk(i)

pjk

(n−1)(n−2) for a node i

CSN
B (G) =

2×
∑

j<k

pjk(G)

pjk

(n−|G|)(n−|G|−1) for a group of nodes G

where pjk is the number of shortest paths between nodes j and k and pjk(i) (resp.
pjk(G)) is the number of shortest paths between j and k crossing i (resp. G).

Closeness centrality of an individual node indicates how a node is close to the
other nodes in the network and hence how fast information circulates from a
given node to other reachable nodes in the network. This indicator will be used
to identify what we call a witness. We define the role of witness in the network
as being the one with a high closeness centrality, i.e., the one whose distance to
other nodes is short within the network. Everett and Borgatti (2005) define group
closeness centrality as “the normalized inverse sum of distances from the group
to all node outside the group”. The normalized closeness centrality and group
closeness centrality are computed as follows:
CSN

C (i) = n−1
Σn

j=1d(i,j)i 6=j for a node i

CSN
C (G) =

Σn
i=1[CSN

C (N∗)−CSN
C (i)]

[(n−2)(n−1)]/(2n−3) for a group of nodes G

where d(i, j) is the shortest path between i and j, and CSN
C (N∗) is the highest

closeness centrality in the network.

Computing the betweenness and closeness centralities for all nodes in the
network assumes the computation of the shortest paths between all pairs of nodes.
For example, the calculation of betweenness centrality requires O(n + m) space
and runs in O(nm) time for unweighted networks using the algorithm defined in
Brandes (2001), where n and m are the number of nodes and links in the network
respectively.

Figure 1 shows the value of degree, betweenness and closeness centralities for each
node in the KITE network.

2.2 Network measures

Network measures (Kaiser, 2008; Watts and Strogatz, 1998) are metrics that allow
the quantification of a network as a whole and are helpful for comparing and
classifying a set of graphs (e.g., samples of an initial graph) or when one network
has undergone some topological changes (e.g., node/edge insertion or removal).
The density, diameter, degree distribution and clustering coefficient are among
the numerous network measures. The network diameter is the maximum length of
shortest paths between two nodes while the density of a network is the proportion
of the total number of links over the number of all possible links that can hold
between existing nodes. The (node) degree distribution provides the number of
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Degree Betweenness Closeness
centrality centrality centrality

A 0.444 0.023 0.52

B 0.444 0.023 0.52

C 0.333 0 0.5

D 0.667 0.102 0.6

E 0.333 0 0.5

F 0.556 0.231 0.64

G 0.556 0.231 0.64

H 0.333 0.389 0.6

I 0.222 0.222 0.42

J 0.111 0 0.31
Figure 1 Left: The KITE social network. Right: the centrality scores.

nodes with degree k for k = 0, 1, . . . . The clustering coefficient of a network (see
Watts and Strogatz (1998)) is the average value of the local clustering coefficients
of all its n nodes.
C1 = 1

n

∑n
i=1 Ci = 1

n

∑n
i=1

2Γi

ki(ki−1) .

where ki is the number of the actual neighbors of node i while Γi represents the
number of edges between the neighbors of node i. An adjusted (and more reliable)
clustering coefficient is proposed in Kaiser (2008) where n in C1 is replaced with
the number of nodes that have at least two neighbors.

2.3 Motivation

As stated before, we propose a role-based approach with its associated procedure
to predict the structure of a social network when a node disappears. Three typical
cases of the role played by the deleted node are considered: Leader, Mediator, and
Witness. If a node has none of these roles, then it is labeled Other. When an
individual disappears from the network (e.g., account closure, person’s retirement),
all the links associated with such a node are removed. Then, one substitute of the
deleted node will be sought, only when the vanished entity has played the role of
a leader, mediator or witness in the network. The question is then the following:
what is the impact of this disappearance on the remaining individuals? Will some
individuals form a clique for example? This will depend on the structure of the
network, the role previously played by the deleted node in that network as well as
the desired linking option. We consider four possible options to link nodes in the
network:

• OLD: a selected node i acting as a substitute is linked to the former
neighbors of the deleted node X. E.g., when Bob replaces the group leader
Martin, then he initiates a new tie with anyone (not already linked to Bob)
who was linked to Martin.

• IMP : a selected node i is linked to a node z whenever the latter has a
centrality (degree, betweenness or closeness) very close (i.e., deviate by at
most a ratio ε) to that of i. E.g., when Bob replaces the group leader Martin,
then he initiates a new tie with anyone who has almost the same position as



6 R. Missaoui and E. Negre and D. Anggraini and J. Vaillancourt

him in the organization, i.e., the one who has a degree centrality very close
to his own centrality.

• CLIQUE: this option is only used when no substitute is found and aims to
link the former neighbors of the deleted node X in a clique. E.g., when a
central member of a family (or clan) such as a godfather or a patriarch passes
away, the close collaborators or relatives strengthen their ties by forming a
clique.

• NGB: a node i is linked to node z if the latter has a number of common
neighbors with i very close to the maximum number of common neighbors
that i shares with other nodes. E.g., if Jean and Daniel have many
collaborators in common, then they will more likely collaborate (and link
together) in the future.

Using the network shown in Figure 1, let us remove node B which turns to be
Other because none of its three centrality scores deviates for example by a ratio
ε = 10% from the corresponding highest value of degree, betweenness or closeness
centrality. The graph becomes the one in the middle of Figure 2 after the deletion
of B. In such a case, all the nodes that were linked to B will form a clique (the
unique link option when the deleted node is Other) as indicated in Figure 2-c.

Figure 2 (a) The initial network. (b) after deleting node B and related ties. (c)
after forming a clique with nodes A, D, E, and G that were neighbors of B.

If however node D is deleted, a substitute is sought because the role of D is
a Leader. If we tolerate a deviation ratio ε = 25% from the degree centrality of
D, then a node with a degree centrality at least equal to 0.667× 0.75 = 0.50 is a
potential substitute. This is the case of nodes F and G whose degree centrality
becomes 0.50 in the new network deprived from D (see Table 1). If F is the selected
substitute for D, then the new network will be Figure 3-(b) if the link option is
IMP or Figure 3-(c) if the link option is OLD.

Another replacement alternative is to restrict the search for the substitute to
the community of the deleted node because entities of the same community tend
to share some common features. In our example, suppose that the set of nodes
{A,B,C,D,E, F,G} represents a community. Then, any search for the substitute
of one of these nodes will be limited to its membership community. The benefit
of such restriction lies in the fact that the exploration of the network and the
computation of centrality measures are limited to the community to which the
deleted node belongs to rather than to the entire network. However, there are some
real-life situations where it is much more valuable to explore the whole network to
better find a substitute with a role close to that of the deleted node.
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Note that if the deleted node is a leaf (has only one link with the rest of the
network), then there is no need to find a substitute or create new links between
some existing nodes. In our example, the deletion of J from the initial network
does not lead to the identification of a substitute or the insertion of new links.

3 Related work

Many social network evolution models have been proposed. However, they are
mainly based on adding nodes or links. Dynamic networks are a kind of graphs (see
(Ben-Naim and Krapivsky, 2007; Toivonen et al., 2009)) in which nodes and links
can be added and/or deleted. In such networks, links are generally added/created
by using the triadic closure and focal closure (see (Kumpula et al., 2007; Toivonen
et al., 2009)) through non deterministic approaches generally limited to geodesic
neighborhood. We recall that the triadic closure is the probability that B is linked
to C knowing that A is already linked to B and C. The focal closure is the
probability that A and B that share an interest could interact while the geodesic
neighborhood of A is the set of nodes located at a geodesic distance (i.e., the
shortest path) from A. The deletion of a node leads to the deletion of the adjacent
links and the substitution of the deleted node by another one (see Toivonen
et al. (2009)). However, when nodes are not much connected to the network, this
substitution seems not necessary.

There are many social network prediction methods. The studies in Liben-
Nowell and Kleinberg (2003) and Tylenda, Angelova and Bedathur (2009) focus on
predicting new links but exclusively in static social networks. In Liben-Nowell and
Kleinberg (2003), the objective is to define approaches to link prediction based on
measures that exploit the proximity of nodes within a network. More precisely, the
idea is to identify proximity measures that efficiently predict the new links that
will likely happen in the future in a social network by assuming that two close
nodes have a greater probability to be linked. An experimental comparison of a
set of measures (e.g., shortest-path distance, Adamic-Adar distance and common
neighbor measure) and their impact on the quality of link prediction is proposed.
In Tylenda, Angelova and Bedathur (2009), the authors take into account the
evolution of a network over time by integrating edge weights (potentially derived
from temporal characteristics) into existing link prediction methods. They also
investigate a new testing method to compute the performance of prediction
algorithms in ranking the neighbor nodes of a selected node. Finally, the issue
raised in Hussain and Ahmed (2008) is close to ours since the authors handle
the problem of identifying the node of the network which will replace a given
deleted node. To that end, they propose a Bayesian approach by first computing
the posterior probability of each node in the network. The best substitute is then
the one with the most closer posterior probability to that of the deleted node.
Moreover, they take into account the hierarchical structure of nodes (a background
knowledge not reflected in the network) so that the substitute needs to be of
similar level of hierarchy (e.g. a Vice-president should be replaced by another Vice-
president in the organization). However, the link prediction problem is not studied.
In Negre, Missaoui and Vaillancourt (2011), a method to predict the new structure
of a social network once a node is deleted is proposed. It consists to find one or
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possibly many substitute(s) for the deleted node based on the importance of the
interactions that hold between nodes. New links can then be established in the
network and any isolated node is discarded.

As stated by Callaway et al. (2000), an important feature of interconnections
is their robustness - or fragility - to the deletion of network nodes. To study
such property, the authors exploit percolation on graphs having general degree
distribution and apply the theory of percolation to the study of network resilience.
We plan to further explore this aspect to handle some critical issues in the future.

The present paper extends our previous work both in its structure and content:
(i) algorithms are simplified and each involved function is detailed, (ii) the
closeness centrality is introduced to define a new role called witness, and (iii)
the quality of substitution in terms of “return to the normal” relies on a more
elaborated set of network parameters such as density, number of links and edges,
diameter and global clustering coefficient of the network.

4 Predicting a social network structure

The approach we describe in this paper is based on the role played by nodes
in a social network in terms of their interactions with other nodes to predict
the new structure of that network after the deletion of one of its vertices. We
recall that this method relies on the following hypotheses: (i) the network is a
connected, undirected and unweighted graph, and (ii) two entities of the network
are compared on the basis of their centrality in the network.

Let assume that node X disappears from the network. Then, we would like to
(i) identify the node(s) of the network that will replace X and play a similar role as
X, and (ii) define the new structure of the network in terms of new and vanishing
ties among nodes. Substitution is possible when X acts either as a leader, mediator
or witness and when one node emerges as a substitute for the removed node.

4.1 Role

We define the role rSN
X of a given node X within the network SN = 〈V,E〉 as an

element of the finite set R = {Leader, Mediator, Witness, Other} such that

rSN
X =



Leader if
CR

D(X)
maxL ≥ 1− ε,

where maxL is the maximal value of
the observed degree centrality within
SN and ε is a tolerance ratio.

Mediator if
CR

B (X)
maxM ≥ 1− ε,

where maxM is the maximal value of
the observed betweenness centrality

Witness if
CR

C (X)
maxC ≥ 1− ε,

where maxC is the maximal value of
the observed closeness centrality

Other otherwise.

The value of ε used throughout the paper is a user-defined ratio (e.g., 10%)
that indicates to what extent a given value is allowed to at most deviate from
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another one. When for example ε is null for role assignment, this means that the
role of leader (or mediator/witness) is assigned to the deleted node if it has the
highest degree (or betweenness or closeness) centrality in the network. However, a
non null value of ε allows (i.e., tolerates) a relative deviation of at most ε from the
highest value of degree (or betweenness/closeness) centrality.

In case a node X has more than one role, it will take the role associated with its
centrality that is most relatively close to the maximal corresponding centrality. For

example, if node X has roles leader and mediator, it will be a leader if
CSN

D (X)
maxL ≥

CSN
B (X)
maxM . Otherwise, X will be a mediator.

From Figure 1, one can see that maxL = 0.667, maxM = 0.389 and maxC =
0.64. With a ratio ε = 20% of maxL, maxM and maxC respectively, the deleted
node X has the role of a leader if it belongs to the set {D,F,G}, the role of
a mediator if it corresponds to H, the role of a witness if it belongs to the set
{A,B,D, F,G}, and other if it belongs to the set {C,E, I, J}. If the deleted node
is F , it has the double role of leader and witness, and the computation of the

two ratio
CSN

D (X)
maxL and

CSN
C (X)
maxC leads to 0.556

0.667 < 0.64
0.64 . Then, F will have the role of

witness.

Deleting a node from the network leads to deleting associated links. Based on
the existing studies on link prediction and social network evolution, we believe
that predicting the social network structure after the deletion of a given node can
not be limited to only the deletion (and possibly the insertion) of links but also to
the identification of one or many nodes that can play a similar role as the deleted
node. With this observation in mind and assuming that the network should return
to a “normal state” after a node deletion, our approach proceeds in two steps: (i)
predict, if possible, which node of the network will replace the deleted node X,
and (ii) predict the new interactions that will appear within the network.
For instance, if a mediator is deleted, then a new candidate for mediation is sought.
However, if the deleted node is other, then its role is not very important within
the network and hence no substitute is required. However, new links will be added
between nodes that were attached to the deleted.

As indicated earlier, our approach takes into account the topology of the
network to predict its structure after the deletion of one node. The three following
cases are then considered.

4.1.1 Leader

If the deleted node X is a leader, i.e., it has a high degree centrality, then its
links to other nodes are also deleted, but the past interactions between nodes or
groups of nodes via the deleted node should in some way persist through the newly
selected leader using one of the previously described link options.

4.1.2 Mediator

If the deleted node X is a mediator between some nodes or groups of nodes, i.e., it
has a high betweenness centrality, then its existing links with some other nodes are
also deleted and a similar reasoning can then be conducted like in the first case.
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4.1.3 Witness

If the deleted node X is a witness between some nodes or groups of nodes, i.e., it
has a high closeness centrality, then its existing links with some other nodes are
also deleted and a similar reasoning can then be conducted as in the first case.

When the deleted node is a leader or a mediator or a witness and there is
a substitute, then the latter will be linked to some other nodes of the network
according to one of three established link options (OLD, IMP , NGB) as defined
by Procedure LinkS (see explanation below). However, if no substitute exists, then
some nodes are linked with some other ones according to one of two possible link
options (CLIQUE, IMP ) using Procedure LinkNoS (see below). Then, the new
network structure and the new central nodes are returned.

4.1.4 Other

If the deleted node has no role, i.e., it is neither a leader nor a mediator/witness,
then its links are also deleted but no substitute is sought because the node is not
enough important to be replaced by another node. However, the nodes that were
previously attached to the deleted one will form a clique.
Once the new network structure is established, if some nodes are completely
isolated, i.e., they are not linked to any other node, they are then deleted.

4.2 Algorithms

In this section, we propose a main procedure (see Algorithm 1) called PredictStruct
for predicting the social network structure after the deletion of one of its nodes.
The algorithm incorporates the two steps of our approach: the identification of the
substitute of the deleted node, and then the link management.

Given a social network SN , a deleted node X, and a ratio ε, the main
procedure returns both the new predicted network SN ′ (where X and its related
links are removed while new links are added) and the new sets of leaders, mediators
and witnesses of SN ′. The ratio ε represents a tolerated relative deviation of a
given value and is used as a parameter of some defined functions. For substitute
identification (see Substitute(X,SN, ε, Indic)), ε shows how Indic (e.g., degree
centrality) value of a substitute could deviate from the indicator value of the
deleted node. Using our illustrative example and ε = 25%, the potential substitutes
for the leader D are those having a degree centrality at least equal to 0.667×
(1− 0.25) = 0.50 in the network deprived from the deleted node and its associated
links. This is the case of nodes F and G (see Table 1). The parameter ε used
in functions LinkS and LinkNoS represents the deviation of a measure (e.g., the
number of common neighbors) that a node w is allowed to have in order to be
linked to i. It is ignored whenever the link option is CLIQUE.
After storing the number of neighbors NB of node X, the next executed
instruction in the main procedure identifies the role of X (as defined in Subsection
4.1) via the function Role(X,SN, ε) which returns either Leader, Mediator,
Witness or Other (Line 4). When X is a leader (mediator or witness), the
parameter Indic takes the value ’D’ (’B’ or ’C’ resp.) that stands for degree
(betweenness or closeness resp.) centrality (Line 5). For each one of these three
main roles (leader, mediator and witness), the procedure looks for a substitute to
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put in the set NR via Substitute(X,SN, ε, Indic) (Line 7 and Algorithm 2). If
NR is not empty, this means that a substitute exists and hence will be linked to
some other nodes of the network via the function LinkS(NR,SN ′, OpLink, ε,NB)
where NB is the set of nodes previously linked to the deleted node X (see Line 9
and further explanations). Otherwise (i.e., no substitute is found), the procedure
links nodes of the network via the function LinkNoS(SN ′, OpLink, ε,NB) (Line
11). When the deleted node X has none of the three main roles, the nodes that
were attached to it (i.e., those in the set NB) will form a clique as indicated in
the otherwise part of the switch block (Line 5). Any isolated node is deleted (see
Lines 14-15). Finally, the procedure computes the value of the three indicators for
nodes of the predicted network SN ′ and returns SN ′ as well as the central nodes
of the new network SN’ (Lines 17-19).

1: Procedure PredictStruct
2: Input : SN = 〈V,E〉: initial network, X: deleted node, ε: tolerance ratio,

OpLink: parameter for possible link options.
Output: SN ′ (a global variable): new network; L,M, and W : sets of leaders,
mediators

and Witnesses in SN ′.
3: NB ← Neighbor(X); L,M,W ← ∅
4: R← Role(X,SN, ε)
5: switch the role of X do

case R = Leader Indic← ‘D′;
case R = Mediator Indic← ‘B′;
case R = Witness Indic← ‘C ′;
otherwise

SN ′ ← 〈V ′ = V − {X}, E′ = E − {eXj ,∀j ∈ V }〉 ∪
LinkNoS(SN, “CLIQUE′′, ε,X)

endsw

endsw
6: if R 6= Other then
7: NR←Substitute(X,SN ′, ε, Indic)
8: if NR 6= ∅ then
9: SN ′ ← SN ′∪ LinkS(NR,SN ′, OpLink, ε,NB)

10: else
11: SN ′ ← LinkNoS(SN ′, OpLink, ε,NB)
12: end if
13: end if
14: if ∃y ∈ V ′|∀z ∈ V ′, z 6= y,@eyz ∈ E′ then
15: V ′ ← V ′ − {y} //delete isolated nodes

16: end if
17: L← Leaders(SN ′)
18: M ←Mediators(SN ′)
19: W ←Witnesses(SN ′)
20: return (SN ′, L,M,W )

Algorithm 1: Predicting the structure of a network.
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Algorithm 2 describes the procedure Substitute(X,SN, ε, Indic). Given a social
network SN , a deleted node X, a threshold ε and an indicator Indic, the
procedure returns a unique node as a substitute for X. For that purpose, the
procedure computes the value of the indicator Indic of the nodes in the network
SN ′ = 〈V ′, E′〉, i.e., without X and its associated links (Lines 4-5) and stores
in NR the potential substitutes having an indicator value in SN ′ close to (i.e.,
deviating at most by a relative proportion ε from) the indicator value of X in
the initial network SN (Lines 6-11). If NR contains more than one substitute,
only one node z with the maximal indicator value is returned as a substitute of
X (Lines 12-14). The set NR containing the selected substitute for X is finally
returned (Line 15).

1: Procedure Substitute
2: Input : SN = 〈V,E〉: initial network, X: deleted node, ε: tolerance ratio,

Indic: degree or betweenness or closeness centrality indicator.
Output: NR: set of potential substitutes for X.

3: NR← ∅
4: V alX ← V alIndic(X,SN, Indic)
5: SN ′ ← 〈V ′ = V − {X}, E′ = E − {eXj ,∀j ∈ V }〉
6: for each w ∈ V ′ do
7: V alW ← V alIndic(w, SN ′, Indic)
8: if V alW ≥ (1− ε)× V alX then
9: NR← NR ∪ {w}

10: end if
11: end for
12: if |NR| > 1 then
13: NR←Max(V alIndic(z, SN ′, Indic) )
14: end if
15: return NR

Algorithm 2: Finding the substitute of a deleted node.

4.3 Additional Functions

Functions Role, ValIndic, LinkS and LinkNoS can be briefly described as follows.
Role(i, SN, ε) returns the role of a given node i within the network SN by

looking for the maximal values maxL, maxM and maxC among the network
nodes and by comparing them to the threshold ε (as defined in Subsection 4.1).

V alIndic(i, SN, Indic) returns the value of the indicator Indic (the
degree/betweenness/closeness centrality) of the node i within the network SN .

LinkS(i, SN ′, OpLink, ε,NB) links the substitute node i in SN to other nodes
in different manners depending on the chosen option OpLink. The considered
options are: IMP , OLD and NGB. IMP links i to a node z when CSN ′

Indic(z)

deviates at most by a proportion ε from CSN ′

Indic(i) in SN ′. OLD links i to nodes in
NB (neighbors of X) in order to maintain the previous interactions. NGB links i
to node z if the latter has a number of common neighbors with i that deviates by
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Degree Betweenness Closeness
centrality centrality centrality

A 0.375 0.071 0.5
B 0.375 0.071 0.5
C 0.250 0 0.44
E 0.250 0 0.44
F 0.5 0.286 0.61
G 0.5 0.286 0.61
H 0.375 0.429 0.61
I 0.250 0.250 0.44
J 0.125 0 0.32

(a) After the deletion of D

Degree Betweenness Closeness
centrality centrality centrality

A 0.375 0.029 0.50
B 0.50 0.095 0.53
C 0.25 0 0.44
E 0.25 0 0.44
F 0.625 0.36 0.666
G 0.50 0.19 0.61
H 0.375 0.428 0.615
I 0.250 0.250 0.44
J 0.125 0 0.32

(b) After using IMP with ε = 25%.

Table 1 Indicator values for SN ′ after deleting D and using IMP to create new
links.

at most a ratio ε of p, where p is the maximum number of common neighbors that
i shares with other nodes in the new network SN ′.

Figure 3 (a) The new network after deleting node D and related ties. (b) after
using the link option IMP with ε = 25%. (c) after using the link option
OLD.

LinkNoS(SN’, OpLink, ε, NB) is used when no substitute is found and aims
to create links between nodes in NB (neighbors of node X). The kind of the link
depends on the selected option of OpLink which can be either CLIQUE or IMP .
The option CLIQUE forms a clique with the identified nodes while the option
IMP has the same meaning as IMP used in LinkS.

We are aware that the proposed approach handles typical situations rather than
every possible situation. However, our approach can work decently in some extreme
situations like in complete networks where every node is linked to all the remaining
nodes, or in star graphs in which only one node is linked to the rest of the nodes.
For complete graphs with n nodes, the algorithm returns a new complete graph
with (n− 1) nodes, deprived of the deleted node and its associated links. For star
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graphs with n nodes, no substitute of the central node exists. In such a case, the
unique link option consists in forming a clique with the remaining nodes.

As an illustration, let us consider the network SN given in Figure 1
and let apply Procedure PredictStruct(SN , X, ε, OpLink) with the following
values: X = D, ε = 0.25, and OpLink = OLD. The node D to delete has
the role of a leader since 0.667− CSN

D (D) = 0 which is less than 0.25. The
variable Indic will then take the value ‘D’ (degree centrality). When Procedure
Substitute(D,SN ′, 0.25,‘D’) is called, node D and its associated links are first
deleted from SN as depicted in Figure 3-(a). Then, nodes F and G are
potential substitutes because their degree centrality in the new network SN ′

(see the new scores in Table 1) is equal to 0.50 which is equal to 0.667× (1−
0.25). Let assume that F is selected as the substitute for D. When Procedure
LinkS(NR,SN ′, OpLink, ε,NB) is called with the following values: NR = {F},
OpLink = IMP , ε = 0.25 and NB = {A,B,C,E, F,G}, we get the network SN ′

displayed in Figure 3-(b) where F is newly linked to node B which is the only
node in NB that has a degree centrality at least equal to (1− 0.25)× 0.50. If
however OpLink = OLD, F is automatically linked to the nodes in NB that are
not already linked to it (see Figure 3-(c)).

4.4 Community detection

The detection of communities in a network is an important issue in social network
analysis (see Fortunato (2010) for a survey) and has attracted many researchers
in sociology, biology, computer science, and so on. A community is a kind of
cluster where many edges link nodes of the same cluster and few edges link nodes
of different clusters. A commonly used approach to find communities is based
on betweenness centrality (see Girvan and Newman (2002)) which avoids having
isolated nodes but has high computational requirements. Another commonly used
method is based on the modularity maximization (see Newman (2004)) which
calculates the quality of a particular clustering of a network into communities.
Some further optimizations have been proposed. One of them is a parameter-free
and easy-to-use approach described in Chen, Zäıane and Goebel (2009). Recent
studies focus also on community evolution. For instance, Lin et al. (2009) take into
account the known communities at time t to determine the communities at time
t + 1.

Looking for the substitutes within the whole network can be tedious and
expensive. Let us consider for example a company where one of the leaders leaves
(e.g., retirement or firing). Then, the company will look for a substitute that has
many interactions with individuals either within the community of the individual
that left the company, or even outside his own community. Restricting the search
for the substitutes in a limited part of the network will reduce the processing
time but assumes that a preprocessing of the network is conducted for community
detection.

A possible improvement of our approach is then to first determine the cluster
or the block (of equivalent elements) in which the deleted node X holds to further
restrict the search of substitutes to such group. Finding blocks of structurally
equivalent elements from the network is done through the process of blockmodeling
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as described in White, Boorman and Breiger (1976), which also allows the
construction of a smaller comprehensible structure.

5 Experiments

In this section, we empirically evaluate the potential of our approach for predicting
the structure of the network when a node disappears. The experiments are
conducted with three specific objectives in mind: (i) performance evaluation, (ii)
substitution evaluation, and (iii) network perturbation. To that end we use two
real datasets detailed further. Our prototype is implemented in Java and the tests
were conducted on a Core 2 Duo E6750 with 2.66GHz and 3.23Go of RAM running
under Windows XP.

We use two commonly known and large undirected and unweighted networks
that we respectively call COAUTHOR and POWER GRID available at
http://www-personal.umich.edu/ mejn/netdata/.

The dataset COAUTHOR is a co-authorship network of scientists working on
network theory and experiment, as established by Newman (see Newman (2006)).
It contains 1589 nodes and 2742 links. The dataset POWER GRID represents the
topology of the Western States Power Grid of the United States. The 4941 entities
are transformers, substations, and so on while the 6594 interactions are high-
voltage transmission lines. Hence, POWER GRID is about three times larger
than COAUTHOR.

5.1 Performance Analysis

The experiments conducted on the two datasets and presented here allow to
evaluate the time needed to predict the network structure after the deletion of one
of its nodes. Note that these two datasets have been evaluated for an important
set of nodes, for the two roles Leader, and Mediator, and for Other, for each
possible option when substitutes exist (“WITH substitutes” on Figure 4) or not
(“WITHOUT substitutes”). The overall mean time for the link options and the
three role cases is given through the “WITH and WITHOUT” chart on Figure
4. One may notice that this average time is slightly smaller than the case of
“WITHOUT substitutes” due to the fact that the overall cost is biased by the
small processing time of nodes in case of Other. Moreover, knowing that the three
roles (Leader, Mediator and Witness) are similarly processed within the algorithm,
performance results are similar for these cases. Thus, no differentiation between
these roles is provided in the empirical results. Finally, note that the execution
time here is the CPU time needed for detecting substitutes and adding new links.
The computation of indicator values for each node is done outside our prototype
using UCINET (available via http://www.analytictech.com/ucinet/).

As expected, Figure 4 shows that the execution time to predict the network
structure after the deletion of one of its nodes increases with the network size.
Moreover, this time is more important when no substitute exists than when a
substitute or a group of substitutes is found. This is due to the fact that in the
former case, all the network will be explored while in the latter case, a subset of
the network is generally considered (mainly substitutes and their neighbors and
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Figure 4 Mean time (in milliseconds) when substitutes exist or not.

sometimes the nodes linked to the removed node when OLD option is retained).
Note also that the high execution times for the POWER GRID dataset in Figure
4 are mainly due to the option NGB which computes the common neighbors of
two nodes in the whole network. However, the merit of the option NGB is its
ability to provide a good prediction based on the common neighbor measure as
stated in Liben-Nowell and Kleinberg (2003).

5.2 Substitute Quality Analysis

To evaluate the quality of the prediction of a substitute and mainly the impact of
ε on the identification of substitutes, we use the classical recall R and precision P
measures as well as the F-measure F which are defined as follows:

R = |Srel∩Sretri|
|Srel| , P = |Srel∩Sretri|

|Sretri| F= 2×(R×precision)
(R+P )

where Srel is the set of relevant substitutes (i.e., those that occur when ε is almost
null) and Sretri is the set of substitutes retrieved by our main procedure with a
tolerance ratio 0 ≤ ε ≤ 1.

Figure 5 displays the recorded F-measure for the two datasets according to the
value of ε. It shows that the curves have a classical appearance and that smaller
the ratio ε is (i.e., the higher is 1− ε), the better is the F-measure. For the two
datasets, the F-measure is higher than 0.9 for 1− ε ≥ 75%, which is an indication
that ε can reach up to 25% and still lead to a good substitute prediction. The
absence of values for COAUTHOR between 100% and 80% is due to the absence
of substitutes.

5.3 Network Perturbation Analysis

The most popular (and easy to interpret) network measures for comparing
two given graphs are single values (e.g., clustering coefficient) rather than
distributions (e.g., the degree distribution) as stated by Kaiser (2008). To analyze
the perturbation of the network following a node removal and the conducted
postprocessing (substitute identification and link addition), we look at the mean
variation (gain or loss) of five network measures before and after node deletion:
density, diameter, global clustering coefficient as well as the number of nodes and
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Figure 5 F-measure of the substitutes for the two datasets according to ε

Figure 6 Network perturbation: COAUTHOR, ε = 20%, and with or without
substitutes.

links. In fact, a variation close to 0 is sought because it means an almost null
perturbation and hence “a return to normal” of the network following a node
deletion.

Figures 6 and 7 exhibit the gain/loss in network measures following a node
removal for the dataset COAUTHOR with ε = 20% and some variants. Figure
6 shows that the charts look similar in the two cases: presence vs absence of
substitutes. In both cases, the clustering coefficient has almost no variation.
However, the density (resp. diameter) of the network has a relatively important
increase of 18% (decrease of 27%) following node removal. Figure 7 shows the
impact of the link options (IMP, NGB, OLD and CLIQUE) on the network
perturbation. The best results (i.e., no variation) are obtained for OLD and IMP .
However, NGB and CLIQUE options seem to be the worst ones because the
network variations are the most important for the five measures.

We believe that additional and more extensive experiments are needed to
validate these preliminary results under various situations.
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Figure 7 Network perturbation: COAUTHOR, ε = 20%, and link options.

To the best of our knowledge, there is no study that handles the same issue
as ours, except the work in Hussain and Ahmed (2008) that seeks for a substitute
of a deleted node without considering the new links to create. Therefore, no
comparative study between our method and other existing methods could be
conducted.

6 Conclusion and future work

In this paper, we have proposed a non-probabilistic approach for social network
structure prediction once a node is deleted from the network. This approach,
inspired from human behavior in social and professional situations, is a first
step toward a prediction method of social network structure when one entity
disappears. It is based on the role (Leader, Mediator or Witness) played by entities
in terms of the ties they maintain in the network.

The preliminary experiments conducted on two known social networks show
that our system can predict a social network structure in a reasonable time and
that the options OLD and IMP offer relatively good results in terms of execution
time and precision (quality of prediction). However, option NGB is the worst both
in terms of execution time and precision, mainly when no substitute is found.

Our future work includes the following issues: (i) study and quantify the
degree of influence/prestige of a node in directed networks rather than the role
(based on centralities) in undirected graphs, (ii) devise a procedure to predict a
potential deletion propagation (i.e., cascading effect) to other nodes (e.g., when an
influential entity leaves an organization), and (iii) handle the removal of a set of
nodes rather than only one. Finally, we plan to explore the potential of statistical
distributions to handle network structure prediction.
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