
Query Recommendations for OLAP Discovery Driven
Analysis

Arnaud Giacometti, Patrick Marcel, Elsa Negre, Arnaud Soulet
Université François Rabelais Tours - France

Laboratoire d’Informatique
firstname.lastname@univ-tours.fr

ABSTRACT
Recommending database queries is an emerging and promis-
ing field of investigation. This is of particular interest in the
domain of OLAP systems where the user is left with the
tedious process of navigating large datacubes. In this pa-
per we present a framework for a recommender system for
OLAP users, that leverages former users’ investigations to
enhance discovery driven analysis. The main idea is to rec-
ommend to the user the discoveries detected in those former
sessions that investigated the same unexpected data as the
current session.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Data warehouse and
repository; H.3.3 [Information Search and Retrieval]:
Query formulation

General Terms
Algorithms, Design

Keywords
OLAP analysis, MDX queries, recommendation

1. INTRODUCTION
One of the goal of recommender systems is to help users

navigating large amounts of data. Existing recommender
systems are usually categorized into content-based methods
and collaborative filtering methods [1]. Content-based meth-
ods recommend to the user items similar to the ones that
interested him in the past, whereas collaborative filtering
methods recommend to the user items that interested simi-
lar users.

Applying recommendation technology to database, espe-
cially for recommending queries, is an emerging and promis-
ing topic [12, 5]. It is of particular relevance to the domain of
multidimensional databases, where OLAP analysis is inher-
ently tedious since the user has to navigate large datacubes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’09, November 6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-801-8/09/11 ...$10.00.

to find valuable information, often having no idea on what
his/her forthcoming queries should be. This is often the case
in discovery driven analysis [20] where the user investigates
a particular surprising drop or increase in the data.

In our earlier works [7, 8] we proposed to adapt techniques
stemming from collaborative filtering to recommend OLAP
queries to the user. The basic idea is to compute a similar-
ity between the current user’s sequence of queries and the
former sequences of queries logged by the server. In this
work, we extend this principle to better take into consider-
ation what the users were looking for. Our work is inspired
by what is done in web search and e-commerce applications
(e.g., [14]) where inferred properties of former sessions are
used to support the current session. In our case, the idea
is to infer, for every former sessions on the OLAP system,
what the user was investigating. This has the form of a pair
of cells showing a significant unexpected difference in the
data. If it is found that indeed this difference was investi-
gated during the session, then the discoveries of this former
session can be suggested to the current user.

This paper is organized as follows. Next section motivates
our approach with a simple yet realistic example. Section
3 reviews related work. Our formal framework is presented
in Section 4, and the algorithms are presented in Section 5.
Section 6 illustrates the use of the framework on the example
given in Section 2. Section 7 briefly introduces our ongoing
implementation of the framework. We conclude and draw
perspectives in Section 8.

2. MOTIVATING EXAMPLE
In this section we illustrate our approach with an artificial

yet realistic motivating example. This example uses typical
discovery driven analysis sessions of a simple datacube con-
taining sale results of various products in various locations at
different times. These sessions are sequences of queries, the
result of which are depicted in Figure 1 (the meaning of the
arrows is explained at the end of this present section). On
the left are three sessions from the log of the OLAP server
and on the right is a current session. This current session
consists of only one query (q) that asks for the aggregated
sales of cheese in 2007 and 2008 in Europe and USA. The
current user may wonder where to navigate the cube fur-
ther. We will now show how the information in the log can
be exploited to provide her/him with some suggestions.

Let us first describe the sessions contained in the log of
the OLAP server. In what follows, query qj

i denotes the ith

query of the jth session. The first session first asked for the
sales for various dairy products (cheese, milk, and butter)

Figure 1: Example of a log and a current session, with computed recommendations

in France for each semester of 2007 and 2008 (query q1
1),

and then for the sales of cheese and milk in France for each
quarter of 2008 and each semester of 2007 (q1

2).
The second session first asked for the sales of cheese in

2006-2007 (q2
1) and then the sales of cheese in 2007-2008

(q2
2). Next it asked for the sales of cheese for 2007-2008 in

France, Italy and Spain (q2
3). Then for the sales of cheese

for 2007-2008 in two french regions, namely Normandie (q2
4),

and finally the Loire Valley (q2
5).

The third session asked for the sales of goat cheese for 2005-
2008 (q3

1). Then the user rolled up and asked for the sales
of cheese for 2005-2008 (q3

2). Finally, he/she rolled up again
to obtain the sales of all dairy products for 2005-2008 (q3

3).
By observing these sessions one can notice that each of

them is concerned with a general difference that is a drop
of the sales of cheese from 2007 to 2008. It appears for
instance for query q3

2 of session 3 and for query q2
2 of ses-

sion 2. In the log, there is no difference that can be said
to be more general than this one (note for instance that
the sales of dairy products is stable from 2007 compared to
2008). Hence this particular difference, the drop of sales
for cheese from 2007 to 2008, is said to be the most general
difference (see formal definitions in Section 4). The queries
whose result displays this difference are called most general
difference queries (mgdq for short). This difference also ap-
pears for queries q of the current session, q1

1 , q2
3 , q2

5 and q3
1 ,

at lower levels of detail. These queries can be said to con-
firm this difference and are called drilldown differences in
what follows. On the other hand, query q2

4 shows that the
sales of cheese in a particular region increased from 2007 to
2008. This query is said to be an exception to the general
difference in what follows.

Suppose now that the log is processed to find the more
general differences it contains, as well as their drilldown dif-
ferences and exceptions. A recommender system for OLAP
analysts should recognize that the current user’s query is a
drilldown difference of one of the mgdq of the log. It would
then suggest to the user to navigate the cube to see the
mgdq, its drilldown differences and exceptions. On Figure

1, this suggestion consists of a graph of queries that allows
to navigate the three sessions of the log, starting from the
current query q. Each arrow can be interpreted as “if you
have evaluated this query then you might be interested by
that next query”. For instance, it is recommended to the
user to evaluate query q3

2 , whose result displays the mgdq,
then q3

1 whose result displays an exception to this general
difference, and finally q3

3 which is the only remaining query
of session 3.

Our framework can be used as a basis for such a recom-
mender system. It is composed of two parts, the processing
of the log, and the computation of recommendations, that
are detailed in Section 4 and Section 5.

3. RELATED WORK

3.1 Anticipating database queries
In a recent paper, [12] point out the need for systems lever-

aging former sessions to support database users analyzing
large amount of data. The only work we know that proposes
to recommend SQL queries for supporting database explo-
ration is that of [5]. Although this work shares some com-
mon features with ours, it differs on two important aspects:
First it deals only with SQL Select-Project-Join queries and
second, the fact that a session is a sequence of queries is not
taken into account.

In the context of multidimensional databases, our pre-
vious works [7, 8] propose a framework and a system for
recommending OLAP queries to a current user by taking
advantage of former analytical sessions. This framework is
based on the proposal of methods for evaluating the distance
between multidimensional queries on the one hand, and the
distance between sessions on the other hand. Following a
classical collaborative filtering approach, the current session
is compared to the sessions found in the log and the sessions
close to the current session are used for computing recom-
mendations.

In the present paper we are enriching this approach by
taking users’ discoveries into consideration. The idea is no

more to recommend queries of sessions that are close to the
current session. Instead, our framework recommends queries
based on sessions that investigated the same general differ-
ence as the one investigated by the current user.

In the same context, the recent work of [11] recommend
OLAP queries to the current user by transforming the cur-
rent query with user preferences in the spirit of what is done
in [2]. This work is more of a content-based method as it
does not take former sessions into account.

Finally, note that the work of Sapia [16, 17] shares with
our work the goal of predicting the forthcoming OLAP query.
However the main concern of this work is to prefetch data,
not to guide the user towards interesting parts of the cube.

3.2 Discovery driven analysis of datacubes
To support interactive analysis of multidimensional data,

Sarawagi et al. introduced discovery driven analysis of OLAP
cubes in [20]. This and subsequent work resulted in the def-
inition of advanced OLAP operators to guide the user to-
wards unexpected data in the cube or to propose to explain
an unexpected result. We now present two of these opera-
tors that can be thought of as implementations of some of
the operators of our framework, and that are indeed used
for implementing it (see Section 7).

The DIFF operator proposed in [18] explores the reasons
why an aggregate is lower (or higher) in one cell compared to
another. It takes as parameter two cells c and c′, and looks
into the two isomorphic subcubes C and C′ that detail the
two cells (i.e., that are aggregated to form the observed c
and c′). As a result, it summarizes the differences in these
two subcubes by providing the top-N informative cells from
the unvisited part of the cube.

For instance, on the example given in Section 2, a DIFF
computed on the two cells of the result of query q2

2 would
propose the two cells of the result of query q2

5 as one of its
answer.

In [21] a RELAX operator has been proposed that can
be thought of as the opposite to the DIFF operator. Indeed
RELAX tries to confirm at a lesser level of detail a particular
significant difference, and summarizes the exceptions to this
difference. In its basic form, the RELAX operator takes as
parameter two cells c and c′, and rolls up to less detailed
levels to check if the difference between c and c′ also occurs
at these levels. For each of these rollups, the most relevant
exceptions to the difference are computed.

For instance, on the example given in Section 2, a RELAX
computed on the two cells of the result of query q2

5 would
propose as part of its answer both the two cells of the result
of query q2

2 (as a general difference) and the two cells of the
result of query q2

4 (as an exception).

Discussion.
First, note that both DIFF and RELAX are slightly differ-

ent from the other classical OLAP operators (rollup, slice,
etc.), in the sense that they do not produce a cube nor a
cross-tab as a result, but a list of cells of the navigated
cube. This list can be large. Now the main difference with
our present work is that these operators are applied only on
query results and they do not take into consideration what
other users have discovered. Taking the queries of the log
into account can be viewed as a way of filtering the result
of these operators, and to propose to the current users only
those query results that the former users did find relevant.

Indeed, consider the example given Section 2. Suppose the
current user applies the RELAX operator on the result of
her/his current query to search for differences that generalize
the difference of sales of cheese in USA for 2007-2008. The
answer can contain general differences for the sales result
at higher levels of dimension products (dairy, food, consum-
able, etc.), combined with higher levels of dimension location
(North-America, America, Outside Europe, etc.), combined
with higher levels of dimension time (21st century, etc.).
However, in the log there are three sessions that focused on
the drop of the sales of cheese, and thus our framework will
propose to the current user to search in this direction first.

Finally, note that discovery driven analysis is still attract-
ing attention. Indeed, two recent works use a data mining
approach to inform the user of potentially interesting regions
of a cube by either automatically detecting interesting cells
[3] or proposing interesting drill paths [4]. In the former
case, the goal is simply to highlight in a given query result
the cells whose measure deviates the most from a theoreti-
cal value computed under independence model hypothesis.
In the latter case however, the goal can be seen as recom-
mending drilldown queries to the user. This approach does
not take into account former explorations and thus it is very
close to the DIFF operator described above.

3.3 Session properties used in Information Re-
trieval

The idea of using former sessions to improve current search
is very popular in Information Retrieval ([1]) and Web Usage
Mining ([22]).

In recent works, properties of the session are inferred to
support subsequent searches. For instance, in [6], the infor-
mation goal of a session is defined as the last URL visited
during the session or alternatively the last click on a search
engine result page.

In [14] in the domain of e-commerce, the session goal is
a particular event occurring in the session. In this case of
the Ebay site, the goal of a session is a buy event. This
allows to enrich all the sessions (and especially the queries
of the sessions) with the description of the item bought,
which is called the context of the session. The authors show
how defining the context of a session helps recovering from
null result in subsequent searches, provides a better under-
standing of the queries in the session, or helps generating
recommendations.

These works have influenced our approach. Indeed, the
mgdq detected in each OLAP session can be viewed as the
session context and the drilldown differences and exceptions
can be viewed as the session goals.

4. THE FORMAL FRAMEWORK

4.1 Overview of the approach
Recommendations are computed on the basis of the dif-

ferences discovered in the log. The idea is to detect which
difference the current session is investigating and to recom-
mend the sessions in the log that investigated the same dif-
ference.

More precisely, the log are preprocessed offline in the fol-
lowing way: 1/ Each session is examined to infer what is
the query whose result displays the most general difference
(mgdq) that was observed. As there can be more than one
mgdq per session, for each such mgdq, one investigation is

created that records the mgdq, its drilldown differences, and
exceptions. 2/ Once all sessions are examined, the mgdq of
the mgdq detected are computed and the investigations are
grouped by common mgdq.

Recommendations are computed online each time a cur-
rent query is added to the current session by the current user.
The current query is analyzed to detect to which mgdq of
the log it corresponds (this query may be itself a mgdq, a
drilldown difference, or an exception of what is detected in
the log). Then a navigation plan (a set of sessions arranged
in a graph of queries) is proposed for the current user to see
drilldown differences or exceptions to the mgdq, by using
the queries of the preprocessed sessions.

In what follows, we detail the framework, starting with
basic definitions, then explaining how the log is processed
and finally how recommendations are computed.

4.2 Preliminaries
An n-dimensional cube C = 〈D1, . . . , Dn, F 〉 is defined

as the classical n + 1 relation instances of a star schema,
with one relation instance for each of the n dimensions and
one relation instance for the fact table. Given a particular
dimension table Di, the members of the dimension are the
values in this table and they are arranged in a hierarchy
denoted <i.

Given an n-dimensional cube C = 〈D1, . . . , Dn, F 〉, a cell
reference (or reference for short) is an n-tuple 〈m1, . . . , mn〉
where mi is a member of dimension Di for all i ∈ [1, n]. A
cell is a tuple of cube(F) where cube(F) denotes the dat-
acube [10] of the fact table F . In what follows we will use
measure(c) to denote the measure of the cell c.

As in our previous work [7, 8], we define multidimensional
queries as sets of references in the following way: Given an
n-dimensional cube C = 〈D1, . . . , Dn, F 〉, let Ri be a set
of members of dimension Di for all i ∈ [1, n], a query over
C is the set of references R1 × . . . × Rn. In this paper we
restrict to queries q whose result is the set of cells defined
by cube(F) ./ q. A session is a sequence of queries, and a
log is a set of sessions. In what follows, we note r ∈ q to
denote that r is a reference of a query q and c ∈ q to denote
that c is a cell of the result of a query q. r(i) denotes the ith

member of a reference r. When the context is clear, a query
q will be confounded with its result, and we note cells(q)
the set of cells of a query q. We denote the set of queries of
a session s by queries(s).

Example 1. Consider the example given in Section 2 that
will be used as a running example throughout this section.
The current query q is the set of references {cheese} ×
{2007, 2008} × {Europe, USA}. Its result is the set of cells
{〈cheese, 2007, Europe, 100〉, 〈cheese, 2008, Europe, 10〉,
〈cheese, 2007, USA, 50〉, 〈cheese, 2008, USA, 5〉}.

The classical specialization relation over cell references is
defined: r <cells r′ if for all dimensions i, either r(i) = r′(i)
or r(i) <i r′(i). This relation is extended to cells as follows:
For two cells c, c′ of an n-dimensional cube C, c <cells c′ if
r <cells r′ where r is the reference of c and r′ is the reference
of c′.

4.3 Difference pairs
We now define the pairs of cells that will be considered

during the processing of the log. First note that the special-

ization relation over cells can be extended to pairs of cells
in the following way.

Definition 1. (specialization over pairs) Let C be a cube
and c, c′, c′′, c′′′ be four cells of C. The pair 〈c, c′〉 is a gen-
eralization of 〈c′′, c′′′〉, noted 〈c, c′〉 <cells 〈c′′, c′′′〉 if both
c <cells c′′ and c′ <cells c′′′.

Example 2. Let c = 〈cheese, 2007, all, 200〉, c′ =
〈cheese, 2008, all, 20〉, c′′ = 〈cheese, 2007, F rance, 50〉, and
c′′′ = 〈cheese, 2008, F rance, 6〉 be four cells of the cube an-
alyzed, that appear in the results of query q2

2 and q2
3 . We

have 〈c, c′〉 <cells 〈c′′, c′′′〉.

If we have 〈c, c′〉 <cells 〈c′′, c′′′〉, we will say that 〈c, c′〉 is
a rollup pair of 〈c′′, c′′′〉 and 〈c′′, c′′′〉 is a drilldown pair of
〈c, c′〉. Moreover, if 〈c′′, c′′′〉 is a drilldown pair of 〈c, c′〉 and
sign(measure(c′′) − measure(c′′′)) 6= sign(measure(c) −
measure(c′)) we will say that 〈c′′, c′′′〉 is an exception pair
of 〈c, c′〉. Given a set S of pairs of cells, the most general
pairs are the pairs of S that have no rollup pairs in S.

Definition 2. (most general pairs) Let S be a set of pairs
of cells. The most general pairs of S are the set max<cells(S).
For a given pair of cells 〈c, c′〉 of S, the most general pairs
for 〈c, c′〉 in S is the set max<cells({〈c′′, c′′′〉 ∈ S|〈c′′, c′′′〉 is
a rollup pair of 〈c, c′〉}).

In what follows we will call a significant difference (or differ-
ence for short) a pair of cells such that their measure differ
significantly. This significance is computed by a user-defined
function d on which we do not impose particular require-
ments. Examples of such functions are given in Section 7.

Definition 3. (difference pair) Let C be a cube, d be a
boolean function over the pairs of cells of C and c′, c be two
cells of C. The pair 〈c, c′〉 is a difference pair for C and d if
d(c, c′) = true.

Example 3. If the function d outputs true if the measures
differ by a factor of 10, then the pair of cells 〈c, c′〉 of Exam-
ple 2 is a difference pair. In Figure 1 every cell that is part
of a difference pair has its measure in bold face. 〈c, c′〉 is a
rollup pair of 〈c′′, c′′′〉. If S is the set of all pairs of cells of
the queries in session 2, then 〈c, c′〉 is the most general pair
of 〈c′′, c′′′〉 in S.

4.4 Difference queries
We define a difference query to be a query whose result

displays one or more difference pairs. A query is a rollup
(resp. drilldown) difference query of a difference query if its
result confirms the difference at a higher (resp. lower) level
of detail. An exception is a query which result contradicts a
difference at a lower level of detail. The following definitions
formalize these notions.

Definition 4. (difference query) Let C be a cube, d be a
boolean function over the pairs of cells of C. A query q over
C is a difference query if there exists two cells c, c′ ∈ q such
that the pair 〈c, c′〉 is a difference pair for C and d.

Definition 5. (rollup/drilldown difference query) Let q and
q′ be two queries. We say that q is a rollup difference
query for q′ (resp. q′ is a drilldown difference query for
q) w.r.t. the pairs 〈c, c′〉 and 〈c′′, c′′′〉, if c, c′ ∈ q and
c′′, c′′′ ∈ q′, one of 〈c, c′〉, 〈c′′, c′′′〉 is a difference pair and
(measure(c′′)−measure(c′′′))
(measure(c)−measure(c′)) > β for some threshold β > 0.

If q is a rollup (resp. drilldown) difference query for q′

w.r.t. the pairs 〈c, c′〉 and 〈c′′, c′′′〉, we say that q is a rollup
(resp. drilldown) difference query for 〈c′′, c′′′〉 (resp. 〈c, c′〉).

Example 4. Continuing Example 3, q2
2 is a difference query,

as is the current query q. Thus q2
2 is a rollup difference query

for q, and a rollup difference query for the difference pair
〈〈cheese, 2007, Europe, 100〉, 〈cheese, 2008, Europe, 10〉〉.

For a difference pair 〈c, c′〉 and a set Q of queries, we define
a most general difference query for 〈c, c′〉 (or mgdq for short)
to be a query of Q at the highest level of detail that contains
a rollup pair of 〈c, c′〉.

Definition 6. (mgdq) Let Q be a set of queries and 〈c, c′〉
be a difference pair. An mgdq of 〈c, c′〉 w.r.t. Q is a query
q ∈ Q such that q contains a most general pair of cells(Q),
where cells(Q) = ∪Qcells(q).

Definition 7. (exception difference query) Given two
queries q and q′, q′ is an exception difference query of q
if there exists four cells c, c′ ∈ q and c′′, c′′′ ∈ q′ such that
〈c′′, c′′′〉 is an exception pair of 〈c, c′〉. It is said that q′ is an
exception difference query for 〈c, c′〉.

Example 5. Consider the set of queries of session 2
Q = {q2

1 , . . . , q2
5}, and the difference pair 〈〈cheese, 2007,

Europe, 100〉,〈cheese, 2008, Europe, 10〉〉. q2
2 is the mgdq of

Q. Query q2
4 is an exception difference query of q2

2 .

4.5 Operators for detecting differences and ex-
ceptions

Obviously the idea is not to detect all the differences that
appear in a cube. We focus on the differences that are de-
tected by the users in the result of their queries. These dif-
ferences are extracted from the query log with the following
operators.

The first operator, difference outputs the pairs of cells of
a query q that are difference pairs, i.e., difference(d, q) =
{〈c, c′〉 ∈ q|d(c, c′) is true} for some boolean function d over
pairs of cells.

The next two operators detect, for a pair 〈c, c′〉 and
a set of queries Q, which are the queries of Q that are
rollup (drilldown) difference queries for 〈c, c′〉. Formally,
rollupDifference(c, c′, Q) = {q ∈ Q|q is a rollup difference
query for 〈c, c′〉}, and drilldownDifference(c, c′, Q) = {q ∈
Q|q is a drilldown difference query for 〈c, c′〉}.

The operator mgdq computes the mgdq of 〈c, c′〉 that oc-
cur in a set of queries Q, i.e., mgdq(c, c′, Q) = {q ∈ Q|q is a
mgdq for 〈c, c′〉}.

Finally, the last operator detects for a pair of cells 〈c, c′〉
and a set of queries Q, the exceptions to 〈c, c′〉 in Q:
exceptions(c, c′, Q) = {q ∈ Q|q is an exception difference
query for 〈c, c′〉}.

5. THE ALGORITHMS
This section introduces the algorithms underlying our ap-

proach.

5.1 Processing the log
We begin with the algorithm used to discover differences

and exceptions from a log file.
First, Algorithm 1 processes each session to discover the

mgdq, their drilldown differences and exceptions. This al-
gorithm outputs a set of what we call investigations, i.e.,

sessions with added information about the investigated dif-
ferences. Note that for each session of the log, one investiga-
tion is created by mgdq discovered in the session, provided
the mgdq comes with some drilldown differences or excep-
tions.

Definition 8. (investigation) An investigation i for a ses-
sion s is a tuple 〈c, c′, m, D, E, O〉 where 〈c, c′〉 is a most
general pair that is investigated in s, m is a query that con-
tains 〈c, c′〉, D is the set of difference drilldown queries of
m, E is the set of difference exception queries of m and O
is the set of the remaining queries of s.

Algorithm 1: session processing

Input: A log L, a boolean function d
Output: A set I of investigations
I ← ∅
foreach session s of L do

foreach query q of s do
foreach difference pair (c, c′) of
difference(d, q) do

// detect the rollup diff. of (c, c′)
R← rollupDifference(c, c′, queries(s))
// find the mgdq of R

M ← mgdq(c, c′, R)
foreach mgdq m ∈M do

foreach (t, t′) ∈ m such that t <cells c
and t′ <cells c′ do

// detect the drilldown diff. of m

D ←
drilldownDifference(t, t′, queries(s))
// detect the exceptions of m

E ← exceptions(t, t′, queries(s))
// create investigation

if D 6= ∅ or E 6= ∅ then
I ← I ∪
createInvestigation(m, t, t′, D, E, s)

In Algorithm 1, createInvestigation creates an investiga-
tion i using the queries of session s in the following way. The
queries of i are that of s and they are ordered as in s. The
mgdq and the queries of D and E are labeled with their type
(mgdq, drilldown difference or exception) and are associated
with their pair of cells that is the difference pair w.r.t. the
mgdq. Note that a query can be at the same time mgdq or
drilldown difference or exception. Each investigation i is la-
beled with its mgdq denoted mgdq(i) and this mgdq is as-
sociated with its difference pair denoted differencePair(i)
and called the difference pair of the investigation.

Example 6. Consider session 1 of Figure 1. Suppose
the pair of cells t1 = 〈cheese, 2007sem1, F rance, 25〉,
〈cheese, 2008sem1, F rance, 1〉 is detected as a differ-
ence pair for query q1

1 . There is no rollup differences de-
tected in session 1 for this pair, and thus it is the mgdq of
this session. Then query q1

2 is detected as a drilldown dif-
ference query of q1

1 . Therefore an investigation i is created,
with t1 as difference pair, q1

1 as mgdq and q1
2 as drilldown

difference query. Similarly, note that q2
2 will be the mgdq of

an investigation i′ constructed from session 2, and q3
2 will be

the mgdq of an investigation i′′ constructed from session 3
(see Figure 2).

Note that the investigations created by Algorithm 1 can
investigate the same most general pair of the cube. More
precisely, the difference pair of an investigation i can be a
rollup pair of the difference pair of another investigation
i′. Thus to complete the processing of the log, it remains
to invoke, for each investigation the operator mgdq(c, c′, Q)
where 〈c, c′〉 is the difference pair of the investigation and Q
is the set of the mgdq of all the investigations. Then, each
investigation is updated with its new mgdq and new differ-
ence pair if any. If there is more than one mgdq, the one with
the least number of cells is used. Finally, the investigations
are grouped by their difference pairs.

Example 7. Consider the investigations i, i′ and i′′ of
Example 6. They all investigate the same most gen-
eral pair of the cube, namely 〈cheese, 2007, all, 200〉,
〈cheese, 2008, all, 20〉. Consider investigation i. Query q2

2

and query q3
2 are mgdq of the mgdq of i. Thus i is modified

in the following way: Query q2
2 becomes its new mgdq and

query q1
1 becomes a drilldown difference query.

5.2 Computing recommendations
Given a current session sc, a current query q and a set of

investigations I, the recommender system first identifies in
I the difference pairs m to which q can be related. q can be
either a drilldown difference of m, a rollup difference of m, or
an exception of m. In each case a specific recommendation
is issued using the investigations associated with m.

Algorithm 2: Recommending sessions

Input: A current session sc, a current query q, a set I
of investigations, a boolean function d

Output: A graph G of recommended queries
G← 〈∅, ∅〉
M ← the mgdq of I
foreach difference pair 〈c, c′〉 of difference(q, d) do

// first check if q is a drilldown diff.

C ← rollupDifferences(c, c′, M)
if C 6= ∅ then

G← G ∪ recommendDrilldown(sc, q, C)

// then check if q is a rollup diff.

C ← drilldownDifference(c, c′, M)
if C 6= ∅ then

G← G ∪ recommendRollup(sc, q, C)

// finally check if q is an exception to a

difference

foreach difference pair 〈x, x′〉 of m ∈M do
C ← exceptions(x, x′, {q})
if C 6= ∅ then

G← G ∪ recommendException(sc, q, C)

Function recommendDrilldown is given below. The idea is
to recommend each session which mgdq is a rollup difference
query of the current query, with the queries of the session
arranged in a given order (first the mgdq, then the drilldown
differences of the current query, etc.). The recommendation
is a navigation plan, i.e., a graph of queries rooted in the
current query q. The other functions used in Algorithm 2
for recommending sessions follow the same general principle.
For instance, if the current query q is detected as an excep-
tion of the mgdq of an investigation, then it makes sense to

present first the exceptions of the mgdq that are the rollup
difference queries of q, and then the exceptions of the mgdq
that are drilldown difference queries of q.

Function recommendDrilldown(sc,q,C)

Input: A current session sc, a current query q, a set C
of mgdq

Output: A graph G = 〈E, V 〉 of queries
E ← ∅
V ← ∅
foreach mgdq m ∈ C do

foreach investigation i having mgdq m do
E ← E ∪ queries(s)
// arrange the queries of i
let Q be the queries of i in the following order:

1. the mgdq

2. the drilldown differences of q

3. the exceptions to q

4. the drilldown differences of m

5. the exceptions to m

6. the remaining queries of i

// remove the queries with pairs

appearing in sc
Q← Q \ {q ∈ queries(sc)|∃c, c′ ∈ q,∃q′ ∈ Q
with c, c′ ∈ q′}
// update the vertices

foreach j ∈ [1, |Q|[do
V ← V ∪ 〈qj , qj+1〉

Note that Algorithm 2 outputs what can be seen as a set
of sessions. These sessions can be ordered for presentation
to the user. The ordering can be computed based on how
close the recommended sessions are from the current session.
Algorithms for computing similarity between sessions are
given in our earlier work [7, 8].

6. A COMPLETE EXAMPLE
In this section, we describe the use of the algorithms given

in the previous section on the sessions described in Section
2. We begin by describing how Algorithm 1 processes each
session of the log. The result of this step is synthesized in
Figure 2.

In what follows, a pair of cells is detected as a differ-
ence pair if the measure of one is around ten times lower or
higher than the measure of the other.

Session 1 is processed in the following way. First, four
relevant difference pairs are detected. They concern the dif-
ferences of sales of cheese for 2007 semester 1 with 2008
semester 1 (t1), sales of cheese for 2007 semester 2 with 2008
semester 1 (t2), and the differences of sales between cheese
and milk (for milk 2007 semester 2 to cheese 2008 semester
1 (t3) and for milk 2008 semester 1 to cheese 2008 semester
1 (t4)). Note that there are other difference pairs (like e.g.,
the difference of butter and cheese for 2008 semester 1) but
they do not give rise to drilldown differences, nor do they
give rise to exceptions and thus they are not taken into con-

sideration (see last condition of Algorithm 1). Note also that
q1
2 is a drilldown of q1

1 for 2008 semester 1 and 2. This will
give rise to 4 investigations i1, i2, i3, i4 where q1

1 is detected
as the mgdq of each investigation, and q1

2 is a drilldown dif-
ference of q1

1 . For i1 the difference pair of the mgdq is t1,
for i2 the difference pair of the mgdq is t2, for i3 the differ-
ence pair of the mgdq is t3, and for i4 the difference pair of
the mgdq is t4.

Session 2 is processed in the following way. The rele-
vant difference pairs are the two cells of query q2

2 (t5), the
cells 〈cheese, France, 2007, 50〉, 〈cheese, France, 2008, 6〉 of
query q2

3 (t6) and the two cells of query q2
5 (t7).

Note that there are other difference pairs (e.g., cells
〈cheese, France, 2007, 50〉 and 〈cheese, Italy, 2007, 1〉) but
they are not taken into consideration due to the last con-
dition of Algorithm 1. Starting with difference t5, q2

2 is de-
tected as the mgdq of session 2, with q2

3 and q2
5 as drilldown

differences and q2
3 and q2

4 as exceptions. A first investiga-
tion i5 is created for session 2. Processing difference pairs t6
and t7 results in the same investigation i5 since q2

2 is detected
as a rollup difference of both q2

3 and q2
5 .

Finally session 3 is processed in the following way. No
difference pair is detected in query q3

1 . One difference pair
t8 is detected in query q3

2 , namely the sales of cheese in 2008
is ten times less than the sales of cheese in 2007. No differ-
ence pair is detected in query q3

3 . Query q3
2 is the mgdq of

session 1, and query q3
1 is detected as an exception to q3

2

since the sales of a particular type of cheese (goat cheese)
is greater in 2008 compared to 2007 (difference pair t9). No
drill down difference of q3

2 is detected. Finally, session 3 gives
rise to one investigation i6, that is composed of q3

1 labeled
exception with the difference pair t9 and of q3

2 labeled mgdq
with the difference pair t8.

Once the sessions are processed with Algorithm 1, the
mgdq of the mgdq of each investigation is computed. In our
example, the set of the mgdq of the investigations contains
6 elements: q3

2 for i6, q2
2 for i5 and q1

1 for each of the 4
investigations computed from session 1. The mgdq q3

2 and
q2
2 are considered identical since their difference pair is the

same. The investigations i5 and i6 are left unchanged since
there is no mgdq in M that is an mgdq of their mgdq. The
investigations i1 and i2 are modified: Their new mgdq (q2

2)
is added to the session. The investigations i3 and i4 are left
unchanged.

Finally, the recommender system leverages these investi-
gations to issue recommendations to the current user. First,
Algorithm 2 detects 3 difference pairs in q. Each of this dif-
ference is a drilldown difference of q3

2 (or q2
2). Thus investi-

gations i1, i2, i5 and i6 are considered for recommendation.
Function recommendDrilldown arranges each of these in-
vestigations for presentation to the user (see Figure 1). For
instance, i6 is presented in the following order: First q3

2 , then
q3
1 then q3

3 . The recommended investigation i5 presents first
q2
2 , then q2

3 , q2
5 , q2

4 and finally q2
1 . The recommended inves-

tigation i1 or i2 presents first q2
2 , then q1

1 and finally q2
1 .

7. IMPLEMENTATION
In this section we briefly describe the implementation of

the framework that we are currently doing. We are using
Java and the Mondrian OLAP engine [15] to process and
recommend sessions of MDX [13] queries.

In the framework a function d is used as a parameter
of Algorithm 1 for detecting difference pairs. This can

be done by testing, for a given query result, if the mea-
sures of every pair of cells differ significantly. Our imple-
mentation proposes two very basic functions for this test:
The first one detects the pair 〈c, c′〉 as a difference pair if
measure(c)/measure(c′) > α for some threshold α. The
second one detects the pair 〈c, c′〉 as a difference pair if
measure(c)−measure(c′) > α for some threshold α.

We are also considering more elaborated functions. For
instance, it can be searched for difference pair along a par-
ticular dimension (commonly, the Time dimension) present
in the query result. Also, the work of [3] can be adapted to
detect the difference pairs.

The operators described in Section 4.5 for detecting the
various type of difference queries are implemented with the
RELAX and DIFF operators proposed by Sarawagi [18, 21].
We are using the Java implementation named iCube that is
freely available for download [19]. It is to be noticed that,
due to the lack of a standard Java API for OLAP, part of the
implementation effort has been spent on the interoperability
between Mondrian and iCube.

Recall from Section 3 that the RELAX and DIFF opera-
tors both output sets of cells. Thus they cannot implement
directly the operators defined in Section 4.5. In our imple-
mentation, we use the function detect that, given a difference
pair for a query q detects in a session s if there are rollup
differences, drilldown differences or exceptions to the pair.

Function detect(q, c, c′, op, Q)

Input: A query q, a pair of cells 〈c, c′〉, an operator op,
a set of queries Q

Output: A set S of queries
foreach (x, x′) ∈ op(q, c, c′) do

foreach query q′ ∈ Q do
if (x, x′) ∈ q′ then

S ← S ∪ {q′}

In function detect, the op operator can be either DIFF or
RELAX. For instance, if DIFF is used and Q is the set of
queries of a session s, the call detect(q, c, c′, Q) detects the
queries of queries(s) that are drilldown difference queries of
q w.r.t. 〈c, c′〉. In addition, the RELAX operator is used to
detect both rollup differences and exceptions. Indeed, each
time RELAX is invoked for collecting rollup differences, the
returned exceptions are cumulated. In the future, we will
check whether the work of [4] is an interesting alternative to
the DIFF operator.

Finally note that processing the log requires the results
of the queries. So far in our prototypical implementation,
the queries of the log are resubmitted. A more sophisticated
implementation should treat each query on the fly.

8. CONCLUSION
In this paper we propose a framework for recommending

queries to support OLAP discovery driven analysis. The
key idea is to infer from the log of the OLAP server what
former users were investigating, and to use this information
as a basis for helping the current user to navigate the cube.
This framework is under implementation with Java and the
Mondrian OLAP engine to recommend MDX queries. Com-
pleting an efficient implementation is the first of our future
work.

Our long-term goal is to provide OLAP users and ad-

investigation original session difference pair mgdq drilldown queries exceptions other

i1 session 1 〈cheese, 2007, all, 200〉 {q2
2} {q1

1 , q1
2} ∅ ∅

〈cheese, 2008, all, 20〉
i2 session 1 〈cheese, 2007, all, 200〉 {q2

2} {q1
1 , q1

2} ∅ ∅
〈cheese, 2008, all, 20〉

i3 session 1 〈milk, 2007sem1, F rance, 25〉 {q1
1} {q1

2} ∅ ∅
〈cheese, 2008sem1, F rance, 1〉

i4 session 1 〈milk, 2007sem2, F rance, 25〉 {q1
1} {q1

2} ∅ ∅
〈cheese, 2008sem1, F rance, 1〉

i5 session 2 〈cheese, 2007, all, 200〉 {q2
2} {q2

3 , q2
5} {q2

3 , q2
4} {q2

1}
〈cheese, 2008, all, 20〉

i6 session 3 〈cheese, 2007, all, 200〉 {q3
2} ∅ {q3

1} {q3
3}

〈cheese, 2008, all, 20〉

Figure 2: Result of the processing of the log

ministrators with a platform for computing various types of
recommendations. This platform will integrate the present
framework with our earlier work [7, 8]. This platform should
also include content-based techniques [5] as well as context-
aware methods combined with user profiles [11, 2, 9]. We
are working in that direction.

In addition to this, we will conduct experimentations on
real data sets with feedback from users. This will allow
not only to improve the overall quality of the recommended
queries but also to determine to which context a particular
approach for computing recommendations is adapted. To
this end we are currently working with IRSA (a French social
security health examination center) to analyze over 500.000
health care examination questionnaires.

9. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[2] L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi,
and D. Laurent. A personalization framework for olap
queries. In DOLAP, pages 9–18, 2005.

[3] V. Cariou, J. Cubillé, C. Derquenne, S. Goutier,
F. Guisnel, and H. Klajnmic. Built-in indicators to
automatically detect interesting cells in a cube. In
DaWaK, pages 123–134, 2007.

[4] V. Cariou, J. Cubillé, C. Derquenne, S. Goutier,
F. Guisnel, and H. Klajnmic. Built-in indicators to
discover interesting drill paths in a cube. In DaWaK,
pages 33–44, 2008.

[5] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Query recommendations for interactive database
exploration. In SSDBM, pages 3–18, 2009.

[6] D. Downey, S. T. Dumais, D. J. Liebling, and
E. Horvitz. Understanding the relationship between
searchers’ queries and information goals. In CIKM,
pages 449–458, 2008.

[7] A. Giacometti, P. Marcel, and E. Negre. A framework
for recommending OLAP queries. In DOLAP, pages
73–80, 2008.

[8] A. Giacometti, P. Marcel, and E. Negre.
Recommending multidimensional queries. In DaWaK,
2009.

[9] M. Golfarelli and S. Rizzi. Expressing olap
preferences. In SSDBM, pages 83–91, 2009.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub
totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[11] H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh.
Preference-based recommendations for olap analysis.
In DaWaK, 2009.

[12] N. Khoussainova, M. Balazinska, W. Gatterbauer,
Y. Kwon, and D. Suciu. A case for a collaborative
query management system. In CIDR, 2009.

[13] Microsoft Corporation. Multidimensional expressions
(MDX) reference. Available at http://msdn.
microsoft.com/en-us/library/ms145506.aspx, 2008.

[14] N. Parikh and N. Sundaresan. Inferring semantic
query relations from collective user behavior. In
CIKM, pages 349–358, 2008.

[15] Pentaho Corporation. Mondrian open source OLAP
engine. Available at http://mondrian.pentaho.org/,
2009.

[16] C. Sapia. On modeling and predicting query behavior
in OLAP systems. In DMDW, pages 2.1–2.10, 1999.

[17] C. Sapia. Promise: Predicting query behavior to
enable predictive caching strategies for OLAP
systems. In DaWaK, pages 224–233, 2000.

[18] S. Sarawagi. Explaining differences in
multidimensional aggregates. In VLDB, pages 42–53,
1999.

[19] S. Sarawagi. I3: Intelligent, interactive inspection of
cubes. Available at
http://www.cse.iitb.ac.in/~sunita/icube/, 2009.

[20] S. Sarawagi, R. Agrawal, and N. Megiddo.
Discovery-driven exploration of OLAP data cubes. In
EDBT, pages 168–182, 1998.

[21] G. Sathe and S. Sarawagi. Intelligent rollups in
multidimensional OLAP data. In VLDB, pages
531–540, 2001.

[22] M. Spiliopoulou, J. Srivastava, R. Kohavi, and B. M.
Masand. Webkdd 2000 - web mining for e-commerce.
SIGKDD Explorations, 2(2):106–107, 2000.

