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†Université Toulouse 1 Capitole, IRIT-SIG, 2 rue du doyen Gabriel Marty, 31042 Toulouse Cedex 9, France
Email: Franck.Ravat@irit.fr; Ronan.Tournier@irit.fr
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Abstract—Data warehouses store large volumes of consol-
idated and historized multidimensional data for analysis and
exploration by decision-makers. Exploring data is an incremen-
tal OLAP (On-Line Analytical Processing) query process for
searching relevant information in a dataset. In order to ease
user exploration, recommender systems are used. However when
facing a new system, such recommendations do not operate
anymore. This is known as the cold-start problem. In this paper,
we provide recommendations to the user while facing this cold-
start problem in a new system. This is done by patternizing OLAP
queries. Our process is composed of four steps: patternizing
queries, predicting candidate operations, computing candidate
recommendations and ranking these recommendations.

I. INTRODUCTION AND CONTEXT

Decision support systems allow decision-makers to gain
insight into corporate or organization data by analyzing aggre-
gated historical business or scientific data [1]. These systems
generally rest on a centralized storage system: a data ware-
house [2]. Users (i.e. decision-makers) explore and analyze
the data warehouse content by using On-Line Analytical
Processing (OLAP). However, users face an increasing volume
of information due to the computing capacity and storage
increases [3]. Exploring a vast data warehouse can be very
tedious and a user can easily get lost.

Thus, computer techniques easing this search and ex-
traction of relevant information are needed. One of them is
recommendation, especially in the case of exploring large
volumes of data where the information access paradigm is
based on query expression. The recommendation process will
guide the user during his/her exploration of the volume of
available information by searching for him/her, the information
that appears relevant.

Recommender systems are known for their use in e-
commerce [4], [5], where they advise a customer on choosing
an item based on his/her preferences. However, some works
focused on recommendation in the field of databases [6], [7],
[8] and proposed methods and algorithms to assist the user.
There is also research in the field of data warehouses analyzed
by OLAP queries. Among these (see [9] and [10] for detailed
study), some focused on exploiting user profiles and prefer-
ences [11], [12], [13], others on the discoveries made during

analyses [14], [15] as well as on exploiting logs containing
sequences of queries previously run by other users on the
same cube [16], [6], [17], [18], [19], [20]. More recently, [21]
proposes a multidimensional algebra for describing analytical
sessions.

Although these approaches allow recommending relevant
queries for a given user, they are rapidly blocked, e.g. by
updates of the data warehouse or when cubes and/or decision-
makers are different. Missing information about a new item
or/and a new user is called in the literature the cold-start
problem. This problem is encountered when recommendations
are required for items and/or users for whom we have no
information yet, either explicitly or implicitly [22]. [23] has
identified several types of cold-start problems: new user prob-
lem [24], [25], new item problem [22], [26], non-transitive
association and overfitting.

In the data warehouse context, we face the cold-start
problem when the system intents to make recommendations
for a new cube. For example, for a given data warehouse
containing data up to the year 2010, a data cube C1 on years
2009 and 2010 and a log of queries launched on C1, suppose
that the data warehouse (DW) has been updated with the 2011
data and a new cube C2 on years 2010 and 2011 is created,
the system will recommend to the first decision-makers who
will explore C2, very few queries, and maybe none.

This problem is more complex than for the Web area
because we face a whole set of new items (a new cube) and
new users (new decision-makers or previous decision-makers
with a new function), i.e. we face what we call a new system.
Therefore, we must go beyond the recommendation and try
to suggest to these decision-makers queries that have not yet
been launched on a given cube. In the DW field, to the best
of our knowledge, there is no research on cold-start problems
for new systems.

The paper is organized as follows: Section II motivates
our proposal with a toy example, Section III presents our
conceptual model. Section IV details our cold-start process
and Section V concludes our presentation.



Fig. 1. Data warehouse for analyzing US vehicle sales from 2009 to 2011.

II. MOTIVATING EXAMPLE

Description of the example
Our example concerns a newly hired decision-maker in a vehi-
cle manufacturer company. His task will consist in developing
a reseller network in a new country (northern America). The
vehicle manufacturer was able to assemble a data warehouse
using publicly available US vehicle sales data. This new data
warehouse was designed similarly compared to the current
data warehouse of the manufacturer. The current system allows
the analysis of vehicle sales in France during the last decade
(SALES FR star schema illustrated Figure II), whereas the
new system monitors car sales done in the US, but only during
the past two years (the SALES US star schema illustrated
Figure 1). Both data warehouses have the same fact and the
same dimensions. Note that in both schemas, all dimension
hierarchies end by an ALL level (AllStore, AllTime and
AllV ehicle), not displayed in the figures. However, when taking
a closer look to both systems, the measures of the facts and the
levels of the dimensions are not exactly the same. In France,
the quantity of vehicles sold is recorded as well as the amount
of money these sales represented. In the US, only quantities are
available. In France, cities are grouped into regions whereas in
the US they are grouped in states. Sales are grouped weekly
in France and monthly in the US. Vehicles have different
gearboxes (manual, automatic, etc.) for the US, whereas in
France, all vehicles sold have a manual gearbox. Moreover,
data within these star schemas are different. The geographic
region monitored corresponds either to France or to northern
America. The time dimension data spans over ten years (1998-
2008) for the French system and only two years (2009-2011)
for the US system. Although vehicle brands are identical, most
models are different and some categories are not identical (e.g.
in France, there are small and low consumption city cars).
Finally, in France, the powertrain of the vehicles is either
forward wheel drive or 4x4 while in the US there is also rear
wheel drive.

Log session of the French star schema
The French system has been used for several years. From this
system query session logs can be extracted. These correspond
to the successive manipulations (OLAP queries) performed by
the users on this system. In our example (see the log extract
in Table I), a French user starts by (q3), that analyses the sale
quantities for all vehicles for the country France during the
year 2007. He/she then ”zooms into” the geographic location
of the sales. Thus, in two steps, this user drills down from
the Country level to firstly the Region level (q4) and secondly
to the City level (q5), hence finally monitoring the vehicle

Fig. 2. Data warehouse for analyzing French vehicle sales from 1998 to
2008.

log sessions
Sales FR Vehicle Store Time

q3 Quantity AllV ehicle France (Country) 2007 (Year)
q3 → q4 Identity Identity Drilldown Identity

q4 Quantity AllV ehicle North (Region) 2007 (Year)
q4 → q5 Identity Identity Drilldown Identity

q5 Quantity AllV ehicle North cities (City) 2007 (Year)

current session
Sales US Vehicle Store Time

q1 Quantity AllV ehicle US (Country) 2011 (Year)
q1 → q2 Identity Identity Drilldown Identity

q2 Quantity AllV ehicle Texas (State) 2011 (Year)
q2 → qpred Identity Identity Drilldown Identity

qpred Quantity AllV ehicle Texas cities (City) 2011 (Year)

TABLE I. EXAMPLE OF AN ANALYSIS SESSION LOG EXTRACTED FROM
A LOG (TOP PART) COMPARED TO AN ONGOING ANALYSIS SESSION.

quantities sold for all French cities (see the top part of the
Table I).

Recommendation for the US star schema exploration
The US decision support system is brand new. It is thus impos-
sible to get query logs from this system to recommend queries
that were executed previously to the new user. Moreover, our
user is a new employee of the company; he has experience
neither with the domain of the company data (vehicle sales),
nor with the company’s decision-maker’s analysis practices.
Nevertheless, on the one hand, analysis practices could be
suggested to him by exploiting the usage of the French decision
support system by the French analysts. However, both star
schemas are not identical and the data is different. On the
other hand, although company data exists for French sales, the
US vehicle selling activity is bran new. Thus the new decision-
maker can be helped neither by the existing company system
nor by users. The consequence is a need for providing data
warehouse exploration guidance to the new user but without
taking into account the (new) data. For example, our new user
performs an analysis of vehicle sales quantities for all vehicles
for the US during the year 2011 (q1 in the bottom part of
the current session log illustrated in Table I). If he then drills
down on the store location from the country level to the state
level (q2), the system could suggest him a ”French” way of
exploration, i.e. when analyzing quantities of all the products
sold for a specific year the French perform a double drill-down
on the geographical hierarchy (qpred).

Recommending high level operations
Typically, in our example, these navigation suggestions have
to be independent of the data (2011 sales for the US data
warehouse while it was 2007 sales in the French version).



Although both star schemas are slightly different, they both
have a ”sales” fact, a dimension with a ”geographical” location,
a dimension representing time and another one representing
sold products (vehicles). Although these dimensions do not
have the same hierarchical structure, they are quite similar,
thus exploration queries can be handled in a similar way on
both schemas. However, to do this, the recommendations must
take into account only high level operations (such as drilling
down twice on a time hierarchy or rotating from a geographical
hierarchy to a product hierarchy). Such operations rest on
OLAP algebraic operators. Moreover, these recommendations
must not take into account data as these may differ significantly
from one schema to another. Recommendations based on
operations rather than values can be useful for the cold-start
problem of recommender systems.

III. CONCEPTUAL MODELING

Our approach is located at a conceptual level. Using the
conceptual level we get rid of all implementation constraints.

A. Multidimensional schema and cube

Let us define F and D such as:

• F = {F1, ..., Fn} is a finite set of facts, n ≥ 1,

• D = {D1, ..., Dm} is a finite set of dimensions, m ≥
2,

Definition 1. A cube schema, denoted Ci, is defined by
(Fi, Star(Fi)), such as:

• Fi ∈ F is a fact,

• Star(Fi) =
{
DnDj | ∀j ∈ [1..m] , DnDj ∈ D

}
is the

set of the dimensions according to which it is relevant
to analyze the fact Fi.

A cube schema organizes data according to subjects of
analysis, called facts, and axes of analysis, called dimensions.
Dimensions are usually organized as hierarchies, supporting
different levels of data aggregation. Let us define N =
{n1, n2, ...} a finite set of non-redundant names.

Definition 2. A fact, denoted Fi, is defined by (nFi ,MFi),
where:

• nFi ∈ N is the name that identifies the fact,

• MFi = {m1, ...,mpi} is a set of measures.

Definition 3. A dimension, denoted Di, is defined by
(nDi , ADi , HDi), where:

• nDi ∈ N is the name that identifies the dimension,

• ADi = {aDi
1 , ..., aDi

ri } is the set of the attributes of
the dimension,

• HDi = {HDi
1 , ...,HDi

si } is a set of hierarchies.

Hierarchies organize the attributes of a dimension, called
parameters, from the finest graduation to the most general
graduation. A hierarchy defines valid navigation paths on an

axis of analysis.

Definition 4. A hierarchy, denoted Hj (abusive notation of
HDi

j ,∀i ∈ [1..m] ,∀j ∈ [1..si]) is defined by (nHj , PHj ,≺Hj ),
where:

• nHj ∈ N is the name that identifies the hierarchy,

• PHj = {pHj

1 , ..., p
Hj
qj } is a set of attributes called

levels, PHj ⊆ ADi ,

• ≺Hj= {(pHj
x , p

Hj
y ) | pHj

x ∈ PHj ∧ p
Hj
y ∈ PHj}

is an antisymmetric and transitive binary
relation between parameters. Remem-
ber that the antisymmetry means that
(p

Hj

k1
≺Hj p

Hj

k2
) ∧ (p

Hj

k2
≺Hj p

Hj

k1
) ⇒ p

Hj

k1
= p

Hj

k2

while the transitivity means that (p
Hj

k1
≺Hj p

Hj

k2
) ∧

(p
Hj

k2
≺Hj p

Hj

k3
)⇒ p

Hj

k1
≺Hj p

Hj

k3
.

In the rest of this paper we will use simple notations
for describing hierarchies such as Hj = (nHj , PHj ,≺Hj )
= (nHj , pathHj ) where pathHj =

〈
IdDi , ..., AllDi

〉
is an or-

dered set of attributes from the root parameter to the extremity
parameter.

Example
Figure 1 shows an example of a cube (F1, Star(F1)) that
allows analyzing US vehicle sales from 2009 to 2011. This
cube is noted using graphical notations [27]. It is formally
defined as follows.

• F1 = (′SALES US′, Quantity),

• Star(F1) = {DSTORE , DTIME , DV EHICLE},
where
◦ DSTORE =

(′Store′, {Store, City, State, Country},
{(′H GeoUS′, 〈 Store, City, State,
Country〉)}),

◦ DTIME = (′Time′, {Date,Month, Y ear},
{(′H TimeUS′, 〈Date,Month, Y ear〉)}),

◦ DV EHICLE = (′V ehicle′,
{V ehicle,Model, Category,Brand, Trim,
Powertrain}, {(′H Tr′, 〈V ehicle, T rim〉),
(′H BrandUS′, 〈 V ehicle,Model,
Category,Brand),
(′H Pwt′, 〈 V ehicle, Powertrain)}).

B. OLAP analysis

OLAP systems offer capabilities to interactively analyze
data by applying a set of specialized operations, such as drill-
down, roll-up and slice-and-dice [27]. It has been recognized
that the workload of an OLAP application can be characterized
by the user’s navigational data analysis task: the user defines a
first query then successively manipulates the results applying
OLAP operations. An OLAP analysis consists in exploring
interactively the multidimensional data warehouse. The user
performs a sequence of OLAP operations in order to find
relevant data for decision making.

A current visualization is a data cube representation, dis-
playing a fact and detailed information of all dimensions.



Within a cube both structures and values are displayed. In the
context of our research, the term query pattern refers structures
that are displayed in a given instant of the analysis. We model
the query pattern through a set of multidimensional structures
of displayed levels and measures.

Definition 5. A query pattern Pqi is defined by (Mk, Level),
where:

• Mk ∈MFi is a measure of a fact Fi,

• Level : Star(Fi) → P is a function that associates
each dimension to a set of parameters.

Example
Figure 5 shows examples of query patterns that are formally
defined as follows:

• Pq3 : ({Quantity}, {Level(V ehicle) = AllV ehicle,
Level(Store) = Country, Level(Time) = Y ear})

• Pq4 : ({Quantity}, {Level(V ehicle) = AllV ehicle,
Level(Store) = Region, Level(Time) = Y ear})

• Pq5 : ({Quantity}, {Level(V ehicle) = AllV ehicle,
Level(Store) = City, Level(Time) = Y ear})

We define user analysis by graphs where edges represent
the OLAP operations and nodes represent results. Each node
is defined by a query pattern, which describes the structure
elements of the resulting multidimensional table. Each edge is
defined by an OLAP operator. There is no consensus on a set
of operations for a multidimensional algebra. Table II describes
OLAP operators. Note that we restrict the set of operators to a
kernel of operators that transform the multidimensional table
structures. For more details see [27].

The operator DISPLAY defines sessions. A session begins
by the DISPLAY operator and ends when a new DISPLAY is
triggered.

Definition 6. A patternized session is defined as a graph (V,
E) where:

• V = {Pq1 , Pq2 , Pq3 ...} is a set of query patterns,

• E = {(Opk, Pqk+1
) | Opk is an OLAP operator and

Pqk+1
∈ V}

Example
Figure 3 shows an extract of session formally defined as:

• V = {...Pq3 , Pq4 , Pq5 ...},

• E = {...(DrillDown(Pq3 ;Store;Region), Pq4),
(DrillDown(Pq4 ;Store;City), Pq5)...}

IV. COLD-START PROCESS

IIn this section we detail the cold-start process in our
OLAP query recommender system. The process uses both
the sequence of queries of the current session, and the query
log of an OLAP server. This log contains the sequences of
queries formerly launched on another cube similar to the cube
on which are launched the queries of the current session.
Right now, we suggest the use of the work of [28] on cube

interoperability to detect similar cubes. But the notion of
similarity between data cubes will be defined in our future
work.

As illustrated in Figure IV, our process consists of the four
following steps:

1) Patternizing queries (i.e. obtaining the patterns of the
queries) of the former log.

2) Predicting candidate operations by using the patt-
ernized current session and the set of patternized log
sessions and a match function between the pattern of
the current session and the set of patternized sessions.

3) Computing the candidate recommendations by com-
bining one query of the current session and the
candidate operations.

4) Ranking the candidate recommendations.

The following subsections detail these steps.

A. Patternizing the query log

Initially, each session of the former log is split into patterns
of queries. To this end, this step uses a query patternizing
function (see algorithm 1). This function outputs a set of
sets of query patterns, that we call a set of session patterns.
The principle is straightforward: For each session of the log,
replace in the session each query with its query pattern using
extractQueryPattern (see algorithm 2) and detail the operations
allowing to pass from a query to the next in the session (see
extractOp function, detailed in algorithm 3). The patternized
current session can be computed as well.

Algorithm 1 PatternizingQueryLog(L, CL)
Require:

L: The former query log, as a set of sessions,
CL: The cube on which the log queries have been launched.

Ensure: a set of session patterns (SP )

V ← ∅ // for the operations
E ← ∅ // for the query patterns
SP ← 〈E, V 〉
for each session si ∈ L do

for each tuple of queries 〈qj , qj+1〉 ∈ si do
SP.E ← SP.E ∪ extractQueryPattern(qj , CL)
// extractQueryPattern: A function extracting the pattern of a
given query.
SP.E ← SP.E ∪ extractQueryPattern(qj+1, CL)
SP.V ← SP.V ∪ extractOp(qj , qj+1, CL)
// extractOp: A function extracting the operation allowing to
pass from a query to another in a given session.

end for
end for
return SP

Algorithm 2 shows how query patterns can be computed
while algorithm 3 details how operations between two queries
are identified.

Extracting query patterns (see algorithm 2) consists in
extracting the references (set of attribute values) of a given
query and returning the corresponding level name on each
dimension.



OLAP operators Operation descriptions
Display(FNEW , fi(MNEW ), {DSHOW , HSHOW , PSHOW }) = qRES Displaying a fact FNEW and its aggregated measure

fi(MNEW ) according to the dimensions {DSHOW }. Non-
specified displaying levels are the extremity levels ALL.

Pivot(qSRC , DCUR, DNEW , HNEW , PNEW ) = qRES Changing an analysis axis DCUR by a new dimension DNEW

at level PNEW

DrillDown(qSRC , DCUR, PNEW ) = qRES Displaying the data with a finer level of detail PNEW

RollUp(qSRC , DCUR, PCUR) = qRES Displaying the data with a coarser level of detail PCUR

TABLE II. OLAP ALGEBRA.

Fig. 3. Example of graph session.

Fig. 4. Overview of the cold-start process.

Algorithm 2 extractQueryPattern(q, C)
Require:

q: A given query,
C: The cube on which the query q has been launched.

Ensure: a list of cube level names (QP )

QP ← ∅
for each dimension Di of C do

QP ← QP ∪ getLevelName(getReferences(q, C))
end for
return QP

The operation extraction (algorithm 3) consists in
extracting the references (a set of attribute values) of two
given queries, the corresponding level numbers on each
dimension and finding the operation that allows navigating
from one query to the other. We focus on common OLAP
operations: slice-and-dice, drill-down, roll-up, switch and
pivot. Note that slice-and-dice and switch operations do not
influence our approach as these operations affect only values.
Our approach operates at a higher level; it manipulates the
cube structure and not its values.

More precisely, for two given queries (q1, q2) and for a
each dimension of the cube C :

• if the references (sets of attributes) of each query
are located on the same hierarchical level of the
dimension, the system considers that the operation to
pass from a query to the other one is identity,

• if the references of only one query are located at the
highest level of the hierarchy (′ALL′ level) then the
operation is a pivot,

• if the references of the first query launched are located
on a higher level than the references of the second
query launched then the operation is a DrillDown,

• in all other cases, the operation is a RollUp.

When the system detects a pivot, it is about determine on
which dimension the pivot takes place.



Algorithm 3 extractOp(q1, q2, C)
Require:

q1, q2: Two given queries,
C: The cube on which the queries q1 and q2 have been launched.

Ensure: a list of OLAP operations (OP )

OP,P ivot← ∅
Niv1, Niv2, height← 0
for each dimension Di of C do

Niv1 ← getLevelNum(getReferences(q1, C))
Niv2 ← getLevelNum(getReferences(q2, C))
height← height of the hierarchy of dimension Di

if Niv1 −Niv2 == 0 then
OP ← OP ∪ ”Identity”

end if
if (Niv1 6= height∧Niv2 == height)∨ (Niv1 == height∧
Niv2 6= height) then

Pivot← Pivot ∪Di

end if
if Niv1 −Niv2 > 0 then

OP ← OP ∪ ”Drilldown”
end if
if Niv1 −Niv2 < 0 then

OP ← OP ∪ ”RollUp”
end if

end for
if |Pivot| > 1 then

for each tuple of dimension 〈Di, Di+1〉 of Pivot do
OP [Di]← ”Pivot(” +Di + ”, ” +Di+1 + ”)”
OP [Di+1]← ”Pivot(” +Di + ”, ” +Di+1 + ”)”

end for
end if
return OP

The function getReferences(q, C) outputs for each di-
mension of C the attribute values of the query q. For ex-
ample1, the references of query q1 of the motivating ex-
ample are

〈
Quantity,AllV ehicle, US, 2011

〉
. The function

getLevelName (resp. getLevelNum) extracts, for each set
of attribute values on each dimension of the cube C, the name
(resp. the rank in the hierarchy - 0 for the finest granularity)
of the corresponding level in the hierarchy of the dimension.
For q1, we obtain Y ear as level name for the attribute value
2011 and 2 which is the level number of Y ear in the TIME
hierarchy of C (for Month it would have been 1 or 0 if it was
Date).

For example, the query q3, having for references〈
Quantity,AllV ehicle, F rance, 2007

〉
(see Table I),

of the motivating example can be patternized as:〈
Quantity,AllV ehicle, Country, Y ear

〉
. Thus, the session

of the motivating example containing q3, q4 and q5, can be
patternized as illustrated on Figure IV-A.

1Note that for readability, query references, query patterns and operations
are displayed, in this section, as an ordered 4-uples where each tuple
corresponds, in the right order, to measures, then the Vehicle dimension, then
the Store dimension and then the Time dimension. For instance, the query
reference 〈m,a, b, c〉 indicates that this query deals with the measure m,
with attribute value a on Vehicle dimension, b on Store dimension and c on
Time dimension. The query pattern 〈m, pa, pb, pc〉 indicates that this query
pattern deals with the measure m, with levels pa on Vehicle dimension, pb on
Store dimension and pc on Time dimension. And the operation 〈o1, o2, o3, o4〉
indicates that there are operations o1 on measures, o2 on Vehicle dimension,
o3 on Store dimension and o4 on Time dimension.

Fig. 5. Pattern of the session of the motivating example.

B. Predicting candidate operations

The previous step produced the set of patternized sessions.
Now, using this set and the sequence of queries of the current
session, a set of candidate operations is built by algorithm 4:
In addition to the set of patternized sessions and the current
session, this algorithm uses a matching function: Match. This
matching is used to find a set of patternized sessions of the
log that match the current patternized session. The algorithm
proceeds as follows: First, the patternized current session
is obtained (with the PatternizingQueryLog function as the
current session can be seen as a log containing only one
session). Then, Match is used to search, among the set of
patternized sessions, which session matches the patternized
current session. This function outputs a set of session pairs
indicating which patternized sessions match the patternized
current session along with the position of the matching. From
these pairs, the algorithm extracts a set of candidate operations
which are the operations that allow passing from the query
pattern at the returned position in the matching session pattern
to the next one in the candidate session pattern. This set of
operations is returned as an answer. Note that our goal is that
this set cannot be empty and that such an algorithm has a
complexity of O(n[(w+1)2 +1]+w) where n is the number
of sessions into the log and w is the max length (number of
queries) of a given session.

Algorithm 4 PredictingCandidateOperations(sc, C, SP ,
Match)
Require:

sc: The current session,
C: The cube on which the session sc has been launched,
SP : The set of patternized sessions, as output by the previous step,
Match: A function returning candidate session patterns.

Ensure: a set of candidate operations (Cand)

M,Cand← ∅
Psc ← the pattern of the current session sc
M ←Match(Psc , SP )
if M 6= ∅ then

for each m = 〈p, pos〉 ∈M do
//where p = 〈e, v〉 is a session pattern
Cand← Cand ∪ p.v(p.e[pos], p.e[pos+ 1])

end for
end if
return Cand



For example, the pattern of the session s1 in the
motivating example that contains q3, q4 and q5 is illustrated
in Figure IV-A. The pattern of the current session sc contains
the pattern of q1:

〈
Quantity,AllV ehicle, Country, Y ear

〉
,

the pattern of q2:
〈
Quantity, AllV ehicle, State, Y ear

〉
and the operations to transform q1 into q2:
〈Identity, Identity,Drilldown, Identity〉. For example,
suppose that the Match function returns the pattern of s1:
Ps1 matching with the pattern of sc: Psc on position 2. The
algorithm 4 then returns 〈 Identity, Identity,Drilldown,
Identity〉 as candidate operation. Indeed, this drill-down
operation changes the query q4 at position 2 in session s1
into the query q5 at position 3 in s1.

Match function
This Match function has been studied in [18] and [10] where
two sequence matching functions are detailed (each being
based on an edit distance and approximate string matching)
and combined with two member similarity measures (the
shortest path and the Hamming distance). The approximate
String matching technique used consists in removing, at each
iteration, the last element of the sequence and in comparing
it with the current sequence by using an edit distance. Note
that the number of calculation of the edit distance can be
exponential. While if only the edit distance is processed (i.e.
Levenshtein distance), the number of calculations is smaller,
as it is processed only once for each sequence. Thus, the
Levenshtein distance was used for comparing two sessions.
This distance is combined with the hamming distance (EdH)
or with the shortest path (EdSP ) for comparing members.
[18]’s experiments show that EdH and EdSP perform simi-
larly in terms of recall/precision but [10]’s experiments show
that EdSP is slower than EdH . As we are in a cold-Start
recommender system problem context, the system has to be
fast and efficient (as much as possible). This is why EdH is
used: the Levenshtein distance combined with the Hamming
distance.

C. Computing candidate recommendations

The previous steps produce a set of candidate operations.
Following this, for every candidate operation a new query is
computed by applying these candidate operations to the last
query of the current session. Recently, a multidimensional
algebra [21] could guarantee that the applied operations will
have a sense. In [10], five possibilities were considered: (i)
the last query of the current session, (ii) the successor of a
given query of the current session, (iii) the union of the current
session queries, (iv) the intersection of the current session
queries, and (v) the medoid 2 of the current session queries.
Possibility (v) is time consuming when sessions are long (due
to the calculation of the medoid for a big number of queries).
Possibility (iv) can result in an empty query and possibility (iii)
can create a query whose result would correspond to the entire
data cube. By analogy with the web [29] and in our cold-start
context, we suppose that intermediary steps are useless and
that an analytical session focuses on the goal of the session.
Thus, for us, the better possibility is to apply the operations to
the last query of the current query to compute the candidate
recommendations.

2The medoid of a set of queries belongs to this set and is the query that
minimizes the distances with the other queries of the set.

In our example, there is a candidate operation:
〈Identity, Identity,Drilldown, Identity〉. The computation
of a new query by applying this operation (a drill-down on
the STORE dimension) to the last query q2 (quantities of
vehicles sold in Texas in 2011) of the current session sc
returns the query identified in Table I by qpred (quantities of
vehicles sold in Texas cities in 2011).

D. Ranking the candidate recommendations

From the previously computed set of recommendations,
the idea is to select the most suitable recommendation. We
consider that we cannot have a satisfaction criterion expressed
by the user. To this end, a query ranking, that orders the
candidate recommendations, is difficult to propose.

For now, the solutions that could be considered are:

• Ranking the candidates according to how close to the
last query of the current session they are.

• Ranking the candidates according to their number of
occurrences in the logs.

• Ranking the candidates according to the position of
the candidate operation in the patternized log, i.e.
the most recently launched operations in the log will
be used to compute the first queries in the set of
recommended queries.

First, we know neither the density of the log nor its
contents. Thus, ranking the candidates according to their
number of occurrences in the logs can be difficult, if, for
example, each candidate appears the same number of times.
Still for timing reasons, ranking the candidates according to
how close to the last query of the current session they are
can be time consuming. For these reasons, the candidates are
ranked according to the position of the candidate operation in
the patternized log.

In the end, our proposition of a cold-start recommender
system, that will be implemented in our future work, consists
in :

1) Patternizing queries of the former log by using our
PatternizingQueryLog algorithm.

2) Predicting candidate operations by using the pat-
ternized current session and the set of patt-
ernized log sessions and the EdH match func-
tion between the pattern of the current ses-
sion and the set of patternized sessions, in our
PredictingCandidateOperations algorithm

3) Computing the candidate recommendations by com-
bining the last query of the current session and the
candidate operations.

4) Ranking the candidates according to the position of
the candidate operation in the patternized log.



V. CONCLUSION AND DISCUSSION

In this paper, we exposed the limits of existing recom-
mender systems when exploring data cubes on new systems.
In order to overcome these limitations we propose to develop
a process for predicting queries that will be based on user
behavior analysis during their sessions (these sessions corre-
sponding to sequences of queries) and on the behaviors during
former analysis sessions on another system.

This predictive approach raises 4 challenges: (1) extract
the behavior of users by patternizing their current queries and
from query logs of former systems; (2) predicting candidate
OLAP manipulation operations by matching the current user
query pattern with a set of patternized sessions (sets of query
sequences); (3) computing candidate recommendations, i.e.
selecting the relevant operations between the predicted ones;
and finally, as there may be several recommended operations,
(4) ranking these candidate recommendations. This cold-start
recommender system is used until the system has gathered
enough user manipulation data in order to run a more appro-
priate standard recommender system. This allows the user to
have recommendations although the system is bran new.

As this is preliminary work we intend, as future work,
to perform experiments and scale them up. This will allow
us to test thoroughly our algorithms and to answer questions
such as: how to match the best patternized query (if such
query exists) and if numerous patternized queries are returned
how to order them to avoid confusing the user with too many
suggestions. Moreover, we intend to take into account more
complex OLAP operators such as NEST and Drill-Across.
Finally, we also wish to apply our algorithms on more complex
multidimensional schemas, that is, new schemas that would
have more differences with the schemas of the former systems
(i.e. composed of different dimensions or facts).
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