Background

EXPECTED UTILITY AND ITS VIOLATIONS

17/09/2007

Abdellaoui Mohammed

1. Preliminaries

Representation of a Decision Problem under Uncertainty

- The DM is about making a choice from a set of possible actions;
- The consequence of any action is determined not just by the action itself but also by a number of external factors (beyond the control and unknown);
- These external factors are called states of the world. They are the carriers of uncertainty;
- The DM is assumed to have a complete description of these external factors through a set of states that are mutually exclusive and collectively exhaustive;
- A consequence results from the choice of a specific action and the occurrence of a specific state of the world.

Decision Table

		States of nature			
		s_1	s_2		s_n
7.0	f_1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1n}
Acts / Actions	f_2	x_{21}	x_{22}		x_{2n}
Act					
ts /	•				
Ac	f	ν.	ν -		v
	J _m	x_{m1}	x_{m2}		x_{mn}

- The set of states of the world will be denoted by S (not necessarily finite);
- Subsets of S are called events; and an event A obtains if it contains the true state.
- The set of consequences is denoted by $\boldsymbol{\mathcal{X}}$.
- f is constant if $f(S) = \{x\}$ for some $x \in S$; and f is simple if f(S) is finite.
- Notation: $f_1 = (s_1: x_{11}; s_2: x_{12}; ...; s_n: x_{1n})$.

Risk versus Uncertainty

RISK

- The DM is in a context of decision under risk if the set of states of the world is exogenously given with a probability distribution *P*.
 - o $f \to P_f$, where P_f is the probability distribution generated by act f. If f = (E: x; S - E: y), then $P_f = (p: x; 1 - p: y)$ with p = P(E).
 - o A <u>simple</u> act f such that $f(S) = \{x_1, ..., x_n\}$ generates a <u>simple</u> probability distribution P_f satisfying $P_f(\{x_1, ..., x_n\}) = 1$. P_f is called a <u>simple lottery</u> (giving x_i with probability $p_i = P_f(\{x_i\})$, i = 1, ..., n).
 - \circ We will assume that the set of alternatives is the set \mathbb{P}_X of simple probability distributions on X.

UNCERTAINTY (Subjective)

- Most uncertainties in decision making concern one-shot events for which no exogenously (objective) given probabilities are available.
- De Finetti (1931), Ramsey (1931), and Savage (1954) subsequently showed that probabilities can still be defined for one-shot events.
- They suggest inferring probabilities or degrees of belief from the DM's willingness to bet (on events).

o Example:

Event A will be considered as <u>more likely</u> than event B for the decision maker if she / he prefers act $f = (A: 100 \in; S - A: 0)$ to act $g = (B: 100 \in; S - B: 0)$.

2. Formal Representation of the DM Preferences

- The DM preferences and tastes are represented by means of a <u>binary relation</u> ≥ on the set *E* of alternatives.
- $x \ge y$ means that the DM <u>weakly prefers</u> object x to object y; the DM holds x to be <u>at</u> least as good as y.

Strict Preference

Indifference

• x > y if $x \ge y$ and $not(y \ge x)$.

• $x \sim y$ if $x \geqslant y$ and $y \geqslant x$.

Non-triviality

• x > y for some x, y.

Weak Order

• \geq is a <u>weak order</u> if it is

o transitive $(x \ge y \text{ and } y \ge z \Rightarrow x \ge z)$ and

o <u>complete</u> (for all $x, y, x \ge y$ or $y \ge x$ or both).

Numerical Representation

• $V: E \to \mathbb{R}$ represents $\geq if: x \geq y \Leftrightarrow V(x) \geq V(y)$.

Observation

• If V represents \geq on E, then \geq is a weak order.

• If V represents \geq on E, then:

o (i)
$$x > y \Leftrightarrow V(x) > V(y)$$
;

o (ii)
$$x \sim y \Leftrightarrow V(x) = V(y)$$
.

Fundamental Properties

Assume that \geq is a weak order. Then:

- a) \geq and \sim are reflexive.
- b) > is transitive.
- c) For no x and y we have x > y and y > x (> is asymmetric).
- d) $[x \ge y \text{ and } y > z \Rightarrow x > z]$ and $[x > y \text{ and } y \ge z \Rightarrow x > z]$.
- e) \sim is an <u>equivalence relation</u>, i.e. reflexive, transitive and symmetric ($x \sim y \Rightarrow y \sim x$).
- f) If $y \sim x$ then y is substitutable for x in every preference.
- g) $x > y \Leftrightarrow not(y \ge x)$.

3. Expected Utility with Known Probabilities

- Let \mathcal{X} be a set of outcomes and \mathbb{P}_X the set of simple lotteries on \mathcal{X} .
- \geq denotes the weak preference relation on \mathbb{P}_X . Strict preference and indifference are defined as usual.
- \geqslant satisfies <u>first order stochastic dominance</u> on \mathbb{P}_X if for all $P, Q \in \mathbb{P}, P > Q$ whenever $P \neq Q$ and for all $x \in X, P(\{y \in X : y \geqslant x\}) \geq Q(\{y \in X : y \geqslant x\})$.
- For $\alpha \in [0, 1]$, the combination $\alpha P + (1 \alpha)Q$ of lotteries P and Q is a lottery.
- $\alpha P + (1 \alpha)Q$ can be interpreted as a compound (two-stage) prospect giving P with probability α and Q with probability 1α .
- \geqslant is <u>Jensen Continuous</u> if for all prospects $P, Q, R \in \mathbb{P}$, if P > Q then there exist $\lambda, \mu \in (0, 1)$ such that $\lambda P + (1 \lambda)R > Q$ and $P > \mu R + (1 \mu)Q$.

• The key axiom of Expected utility theory with known probabilities is called vNM-independence.

vNM-independence

- For all $P, Q, R \in \mathbb{P}$, $\forall \alpha \in (0,1)$: $P \geqslant Q \Leftrightarrow \alpha P + (1-\alpha)R \geqslant \alpha Q + (1-\alpha)R$.
- This axiom says that, if a decision maker has to choose between prospects $\alpha P + (1-\alpha)R$ and $\alpha Q + (1-\alpha)R$, her choice does not depend on the 'common consequence' R.

The Expected Utility Theorem

• A Jensen-continuous weak order satisfying vNM-independence on the set $\mathbb P$ is necessary and sufficient for the existence of a utility function $u: \mathcal X \to \mathbb R$ such that

$$\forall P, Q \in \mathbb{P}, P \geqslant Q \Leftrightarrow E(u, P) \geq E(u, Q),$$

where $E(u, R) = \sum_{x \in X} r(x)u(x)$ for any prospect R. u is unique up to a positive affine transformation (i.e. unique up to level and unit).

4. Expected Utility with Unknown Probabilities

- An *act* is a function from S to X, the set of outcomes. The set of acts is denoted by A.
- For outcome *x*, event *A*, and acts *f* and *g*:
- fAg denotes the act resulting from g if all outcomes g(s) on A are replaced by the corresponding outcomes f(s) (by consequence x).
- xAg denotes the act resulting from g if all outcomes g(s) on A are replaced by consequence x.
- xAy denotes the act giving consequence x if A, and consequence y otherwise.
- The set of simple acts \mathcal{A} is provided with a (non-trivial) weak order \geq .
- The preference relation on acts is extended to the set of consequences by the means of constant acts.
- An event *A* is said to be *null* if the decision maker is indifferent between any pair of acts differing only on *A*.

• Small event Continuity Axiom: For any non-indifferent acts (f > g), and any outcome (x), the state space can be (finitely) partitioned into events $(\{A_1, ..., A_n\})$ small enough so that changing either act to equal this outcome over one of these events keeps the initial indifference unchanged $(xA_if > g)$ and $f > xA_ig$ for all $i, j \in \{1, ..., n\}$.

Sure-thing Principle

- For all events **A** and acts f, g, h and h', $fAh \ge gAh \Leftrightarrow fAh' \ge gAh'$.
- The sure-thing principle (Axiom P2) states that if two acts f and g have a common part over (S A), then the ranking of these acts will not depend on what this common part is.

Eventwise Monotonicity

- For all non-null events A, and outcomes x, y and acts f,
- $xAf \geqslant yAf \Leftrightarrow x \geqslant y$.

Likelihood Consistency

- For all events A, B and outcomes x > y and x' > y', $xAy \ge xBy \Leftrightarrow x'Ay' \ge x'By'$.

$$A \geqslant^* B$$
 if for some $x > y$, $xAy \geqslant xBy$

is independent of the specific outcomes x, y used.

• The likelihood relation \geq^* , represents the DM beliefs.

Savage's Subjective Expected Utility

Subjective Probabilities from Preferences

Savage axioms (P1 to P6) are sufficient for the existence of a unique subjective probability measure P^* on 2^S , preserving likelihood rankings

$$A \geqslant^{\star} B \Leftrightarrow P^{\star}(A) \geq P^{\star}(B),$$

and satisfying convex-rangeness

$$A \subset \mathcal{S}, \alpha \in [0,1] \Rightarrow (P^*(B) = \alpha P^*(A) \text{ for some } A \subset B).$$

Savage's Theorem

Under Savage's axioms (P1 to P6), there exists a vNM utility function on \mathcal{X} such that the decision maker ranks simple acts f on the basis of $E(P_f, u)$.

5. Violations of Expected Utility

Three important Experimental Results

- 1. The Allais Paradox
- 2. The Ellsberg Paradox
- 3. The Fourfold Pattern of Risk Attitudes

The Allais Paradox

		Probabilities			
The		p = 0.01	p = 0.01	p = 0.89	
	Α	\$1M	\$1M	\$1M	
	В	0	\$5M	\$1M	
	A'	\$1M	\$1M	0	
	В'	0	\$5M	0	

most

frequent choice pattern is AB'.

• Let
$$C = \left(\frac{10}{11}\right) \$ 5M + \left(\frac{1}{11}\right) 0$$
 and $D = 0$ two lotteries. We have

$$A = 0.11A + 0.89A$$
 and $B = 0.11C + 0.89A$

$$A' = 0.11A + 0.89D$$
 and $B' = 0.11C + 0.89D$.

The Allais Paradox

	States $(S = A \cup B \cup C)$		
_	A	В	С
f _{AUB} h	\$1M	\$1M	\$1M
g _{AUB} h	0	\$5M	\$1M
f _{AUB} h'	\$1M	\$1M	0
g _{AUB} h'	0	\$5M	0

[•] $f_{A \cup B} h > g_{A \cup B} h$ and $g_{A \cup B} h' > f_{A \cup B} h'$ violate the sure-thing principle.

The Ellsberg Paradox

	30 balls	60 balls	
	Red	Black	Yellow
f	\$1000	0	0
g	0	\$1000	0
f'	\$1000	0	\$1000
g'	0	\$1000	\$1000

• Ellsberg claimed that many reasonable people will exhibit the choice pattern fg'. He suggested that preferring f to g is motivated by ambiguity aversion: the DM has more precise knowledge of the probability of the 'winning event' in act f than in act g.

The Ellsberg Paradox

	30 balls	60 balls	
	Red	Black	Yellow
f	\$1000	0	0
g	0	\$1000	0
f'	\$1000	0	\$1000
g'	0	\$1000	\$1000

• In the second choice situation, the choice of act g' can be explained by the absence of precise knowledge regarding the probability of event Y.

The Ellsberg Paradox

	30 balls	60 balls	
	Red	Black	Yellow
f	\$1000	0	0
g	0	\$1000	0
f'	\$1000	0	\$1000
g'	0	\$1000	\$1000

• In terms of likelihood relation \geq^* , it can easily be shown that, under expected utility, the choice pattern fg' implies two contradictory likelihood statements, namely $R >^* B$ and $R \cup Y >^* B \cup Y$.