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1. Preliminaries

Representation of a Decision Problem under Uncertainty

e The DM is about making a choice from a set of possible actions;

e The consequence of any action is determined not just by the action itself but also by a
number of external factors (beyond the control and unknown);

e These external factors are called states of the world. They are the carriers of
uncertainty;

e The DM is assumed to have a complete description of these external factors through a
set of states that are mutually exclusive and collectively exhaustive;

e A consequence results from the choice of a specific action and the occurrence of a

specific state of the world.
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e The set of states of the world will be denoted by § (not necessarily finite);

e Subsets of § are called events; and an event 4 obtains if it contains the true state.

e The set of consequences is denoted by X.

f is constant if f(8) = {x} for some x € §; and f is simple if f(8) is finite.

Notation: fl = (51: X11,S2:X12; -+, Sy xln).
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Risk versus Uncertainty

RISK

e The DM is in a context of decision under risk if the set of states of the world is

exogenously given with a probability distribution P.

O f — Py, where Py is the probability distribution generated by act f.
Iff=(E:x;S—E:y), then Py = (p:x; 1 — p:y) with p = P(E).

0 A simple act f such that f(S) = {x4,...,Xx,} generates a simple probability
distribution P satisfying P¢({x, ..., x,}) = 1. P is called a simple lottery (giving
x; with probability p; = P({x;}),i = 1, ..., n).

0 We will assume that the set of alternatives is the set Py of simple probability

distributions on X.



UNCERTAINTY (Subjective)

e Most uncertainties in decision making concern one-shot events for which no
exogenously (objective) given probabilities are available.

e De Finetti (1931), Ramsey (1931), and Savage (1954) subsequently showed that
probabilities can still be defined for one-shot events.

e They suggest inferring probabilities or degrees of belief from the DM's willingness to

bet (on events).

o Example:

Event A will be considered as more likely than event B for the decision maker if

she / he prefersact f = (4: 100€; S — A:0) toact g = (B: 100€; S — B: 0).




2. Formal Representation of the DM Preferences

e The DM preferences and tastes are represented by means of a binary relation > on the

set E of alternatives.

e x > y means that the DM weakly prefers object x to object y; the DM holds x to be at

least as good as y.

Strict Preference Indifference

e x >yifx > yandnot(y > x). e x ~yifx>yandy > x.

Non-triviality



e x > y for some x, y.
Weak Order

e > is aweakorder ifitis

O transitive (x > yandy > z = x > z) and

0 complete (forall x,y, x = y or y > x or both).

Numerical Representation

e V:E - Rrepresents >if:x =2y & V(x) = V(y).

Observation

e If V represents > on E, then > is a weak order.
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e [fV represents > on E, then:
o({)x>ye V) >V(y);

o(ii) x~yeV(ix) =V().



Fundamental Properties

Assume that > is a weak order. Then:
a) = and ~ are reflexive.
b) > is transitive.
c) Forno x and y we have x > y and y > x (> is asymmetric).
d[x>yandy>z=x>2z]and [x >yandy >z = x > Zz].

e) ~ is an equivalence relation, i.e. reflexive, transitive and symmetric (x ~y = y ~ x).

f) If y ~ x then y is substitutable for x in every preference.

g) x >y e not(y = x).



3. Expected Utility with Known Probabilities

e Let X be a set of outcomes and Py the set of simple lotteries on X.

e > denotes the weak preference relation on Py. Strict preference and indifference are

defined as usual.

e > satisfies first order stochastic dominance on Py if for all P,Q € P, P > Q whenever

P+ Qandforall xe X,P{ye X:y =x}) =2 Q({y € X:y = x}).

e Fora € [0, 1], the combination aP + (1 — a)Q of lotteries P and Q is a lottery.

e aP + (1 — a)Q can be interpreted as a compound (two-stage) prospect giving P with

probability @ and Q with probability 1 — a.

e > is Jensen Continuous if for all prospects P,Q,R € P, if P > Q then there exist

Ape(0,1)suchthat AP+ (1 —2A2)R>QandP > uR+ (1 — u)Q.
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e The key axiom of Expected utility theory with known probabilities is called vNM-

independence.
vNM-independence

e ForallP,Q,REP,Va € (0,1):P>Q = aP+ (1—a)R > aQ + (1 — a)R.

e This axiom says that, if a decision maker has to choose between prospects

aP + (1 —a)R and aQ + (1 — a)R, her choice does not depend on the ‘common
ﬂ P P
{/F ¢
a a
< = I @Q 0
0 1—a R

11

consequence’ R.




The Expected Utility Theorem

e A Jensen-continuous weak order satisfying vNM-independence on the set P is

necessary and sufficient for the existence of a utility function u: X = R such that

VP,QeP,P>Q © E(u,P) = E(uQ),

where E(u,R) = ) ,exr(x)u(x) for any prospect R.u is unique up to a positive affine

transformation (i.e. unique up to level and unit).
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4. Expected Utility with Unknown Probabilities

e Anactis a function from § to X, the set of outcomes. The set of acts is denoted by A.

e For outcome x, event 4, and acts f and g:

e fAg denotes the act resulting from g if all outcomes g(s) on A are replaced by the
corresponding outcomes f(s) (by consequence x).

e xAg denotes the act resulting from g if all outcomes g(s) on A are replaced by

consequence X.
e xAy denotes the act giving consequence x if A, and consequence y otherwise.
e The set of simple acts A is provided with a (non-trivial) weak order >=.

e The preference relation on acts is extended to the set of consequences by the means of

constant acts.

e An event A is said to be null if the decision maker is indifferent between any pair of

acts differing only on A.
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e Small event Continuity Axiom: For any non-indifferent acts (f > g), and any outcome
(x), the state space can be (finitely) partitioned into events ({44, ..., A,}) small enough
so that changing either act to equal this outcome over one of these events keeps the

initial indifference unchanged (xA;f > g and f > xA;g forall i,j € {1, ..., n}).
Sure-thing Principle
e Forall events A and acts f, g, hand h', fAh > gAh < fAh' > gAh'.
e The sure-thing principle (Axiom P2) states that if two acts f and g have a common

part over (S — A), then the ranking of these acts will not depend on what this common

partis.
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Eventwise Monotonicity

e For all non-null events 4, and outcomes x, y and acts f,

o XAf = yAf & x = y.

Likelihood Consistency
e For all events A4, B and outcomes x > y and x’ > y/,
xAy > xBy © x'Ay' > x'By'.
e Likelihood consistency (axiom P4) states that the revealed likelihood binary relation

> (read ‘weakly more likely than’) defined over events by

A >* B if for some x > y, xAy > xBy

is independent of the specific outcomes x, y used.

e The likelihood relation >=*, represents the DM beliefs.
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Savage's Subjective Expected Utility

Subjective Probabilities from Preferences
Savage axioms (P1 to P6) are sufficient for the existence of a unique subjective probability

measure P* on 29, preserving likelihood rankings

A >* B © P*(A) = P*(B),

and satisfying convex-rangeness

Ac S ac[0,1] = (P*(B) = aP*(A) for some A c B).
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Savage's Theorem

Under Savage's axioms (P1 to P6), there exists a vNM utility function on X such that the

decision maker ranks simple acts f on the basis of E(Pf, u).

5. Violations of Expected Utility

Three important Experimental Results

1. The Allais Paradox
2. The Ellsberg Paradox
3. The Fourfold Pattern of Risk Attitudes
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The Allais Paradox

Probabilities
The
p = 0.01 p = 0.01 p = 0.89
A $1M S1M $1IM
B 0 S5M S1M
A’ S1M S1M 0
B’ 0 S5M 0

frequent choice pattern is AB’.

o LetC = (%) $5M + (ﬁ) 0 and D = 0 two lotteries. We have

A=0.114+0.894 and B =0.11C+ 0.894
A =0.11A4+0.89D and B'=0.11C+ 0.89D.
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The Allais Paradox

States (S=AU B U ()

A B C
faush S1IM S1IM $1M
gaush 0 S5M $1M
faush' S1IM S1IM 0
gaush’ 0 S5M 0

o faogh>gasgh and guuph’ > fauph' violate the sure-thing principle.

The Ellsberg Paradox
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30 balls 60 balls

Red Black Yellow
f $1000 0 0
g 0 $1000 0
f $1000 0 $1000
g’ 0 $1000 $1000

e Ellsberg claimed that many reasonable people will exhibit the choice pattern fg'. He
suggested that preferring f to g is motivated by ambiguity aversion: the DM has more

precise knowledge of the probability of the 'winning event' in act f than in act g.

The Ellsberg Paradox
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30 balls 60 balls

Red Black Yellow
f $1000 0 0
g 0 $1000 0
f $1000 0 $1000
g’ 0 $1000 $1000

e In the second choice situation, the choice of act g’ can be explained by the absence of

precise knowledge regarding the probability of event Y.

The Ellsberg Paradox
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30 balls 60 balls

Red Black Yellow
f $1000 0 0
g 0 $1000 0
f $1000 0 $1000
g’ 0 $1000 $1000

e In terms of likelihood relation >*, it can easily be shown that, under expected utility,

the choice pattern fg' implies two contradictory likelihood statements, namely
R>*BandRUY >*BUY.
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