Preference Elicitation with Subjective Features

Craig Boutilier

Department of Computer Science University of Toronto

joint work with Kevin Regan and Paolo Viappiani; (and Laurent Charlin and Rich Zemel)

The Preference Bottleneck in AI*

Decisions on behalf of individuals (organizations)

- match individuals to desired products, services, information, people, behaviors, courses of action
- Decision theory provides foundations for automated decision support systems
 - actions, outcomes, dynamics, utilities: MEU
- But what is the objective function?
 - user preferences (or utilities) are often unknown
 - vary much more widely than dynamics

Product Configuration

The Preference Bottleneck

The usual difficult questions:

- decomposition of preferences
- difficulty assessing precise tradeoffs, ...
- Other difficult questions:
 - what are sources of preference information?
 - what preference info is *relevant* to the task at hand?
 - when is the elicitation effort worth the improvement it offers in terms of decision quality?
 - what *decision criterion* to use given partial utility info?

Beyond Stylized Queries

Good progress using standard query-response models:

- comparison queries, standard gambles, stated-choice methods,...
- easy to formulate, formalize, analyze

Drawbacks:

- no exploration or construction of preferences
- data-intensive at level of individual users
- impact of cognitive biases (framing, anchoring, endowment,...)
- fixed vocabulary

Addressed in:

- conversational recommendation systems
- collaborative filtering, conjoint analysis
- behavioral DT/economics, ...
- but decision-theoretic (or social choice) foundations are weak

Constructed (Subjective) Features

"Catalog" attributes usually fix universe of discourse

• e.g., luggage cap, engine size, city I /100km, crash test ratings, ...

Users may care about combinations of such attributes

- car safety: function of size, airbag config, crash test ratings, ...
- but different users have different definitions

Subjective Features

Goal: *personalized, constructed features* in the dialog

- move beyond fixed vocabulary of catalog attributes
- support more natural interactions, using features in which user naturally conceives of her preferences
- key point: personalized features admit objective definitions

Genuinely "subjective" features

judgments that defy definition in terms of objective features
e.g., want a car that is "sporty looking" or "cute"

Overview

Minimax Regret Models of Preference Elicitation

- robust optimization under utility uncertainty: minimax regret
- refining utility uncertainty: regret-based query strategies
- User-defined (constructed) features
 - pure concept elicitation: assume known utility function
 - simultaneous concept and utility elicitation

Subjective features in collaborative filtering

One-shot Decision Problem

Finite set of decisions X

- decision (configuration) variables $X = \{X_1 \dots X_n\}$
- feasible set X defined by constraints, product DB, etc.
- Utility function $u: \mathbf{X} \rightarrow [0, 1]$
 - simplified model: equates decisions with outcomes
- Optimal decision x* maximizes utility
- Utility representation critical to assessment
 - some structural form usually assumed
 - so *u* parameterized compactly (weight vector *w*)
 - e.g., linear/additive, generalized additive models

Additive Utility Models

Additive models commonly used in practice

• local value functions v_i plus scaling factors λ_l

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i).$$

- e.g., u(Car) = 0.3 V₁(Color) + 0.2 V₂(Doors) + 0.5 V₃(Power) and V₁(Color) : cherryred:1.0, metallicblue:0.7, ..., grey:0.0
- assess local VFs with *local SG queries*

$$x_i \sim \langle p, x_i^\top; 1-p, x_i^\perp \rangle \iff v_i(x_i) = p$$

assess scaling factors with 2n "global" queries

$$\lambda_j = u(\mathbf{x}^{\top_j}) - u(\mathbf{x}^{\perp_j})$$

Elicitation Tradeoffs

Burden of complete utility information too much to bear

- large number of parameters to assess
- unreasonable precision required
- cost (cognitive, communication, computational, revelation) may outweigh benefit

 can often make optimal decisions without full utility information (exploiting feasibility constraints)

General approach: incremental elicitation until a decision can be made that is "good enough"

• simple queries: *constrain* parameters, don't *identify* parameters

11

Elicitation in Additive Models: Comparisons

Somewhat simplified view (ignoring calibration across features)

Comparison queries (is x preferred to x'?)

• impose linear constraints on parameters

 $\Sigma_k u_k(x_k) > \Sigma_k u_k(x_k)$

• local variants possible (on single attributes)

 $u_{c}(red)+u_{d}(2door)+u_{e}(280hp) > u_{c}(blue)+u_{d}(2door)+u_{e}(280hp)$

Elicitation in Additive Models: Bound Queries*

- Somewhat simplified view (ignoring calibration across features)
- •Bound queries (is $u_k(x_k) > v$?)
 - response tightens bound on specific utility parameter
 - a boolean version a (global/local) standard gamble query
 - "Do you prefer x_k to $(x^T_k, p; x^{\perp}_k, 1-p)$?"

u_{enginesize}(280hp) > 0.4 u_{color}(red) < 0.7

Other Modes of Interaction*

- Choose from set of alternatives
- Ranking set of alternatives
- Graphical manipulation of parameters
 - bound queries: allow tightening of bound (user controlled)
 - approximate valuations: user-controlled degree of precision (useful for quasi-linear environments)

A General Framework for Elicitation and Interactive Decision Making

- B: beliefs about user's utility function u
- Opt(B): "optimal" decision given incomplete, noisy, and/or imprecise beliefs about u

Repeat until B meets some termination condition

- ask user some query (propose some interaction) q
- observe user response r
- update *B* given *r*
- Return/recommend Opt(B)

Our queries leave us with strict utility uncertainty

- need some form of robust optimization
- use *minimax regret* to make decisions and suggest queries

Minimax Regret

Utility uncertainty given by feasible set W

• e.g., W defined by linear constraints on w

 $u_e(280hp) > 0.4$ $u_c(red)+u_d(2door)+u_e(280hp) > u_c(blue)+u_d(2door)+u_e(280hp)$

- Regret of x under w: $R(x, \mathbf{w}) = \max_{x' \in X} u(x'; \mathbf{w}) u(x; \mathbf{w})$
- Max regret of x under W:

$$MR(x, W) = \max_{\mathbf{w} \in W} R(x, \mathbf{w})$$

• Minimax regret and optimal allocation:

$$x_W^* = \underset{x \in X}{\operatorname{arg\,min}} MR(x, W)$$

16

Minimax Regret: An Example

Simple example to contrast maxmin, MMR

	U1	U2	U3	Min	MR
D1	8	2	1	1	5
D2	7	7	1	1	1
D3	2	2	2	2	6

- Maxmin: recommends D3 (too cautious?)
- MMR recommends D2
 - might be worse than D3, but never by more than a little

Why Minimax Regret?*

Minimizes regret in presence of adversary

- provides bound worst-case loss (cf. maximin)
- robustness in the face of utility function uncertainty
- In contrast to Bayesian methods:
 - useful when priors not readily available
 - can be more tractable; see [CKP00/02, Bou02]
 - user unwilling to "leave money on the table" [BSS04]
 - preference aggregation settings [BSS04]
 - effective elicitation even *if* priors available [WB03]

Computing Minimax Regret

Difficulties computing minimax regret:

- underlying optimization generally an IP
- minimax (integer) program (not straight min or max)
- generally quadratic objective

 $MMR (W) = \min_{x \in X} \max_{w \in W} \max_{x' \in X} w \cdot x' - w \cdot x$

General Approach:

- Bender's decomposition and constraint generation to break minimax program
- Various encoding tricks to linearize quadratic terms
 - details and formulation depend on domain

Minimax Regret: Bender's Reformulation*

With unknown utility parameters in W

$$MMR(W) = \min_{x \in X} \max_{w \in W} \max_{x' \in X} u(x';w) - u(x;w)$$

Linear IP formulation (infinitely many constraints)

$$\min_{x \in X} \delta$$

s.t. $\delta \ge u(x'; w) - u(x; w) \quad \forall x' \in X, \forall w \in W$

Linear IP formulation (exponentially many constraints)

$$\min_{x \in X} \delta$$

s.t. $\delta \ge u(x_w^*; w) - u(x; w) \quad \forall w \in V(W)$

Constraint Generation*

- Avoid W-vertex enumeration: constraint generation
- •Let $Gen = \{(x', w)\}$ for some feasible x', $w \in W$
 - solve $\min_{x \in X} \delta$ s.t. $\delta \ge u(x'; w) - u(x; w) \quad \forall (x', w) \in Gen$
 - let solution be x^* with objective value δ^*
 - compute max regret $MR(x^*, W)$ of solution x^*
 - solution has max regret r, witness (x", w")
 - if r > δ *, add (x", w") to Gen, repeat; else terminate
 note: (x", w") is maximally violated constraint

Computing Max Regret**

Objective is naturally quadratic

$$MR(x,W) = \max_{w \in W} \max_{x' \in X} u(x';w) - u(x;w)$$

However, feature instantiations are discrete

- quadratic terms: products of integer, continuous vars
- easily linearized by introduction of auxiliary variables

$$MR(\mathbf{x}, \mathbf{U}) = \max_{\{I_{\mathbf{x}'[k]}, X'_i, U_{\mathbf{x}[k]}, Y_{\mathbf{x}'[k]}\}} \sum_k \left(\sum_{\mathbf{x}'[k]} Y_{\mathbf{x}'[k]} \right) - U_{\mathbf{x}[k]}$$

Details of Linearization***

Replace quadratic term $U_{x'[k]} I_{x'[k]}$ by new variable $Y_{x'[k]}$

- assume (loose) upper bound on each utility parameter $u_{x'[k]}$
- constraints ensure $Y_{x'[k]} = 0$ if $I_{x'[k]} = 0$; and $Y_{x'[k]} = U_{x'[k]}$ otherwise

$$MR(\mathbf{x}, \mathbf{U}) = \max_{\{I_{\mathbf{x}'[k]}, X'_{i}, U_{\mathbf{x}[k]}, Y_{\mathbf{x}'[k]}\}} \sum_{k} \left(\sum_{\mathbf{x}'[k]} Y_{\mathbf{x}'[k]} \right) - U_{\mathbf{x}[k]}$$

subject to
$$\begin{cases} Y_{\mathbf{x}'[k]} \leq I_{\mathbf{x}'[k]} u_{\mathbf{x}'[k]} \uparrow \forall k, \mathbf{x}'[k] \\ Y_{\mathbf{x}'[k]} \leq U_{\mathbf{x}'[k]} \forall k, \mathbf{x}'[k] \\ \mathcal{A}, \mathcal{C} \text{ and } \mathcal{U} \end{cases}$$

Max Regret for Parameter Bounds***

Max regret computation is even simpler in the case of simple upper and lower bounds on utility parameters

- hyperrectangular polytope (see bound queries)
- requires integer variables only (selection of outcome)
- pairwise regret is constant for each local configuration

Regret-based Query Strategies

Have explored a variety of query strategies

- what query should I ask user to reduce minimax regret "quickly"?
- Current solution strategy (CSS) works well in practice
 - ask queries that impact utility parameters of current minimax optimal solution or current adversarial witness
 - realization depends on precise form of query

Is x*: <red,2door,280hp> Preferred to x^w: <blue,4door,195hp>?

Results (Car Rental, Unif)

Solution Database

DATABASE

Main

ID	PRICE	Area	Building type	No. of bedrooms	Furniture	Laundry	Parking	Smoking restrictions	
25	850	East Toronto	House	2 bedrooms	Unfurnished	Laundry available	Parking not available	Smoking allowed	
26	1200	West Toronto	House	3 bedrooms	Unfurnished	Laundry not available	Parking not available	Smoking not allowed	
27	1000	Scarborough	Basement	2 bedrooms	Furnished	Laundry available	Parking not available	Smoking not allowed	
28	1400	Downtown	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking allowed	
29	750	West Toronto	House	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking not allowed	
30	650	East Toronto	Basement	1 bedroom	Furnished	Laundry available	Parking available	Smoking allowed	
31	1200	Downtown	High-rise	1 bedroom	Furnished	Laundry available	Parking available	Smoking allowed	
32	650	West Toronto	Basement	1 bedroom	Furnished	Laundry available	Parking not available	Smoking not allowed	
33	1100	Downtown	Basement	2 bedrooms	Unfurnished	Laundry available	Parking available	Smoking allowed	
34	600	Scarborough	Basement	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking allowed	
35	1200	West Toronto	Basement	2 bedrooms	Furnished	Laundry not available	Parking not available	Smoking allowed	
36	700	West Toronto	Basement	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking allowed	
37	745	Downtown	High-rise	1 bedroom	Furnished	Laundry not available	Parking available	Smoking not allowed	
38	775	Downtown	High-rise	1 bedroom	Unfurnished	Laundry available	Parking not available	Smoking not allowed	
39	650	Scarborough	Basement	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking allowed	
40	900	East Toronto	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking not allowed	
41	900	Scarborough	Basement	2 bedrooms	Furnished	Laundry available	Parking available	Smoking allowed	
42	750	Scarborough	Basement	2 bedrooms	Unfurnished	Laundry not available	Parking not available	Smoking allowed	
43	995	Downtown	High-rise	1 bedroom	Unfurnished	Laundry available	Parking available	Smoking not allowed	
44	1360	Downtown	High-rise	2 bedrooms	Unfurnished	Laundry available	Parking available	Smoking not allowed	
45	650	Scarborough	Basement	1 bedroom	Furnished	Laundry available	Parking not available	Smoking allowed	
46	1100	West Toronto	House	1 bedroom	Furnished	Laundry available	Parking not available	Smoking not allowed	

Rent: \$900

Rent: \$750

You prefer apartment A

\$1150?

Would you be willing to pay \$1150 or more

for this apartment?

Effectiveness of Regret-based Elicitation

Recent user study [Braziunas, B; under review] SUggests:

- minimax regret is comprehensible, reasonably intuitive
 some query types more acceptable than others
- converges on near-optimal decisions in multiattribute databases
- converges much more quickly (time, "effort") than search through a small database
- user satisfaction with engagement is very high

Other lessons

- additive models not realistic, but...
- machinery needed to elicit GAI models "soundly" is overkill

Non-catalog, Constructed Features

Call configuration vars $X = \{X_1 \dots X_n\}$ catalog attributes

- catalog spec; those objective features that define the item
- Users may care about combinations of such attributes
 - car safety: function of size, airbag config, crash test ratings, ...

Fundamental Objectives

Keeny's VFT: fundamental vs. means objectives

- Carenini made these distinctions for recommenders
- FindMe static compound critiques ("more sporty") or Stolze user types ("family snaps" vs. "professional")
- BBGP97: configurable vs. functional variables in pref. elicitation
 - X configurable; Y functional; mapping $f: X \rightarrow Y$
 - constraints over X, elicitation over Y

Tradeoffs in Eliciting User Features

Change to preference model not *necessarily* needed

- but fundamentally changes nature of interaction
- need to elicit open-ended, user-initiated features
 possibly defaults with tweakable definitions

Goal: elicit as little as necessary to make a good decision

- utility model, feasibility constraints mean (often) near-optimal decisions possible with weak knowledge of definitions
- want to trade off elicitation effort with decision quality
- "Safe car" requires feature X=x1 plus other unspecified stuff;
- X=x1 implies Y /= y2;
- Y=y2 more important that "safety";
- no value in further elicitation of defn: no safe car is optimal

Eliciting Constructed Features: Model

- Initial focus: known utility function, uncertain definition
- Product space $X \subseteq Dom\{X_1 \dots X_n\}$
 - reward *r*(**X**) reflects utility for catalog features
 - concept *c*(**X**) drawn from some hypothesis space *H*
 - bonus p: additional utility for an x satisfying c(x)
 - utility $u(\mathbf{x}) = r(\mathbf{x}) + p c(\mathbf{x})$
- •How do we elicit *c*?
 - concept learning: "accurate" identification of c
 e.g., MB model, PAC model, query model
 - our goal: learn *just enough* about *c* to identify a single good/optimal instance; and minimize user queries
 - e.g., compare [BJSZ04] (eliciting value functions)

Concept Learning: Key Aspects

- Hypothesis space H
 - e.g., nonmonotone conjunctions
 - e.g., *a,* ab, bcd, abcd
- Queries used to help identify concept C
 - e.g., membership queries:
 - is abcd in C?
- Version space *V* ⊂ *H*
 - *c*∈*V* iff *c* respects prior knowledge, responses, etc.
- Strategies, performance metrics
- Simple algorithm for nonmonotone conjunctions
 - ask random membership queries until positive instance *p* found
 - negate literals in p one at a time and ask query of that instance
 - exponential ; linear once *p* found

Version Spaces and MMR

■Let *V ⊂ H* be current version space

• $c \in V$ iff c respects prior knowledge, responses, etc.

If choice **x** must be made, use minimax regret

$$MR(\mathbf{x}; V) = \max_{c \in V} \max_{\mathbf{x}' \in \mathbf{X}} u(\mathbf{x}'; c) - u(\mathbf{x}; c)$$
$$MMR(V) = \min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}, V)$$
$$\mathbf{x}_{V}^{*} = \arg\min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}, V)$$

• If $MMR(V) = \varepsilon$, \mathbf{x}^* is ε -optimal

Can determine optimal x with little info about c

• e.g., if r is constant; if $\Delta(r) > p$; etc.

Characterizing MMR-Optimal Soln

MMR-optimal soln x*, x^w, c^w: interesting structure

- $x+, r+=r(x+)=max \{ r(x) : x \in X \}$
- general-specific lattice \geq over *V*: $c \geq c'$ iff $c' \subseteq c$
- *x**(*c*) : best satisfying *c*; *r**(*c*) = max { *r*(*x*) : *x*∈*c*, *x*∈*X*}
 induces reward-ordering over V: *r**(*c*₁) ≥ *r**(*c*₂) ≥ ...

reward ordering respects GS ordering

Characterizing MMR-Optimal Soln

Characterizing MMR-Optimal Soln

•Order $r_1 > r_2 \ldots > r_m$ elements of $\{r_c^* : c \in V\}$

•Let
$$C_i = \{c \in V : r_c^* = r_i\}$$
 and $S_i = \cap C_i$

Proposition 1 If \mathbf{x}_V^* is not consistent with V, then $\mathbf{x}_V^* \in X^+$ (and all elements of X^+ have identical max regret).

Proposition 2 If $\mathbf{x}_V^* \notin X^+$, then: (a) \mathbf{x}_V^* is consistent with V; (b) $\mathbf{x}_V^* \in \arg \max\{r(\mathbf{x}) : \mathbf{x} \in S_1 \cap \ldots \cap S_i\}$ for some $i \ge 1$; and (c) either $c^w \in C_1$, or $c^w \in C_{i+1}$.

Observation 2 $\mathbf{x}_V^* \in c^w$ only if $\mathbf{x}^w \in c^w$.

Computing MMR: Conjunctions

•Often max { $r(\mathbf{x}) : \mathbf{x} \in \mathbf{X}$ } defined by a MIP

- want to compute MMR by encoding within MIP
- special case: conjunctions, memberships queries
 e.g., "Do you consider this to be a safe car?"

•Let
$$\mathbf{x}_c = \arg \max_{\mathbf{x} \in \mathbf{X}} u(\mathbf{x}; c)$$
, then *MMR(V)* is:

min
$$\delta$$

s.t. $\delta \geq r(\mathbf{x}_c) - r(X_1, \cdots, X_n) + p(\mathbf{x}_c, c) - pI^c \quad \forall c \in V$
 $I^c \leq X_j \quad \forall c \in V, \forall x_j \in c$
 $I^c \leq 1 - X_j \quad \forall c \in V, \forall \overline{x}_j \in c$

Computing MMR: Conjunctions*

- Constraint generation: avoid enumeration of V
 - solve w/ subset of V, find max violated constraint, add if nonzero
 - max violated constraint: concept that maximizes regret MR(x*, V)
 - Let E^+ , E^- be positive, negative instances

$$\max \quad r(X_1, \cdots, X_n) - r(\mathbf{x}) + pB^w - pB^x$$

s.t. $B^w + I(x_j) \leq X_j + 1.5 \quad \forall j \leq n$
 $B^w + I(\overline{x}_j) \leq (1 - X_j) + 1.5 \quad \forall j \leq n$
 $B^x \geq 1 - \sum_{j:\mathbf{x}[j] \text{ positive}} I(\overline{x}_j) - \sum_{j:\mathbf{x}[j] \text{ negative}} I(x_j)$
 $\sum_j I(\neg \mathbf{y}[j]) = 0 \quad \forall \mathbf{y} \in E^+$
 $\sum_j I(\neg \mathbf{y}[j]) \geq 1 \quad \forall \mathbf{y} \in E^-$
 $(X_1, \cdots, X_n) \in \mathbf{X}$

Query Strategies

- Aim: reduce regret quickly
- Several strategies using membership queries:
 - Halving: aims to learn concept directly
 - "random" query x until positive response; then refine (unique) most specific concept in V (negate one literal at a time)
 - Current Soln (CS): tackle regret directly
 - If x*, x^w both in c^w: query x^w (unless certain)
 - If x^w in c^w but not x^{*}: query x^{*} (unless certain)
 - If x*, x^w both not in c^w: query x^w if x^w is V-consistent, o.w. x*
 - Several variants show modest improvements

"Typical" Results

30 variables, 20 random binary constraints, concepts have size 10, random reward/bonus, bonus = 25% of max reward

Varying Constraint Tightness

- Tighter constraints: sparser solution sets, more variability in r* values, more concepts in V without positive instances in X
 - shown: number of queries to reach regret reduction of 80%

Varying Relative Bonus

Greater bonus value: refining the concept becomes more critical

• shown: queries to reach regret reduction of 80% (20 constraints)

Positive Instance as Seed

- Once positive instance found, true "halving" kicks in
 - assume user identifies a positive example immediately

Incorporating Utility Uncertainty

Utility (reward, bonus) not really known

- require simultaneous utility and feature elicitation
- doing one "completely" followed by other is wasteful
- Challenges
 - what are appropriate query strategies (tradeoffs)
 - semantics of elicitation queries more complicated

Utility and Concept Uncertainty: Model

•As before: product space $X \subseteq Dom\{X_1 \dots X_n\}$

- reward *r*(**X**) reflects utility for catalog features
- concept c(X) drawn from some hypothesis space H
- bonus b: additional utility for an x satisfying c(x)
- utility $u(\mathbf{x}) = r(\mathbf{x}) + b c(\mathbf{x})$
- As before, concept c(X) unknown
- In addition, utility parameters w (including b) unknown
 - assume additive utility model: $r(\mathbf{x}, w) = \sum_{k} u_k(x_k)$

Minimax regret: over utility and concept uncertainty

MMR with Utility, Concept Uncertainty

V C H: current version space; *W*: current utility polytope
If choice *x* must be made, use minimax regret

$$MR(\mathbf{x}; W, V) = \max_{w \in W} \max_{c \in V} \max_{\mathbf{x}' \in \mathbf{X}} u(\mathbf{x}'; w, c) - u(\mathbf{x}; w, c)$$
$$MMR(W, V) = \min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}; W, V)$$
$$\mathbf{x}_{W,V}^* = \arg\min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}; W, V)$$

- If $MMR(W, V) = \varepsilon$, \mathbf{x}^* is ε -optimal
- Note: definition can be generalized if W, V coupled
- Can determine optimal x with little info about w, c

Computing MMR: Conjunctions

Compute MMR by encoding within MIP

- special case: conjunctions, memberships queries
- •Let $\mathbf{x}_{w,c}^* = \arg \max u(\mathbf{x}; w, c)$
 - $b(\mathbf{x}_{W,C}, c)$ constant: w_b if $c(\mathbf{x})$; 0 otherwise.

Then MMR(V) is:

$$\min \quad \delta \\ \text{s.t. } \delta \ge r(\mathbf{x}_{w,c}^*) - r(X_1, \cdots X_n) \\ + b(\mathbf{x}_{w,c}^*, c) - w_b I^c \quad \forall c \in V, \forall w \in W \\ I^c \le X_j \qquad \forall c \in V, \forall x_j \in c \\ I^c \le 1 - X_j \qquad \forall c \in V, \forall \overline{x}_j \in c \\ \end{cases}$$

Computing MMR: Conjunctions*

Constraint generation: avoid enumeration of *W*, *V*

- max violated constraint: concept that maximizes regret MR(x*, W, V)
- Let E^+ , E^- be positive, negative instances

$$\max \sum_{j \leq n} Y_j + Z^a - \sum_{j \leq n} w_j \mathbf{x}[j] - Z^x$$

s.t. $B^a + I(x_j) \leq X_j + 1.5 \quad \forall j \leq n$
 $B^a + I(\overline{x}_j) \leq (1 - X_j) + 1.5 \quad \forall j \leq n$
 $B^x \geq 1 - \sum_{j:\mathbf{x}[j] \text{ positive}} I(\overline{x}_j) - \sum_{j:\mathbf{x}[j] \text{ negative}} I(x_j)$
 $\sum_j I(\neg \mathbf{y}[j]) = 0 \quad \forall \mathbf{y} \in E^+$
 $\sum_j I(\neg \mathbf{y}[j]) \geq 1 \quad \forall \mathbf{y} \in E^-$
 $Y_j \leq X_j w_j \uparrow; \quad Y_j \leq w_j \quad \forall j \leq n$
 $Z^a \leq B^a w_b \uparrow; \quad Z^a \leq w_b$
 $B^x w_b \downarrow \leq Z^x; \quad B^x w_b \uparrow \leq Z^x + w_b \uparrow - w_b$
 $(w_1, \cdots, w_n, w_b) \in W; \quad (X_1, \cdots, X_n) \in \mathbf{X}_{\text{putilier, 2009}}$

Comparison Queries in Joint Model

User prefers x to y

- with no feature uncertainty: linear constraint wx > wy
- with feature uncertainty, more complicated
 - ask membership queries: linear; e.g., wx + p > wy
 - unknown membership: conditional constraints

$$w\mathbf{x} - w\mathbf{y} > 0$$
 if $c(\mathbf{x}), c(\mathbf{y})$

$$w\mathbf{x} + p - w\mathbf{y} > 0$$
 if $c(\mathbf{x}), \neg c(\mathbf{y}) \star$

$$w\mathbf{x} - w\mathbf{y} - p > 0$$
 if $\neg c(\mathbf{x}), c(\mathbf{y})$

$$w\mathbf{x} - w\mathbf{y} > 0$$
 if $\neg c(\mathbf{x}), \neg c(\mathbf{y})$

Inearized in MIP in a straightforward fashion

*
$$w\mathbf{x} + b - w\mathbf{y} > \left[\sum_{j \le n} I(\neg \mathbf{x}[j]) + (1 - I(\neg \mathbf{y}[k]))\right] \Delta \downarrow \quad \forall k \le n$$

Query Strategies

Focus on comparison queries, membership queries

- Membership: halving, current soln (MCSS), defined as before
- Comparison queries: use only current solution (CCSS)
- Key question: when to ask membership vs. comparison
 - which is more valuable: refining concept, refining utility polytope
 - decompose MR of current soln into *concept regret, utility regret*

$$rr = r(\mathbf{x}^a; w) - r(\mathbf{x}^*; w); \quad cr = w_b(c(\mathbf{x}^a) - c(\mathbf{x}^*))$$

Five strategies explored:

- *Phased*: Ph(Halving, CCSS) and Ph(MCSS, CCSS)
 stalling: ask a comparison query
- Interleaved: I(Halving, CCSS) and I(MCSS, CCSS)
 - query choice: whichever of concept or utility regret is greater
- Combined comparison-membership queries: CCM
 - uses CCSS to generate comparison

Empirical Results

20 variables, 60 random binary constraints, random concepts (5 vars max, 3.33 on avg), random reward/bonus and initial uncertain bounds (30runs)

Max Regret vs. Number of Queries

Empirical Results

30 variables, 90 random binary constraints, random concepts (10 vars max, 6.67 on avg), random reward/bonus and initial uncertain bounds (20runs)

Max Regret vs. Number of Queries

Query mix for interleaved I(MCSS, CCSS)*

30 variables, 90 random binary constraints, random concepts (10 vars max, 6.67 on avg), random reward/bonus and initial uncertain bounds (20runs)

Varying Relative Bonus*

- Greater bonus value: refining concept becomes more critical
 - shown: queries to reach regret reduction of 75% (20 variables, 60 constraints)

Number of queries by bonus bound and query type

Constructed Features: Summary

Formal view of constructed features

- allows "on the fly" elicitation of "fundamental" objectives
- Elicitation of feature definitions
 - attention focused on relevant constraints on user definition
 - some first steps toward integrated feature and utility elicitation

First steps only

- more general hypothesis classes (including fuzzier concepts)
- richer concept query classes (some more natural?)
- better strategies for integration

Subjective Features

Consider other subjective features (not constructed):

- your assessment of "cute" car differs from my wife's
- no "functional definition" from catalog features

Collaborative Filtering (stylized)

Matrix factorization perspective

Ratings Matrix

Can add active component to improve ratings (BZM)

CF: Catalog Features

- Combining active CF, elicitation an interesting problem for such content-collaborative recommendation systems
 - must apply PMF with constraints on user utility vectors, full information on catalog product features

Subjective Features in CF

Suppose subjective keywords for some items

- e.g., various people label cars "cute", "sporty", ...
 - see Dudek for movies with semantic labels

Goal:

- use subjective feature assessment to predict utility
- problem: unobservable for novel items
- solution: simultaneously predict your assessment for novel items as well
- assume (incomplete) set of subjective assessments over the user-item population

Subjective Features [see also Singh&Gordon 08]

Subjective Features [w Charlin, Zemel]

Leverage collaborative aspects to assess SFs

- solved through iterative (componentwise optimization)
- prelim results (synthetic data) encouraging

Key questions:

- learning, optimzt'n of with catalog features/constraints
- active elicitation of ratings? subjective features?
 e.g., show picture of car: "You think this one's cute?"
- learning visual features (subjective/objective)
- sentiment analysis: treat as objective features

Toward Conversational Recommenders

- Overall goal: make decision support/recommender systems more "accessible" to naïve users
- Several preliminary steps
 - constructed features ("on the fly" fundamental objectives)
 - collaborative models for subjective feature assessment
 - conversational/critiquing models using MMR
 semantics of critiques, set recommendations/queries
- Other important directions
 - biases (framing, anchoring, thresholds, hyperbolic discounts, ...)
 overcoming, or quantifying/accounting for them
 - linguistic cues to strength of preference
 - query/interaction costs
 - mechanism design and social choice